1 /* 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * John Heidemann of the UCLA Ficus project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 37 * 38 * Ancestors: 39 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 40 * ...and... 41 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 42 * 43 * $FreeBSD$ 44 */ 45 46 /* 47 * Null Layer 48 * 49 * (See mount_nullfs(8) for more information.) 50 * 51 * The null layer duplicates a portion of the file system 52 * name space under a new name. In this respect, it is 53 * similar to the loopback file system. It differs from 54 * the loopback fs in two respects: it is implemented using 55 * a stackable layers techniques, and its "null-node"s stack above 56 * all lower-layer vnodes, not just over directory vnodes. 57 * 58 * The null layer has two purposes. First, it serves as a demonstration 59 * of layering by proving a layer which does nothing. (It actually 60 * does everything the loopback file system does, which is slightly 61 * more than nothing.) Second, the null layer can serve as a prototype 62 * layer. Since it provides all necessary layer framework, 63 * new file system layers can be created very easily be starting 64 * with a null layer. 65 * 66 * The remainder of this man page examines the null layer as a basis 67 * for constructing new layers. 68 * 69 * 70 * INSTANTIATING NEW NULL LAYERS 71 * 72 * New null layers are created with mount_nullfs(8). 73 * Mount_nullfs(8) takes two arguments, the pathname 74 * of the lower vfs (target-pn) and the pathname where the null 75 * layer will appear in the namespace (alias-pn). After 76 * the null layer is put into place, the contents 77 * of target-pn subtree will be aliased under alias-pn. 78 * 79 * 80 * OPERATION OF A NULL LAYER 81 * 82 * The null layer is the minimum file system layer, 83 * simply bypassing all possible operations to the lower layer 84 * for processing there. The majority of its activity centers 85 * on the bypass routine, through which nearly all vnode operations 86 * pass. 87 * 88 * The bypass routine accepts arbitrary vnode operations for 89 * handling by the lower layer. It begins by examing vnode 90 * operation arguments and replacing any null-nodes by their 91 * lower-layer equivlants. It then invokes the operation 92 * on the lower layer. Finally, it replaces the null-nodes 93 * in the arguments and, if a vnode is return by the operation, 94 * stacks a null-node on top of the returned vnode. 95 * 96 * Although bypass handles most operations, vop_getattr, vop_lock, 97 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 98 * bypassed. Vop_getattr must change the fsid being returned. 99 * Vop_lock and vop_unlock must handle any locking for the 100 * current vnode as well as pass the lock request down. 101 * Vop_inactive and vop_reclaim are not bypassed so that 102 * they can handle freeing null-layer specific data. Vop_print 103 * is not bypassed to avoid excessive debugging information. 104 * Also, certain vnode operations change the locking state within 105 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 106 * and symlink). Ideally these operations should not change the 107 * lock state, but should be changed to let the caller of the 108 * function unlock them. Otherwise all intermediate vnode layers 109 * (such as union, umapfs, etc) must catch these functions to do 110 * the necessary locking at their layer. 111 * 112 * 113 * INSTANTIATING VNODE STACKS 114 * 115 * Mounting associates the null layer with a lower layer, 116 * effect stacking two VFSes. Vnode stacks are instead 117 * created on demand as files are accessed. 