xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
35  *
36  * Ancestors:
37  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
38  *	...and...
39  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
40  *
41  * $FreeBSD$
42  */
43 
44 /*
45  * Null Layer
46  *
47  * (See mount_nullfs(8) for more information.)
48  *
49  * The null layer duplicates a portion of the filesystem
50  * name space under a new name.  In this respect, it is
51  * similar to the loopback filesystem.  It differs from
52  * the loopback fs in two respects:  it is implemented using
53  * a stackable layers techniques, and its "null-node"s stack above
54  * all lower-layer vnodes, not just over directory vnodes.
55  *
56  * The null layer has two purposes.  First, it serves as a demonstration
57  * of layering by proving a layer which does nothing.  (It actually
58  * does everything the loopback filesystem does, which is slightly
59  * more than nothing.)  Second, the null layer can serve as a prototype
60  * layer.  Since it provides all necessary layer framework,
61  * new filesystem layers can be created very easily be starting
62  * with a null layer.
63  *
64  * The remainder of this man page examines the null layer as a basis
65  * for constructing new layers.
66  *
67  *
68  * INSTANTIATING NEW NULL LAYERS
69  *
70  * New null layers are created with mount_nullfs(8).
71  * Mount_nullfs(8) takes two arguments, the pathname
72  * of the lower vfs (target-pn) and the pathname where the null
73  * layer will appear in the namespace (alias-pn).  After
74  * the null layer is put into place, the contents
75  * of target-pn subtree will be aliased under alias-pn.
76  *
77  *
78  * OPERATION OF A NULL LAYER
79  *
80  * The null layer is the minimum filesystem layer,
81  * simply bypassing all possible operations to the lower layer
82  * for processing there.  The majority of its activity centers
83  * on the bypass routine, through which nearly all vnode operations
84  * pass.
85  *
86  * The bypass routine accepts arbitrary vnode operations for
87  * handling by the lower layer.  It begins by examing vnode
88  * operation arguments and replacing any null-nodes by their
89  * lower-layer equivlants.  It then invokes the operation
90  * on the lower layer.  Finally, it replaces the null-nodes
91  * in the arguments and, if a vnode is return by the operation,
92  * stacks a null-node on top of the returned vnode.
93  *
94  * Although bypass handles most operations, vop_getattr, vop_lock,
95  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
96  * bypassed. Vop_getattr must change the fsid being returned.
97  * Vop_lock and vop_unlock must handle any locking for the
98  * current vnode as well as pass the lock request down.
99  * Vop_inactive and vop_reclaim are not bypassed so that
100  * they can handle freeing null-layer specific data. Vop_print
101  * is not bypassed to avoid excessive debugging information.
102  * Also, certain vnode operations change the locking state within
103  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
104  * and symlink). Ideally these operations should not change the
105  * lock state, but should be changed to let the caller of the
106  * function unlock them. Otherwise all intermediate vnode layers
107  * (such as union, umapfs, etc) must catch these functions to do
108  * the necessary locking at their layer.
109  *
110  *
111  * INSTANTIATING VNODE STACKS
112  *
113  * Mounting associates the null layer with a lower layer,
114  * effect stacking two VFSes.  Vnode stacks are instead
115  * created on demand as files are accessed.
116  *
117  * The initial mount creates a single vnode stack for the
118  * root of the new null layer.  All other vnode stacks
119  * are created as a result of vnode operations on
120  * this or other null vnode stacks.
121  *
122  * New vnode stacks come into existence as a result of
123  * an operation which returns a vnode.
124  * The bypass routine stacks a null-node above the new
125  * vnode before returning it to the caller.
126  *
127  * For example, imagine mounting a null layer with
128  * "mount_nullfs /usr/include /dev/layer/null".
129  * Changing directory to /dev/layer/null will assign
130  * the root null-node (which was created when the null layer was mounted).
131  * Now consider opening "sys".  A vop_lookup would be
132  * done on the root null-node.  This operation would bypass through
133  * to the lower layer which would return a vnode representing
134  * the UFS "sys".  Null_bypass then builds a null-node
135  * aliasing the UFS "sys" and returns this to the caller.
136  * Later operations on the null-node "sys" will repeat this
137  * process when constructing other vnode stacks.
