xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  *	...and...
41  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
42  *
43  * $FreeBSD$
44  */
45 
46 /*
47  * Null Layer
48  *
49  * (See mount_nullfs(8) for more information.)
50  *
51  * The null layer duplicates a portion of the file system
52  * name space under a new name.  In this respect, it is
53  * similar to the loopback file system.  It differs from
54  * the loopback fs in two respects:  it is implemented using
55  * a stackable layers techniques, and its "null-node"s stack above
56  * all lower-layer vnodes, not just over directory vnodes.
57  *
58  * The null layer has two purposes.  First, it serves as a demonstration
59  * of layering by proving a layer which does nothing.  (It actually
60  * does everything the loopback file system does, which is slightly
61  * more than nothing.)  Second, the null layer can serve as a prototype
62  * layer.  Since it provides all necessary layer framework,
63  * new file system layers can be created very easily be starting
64  * with a null layer.
65  *
66  * The remainder of this man page examines the null layer as a basis
67  * for constructing new layers.
68  *
69  *
70  * INSTANTIATING NEW NULL LAYERS
71  *
72  * New null layers are created with mount_nullfs(8).
73  * Mount_nullfs(8) takes two arguments, the pathname
74  * of the lower vfs (target-pn) and the pathname where the null
75  * layer will appear in the namespace (alias-pn).  After
76  * the null layer is put into place, the contents
77  * of target-pn subtree will be aliased under alias-pn.
78  *
79  *
80  * OPERATION OF A NULL LAYER
81  *
82  * The null layer is the minimum file system layer,
83  * simply bypassing all possible operations to the lower layer
84  * for processing there.  The majority of its activity centers
85  * on the bypass routine, through which nearly all vnode operations
86  * pass.
87  *
88  * The bypass routine accepts arbitrary vnode operations for
89  * handling by the lower layer.  It begins by examing vnode
90  * operation arguments and replacing any null-nodes by their
91  * lower-layer equivlants.  It then invokes the operation
92  * on the lower layer.  Finally, it replaces the null-nodes
93  * in the arguments and, if a vnode is return by the operation,
94  * stacks a null-node on top of the returned vnode.
95  *
96  * Although bypass handles most operations, vop_getattr, vop_lock,
97  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
98  * bypassed. Vop_getattr must change the fsid being returned.
99  * Vop_lock and vop_unlock must handle any locking for the
100  * current vnode as well as pass the lock request down.
101  * Vop_inactive and vop_reclaim are not bypassed so that
102  * they can handle freeing null-layer specific data. Vop_print
103  * is not bypassed to avoid excessive debugging information.
104  * Also, certain vnode operations change the locking state within
105  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
106  * and symlink). Ideally these operations should not change the
107  * lock state, but should be changed to let the caller of the
108  * function unlock them. Otherwise all intermediate vnode layers
109  * (such as union, umapfs, etc) must catch these functions to do
110  * the necessary locking at their layer.
111  *
112  *
113  * INSTANTIATING VNODE STACKS
114  *
115  * Mounting associates the null layer with a lower layer,
116  * effect stacking two VFSes.  Vnode stacks are instead
117  * created on demand as files are accessed.
118  *
119  * The initial mount creates a single vnode stack for the
120  * root of the new null layer.  All other vnode stacks
121  * are created as a result of vnode operations on
122  * this or other null vnode stacks.
123  *
124  * New vnode stacks come into existance as a result of
125  * an operation which returns a vnode.
126  * The bypass routine stacks a null-node above the new
127  * vnode before returning it to the caller.
128  *
129  * For example, imagine mounting a null layer with
130  * "mount_nullfs /usr/include /dev/layer/null".
131  * Changing directory to /dev/layer/null will assign
132  * the root null-node (which was created when the null layer was mounted).