118 * 119 * The initial mount creates a single vnode stack for the 120 * root of the new null layer. All other vnode stacks 121 * are created as a result of vnode operations on 122 * this or other null vnode stacks. 123 * 124 * New vnode stacks come into existance as a result of 125 * an operation which returns a vnode. 126 * The bypass routine stacks a null-node above the new 127 * vnode before returning it to the caller. 128 * 129 * For example, imagine mounting a null layer with 130 * "mount_nullfs /usr/include /dev/layer/null". 131 * Changing directory to /dev/layer/null will assign 132 * the root null-node (which was created when the null layer was mounted). 133 * Now consider opening "sys". A vop_lookup would be 134 * done on the root null-node. This operation would bypass through 135 * to the lower layer which would return a vnode representing 136 * the UFS "sys". Null_bypass then builds a null-node 137 * aliasing the UFS "sys" and returns this to the caller. 138 * Later operations on the null-node "sys" will repeat this 139 * process when constructing other vnode stacks. 140 * 141 * 142 * CREATING OTHER FILE SYSTEM LAYERS 143 * 144 * One of the easiest ways to construct new file system layers is to make 145 * a copy of the null layer, rename all files and variables, and 146 * then begin modifing the copy. Sed can be used to easily rename 147 * all variables. 148 * 149 * The umap layer is an example of a layer descended from the 150 * null layer. 151 * 152 * 153 * INVOKING OPERATIONS ON LOWER LAYERS 154 * 155 * There are two techniques to invoke operations on a lower layer 156 * when the operation cannot be completely bypassed. Each method 157 * is appropriate in different situations. In both cases, 158 * it is the responsibility of the aliasing layer to make 159 * the operation arguments "correct" for the lower layer 160 * by mapping an vnode arguments to the lower layer. 161 * 162 * The first approach is to call the aliasing layer's bypass routine. 163 * This method is most suitable when you wish to invoke the operation 164 * currently being handled on the lower layer. It has the advantage 165 * that the bypass routine already must do argument mapping. 166 * An example of this is null_getattrs in the null layer. 167 * 168 * A second approach is to directly invoke vnode operations on 169 * the lower layer with the VOP_OPERATIONNAME interface. 170 * The advantage of this method is that it is easy to invoke 171 * arbitrary operations on the lower layer. The disadvantage 172 * is that vnode arguments must be manualy mapped. 173 * 174 */ 175 176 #include <sys/param.h> 177 #include <sys/systm.h> 178 #include <sys/conf.h> 179 #include <sys/kernel.h> 180 #include <sys/lock.h> 181 #include <sys/malloc.h> 182 #include <sys/mount.h> 183 #include <sys/mutex.h> 184 #include <sys/namei.h> 185 #include <sys/sysctl.h> 186 #include <sys/vnode.h> 187 188 #include <fs/nullfs/null.h> 189 190 #include <vm/vm.h> 191 #include <vm/vm_extern.h> 192 #include <vm/vm_object.h> 193 #include <vm/vnode_pager.h> 194 195 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 196 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 197 &null_bug_bypass, 0, ""); 198 199 static int null_access(struct vop_access_args *ap); 200 static int null_createvobject(struct vop_createvobject_args *ap); 201 static int null_destroyvobject(struct vop_destroyvobject_args *ap); 202 static int null_getattr(struct vop_getattr_args *ap); 203 static int null_getvobject(struct vop_getvobject_args *ap); 204 static int null_inactive(struct vop_inactive_args *ap); 205 static int null_islocked(struct vop_islocked_args *ap); 206 static int null_lock(struct vop_lock_args *ap); 207 static int null_lookup(struct vop_lookup_args *ap); 208 static int null_open(struct vop_open_args *ap); 209 static int null_print(struct vop_print_args *ap); 210 static int null_reclaim(struct vop_reclaim_args *ap); 211 static int null_rename(struct vop_rename_args *ap); 212 static int null_setattr(struct vop_setattr_args *ap); 213 static int null_unlock(struct vop_unlock_args *ap); 214 215 /* 216 * This is the 10-Apr-92 bypass routine. 