138  *
139  *
140  * CREATING OTHER FILE SYSTEM LAYERS
141  *
142  * One of the easiest ways to construct new filesystem layers is to make
143  * a copy of the null layer, rename all files and variables, and
144  * then begin modifing the copy.  Sed can be used to easily rename
145  * all variables.
146  *
147  * The umap layer is an example of a layer descended from the
148  * null layer.
149  *
150  *
151  * INVOKING OPERATIONS ON LOWER LAYERS
152  *
153  * There are two techniques to invoke operations on a lower layer
154  * when the operation cannot be completely bypassed.  Each method
155  * is appropriate in different situations.  In both cases,
156  * it is the responsibility of the aliasing layer to make
157  * the operation arguments "correct" for the lower layer
158  * by mapping a vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.
161  * This method is most suitable when you wish to invoke the operation
162  * currently being handled on the lower layer.  It has the advantage
163  * that the bypass routine already must do argument mapping.
164  * An example of this is null_getattrs in the null layer.
165  *
166  * A second approach is to directly invoke vnode operations on
167  * the lower layer with the VOP_OPERATIONNAME interface.
168  * The advantage of this method is that it is easy to invoke
169  * arbitrary operations on the lower layer.  The disadvantage
170  * is that vnode arguments must be manualy mapped.
171  *
172  */
173 
174 #include <sys/param.h>
175 #include <sys/systm.h>
176 #include <sys/conf.h>
177 #include <sys/kernel.h>
178 #include <sys/lock.h>
179 #include <sys/malloc.h>
180 #include <sys/mount.h>
181 #include <sys/mutex.h>
182 #include <sys/namei.h>
183 #include <sys/sysctl.h>
184 #include <sys/vnode.h>
185 #include <sys/stat.h>
186 
187 #include <fs/nullfs/null.h>
188 
189 #include <vm/vm.h>
190 #include <vm/vm_extern.h>
191 #include <vm/vm_object.h>
192 #include <vm/vnode_pager.h>
193 
194 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
195 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
196 	&null_bug_bypass, 0, "");
197 
198 /*
199  * This is the 10-Apr-92 bypass routine.
200  *    This version has been optimized for speed, throwing away some
201  * safety checks.  It should still always work, but it's not as
202  * robust to programmer errors.
203  *
204  * In general, we map all vnodes going down and unmap them on the way back.
205  * As an exception to this, vnodes can be marked "unmapped" by setting
206  * the Nth bit in operation's vdesc_flags.
207  *
208  * Also, some BSD vnode operations have the side effect of vrele'ing
209  * their arguments.  With stacking, the reference counts are held
210  * by the upper node, not the lower one, so we must handle these
211  * side-effects here.  This is not of concern in Sun-derived systems
212  * since there are no such side-effects.
213  *
214  * This makes the following assumptions:
215  * - only one returned vpp
216  * - no INOUT vpp's (Sun's vop_open has one of these)
217  * - the vnode operation vector of the first vnode should be used
218  *   to determine what implementation of the op should be invoked
219  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
220  *   problems on rmdir'ing mount points and renaming?)
221  */
222 int
223 null_bypass(struct vop_generic_args *ap)
224 {
225 	struct vnode **this_vp_p;
226 	int error;
227 	struct vnode *old_vps[VDESC_MAX_VPS];
228 	struct vnode **vps_p[VDESC_MAX_VPS];
229 	struct vnode ***vppp;
230 	struct vnode *lvp;
231 	struct vnodeop_desc *descp = ap->a_desc;
232 	int reles, i;
233 
234 	if (null_bug_bypass)
235 		printf ("null_bypass: %s\n", descp->vdesc_name);
236 
237 #ifdef DIAGNOSTIC
238 	/*
239 	 * We require at least one vp.
240 	 */
241 	if (descp->vdesc_vp_offsets == NULL ||
242 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
243 		panic ("null_bypass: no vp's in map");
244 #endif
245 
246 	/*
247 	 * Map the vnodes going in.
248 	 * Later, we'll invoke the operation based on
249 	 * the first mapped vnode's operation vector.
250 	 */
251 	reles = descp->vdesc_flags;
252 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
253 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
254 			break;   /* bail out at end of list */
255 		vps_p[i] = this_vp_p =
256 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
257 		/*
258 		 * We're not guaranteed that any but the first vnode
259 		 * are of our type.  Check for and don't map any
260 		 * that aren't.  (We must always map first vp or vclean fails.)