133  * Now consider opening "sys".  A vop_lookup would be
134  * done on the root null-node.  This operation would bypass through
135  * to the lower layer which would return a vnode representing
136  * the UFS "sys".  Null_bypass then builds a null-node
137  * aliasing the UFS "sys" and returns this to the caller.
138  * Later operations on the null-node "sys" will repeat this
139  * process when constructing other vnode stacks.
140  *
141  *
142  * CREATING OTHER FILE SYSTEM LAYERS
143  *
144  * One of the easiest ways to construct new file system layers is to make
145  * a copy of the null layer, rename all files and variables, and
146  * then begin modifing the copy.  Sed can be used to easily rename
147  * all variables.
148  *
149  * The umap layer is an example of a layer descended from the
150  * null layer.
151  *
152  *
153  * INVOKING OPERATIONS ON LOWER LAYERS
154  *
155  * There are two techniques to invoke operations on a lower layer
156  * when the operation cannot be completely bypassed.  Each method
157  * is appropriate in different situations.  In both cases,
158  * it is the responsibility of the aliasing layer to make
159  * the operation arguments "correct" for the lower layer
160  * by mapping an vnode arguments to the lower layer.
161  *
162  * The first approach is to call the aliasing layer's bypass routine.
163  * This method is most suitable when you wish to invoke the operation
164  * currently being handled on the lower layer.  It has the advantage
165  * that the bypass routine already must do argument mapping.
166  * An example of this is null_getattrs in the null layer.
167  *
168  * A second approach is to directly invoke vnode operations on
169  * the lower layer with the VOP_OPERATIONNAME interface.
170  * The advantage of this method is that it is easy to invoke
171  * arbitrary operations on the lower layer.  The disadvantage
172  * is that vnode arguments must be manualy mapped.
173  *
174  */
175 
176 #include <sys/param.h>
177 #include <sys/systm.h>
178 #include <sys/conf.h>
179 #include <sys/kernel.h>
180 #include <sys/lock.h>
181 #include <sys/malloc.h>
182 #include <sys/mount.h>
183 #include <sys/mutex.h>
184 #include <sys/namei.h>
185 #include <sys/sysctl.h>
186 #include <sys/vnode.h>
187 
188 #include <fs/nullfs/null.h>
189 
190 #include <vm/vm.h>
191 #include <vm/vm_extern.h>
192 #include <vm/vm_object.h>
193 #include <vm/vnode_pager.h>
194 
195 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
196 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
197 	&null_bug_bypass, 0, "");
198 
199 static int	null_access(struct vop_access_args *ap);
200 static int	null_createvobject(struct vop_createvobject_args *ap);
201 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
202 static int	null_getattr(struct vop_getattr_args *ap);
203 static int	null_getvobject(struct vop_getvobject_args *ap);
204 static int	null_inactive(struct vop_inactive_args *ap);
205 static int	null_islocked(struct vop_islocked_args *ap);
206 static int	null_lock(struct vop_lock_args *ap);
207 static int	null_lookup(struct vop_lookup_args *ap);
208 static int	null_open(struct vop_open_args *ap);
209 static int	null_print(struct vop_print_args *ap);
210 static int	null_reclaim(struct vop_reclaim_args *ap);
211 static int	null_rename(struct vop_rename_args *ap);
212 static int	null_setattr(struct vop_setattr_args *ap);
213 static int	null_unlock(struct vop_unlock_args *ap);
214 
215 /*
216  * This is the 10-Apr-92 bypass routine.
217  *    This version has been optimized for speed, throwing away some
218  * safety checks.  It should still always work, but it's not as
219  * robust to programmer errors.
220  *
221  * In general, we map all vnodes going down and unmap them on the way back.
222  * As an exception to this, vnodes can be marked "unmapped" by setting
223  * the Nth bit in operation's vdesc_flags.
224  *
225  * Also, some BSD vnode operations have the side effect of vrele'ing
226  * their arguments.  With stacking, the reference counts are held
227  * by the upper node, not the lower one, so we must handle these
228  * side-effects here.  This is not of concern in Sun-derived systems
229  * since there are no such side-effects.