217 * This version has been optimized for speed, throwing away some 218 * safety checks. It should still always work, but it's not as 219 * robust to programmer errors. 220 * 221 * In general, we map all vnodes going down and unmap them on the way back. 222 * As an exception to this, vnodes can be marked "unmapped" by setting 223 * the Nth bit in operation's vdesc_flags. 224 * 225 * Also, some BSD vnode operations have the side effect of vrele'ing 226 * their arguments. With stacking, the reference counts are held 227 * by the upper node, not the lower one, so we must handle these 228 * side-effects here. This is not of concern in Sun-derived systems 229 * since there are no such side-effects. 230 * 231 * This makes the following assumptions: 232 * - only one returned vpp 233 * - no INOUT vpp's (Sun's vop_open has one of these) 234 * - the vnode operation vector of the first vnode should be used 235 * to determine what implementation of the op should be invoked 236 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 237 * problems on rmdir'ing mount points and renaming?) 238 */ 239 int 240 null_bypass(ap) 241 struct vop_generic_args /* { 242 struct vnodeop_desc *a_desc; 243 <other random data follows, presumably> 244 } */ *ap; 245 { 246 register struct vnode **this_vp_p; 247 int error; 248 struct vnode *old_vps[VDESC_MAX_VPS]; 249 struct vnode **vps_p[VDESC_MAX_VPS]; 250 struct vnode ***vppp; 251 struct vnodeop_desc *descp = ap->a_desc; 252 int reles, i; 253 254 if (null_bug_bypass) 255 printf ("null_bypass: %s\n", descp->vdesc_name); 256 257 #ifdef DIAGNOSTIC 258 /* 259 * We require at least one vp. 260 */ 261 if (descp->vdesc_vp_offsets == NULL || 262 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 263 panic ("null_bypass: no vp's in map"); 264 #endif 265 266 /* 267 * Map the vnodes going in. 268 * Later, we'll invoke the operation based on 269 * the first mapped vnode's operation vector. 270 */ 271 reles = descp->vdesc_flags; 272 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 273 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 274 break; /* bail out at end of list */ 275 vps_p[i] = this_vp_p = 276 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); 277 /* 278 * We're not guaranteed that any but the first vnode 279 * are of our type. Check for and don't map any 280 * that aren't. (We must always map first vp or vclean fails.) 281 */ 282 if (i && (*this_vp_p == NULLVP || 283 (*this_vp_p)->v_op != null_vnodeop_p)) { 284 old_vps[i] = NULLVP; 285 } else { 286 old_vps[i] = *this_vp_p; 287 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 288 /* 289 * XXX - Several operations have the side effect 290 * of vrele'ing their vp's. We must account for 291 * that. (This should go away in the future.) 292 */ 293 if (reles & VDESC_VP0_WILLRELE) 294 VREF(*this_vp_p); 295 } 296 297 } 298 299 /* 300 * Call the operation on the lower layer 301 * with the modified argument structure. 302 */ 303 if (vps_p[0] && *vps_p[0]) 304 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap); 305 else { 306 printf("null_bypass: no map for %s\n", descp->vdesc_name); 307 error = EINVAL; 308 } 309 310 /* 311 * Maintain the illusion of call-by-value 312 * by restoring vnodes in the argument structure 313 * to their original value. 