261 		 */
262 		if (i && (*this_vp_p == NULLVP ||
263 		    (*this_vp_p)->v_op != &null_vnodeops)) {
264 			old_vps[i] = NULLVP;
265 		} else {
266 			old_vps[i] = *this_vp_p;
267 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
268 			/*
269 			 * XXX - Several operations have the side effect
270 			 * of vrele'ing their vp's.  We must account for
271 			 * that.  (This should go away in the future.)
272 			 */
273 			if (reles & VDESC_VP0_WILLRELE)
274 				VREF(*this_vp_p);
275 		}
276 	}
277 
278 	/*
279 	 * Call the operation on the lower layer
280 	 * with the modified argument structure.
281 	 */
282 	if (vps_p[0] && *vps_p[0])
283 		error = VCALL(ap);
284 	else {
285 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
286 		error = EINVAL;
287 	}
288 
289 	/*
290 	 * Maintain the illusion of call-by-value
291 	 * by restoring vnodes in the argument structure
292 	 * to their original value.
293 	 */
294 	reles = descp->vdesc_flags;
295 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
296 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
297 			break;   /* bail out at end of list */
298 		if (old_vps[i]) {
299 			lvp = *(vps_p[i]);
300 
301 			/*
302 			 * If lowervp was unlocked during VOP
303 			 * operation, nullfs upper vnode could have
304 			 * been reclaimed, which changes its v_vnlock
305 			 * back to private v_lock.  In this case we
306 			 * must move lock ownership from lower to
307 			 * upper (reclaimed) vnode.
308 			 */
309 			if (lvp != NULLVP &&
310 			    VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
311 			    old_vps[i]->v_vnlock != lvp->v_vnlock) {
312 				VOP_UNLOCK(lvp);
313 				VOP_LOCK(old_vps[i], LK_EXCLUSIVE | LK_RETRY);
314 			}
315 
316 			*(vps_p[i]) = old_vps[i];
317 #if 0
318 			if (reles & VDESC_VP0_WILLUNLOCK)
319 				VOP_UNLOCK(*(vps_p[i]), 0);
320 #endif
321 			if (reles & VDESC_VP0_WILLRELE)
322 				vrele(*(vps_p[i]));
323 		}
324 	}
325 
326 	/*
327 	 * Map the possible out-going vpp
328 	 * (Assumes that the lower layer always returns
329 	 * a VREF'ed vpp unless it gets an error.)
330 	 */
331 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
332 		/*
333 		 * XXX - even though some ops have vpp returned vp's,
334 		 * several ops actually vrele this before returning.
335 		 * We must avoid these ops.
336 		 * (This should go away when these ops are regularized.)
337 		 */
338 		vppp = VOPARG_OFFSETTO(struct vnode***,
339 				 descp->vdesc_vpp_offset,ap);
340 		if (*vppp)
341 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
342 	}
343 
344 	return (error);
345 }
346 
347 static int
348 null_add_writecount(struct vop_add_writecount_args *ap)
349 {
350 	struct vnode *lvp, *vp;
351 	int error;
352 
353 	vp = ap->a_vp;
354 	lvp = NULLVPTOLOWERVP(vp);
355 	VI_LOCK(vp);
356 	/* text refs are bypassed to lowervp */
357 	VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
358 	VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
359 	    ("wrong writecount inc %d", ap->a_inc));
360 	error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
361 	if (error == 0)
362 		vp->v_writecount += ap->a_inc;
363 	VI_UNLOCK(vp);
364 	return (error);
365 }
366 
367 /*
368  * We have to carry on the locking protocol on the null layer vnodes
369  * as we progress through the tree. We also have to enforce read-only
370  * if this layer is mounted read-only.
371  */
372 static int
373 null_lookup(struct vop_lookup_args *ap)
374 {
375 	struct componentname *cnp = ap->a_cnp;
376 	struct vnode *dvp = ap->a_dvp;
377 	int flags = cnp->cn_flags;
378 	struct vnode *vp, *ldvp, *lvp;
379 	struct mount *mp;
380 	int error;
381 
382 	mp = dvp->v_mount;
383 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
384 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
385 		return (EROFS);
386 	/*
387 	 * Although it is possible to call null_bypass(), we'll do
388 	 * a direct call to reduce overhead
389 	 */
390 	ldvp = NULLVPTOLOWERVP(dvp);
391 	vp = lvp = NULL;
392 
393 	/*
394 	 * Renames in the lower mounts might create an inconsistent
395 	 * configuration where lower vnode is moved out of the
396 	 * directory tree remounted by our null mount.  Do not try to
397 	 * handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name
398 	 * which cannot be handled by VOP, at least passing over lower
399 	 * root.