230  *
231  * This makes the following assumptions:
232  * - only one returned vpp
233  * - no INOUT vpp's (Sun's vop_open has one of these)
234  * - the vnode operation vector of the first vnode should be used
235  *   to determine what implementation of the op should be invoked
236  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
237  *   problems on rmdir'ing mount points and renaming?)
238  */
239 int
240 null_bypass(ap)
241 	struct vop_generic_args /* {
242 		struct vnodeop_desc *a_desc;
243 		<other random data follows, presumably>
244 	} */ *ap;
245 {
246 	register struct vnode **this_vp_p;
247 	int error;
248 	struct vnode *old_vps[VDESC_MAX_VPS];
249 	struct vnode **vps_p[VDESC_MAX_VPS];
250 	struct vnode ***vppp;
251 	struct vnodeop_desc *descp = ap->a_desc;
252 	int reles, i;
253 
254 	if (null_bug_bypass)
255 		printf ("null_bypass: %s\n", descp->vdesc_name);
256 
257 #ifdef DIAGNOSTIC
258 	/*
259 	 * We require at least one vp.
260 	 */
261 	if (descp->vdesc_vp_offsets == NULL ||
262 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
263 		panic ("null_bypass: no vp's in map");
264 #endif
265 
266 	/*
267 	 * Map the vnodes going in.
268 	 * Later, we'll invoke the operation based on
269 	 * the first mapped vnode's operation vector.
270 	 */
271 	reles = descp->vdesc_flags;
272 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
273 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
274 			break;   /* bail out at end of list */
275 		vps_p[i] = this_vp_p =
276 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
277 		/*
278 		 * We're not guaranteed that any but the first vnode
279 		 * are of our type.  Check for and don't map any
280 		 * that aren't.  (We must always map first vp or vclean fails.)
281 		 */
282 		if (i && (*this_vp_p == NULLVP ||
283 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
284 			old_vps[i] = NULLVP;
285 		} else {
286 			old_vps[i] = *this_vp_p;
287 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
288 			/*
289 			 * XXX - Several operations have the side effect
290 			 * of vrele'ing their vp's.  We must account for
291 			 * that.  (This should go away in the future.)
292 			 */
293 			if (reles & VDESC_VP0_WILLRELE)
294 				VREF(*this_vp_p);
295 		}
296 
297 	}
298 
299 	/*
300 	 * Call the operation on the lower layer
301 	 * with the modified argument structure.
302 	 */
303 	if (vps_p[0] && *vps_p[0])
304 		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
305 	else {
306 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
307 		error = EINVAL;
308 	}
309 
310 	/*
311 	 * Maintain the illusion of call-by-value
312 	 * by restoring vnodes in the argument structure
313 	 * to their original value.
314 	 */
315 	reles = descp->vdesc_flags;
316 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
317 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
318 			break;   /* bail out at end of list */
319 		if (old_vps[i]) {
320 			*(vps_p[i]) = old_vps[i];
321 #if 0
322 			if (reles & VDESC_VP0_WILLUNLOCK)
323 				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
324 #endif
325 			if (reles & VDESC_VP0_WILLRELE)
326 				vrele(*(vps_p[i]));
327 		}
328 	}
329 
330 	/*
331 	 * Map the possible out-going vpp
332 	 * (Assumes that the lower layer always returns
333 	 * a VREF'ed vpp unless it gets an error.)
334 	 */
335 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
336 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
337 	    !error) {
338 		/*
339 		 * XXX - even though some ops have vpp returned vp's,
340 		 * several ops actually vrele this before returning.
341 		 * We must avoid these ops.
342 		 * (This should go away when these ops are regularized.)