314 */ 315 reles = descp->vdesc_flags; 316 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 317 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 318 break; /* bail out at end of list */ 319 if (old_vps[i]) { 320 *(vps_p[i]) = old_vps[i]; 321 #if 0 322 if (reles & VDESC_VP0_WILLUNLOCK) 323 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread); 324 #endif 325 if (reles & VDESC_VP0_WILLRELE) 326 vrele(*(vps_p[i])); 327 } 328 } 329 330 /* 331 * Map the possible out-going vpp 332 * (Assumes that the lower layer always returns 333 * a VREF'ed vpp unless it gets an error.) 334 */ 335 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 336 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 337 !error) { 338 /* 339 * XXX - even though some ops have vpp returned vp's, 340 * several ops actually vrele this before returning. 341 * We must avoid these ops. 342 * (This should go away when these ops are regularized.) 343 */ 344 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 345 goto out; 346 vppp = VOPARG_OFFSETTO(struct vnode***, 347 descp->vdesc_vpp_offset,ap); 348 if (*vppp) 349 error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp); 350 } 351 352 out: 353 return (error); 354 } 355 356 /* 357 * We have to carry on the locking protocol on the null layer vnodes 358 * as we progress through the tree. We also have to enforce read-only 359 * if this layer is mounted read-only. 360 */ 361 static int 362 null_lookup(ap) 363 struct vop_lookup_args /* { 364 struct vnode * a_dvp; 365 struct vnode ** a_vpp; 366 struct componentname * a_cnp; 367 } */ *ap; 368 { 369 struct componentname *cnp = ap->a_cnp; 370 struct vnode *dvp = ap->a_dvp; 371 struct thread *td = cnp->cn_thread; 372 int flags = cnp->cn_flags; 373 struct vnode *vp, *ldvp, *lvp; 374 int error; 375 376 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 377 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 378 return (EROFS); 379 /* 380 * Although it is possible to call null_bypass(), we'll do 381 * a direct call to reduce overhead 382 */ 383 ldvp = NULLVPTOLOWERVP(dvp); 384 vp = lvp = NULL; 385 error = VOP_LOOKUP(ldvp, &lvp, cnp); 386 if (error == EJUSTRETURN && (flags & ISLASTCN) && 387 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 388 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 389 error = EROFS; 390 391 /* 392 * Rely only on the PDIRUNLOCK flag which should be carefully 393 * tracked by underlying filesystem. 394 */ 395 if (cnp->cn_flags & PDIRUNLOCK) 396 VOP_UNLOCK(dvp, LK_THISLAYER, td); 397 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 398 if (ldvp == lvp) { 399 *ap->a_vpp = dvp; 400 VREF(dvp); 401 vrele(lvp); 402 } else { 403 error = null_node_create(dvp->v_mount, lvp, &vp); 404 if (error == 0) 405 *ap->a_vpp = vp; 406 } 407 } 408 return (error); 409 } 410 411 /* 412 * Setattr call. Disallow write attempts if the layer is mounted read-only. 413 */ 414 int 415 null_setattr(ap) 416 struct vop_setattr_args /* { 417 struct vnodeop_desc *a_desc; 418 struct vnode *a_vp; 419 struct vattr *a_vap; 420 struct ucred *a_cred; 421 struct thread *a_td; 422 } */ *ap; 423 { 424 struct vnode *vp = ap->a_vp; 425 struct vattr *vap = ap->a_vap; 426 427 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 428 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 429 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 430 (vp->v_mount->mnt_flag & MNT_RDONLY)) 431 return (EROFS); 432 if (vap->va_size != VNOVAL) { 433 switch (vp->v_type) { 434 case VDIR: 435 return (EISDIR); 436 case VCHR: 437 case VBLK: 438 case VSOCK: 439 case VFIFO: 440 if (vap->va_flags != VNOVAL) 441 return (EOPNOTSUPP); 442 return (0); 443 case VREG: 