400 	 */
401 	if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) {
402 		KASSERT((dvp->v_vflag & VV_ROOT) == 0,
403 		    ("ldvp %p fl %#x dvp %p fl %#x flags %#x",
404 		    ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags));
405 		return (ENOENT);
406 	}
407 
408 	/*
409 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
410 	 * case of dvp reclamation, and we need ldvp to move our lock
411 	 * from ldvp to dvp.
412 	 */
413 	vhold(ldvp);
414 
415 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
416 
417 	/*
418 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
419 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
420 	 * doomed state and return error.
421 	 */
422 	if ((error == 0 || error == EJUSTRETURN) &&
423 	    VN_IS_DOOMED(dvp)) {
424 		error = ENOENT;
425 		if (lvp != NULL)
426 			vput(lvp);
427 
428 		/*
429 		 * If vgone() did reclaimed dvp before curthread
430 		 * relocked ldvp, the locks of dvp and ldpv are no
431 		 * longer shared.  In this case, relock of ldvp in
432 		 * lower fs VOP_LOOKUP() does not restore the locking
433 		 * state of dvp.  Compensate for this by unlocking
434 		 * ldvp and locking dvp, which is also correct if the
435 		 * locks are still shared.
436 		 */
437 		VOP_UNLOCK(ldvp);
438 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
439 	}
440 	vdrop(ldvp);
441 
442 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
443 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
444 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
445 		error = EROFS;
446 
447 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
448 		if (ldvp == lvp) {
449 			*ap->a_vpp = dvp;
450 			VREF(dvp);
451 			vrele(lvp);
452 		} else {
453 			error = null_nodeget(mp, lvp, &vp);
454 			if (error == 0)
455 				*ap->a_vpp = vp;
456 		}
457 	}
458 	return (error);
459 }
460 
461 static int
462 null_open(struct vop_open_args *ap)
463 {
464 	int retval;
465 	struct vnode *vp, *ldvp;
466 
467 	vp = ap->a_vp;
468 	ldvp = NULLVPTOLOWERVP(vp);
469 	retval = null_bypass(&ap->a_gen);
470 	if (retval == 0) {
471 		vp->v_object = ldvp->v_object;
472 		if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
473 			MPASS(vp->v_object != NULL);
474 			if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
475 				vn_irflag_set_cond(vp, VIRF_PGREAD);
476 			}
477 		}
478 	}
479 	return (retval);
480 }
481 
482 /*
483  * Setattr call. Disallow write attempts if the layer is mounted read-only.
484  */
485 static int
486 null_setattr(struct vop_setattr_args *ap)
487 {
488 	struct vnode *vp = ap->a_vp;
489 	struct vattr *vap = ap->a_vap;
490 
491   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
492 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
493 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
494 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
495 		return (EROFS);
496 	if (vap->va_size != VNOVAL) {
497  		switch (vp->v_type) {
498  		case VDIR:
499  			return (EISDIR);
500  		case VCHR:
501  		case VBLK:
502  		case VSOCK:
503  		case VFIFO:
504 			if (vap->va_flags != VNOVAL)
505 				return (EOPNOTSUPP);
506 			return (0);
507 		case VREG:
508 		case VLNK:
509  		default:
510 			/*
511 			 * Disallow write attempts if the filesystem is
512 			 * mounted read-only.
513 			 */
514 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
515 				return (EROFS);
516 		}
517 	}
518 
519 	return (null_bypass((struct vop_generic_args *)ap));
520 }
521 
522 /*
523  *  We handle stat and getattr only to change the fsid.
524  */
525 static int
526 null_stat(struct vop_stat_args *ap)
527 {
528 	int error;
529 
530 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
531 		return (error);
532 
533 	ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
534 	return (0);
535 }
536 
537 static int
538 null_getattr(struct vop_getattr_args *ap)
539 {
540 	int error;
541 
542 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
543 		return (error);
544 
545 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
546 	return (0);
547 }
548 
549 /*
550  * Handle to disallow write access if mounted read-only.
