xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33  *
34  * Ancestors:
35  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36  *	...and...
37  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38  *
39  * $FreeBSD$
40  */
41 
42 /*
43  * Null Layer
44  *
45  * (See mount_nullfs(8) for more information.)
46  *
47  * The null layer duplicates a portion of the filesystem
48  * name space under a new name.  In this respect, it is
49  * similar to the loopback filesystem.  It differs from
50  * the loopback fs in two respects:  it is implemented using
51  * a stackable layers techniques, and its "null-node"s stack above
52  * all lower-layer vnodes, not just over directory vnodes.
53  *
54  * The null layer has two purposes.  First, it serves as a demonstration
55  * of layering by proving a layer which does nothing.  (It actually
56  * does everything the loopback filesystem does, which is slightly
57  * more than nothing.)  Second, the null layer can serve as a prototype
58  * layer.  Since it provides all necessary layer framework,
59  * new filesystem layers can be created very easily be starting
60  * with a null layer.
61  *
62  * The remainder of this man page examines the null layer as a basis
63  * for constructing new layers.
64  *
65  *
66  * INSTANTIATING NEW NULL LAYERS
67  *
68  * New null layers are created with mount_nullfs(8).
69  * Mount_nullfs(8) takes two arguments, the pathname
70  * of the lower vfs (target-pn) and the pathname where the null
71  * layer will appear in the namespace (alias-pn).  After
72  * the null layer is put into place, the contents
73  * of target-pn subtree will be aliased under alias-pn.
74  *
75  *
76  * OPERATION OF A NULL LAYER
77  *
78  * The null layer is the minimum filesystem layer,
79  * simply bypassing all possible operations to the lower layer
80  * for processing there.  The majority of its activity centers
81  * on the bypass routine, through which nearly all vnode operations
82  * pass.
83  *
84  * The bypass routine accepts arbitrary vnode operations for
85  * handling by the lower layer.  It begins by examing vnode
86  * operation arguments and replacing any null-nodes by their
87  * lower-layer equivlants.  It then invokes the operation
88  * on the lower layer.  Finally, it replaces the null-nodes
89  * in the arguments and, if a vnode is return by the operation,
90  * stacks a null-node on top of the returned vnode.
91  *
92  * Although bypass handles most operations, vop_getattr, vop_lock,
93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94  * bypassed. Vop_getattr must change the fsid being returned.
95  * Vop_lock and vop_unlock must handle any locking for the
96  * current vnode as well as pass the lock request down.
97  * Vop_inactive and vop_reclaim are not bypassed so that
98  * they can handle freeing null-layer specific data. Vop_print
99  * is not bypassed to avoid excessive debugging information.
100  * Also, certain vnode operations change the locking state within
101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102  * and symlink). Ideally these operations should not change the
103  * lock state, but should be changed to let the caller of the
104  * function unlock them. Otherwise all intermediate vnode layers
105  * (such as union, umapfs, etc) must catch these functions to do
106  * the necessary locking at their layer.
107  *
108  *
109  * INSTANTIATING VNODE STACKS
110  *
111  * Mounting associates the null layer with a lower layer,
112  * effect stacking two VFSes.  Vnode stacks are instead
113  * created on demand as files are accessed.
114  *
115  * The initial mount creates a single vnode stack for the
116  * root of the new null layer.  All other vnode stacks
117  * are created as a result of vnode operations on
118  * this or other null vnode stacks.
119  *
120  * New vnode stacks come into existance as a result of
121  * an operation which returns a vnode.
122  * The bypass routine stacks a null-node above the new
123  * vnode before returning it to the caller.
124  *
125  * For example, imagine mounting a null layer with
126  * "mount_nullfs /usr/include /dev/layer/null".
127  * Changing directory to /dev/layer/null will assign
128  * the root null-node (which was created when the null layer was mounted).
129  * Now consider opening "sys".  A vop_lookup would be
130  * done on the root null-node.  This operation would bypass through
131  * to the lower layer which would return a vnode representing
132  * the UFS "sys".  Null_bypass then builds a null-node
133  * aliasing the UFS "sys" and returns this to the caller.
134  * Later operations on the null-node "sys" will repeat this
135  * process when constructing other vnode stacks.
136  *
137  *
138  * CREATING OTHER FILE SYSTEM LAYERS
139  *
140  * One of the easiest ways to construct new filesystem layers is to make
141  * a copy of the null layer, rename all files and variables, and
142  * then begin modifing the copy.  Sed can be used to easily rename
143  * all variables.
144  *
145  * The umap layer is an example of a layer descended from the
146  * null layer.
147  *
148  *
149  * INVOKING OPERATIONS ON LOWER LAYERS
150  *
151  * There are two techniques to invoke operations on a lower layer
152  * when the operation cannot be completely bypassed.  Each method
153  * is appropriate in different situations.  In both cases,
154  * it is the responsibility of the aliasing layer to make
155  * the operation arguments "correct" for the lower layer
156  * by mapping a vnode arguments to the lower layer.