343 		 */
344 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
345 			goto out;
346 		vppp = VOPARG_OFFSETTO(struct vnode***,
347 				 descp->vdesc_vpp_offset,ap);
348 		if (*vppp)
349 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
350 	}
351 
352  out:
353 	return (error);
354 }
355 
356 /*
357  * We have to carry on the locking protocol on the null layer vnodes
358  * as we progress through the tree. We also have to enforce read-only
359  * if this layer is mounted read-only.
360  */
361 static int
362 null_lookup(ap)
363 	struct vop_lookup_args /* {
364 		struct vnode * a_dvp;
365 		struct vnode ** a_vpp;
366 		struct componentname * a_cnp;
367 	} */ *ap;
368 {
369 	struct componentname *cnp = ap->a_cnp;
370 	struct vnode *dvp = ap->a_dvp;
371 	struct thread *td = cnp->cn_thread;
372 	int flags = cnp->cn_flags;
373 	struct vnode *vp, *ldvp, *lvp;
374 	int error;
375 
376 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
377 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
378 		return (EROFS);
379 	/*
380 	 * Although it is possible to call null_bypass(), we'll do
381 	 * a direct call to reduce overhead
382 	 */
383 	ldvp = NULLVPTOLOWERVP(dvp);
384 	vp = lvp = NULL;
385 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
386 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
387 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
388 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
389 		error = EROFS;
390 
391 	/*
392 	 * Rely only on the PDIRUNLOCK flag which should be carefully
393 	 * tracked by underlying filesystem.
394 	 */
395 	if (cnp->cn_flags & PDIRUNLOCK)
396 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
397 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
398 		if (ldvp == lvp) {
399 			*ap->a_vpp = dvp;
400 			VREF(dvp);
401 			vrele(lvp);
402 		} else {
403 			error = null_node_create(dvp->v_mount, lvp, &vp);
404 			if (error == 0)
405 				*ap->a_vpp = vp;
406 		}
407 	}
408 	return (error);
409 }
410 
411 /*
412  * Setattr call. Disallow write attempts if the layer is mounted read-only.
413  */
414 int
415 null_setattr(ap)
416 	struct vop_setattr_args /* {
417 		struct vnodeop_desc *a_desc;
418 		struct vnode *a_vp;
419 		struct vattr *a_vap;
420 		struct ucred *a_cred;
421 		struct thread *a_td;
422 	} */ *ap;
423 {
424 	struct vnode *vp = ap->a_vp;
425 	struct vattr *vap = ap->a_vap;
426 
427   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
428 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
429 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
430 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
431 		return (EROFS);
432 	if (vap->va_size != VNOVAL) {
433  		switch (vp->v_type) {
434  		case VDIR:
435  			return (EISDIR);
436  		case VCHR:
437  		case VBLK:
438  		case VSOCK:
439  		case VFIFO:
440 			if (vap->va_flags != VNOVAL)
441 				return (EOPNOTSUPP);
442 			return (0);
443 		case VREG:
444 		case VLNK:
445  		default:
446 			/*
447 			 * Disallow write attempts if the filesystem is
448 			 * mounted read-only.
449 			 */
450 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
451 				return (EROFS);
452 		}
453 	}
454 
455 	return (null_bypass((struct vop_generic_args *)ap));
456 }
457 
458 /*
459  *  We handle getattr only to change the fsid.
460  */
461 static int
462 null_getattr(ap)
463 	struct vop_getattr_args /* {
464 		struct vnode *a_vp;
465 		struct vattr *a_vap;
466 		struct ucred *a_cred;
467 		struct thread *a_td;
468 	} */ *ap;
469 {
470 	int error;
471 
472 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
473 		return (error);
474 
475 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
476 	return (0);
477 }
478 
479 /*
480  * Handle to disallow write access if mounted read-only.