551  */
552 static int
553 null_access(struct vop_access_args *ap)
554 {
555 	struct vnode *vp = ap->a_vp;
556 	accmode_t accmode = ap->a_accmode;
557 
558 	/*
559 	 * Disallow write attempts on read-only layers;
560 	 * unless the file is a socket, fifo, or a block or
561 	 * character device resident on the filesystem.
562 	 */
563 	if (accmode & VWRITE) {
564 		switch (vp->v_type) {
565 		case VDIR:
566 		case VLNK:
567 		case VREG:
568 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
569 				return (EROFS);
570 			break;
571 		default:
572 			break;
573 		}
574 	}
575 	return (null_bypass((struct vop_generic_args *)ap));
576 }
577 
578 static int
579 null_accessx(struct vop_accessx_args *ap)
580 {
581 	struct vnode *vp = ap->a_vp;
582 	accmode_t accmode = ap->a_accmode;
583 
584 	/*
585 	 * Disallow write attempts on read-only layers;
586 	 * unless the file is a socket, fifo, or a block or
587 	 * character device resident on the filesystem.
588 	 */
589 	if (accmode & VWRITE) {
590 		switch (vp->v_type) {
591 		case VDIR:
592 		case VLNK:
593 		case VREG:
594 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
595 				return (EROFS);
596 			break;
597 		default:
598 			break;
599 		}
600 	}
601 	return (null_bypass((struct vop_generic_args *)ap));
602 }
603 
604 /*
605  * Increasing refcount of lower vnode is needed at least for the case
606  * when lower FS is NFS to do sillyrename if the file is in use.
607  * Unfortunately v_usecount is incremented in many places in
608  * the kernel and, as such, there may be races that result in
609  * the NFS client doing an extraneous silly rename, but that seems
610  * preferable to not doing a silly rename when it is needed.
611  */
612 static int
613 null_remove(struct vop_remove_args *ap)
614 {
615 	int retval, vreleit;
616 	struct vnode *lvp, *vp;
617 
618 	vp = ap->a_vp;
619 	if (vrefcnt(vp) > 1) {
620 		lvp = NULLVPTOLOWERVP(vp);
621 		VREF(lvp);
622 		vreleit = 1;
623 	} else
624 		vreleit = 0;
625 	VTONULL(vp)->null_flags |= NULLV_DROP;
626 	retval = null_bypass(&ap->a_gen);
627 	if (vreleit != 0)
628 		vrele(lvp);
629 	return (retval);
630 }
631 
632 /*
633  * We handle this to eliminate null FS to lower FS
634  * file moving. Don't know why we don't allow this,
635  * possibly we should.
636  */
637 static int
638 null_rename(struct vop_rename_args *ap)
639 {
640 	struct vnode *tdvp = ap->a_tdvp;
641 	struct vnode *fvp = ap->a_fvp;
642 	struct vnode *fdvp = ap->a_fdvp;
643 	struct vnode *tvp = ap->a_tvp;
644 	struct null_node *tnn;
645 
646 	/* Check for cross-device rename. */
647 	if ((fvp->v_mount != tdvp->v_mount) ||
648 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
649 		if (tdvp == tvp)
650 			vrele(tdvp);
651 		else
652 			vput(tdvp);
653 		if (tvp)
654 			vput(tvp);
655 		vrele(fdvp);
656 		vrele(fvp);
657 		return (EXDEV);
658 	}
659 
660 	if (tvp != NULL) {
661 		tnn = VTONULL(tvp);
662 		tnn->null_flags |= NULLV_DROP;
663 	}
664 	return (null_bypass((struct vop_generic_args *)ap));
665 }
666 
667 static int
668 null_rmdir(struct vop_rmdir_args *ap)
669 {
670 
671 	VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
672 	return (null_bypass(&ap->a_gen));
673 }
674 
675 /*
676  * We need to process our own vnode lock and then clear the
677  * interlock flag as it applies only to our vnode, not the
678  * vnodes below us on the stack.