444 case VLNK: 445 default: 446 /* 447 * Disallow write attempts if the filesystem is 448 * mounted read-only. 449 */ 450 if (vp->v_mount->mnt_flag & MNT_RDONLY) 451 return (EROFS); 452 } 453 } 454 455 return (null_bypass((struct vop_generic_args *)ap)); 456 } 457 458 /* 459 * We handle getattr only to change the fsid. 460 */ 461 static int 462 null_getattr(ap) 463 struct vop_getattr_args /* { 464 struct vnode *a_vp; 465 struct vattr *a_vap; 466 struct ucred *a_cred; 467 struct thread *a_td; 468 } */ *ap; 469 { 470 int error; 471 472 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 473 return (error); 474 475 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 476 return (0); 477 } 478 479 /* 480 * Handle to disallow write access if mounted read-only. 481 */ 482 static int 483 null_access(ap) 484 struct vop_access_args /* { 485 struct vnode *a_vp; 486 int a_mode; 487 struct ucred *a_cred; 488 struct thread *a_td; 489 } */ *ap; 490 { 491 struct vnode *vp = ap->a_vp; 492 mode_t mode = ap->a_mode; 493 494 /* 495 * Disallow write attempts on read-only layers; 496 * unless the file is a socket, fifo, or a block or 497 * character device resident on the file system. 498 */ 499 if (mode & VWRITE) { 500 switch (vp->v_type) { 501 case VDIR: 502 case VLNK: 503 case VREG: 504 if (vp->v_mount->mnt_flag & MNT_RDONLY) 505 return (EROFS); 506 break; 507 default: 508 break; 509 } 510 } 511 return (null_bypass((struct vop_generic_args *)ap)); 512 } 513 514 /* 515 * We must handle open to be able to catch MNT_NODEV and friends. 516 */ 517 static int 518 null_open(ap) 519 struct vop_open_args /* { 520 struct vnode *a_vp; 521 int a_mode; 522 struct ucred *a_cred; 523 struct thread *a_td; 524 } */ *ap; 525 { 526 struct vnode *vp = ap->a_vp; 527 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 528 529 if ((vp->v_mount->mnt_flag & MNT_NODEV) && 530 (lvp->v_type == VBLK || lvp->v_type == VCHR)) 531 return ENXIO; 532 533 return (null_bypass((struct vop_generic_args *)ap)); 534 } 535 536 /* 537 * We handle this to eliminate null FS to lower FS 538 * file moving. Don't know why we don't allow this, 539 * possibly we should. 540 */ 541 static int 542 null_rename(ap) 543 struct vop_rename_args /* { 544 struct vnode *a_fdvp; 545 struct vnode *a_fvp; 546 struct componentname *a_fcnp; 547 struct vnode *a_tdvp; 548 struct vnode *a_tvp; 549 struct componentname *a_tcnp; 550 } */ *ap; 551 { 552 struct vnode *tdvp = ap->a_tdvp; 553 struct vnode *fvp = ap->a_fvp; 554 struct vnode *fdvp = ap->a_fdvp; 555 struct vnode *tvp = ap->a_tvp; 556 557 /* Check for cross-device rename. */ 558 if ((fvp->v_mount != tdvp->v_mount) || 559 (tvp && (fvp->v_mount != tvp->v_mount))) { 560 if (tdvp == tvp) 561 vrele(tdvp); 562 else 563 vput(tdvp); 564 if (tvp) 565 vput(tvp); 566 vrele(fdvp); 567 vrele(fvp); 568 return (EXDEV); 569 } 570 571 return (null_bypass((struct vop_generic_args *)ap)); 572 } 573 574 /* 575 * We need to process our own vnode lock and then clear the 576 * interlock flag as it applies only to our vnode, not the 577 * vnodes below us on the stack. 578 */ 579 static int 580 null_lock(ap) 581 struct vop_lock_args /* { 582 struct vnode *a_vp; 583 int a_flags; 584 struct thread *a_td; 585 } */ *ap; 586 { 587 struct vnode *vp = ap->a_vp; 588 int flags = ap->a_flags; 589 struct thread *td = ap->a_td; 590 struct vnode *lvp; 591 int error; 592 593 if (flags & LK_THISLAYER) { 594 if (vp->v_vnlock != NULL) 595 return 0; /* lock is shared across layers */ 596 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER, 597 &vp->v_interlock, td); 598 return (error); 599 } 600 601 if (vp->v_vnlock != NULL) { 602 /* 603 * The lower level has exported a