481  */
482 static int
483 null_access(ap)
484 	struct vop_access_args /* {
485 		struct vnode *a_vp;
486 		int  a_mode;
487 		struct ucred *a_cred;
488 		struct thread *a_td;
489 	} */ *ap;
490 {
491 	struct vnode *vp = ap->a_vp;
492 	mode_t mode = ap->a_mode;
493 
494 	/*
495 	 * Disallow write attempts on read-only layers;
496 	 * unless the file is a socket, fifo, or a block or
497 	 * character device resident on the file system.
498 	 */
499 	if (mode & VWRITE) {
500 		switch (vp->v_type) {
501 		case VDIR:
502 		case VLNK:
503 		case VREG:
504 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
505 				return (EROFS);
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 	return (null_bypass((struct vop_generic_args *)ap));
512 }
513 
514 /*
515  * We must handle open to be able to catch MNT_NODEV and friends.
516  */
517 static int
518 null_open(ap)
519 	struct vop_open_args /* {
520 		struct vnode *a_vp;
521 		int  a_mode;
522 		struct ucred *a_cred;
523 		struct thread *a_td;
524 	} */ *ap;
525 {
526 	struct vnode *vp = ap->a_vp;
527 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
528 
529 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
530 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
531 		return ENXIO;
532 
533 	return (null_bypass((struct vop_generic_args *)ap));
534 }
535 
536 /*
537  * We handle this to eliminate null FS to lower FS
538  * file moving. Don't know why we don't allow this,
539  * possibly we should.
540  */
541 static int
542 null_rename(ap)
543 	struct vop_rename_args /* {
544 		struct vnode *a_fdvp;
545 		struct vnode *a_fvp;
546 		struct componentname *a_fcnp;
547 		struct vnode *a_tdvp;
548 		struct vnode *a_tvp;
549 		struct componentname *a_tcnp;
550 	} */ *ap;
551 {
552 	struct vnode *tdvp = ap->a_tdvp;
553 	struct vnode *fvp = ap->a_fvp;
554 	struct vnode *fdvp = ap->a_fdvp;
555 	struct vnode *tvp = ap->a_tvp;
556 
557 	/* Check for cross-device rename. */
558 	if ((fvp->v_mount != tdvp->v_mount) ||
559 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
560 		if (tdvp == tvp)
561 			vrele(tdvp);
562 		else
563 			vput(tdvp);
564 		if (tvp)
565 			vput(tvp);
566 		vrele(fdvp);
567 		vrele(fvp);
568 		return (EXDEV);
569 	}
570 
571 	return (null_bypass((struct vop_generic_args *)ap));
572 }
573 
574 /*
575  * We need to process our own vnode lock and then clear the
576  * interlock flag as it applies only to our vnode, not the
577  * vnodes below us on the stack.
578  */
579 static int
580 null_lock(ap)
581 	struct vop_lock_args /* {
582 		struct vnode *a_vp;
583 		int a_flags;
584 		struct thread *a_td;
585 	} */ *ap;
586 {
587 	struct vnode *vp = ap->a_vp;
588 	int flags = ap->a_flags;
589 	struct thread *td = ap->a_td;
590 	struct vnode *lvp;
591 	int error;
592 
593 	if (flags & LK_THISLAYER) {
594 		if (vp->v_vnlock != NULL)
595 			return 0;	/* lock is shared across layers */
596 		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
597 		    &vp->v_interlock, td);
598 		return (error);
599 	}
600 
601 	if (vp->v_vnlock != NULL) {
602 		/*
603 		 * The lower level has exported a struct lock to us. Use
604 		 * it so that all vnodes in the stack lock and unlock
605 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
606 		 * decommissions the lock - just because our vnode is
607 		 * going away doesn't mean the struct lock below us is.
608 		 * LK_EXCLUSIVE is fine.