679  */
680 static int
681 null_lock(struct vop_lock1_args *ap)
682 {
683 	struct vnode *vp = ap->a_vp;
684 	int flags;
685 	struct null_node *nn;
686 	struct vnode *lvp;
687 	int error;
688 
689 	if ((ap->a_flags & LK_INTERLOCK) == 0)
690 		VI_LOCK(vp);
691 	else
692 		ap->a_flags &= ~LK_INTERLOCK;
693 	flags = ap->a_flags;
694 	nn = VTONULL(vp);
695 	/*
696 	 * If we're still active we must ask the lower layer to
697 	 * lock as ffs has special lock considerations in its
698 	 * vop lock.
699 	 */
700 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
701 		/*
702 		 * We have to hold the vnode here to solve a potential
703 		 * reclaim race.  If we're forcibly vgone'd while we
704 		 * still have refs, a thread could be sleeping inside
705 		 * the lowervp's vop_lock routine.  When we vgone we will
706 		 * drop our last ref to the lowervp, which would allow it
707 		 * to be reclaimed.  The lowervp could then be recycled,
708 		 * in which case it is not legal to be sleeping in its VOP.
709 		 * We prevent it from being recycled by holding the vnode
710 		 * here.
711 		 */
712 		vholdnz(lvp);
713 		VI_UNLOCK(vp);
714 		error = VOP_LOCK(lvp, flags);
715 
716 		/*
717 		 * We might have slept to get the lock and someone might have
718 		 * clean our vnode already, switching vnode lock from one in
719 		 * lowervp to v_lock in our own vnode structure.  Handle this
720 		 * case by reacquiring correct lock in requested mode.
721 		 */
722 		if (VTONULL(vp) == NULL && error == 0) {
723 			ap->a_flags &= ~LK_TYPE_MASK;
724 			switch (flags & LK_TYPE_MASK) {
725 			case LK_SHARED:
726 				ap->a_flags |= LK_SHARED;
727 				break;
728 			case LK_UPGRADE:
729 			case LK_EXCLUSIVE:
730 				ap->a_flags |= LK_EXCLUSIVE;
731 				break;
732 			default:
733 				panic("Unsupported lock request %d\n",
734 				    ap->a_flags);
735 			}
736 			VOP_UNLOCK(lvp);
737 			error = vop_stdlock(ap);
738 		}
739 		vdrop(lvp);
740 	} else {
741 		VI_UNLOCK(vp);
742 		error = vop_stdlock(ap);
743 	}
744 
745 	return (error);
746 }
747 
748 /*
749  * We need to process our own vnode unlock and then clear the
750  * interlock flag as it applies only to our vnode, not the
751  * vnodes below us on the stack.
752  */
753 static int
754 null_unlock(struct vop_unlock_args *ap)
755 {
756 	struct vnode *vp = ap->a_vp;
757 	struct null_node *nn;
758 	struct vnode *lvp;
759 	int error;
760 
761 	nn = VTONULL(vp);
762 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
763 		vholdnz(lvp);
764 		error = VOP_UNLOCK(lvp);
765 		vdrop(lvp);
766 	} else {
767 		error = vop_stdunlock(ap);
768 	}
769 
770 	return (error);
771 }
772 
773 /*
774  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
775  * since the reference count on the lower vnode is not related to
776  * ours.
777  */
778 static int
779 null_want_recycle(struct vnode *vp)
780 {
781 	struct vnode *lvp;
782 	struct null_node *xp;
783 	struct mount *mp;
784 	struct null_mount *xmp;
785 
786 	xp = VTONULL(vp);
787 	lvp = NULLVPTOLOWERVP(vp);
788 	mp = vp->v_mount;
789 	xmp = MOUNTTONULLMOUNT(mp);
790 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
791 	    (xp->null_flags & NULLV_DROP) != 0 ||
792 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
793 		/*
794 		 * If this is the last reference and caching of the
795 		 * nullfs vnodes is not enabled, or the lower vnode is
796 		 * deleted, then free up the vnode so as not to tie up
797 		 * the lower vnodes.
798 		 */
799 		return (1);
800 	}
801 	return (0);
802 }
803 
804 static int
805 null_inactive(struct vop_inactive_args *ap)
806 {
807 	struct vnode *vp;
808 
809 	vp = ap->a_vp;
810 	if (null_want_recycle(vp)) {
811 		vp->v_object = NULL;
812 		vrecycle(vp);
813 	}
814 	return (0);
815 }
816 
817 static int
818 null_need_inactive(struct vop_need_inactive_args *ap)
819 {
820 
821 	return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp));
822 }
823 
824 /*
825  * Now, the nullfs vnode and, due to the sharing lock, the lower
826  * vnode, are exclusively locked, and we shall destroy the null vnode.