struct lock to us. Use 604 * it so that all vnodes in the stack lock and unlock 605 * simultaneously. Note: we don't DRAIN the lock as DRAIN 606 * decommissions the lock - just because our vnode is 607 * going away doesn't mean the struct lock below us is. 608 * LK_EXCLUSIVE is fine. 609 */ 610 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 611 NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n"); 612 return(lockmgr(vp->v_vnlock, 613 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 614 &vp->v_interlock, td)); 615 } 616 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td)); 617 } else { 618 /* 619 * To prevent race conditions involving doing a lookup 620 * on "..", we have to lock the lower node, then lock our 621 * node. Most of the time it won't matter that we lock our 622 * node (as any locking would need the lower one locked 623 * first). But we can LK_DRAIN the upper lock as a step 624 * towards decomissioning it. 625 */ 626 lvp = NULLVPTOLOWERVP(vp); 627 if (lvp == NULL) 628 return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td)); 629 if (flags & LK_INTERLOCK) { 630 mtx_unlock(&vp->v_interlock); 631 flags &= ~LK_INTERLOCK; 632 } 633 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 634 error = VOP_LOCK(lvp, 635 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td); 636 } else 637 error = VOP_LOCK(lvp, flags, td); 638 if (error) 639 return (error); 640 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td); 641 if (error) 642 VOP_UNLOCK(lvp, 0, td); 643 return (error); 644 } 645 } 646 647 /* 648 * We need to process our own vnode unlock and then clear the 649 * interlock flag as it applies only to our vnode, not the 650 * vnodes below us on the stack. 651 */ 652 static int 653 null_unlock(ap) 654 struct vop_unlock_args /* { 655 struct vnode *a_vp; 656 int a_flags; 657 struct thread *a_td; 658 } */ *ap; 659 { 660 struct vnode *vp = ap->a_vp; 661 int flags = ap->a_flags; 662 struct thread *td = ap->a_td; 663 struct vnode *lvp; 664 665 if (vp->v_vnlock != NULL) { 666 if (flags & LK_THISLAYER) 667 return 0; /* the lock is shared across layers */ 668 flags &= ~LK_THISLAYER; 669 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE, 670 &vp->v_interlock, td)); 671 } 672 lvp = NULLVPTOLOWERVP(vp); 673 if (lvp == NULL) 674 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 675 if ((flags & LK_THISLAYER) == 0) { 676 if (flags & LK_INTERLOCK) { 677 mtx_unlock(&vp->v_interlock); 678 flags &= ~LK_INTERLOCK; 679 } 680 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td); 681 } else 682 flags &= ~LK_THISLAYER; 683 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 684 } 685 686 static int 687 null_islocked(ap) 688 struct vop_islocked_args /* { 689 struct vnode *a_vp; 690 struct thread *a_td; 691 } */ *ap; 692 { 693 struct vnode *vp = ap->a_vp; 694 struct thread *td = ap->a_td; 695 696 if (vp->v_vnlock != NULL) 697 return (lockstatus(vp->v_vnlock, td)); 698 return (lockstatus(&vp->v_lock, td)); 699 } 700 701 /* 702 * There is no way to tell that someone issued remove/rmdir operation 703 * on the underlying filesystem. For now we just have to release lowevrp 704 * as soon as possible. 705 */ 706 static int 707 null_inactive(ap) 708 struct vop_inactive_args /* { 709 struct vnode *a_vp; 710 struct thread *a_td; 711 } */ *ap; 712 { 713 struct vnode *vp = ap->a_vp; 714 715 /* 716 * If this is the last reference, then free up the vnode 717 * so as not to tie up the lower vnodes. 