609 		 */
610 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
611 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
612 			return(lockmgr(vp->v_vnlock,
613 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
614 				&vp->v_interlock, td));
615 		}
616 		return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td));
617 	} else {
618 		/*
619 		 * To prevent race conditions involving doing a lookup
620 		 * on "..", we have to lock the lower node, then lock our
621 		 * node. Most of the time it won't matter that we lock our
622 		 * node (as any locking would need the lower one locked
623 		 * first). But we can LK_DRAIN the upper lock as a step
624 		 * towards decomissioning it.
625 		 */
626 		lvp = NULLVPTOLOWERVP(vp);
627 		if (lvp == NULL)
628 			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
629 		if (flags & LK_INTERLOCK) {
630 			mtx_unlock(&vp->v_interlock);
631 			flags &= ~LK_INTERLOCK;
632 		}
633 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
634 			error = VOP_LOCK(lvp,
635 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
636 		} else
637 			error = VOP_LOCK(lvp, flags, td);
638 		if (error)
639 			return (error);
640 		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
641 		if (error)
642 			VOP_UNLOCK(lvp, 0, td);
643 		return (error);
644 	}
645 }
646 
647 /*
648  * We need to process our own vnode unlock and then clear the
649  * interlock flag as it applies only to our vnode, not the
650  * vnodes below us on the stack.
651  */
652 static int
653 null_unlock(ap)
654 	struct vop_unlock_args /* {
655 		struct vnode *a_vp;
656 		int a_flags;
657 		struct thread *a_td;
658 	} */ *ap;
659 {
660 	struct vnode *vp = ap->a_vp;
661 	int flags = ap->a_flags;
662 	struct thread *td = ap->a_td;
663 	struct vnode *lvp;
664 
665 	if (vp->v_vnlock != NULL) {
666 		if (flags & LK_THISLAYER)
667 			return 0;	/* the lock is shared across layers */
668 		flags &= ~LK_THISLAYER;
669 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
670 			&vp->v_interlock, td));
671 	}
672 	lvp = NULLVPTOLOWERVP(vp);
673 	if (lvp == NULL)
674 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
675 	if ((flags & LK_THISLAYER) == 0) {
676 		if (flags & LK_INTERLOCK) {
677 			mtx_unlock(&vp->v_interlock);
678 			flags &= ~LK_INTERLOCK;
679 		}
680 		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
681 	} else
682 		flags &= ~LK_THISLAYER;
683 	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
684 }
685 
686 static int
687 null_islocked(ap)
688 	struct vop_islocked_args /* {
689 		struct vnode *a_vp;
690 		struct thread *a_td;
691 	} */ *ap;
692 {
693 	struct vnode *vp = ap->a_vp;
694 	struct thread *td = ap->a_td;
695 
696 	if (vp->v_vnlock != NULL)
697 		return (lockstatus(vp->v_vnlock, td));
698 	return (lockstatus(&vp->v_lock, td));
699 }
700 
701 /*
702  * There is no way to tell that someone issued remove/rmdir operation
703  * on the underlying filesystem. For now we just have to release lowevrp
704  * as soon as possible.
705  */
706 static int
707 null_inactive(ap)
708 	struct vop_inactive_args /* {
709 		struct vnode *a_vp;
710 		struct thread *a_td;
711 	} */ *ap;
712 {
713 	struct vnode *vp = ap->a_vp;
714 
715 	/*
716 	 * If this is the last reference, then free up the vnode
717 	 * so as not to tie up the lower vnodes.