827  */
828 static int
829 null_reclaim(struct vop_reclaim_args *ap)
830 {
831 	struct vnode *vp;
832 	struct null_node *xp;
833 	struct vnode *lowervp;
834 
835 	vp = ap->a_vp;
836 	xp = VTONULL(vp);
837 	lowervp = xp->null_lowervp;
838 
839 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
840 	    ("Reclaiming incomplete null vnode %p", vp));
841 
842 	null_hashrem(xp);
843 	/*
844 	 * Use the interlock to protect the clearing of v_data to
845 	 * prevent faults in null_lock().
846 	 */
847 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
848 	VI_LOCK(vp);
849 	vp->v_data = NULL;
850 	vp->v_object = NULL;
851 	vp->v_vnlock = &vp->v_lock;
852 
853 	/*
854 	 * If we were opened for write, we leased the write reference
855 	 * to the lower vnode.  If this is a reclamation due to the
856 	 * forced unmount, undo the reference now.
857 	 */
858 	if (vp->v_writecount > 0)
859 		VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
860 	else if (vp->v_writecount < 0)
861 		vp->v_writecount = 0;
862 
863 	VI_UNLOCK(vp);
864 
865 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
866 		vunref(lowervp);
867 	else
868 		vput(lowervp);
869 	free(xp, M_NULLFSNODE);
870 
871 	return (0);
872 }
873 
874 static int
875 null_print(struct vop_print_args *ap)
876 {
877 	struct vnode *vp = ap->a_vp;
878 
879 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
880 	return (0);
881 }
882 
883 /* ARGSUSED */
884 static int
885 null_getwritemount(struct vop_getwritemount_args *ap)
886 {
887 	struct null_node *xp;
888 	struct vnode *lowervp;
889 	struct vnode *vp;
890 
891 	vp = ap->a_vp;
892 	VI_LOCK(vp);
893 	xp = VTONULL(vp);
894 	if (xp && (lowervp = xp->null_lowervp)) {
895 		vholdnz(lowervp);
896 		VI_UNLOCK(vp);
897 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
898 		vdrop(lowervp);
899 	} else {
900 		VI_UNLOCK(vp);
901 		*(ap->a_mpp) = NULL;
902 	}
903 	return (0);
904 }
905 
906 static int
907 null_vptofh(struct vop_vptofh_args *ap)
908 {
909 	struct vnode *lvp;
910 
911 	lvp = NULLVPTOLOWERVP(ap->a_vp);
912 	return VOP_VPTOFH(lvp, ap->a_fhp);
913 }
914 
915 static int
916 null_vptocnp(struct vop_vptocnp_args *ap)
917 {
918 	struct vnode *vp = ap->a_vp;
919 	struct vnode **dvp = ap->a_vpp;
920 	struct vnode *lvp, *ldvp;
921 	struct mount *mp;
922 	int error, locked;
923 
924 	locked = VOP_ISLOCKED(vp);
925 	lvp = NULLVPTOLOWERVP(vp);
926 	vhold(lvp);
927 	mp = vp->v_mount;
928 	vfs_ref(mp);
929 	VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
930 	ldvp = lvp;
931 	vref(lvp);
932 	error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
933 	vdrop(lvp);
934 	if (error != 0) {
935 		vn_lock(vp, locked | LK_RETRY);
936 		vfs_rel(mp);
937 		return (ENOENT);
938 	}
939 
940 	error = vn_lock(ldvp, LK_SHARED);
941 	if (error != 0) {
942 		vrele(ldvp);
943 		vn_lock(vp, locked | LK_RETRY);
944 		vfs_rel(mp);
945 		return (ENOENT);
946 	}
947 	error = null_nodeget(mp, ldvp, dvp);
948 	if (error == 0) {
949 #ifdef DIAGNOSTIC
950 		NULLVPTOLOWERVP(*dvp);
951 #endif
952 		VOP_UNLOCK(*dvp); /* keep reference on *dvp */
953 	}
954 	vn_lock(vp, locked | LK_RETRY);
955 	vfs_rel(mp);
956 	return (error);
957 }
958 
959 static int
960 null_read_pgcache(struct vop_read_pgcache_args *ap)
961 {
962 	struct vnode *lvp, *vp;
963 	struct null_node *xp;
964 	int error;
965 
966 	vp = ap->a_vp;
967 	VI_LOCK(vp);
968 	xp = VTONULL(vp);
969 	if (xp == NULL) {
970 		VI_UNLOCK(vp);
971 		return (EJUSTRETURN);
972 	}
973 	lvp = xp->null_lowervp;
974 	vref(lvp);
975 	VI_UNLOCK(vp);
976 	error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
977 	vrele(lvp);
978 	return (error);
979 }
980 
981 /*
982  * Avoid standard bypass, since lower dvp and vp could be no longer
983  * valid after vput().