718 */ 719 if (vp->v_usecount == 0) 720 vrecycle(vp, NULL, ap->a_td); 721 return (0); 722 } 723 724 /* 725 * We can free memory in null_inactive, but we do this 726 * here. (Possible to guard vp->v_data to point somewhere) 727 */ 728 static int 729 null_reclaim(ap) 730 struct vop_reclaim_args /* { 731 struct vnode *a_vp; 732 struct thread *a_td; 733 } */ *ap; 734 { 735 struct thread *td = ap->a_td; 736 struct vnode *vp = ap->a_vp; 737 struct null_node *xp = VTONULL(vp); 738 struct vnode *lowervp = xp->null_lowervp; 739 void *vdata; 740 741 lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, td); 742 LIST_REMOVE(xp, null_hash); 743 lockmgr(&null_hashlock, LK_RELEASE, NULL, td); 744 745 xp->null_lowervp = NULLVP; 746 if (vp->v_vnlock != NULL) { 747 vp->v_vnlock = &vp->v_lock; /* we no longer share the lock */ 748 } else 749 VOP_UNLOCK(vp, LK_THISLAYER, td); 750 751 /* 752 * Now it is safe to drop references to the lower vnode. 753 * VOP_INACTIVE() will be called by vrele() if necessary. 754 */ 755 vput(lowervp); 756 vrele (lowervp); 757 758 vdata = vp->v_data; 759 vp->v_data = NULL; 760 FREE(vdata, M_NULLFSNODE); 761 762 return (0); 763 } 764 765 static int 766 null_print(ap) 767 struct vop_print_args /* { 768 struct vnode *a_vp; 769 } */ *ap; 770 { 771 register struct vnode *vp = ap->a_vp; 772 printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp)); 773 return (0); 774 } 775 776 /* 777 * Let an underlying filesystem do the work 778 */ 779 static int 780 null_createvobject(ap) 781 struct vop_createvobject_args /* { 782 struct vnode *vp; 783 struct ucred *cred; 784 struct thread *td; 785 } */ *ap; 786 { 787 struct vnode *vp = ap->a_vp; 788 struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL; 789 int error; 790 791 if (vp->v_type == VNON || lowervp == NULL) 792 return 0; 793 error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td); 794 if (error) 795 return (error); 796 vp->v_flag |= VOBJBUF; 797 return (0); 798 } 799 800 /* 801 * We have nothing to destroy and this operation shouldn't be bypassed. 802 */ 803 static int 804 null_destroyvobject(ap) 805 struct vop_destroyvobject_args /* { 806 struct vnode *vp; 807 } */ *ap; 808 { 809 struct vnode *vp = ap->a_vp; 810 811 vp->v_flag &= ~VOBJBUF; 812 return (0); 813 } 814 815 static int 816 null_getvobject(ap) 817 struct vop_getvobject_args /* { 818 struct vnode *vp; 819 struct vm_object **objpp; 820 } */ *ap; 821 { 822 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 823 824 if (lvp == NULL) 825 return EINVAL; 826 return (VOP_GETVOBJECT(lvp, ap->a_objpp)); 827 } 828 829 /* 830 * Global vfs data structures 831 */ 832 vop_t **null_vnodeop_p; 833 static struct vnodeopv_entry_desc null_vnodeop_entries[] = { 834 { &vop_default_desc, (vop_t *) null_bypass }, 835 836 { &vop_access_desc, (vop_t *) null_access }, 837 { &vop_bmap_desc, (vop_t *) vop_eopnotsupp }, 838 { &vop_createvobject_desc, (vop_t *) null_createvobject }, 839 { &vop_destroyvobject_desc, (vop_t *) null_destroyvobject }, 840 { &vop_getattr_desc, (vop_t *) null_getattr }, 841 { &vop_getvobject_desc, (vop_t *) null_getvobject }, 842 { &vop_getwritemount_desc, (vop_t *) vop_stdgetwritemount}, 843 { &vop_inactive_desc, (vop_t *) null_inactive }, 844 { &vop_islocked_desc, (vop_t *) null_islocked }, 845 { &vop_lock_desc, (vop_t *) null_lock }, 846 { &vop_lookup_desc, (vop_t *) null_lookup }, 847 { &vop_open_desc, (vop_t *) null_open }, 848 { &vop_print_desc, (vop_t *) null_print }, 849 { &vop_reclaim_desc, (vop_t *) null_reclaim }, 850 { &vop_rename_desc, (vop_t *) null_rename }, 851 { &vop_setattr_desc, (vop_t *) null_setattr }, 852 { &vop_strategy_desc, (vop_t *) vop_eopnotsupp }, 853 { &vop_unlock_desc, (vop_t *) null_unlock }, 854 { NULL, NULL } 855 }; 856 static struct vnodeopv_desc null_vnodeop_opv_desc = 857 { &null_vnodeop_p, null_vnodeop_entries }; 858 859 VNODEOP_SET(null_vnodeop_opv_desc); 860