718 	 */
719 	if (vp->v_usecount == 0)
720 		vrecycle(vp, NULL, ap->a_td);
721 	return (0);
722 }
723 
724 /*
725  * We can free memory in null_inactive, but we do this
726  * here. (Possible to guard vp->v_data to point somewhere)
727  */
728 static int
729 null_reclaim(ap)
730 	struct vop_reclaim_args /* {
731 		struct vnode *a_vp;
732 		struct thread *a_td;
733 	} */ *ap;
734 {
735 	struct thread *td = ap->a_td;
736 	struct vnode *vp = ap->a_vp;
737 	struct null_node *xp = VTONULL(vp);
738 	struct vnode *lowervp = xp->null_lowervp;
739 	void *vdata;
740 
741 	lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, td);
742 	LIST_REMOVE(xp, null_hash);
743 	lockmgr(&null_hashlock, LK_RELEASE, NULL, td);
744 
745 	xp->null_lowervp = NULLVP;
746 	if (vp->v_vnlock != NULL) {
747 		vp->v_vnlock = &vp->v_lock;  /* we no longer share the lock */
748 	} else
749 		VOP_UNLOCK(vp, LK_THISLAYER, td);
750 
751 	/*
752 	 * Now it is safe to drop references to the lower vnode.
753 	 * VOP_INACTIVE() will be called by vrele() if necessary.
754 	 */
755 	vput(lowervp);
756 	vrele (lowervp);
757 
758 	vdata = vp->v_data;
759 	vp->v_data = NULL;
760 	FREE(vdata, M_NULLFSNODE);
761 
762 	return (0);
763 }
764 
765 static int
766 null_print(ap)
767 	struct vop_print_args /* {
768 		struct vnode *a_vp;
769 	} */ *ap;
770 {
771 	register struct vnode *vp = ap->a_vp;
772 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
773 	return (0);
774 }
775 
776 /*
777  * Let an underlying filesystem do the work
778  */
779 static int
780 null_createvobject(ap)
781 	struct vop_createvobject_args /* {
782 		struct vnode *vp;
783 		struct ucred *cred;
784 		struct thread *td;
785 	} */ *ap;
786 {
787 	struct vnode *vp = ap->a_vp;
788 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
789 	int error;
790 
791 	if (vp->v_type == VNON || lowervp == NULL)
792 		return 0;
793 	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
794 	if (error)
795 		return (error);
796 	vp->v_flag |= VOBJBUF;
797 	return (0);
798 }
799 
800 /*
801  * We have nothing to destroy and this operation shouldn't be bypassed.
802  */
803 static int
804 null_destroyvobject(ap)
805 	struct vop_destroyvobject_args /* {
806 		struct vnode *vp;
807 	} */ *ap;
808 {
809 	struct vnode *vp = ap->a_vp;
810 
811 	vp->v_flag &= ~VOBJBUF;
812 	return (0);
813 }
814 
815 static int
816 null_getvobject(ap)
817 	struct vop_getvobject_args /* {
818 		struct vnode *vp;
819 		struct vm_object **objpp;
820 	} */ *ap;
821 {
822 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
823 
824 	if (lvp == NULL)
825 		return EINVAL;
826 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
827 }
828 
829 /*
830  * Global vfs data structures
831  */
832 vop_t **null_vnodeop_p;
833 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
834 	{ &vop_default_desc,		(vop_t *) null_bypass },
835 
836 	{ &vop_access_desc,		(vop_t *) null_access },
837 	{ &vop_bmap_desc,		(vop_t *) vop_eopnotsupp },
838 	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
839 	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
840 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
841 	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
842 	{ &vop_getwritemount_desc,	(vop_t *) vop_stdgetwritemount},
843 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
844 	{ &vop_islocked_desc,		(vop_t *) null_islocked },
845 	{ &vop_lock_desc,		(vop_t *) null_lock },
846 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
847 	{ &vop_open_desc,		(vop_t *) null_open },
848 	{ &vop_print_desc,		(vop_t *) null_print },
849 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
850 	{ &vop_rename_desc,		(vop_t *) null_rename },
851 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
852 	{ &vop_strategy_desc,		(vop_t *) vop_eopnotsupp },
853 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
854 	{ NULL, NULL }
855 };
856 static struct vnodeopv_desc null_vnodeop_opv_desc =
857 	{ &null_vnodeop_p, null_vnodeop_entries };
858 
859 VNODEOP_SET(null_vnodeop_opv_desc);
860