984  */
985 static int
986 null_vput_pair(struct vop_vput_pair_args *ap)
987 {
988 	struct mount *mp;
989 	struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
990 	int error, res;
991 
992 	dvp = ap->a_dvp;
993 	ldvp = NULLVPTOLOWERVP(dvp);
994 	vref(ldvp);
995 
996 	vpp = ap->a_vpp;
997 	vp = NULL;
998 	lvp = NULL;
999 	mp = NULL;
1000 	if (vpp != NULL)
1001 		vp = *vpp;
1002 	if (vp != NULL) {
1003 		lvp = NULLVPTOLOWERVP(vp);
1004 		vref(lvp);
1005 		if (!ap->a_unlock_vp) {
1006 			vhold(vp);
1007 			vhold(lvp);
1008 			mp = vp->v_mount;
1009 			vfs_ref(mp);
1010 		}
1011 	}
1012 
1013 	res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true);
1014 	if (vp != NULL && ap->a_unlock_vp)
1015 		vrele(vp);
1016 	vrele(dvp);
1017 
1018 	if (vp == NULL || ap->a_unlock_vp)
1019 		return (res);
1020 
1021 	/* lvp has been unlocked and vp might be reclaimed */
1022 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1023 	if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
1024 		vput(vp);
1025 		vget(lvp, LK_EXCLUSIVE | LK_RETRY);
1026 		if (VN_IS_DOOMED(lvp)) {
1027 			vput(lvp);
1028 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1029 		} else {
1030 			error = null_nodeget(mp, lvp, &vp1);
1031 			if (error == 0) {
1032 				*vpp = vp1;
1033 			} else {
1034 				vget(vp, LK_EXCLUSIVE | LK_RETRY);
1035 			}
1036 		}
1037 		vfs_unbusy(mp);
1038 	}
1039 	vdrop(lvp);
1040 	vdrop(vp);
1041 	vfs_rel(mp);
1042 
1043 	return (res);
1044 }
1045 
1046 /*
1047  * Global vfs data structures
1048  */
1049 struct vop_vector null_vnodeops = {
1050 	.vop_bypass =		null_bypass,
1051 	.vop_access =		null_access,
1052 	.vop_accessx =		null_accessx,
1053 	.vop_advlockpurge =	vop_stdadvlockpurge,
1054 	.vop_bmap =		VOP_EOPNOTSUPP,
1055 	.vop_stat =		null_stat,
1056 	.vop_getattr =		null_getattr,
1057 	.vop_getwritemount =	null_getwritemount,
1058 	.vop_inactive =		null_inactive,
1059 	.vop_need_inactive =	null_need_inactive,
1060 	.vop_islocked =		vop_stdislocked,
1061 	.vop_lock1 =		null_lock,
1062 	.vop_lookup =		null_lookup,
1063 	.vop_open =		null_open,
1064 	.vop_print =		null_print,
1065 	.vop_read_pgcache =	null_read_pgcache,
1066 	.vop_reclaim =		null_reclaim,
1067 	.vop_remove =		null_remove,
1068 	.vop_rename =		null_rename,
1069 	.vop_rmdir =		null_rmdir,
1070 	.vop_setattr =		null_setattr,
1071 	.vop_strategy =		VOP_EOPNOTSUPP,
1072 	.vop_unlock =		null_unlock,
1073 	.vop_vptocnp =		null_vptocnp,
1074 	.vop_vptofh =		null_vptofh,
1075 	.vop_add_writecount =	null_add_writecount,
1076 	.vop_vput_pair =	null_vput_pair,
1077 };
1078 VFS_VOP_VECTOR_REGISTER(null_vnodeops);
1079