157  *
158  * The first approach is to call the aliasing layer's bypass routine.
159  * This method is most suitable when you wish to invoke the operation
160  * currently being handled on the lower layer.  It has the advantage
161  * that the bypass routine already must do argument mapping.
162  * An example of this is null_getattrs in the null layer.
163  *
164  * A second approach is to directly invoke vnode operations on
165  * the lower layer with the VOP_OPERATIONNAME interface.
166  * The advantage of this method is that it is easy to invoke
167  * arbitrary operations on the lower layer.  The disadvantage
168  * is that vnode arguments must be manualy mapped.
169  *
170  */
171 
172 #include <sys/param.h>
173 #include <sys/systm.h>
174 #include <sys/conf.h>
175 #include <sys/kernel.h>
176 #include <sys/lock.h>
177 #include <sys/malloc.h>
178 #include <sys/mount.h>
179 #include <sys/mutex.h>
180 #include <sys/namei.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 
184 #include <fs/nullfs/null.h>
185 
186 #include <vm/vm.h>
187 #include <vm/vm_extern.h>
188 #include <vm/vm_object.h>
189 #include <vm/vnode_pager.h>
190 
191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193 	&null_bug_bypass, 0, "");
194 
195 /*
196  * This is the 10-Apr-92 bypass routine.
197  *    This version has been optimized for speed, throwing away some
198  * safety checks.  It should still always work, but it's not as
199  * robust to programmer errors.
200  *
201  * In general, we map all vnodes going down and unmap them on the way back.
202  * As an exception to this, vnodes can be marked "unmapped" by setting
203  * the Nth bit in operation's vdesc_flags.
204  *
205  * Also, some BSD vnode operations have the side effect of vrele'ing
206  * their arguments.  With stacking, the reference counts are held
207  * by the upper node, not the lower one, so we must handle these
208  * side-effects here.  This is not of concern in Sun-derived systems
209  * since there are no such side-effects.
210  *
211  * This makes the following assumptions:
212  * - only one returned vpp
213  * - no INOUT vpp's (Sun's vop_open has one of these)
214  * - the vnode operation vector of the first vnode should be used
215  *   to determine what implementation of the op should be invoked
216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217  *   problems on rmdir'ing mount points and renaming?)
218  */
219 int
220 null_bypass(struct vop_generic_args *ap)
221 {
222 	struct vnode **this_vp_p;
223 	int error;
224 	struct vnode *old_vps[VDESC_MAX_VPS];
225 	struct vnode **vps_p[VDESC_MAX_VPS];
226 	struct vnode ***vppp;
227 	struct vnodeop_desc *descp = ap->a_desc;
228 	int reles, i;
229 
230 	if (null_bug_bypass)
231 		printf ("null_bypass: %s\n", descp->vdesc_name);
232 
233 #ifdef DIAGNOSTIC
234 	/*
235 	 * We require at least one vp.
236 	 */
237 	if (descp->vdesc_vp_offsets == NULL ||
238 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
239 		panic ("null_bypass: no vp's in map");
240 #endif
241 
242 	/*
243 	 * Map the vnodes going in.
244 	 * Later, we'll invoke the operation based on
245 	 * the first mapped vnode's operation vector.
246 	 */
247 	reles = descp->vdesc_flags;
248 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
249 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
250 			break;   /* bail out at end of list */
251 		vps_p[i] = this_vp_p =
252 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
253 		/*
254 		 * We're not guaranteed that any but the first vnode
255 		 * are of our type.  Check for and don't map any
256 		 * that aren't.  (We must always map first vp or vclean fails.)
257 		 */
258 		if (i && (*this_vp_p == NULLVP ||
259 		    (*this_vp_p)->v_op != &null_vnodeops)) {
260 			old_vps[i] = NULLVP;
261 		} else {
262 			old_vps[i] = *this_vp_p;
263 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
264 			/*
265 			 * XXX - Several operations have the side effect
266 			 * of vrele'ing their vp's.  We must account for
267 			 * that.  (This should go away in the future.)
268 			 */
269 			if (reles & VDESC_VP0_WILLRELE)
270 				VREF(*this_vp_p);
271 		}
272 
273 	}
274 
275 	/*
276 	 * Call the operation on the lower layer
277 	 * with the modified argument structure.
278 	 */
279 	if (vps_p[0] && *vps_p[0])
280 		error = VCALL(ap);
281 	else {
282 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
283 		error = EINVAL;
284 	}
285 
286 	/*
287 	 * Maintain the illusion of call-by-value
288 	 * by restoring vnodes in the argument structure
289 	 * to their original value.
290 	 */
291 	reles = descp->vdesc_flags;
292 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
293 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
294 			break;   /* bail out at end of list */
295 		if (old_vps[i]) {
296 			*(vps_p[i]) = old_vps[i];
297 #if 0
298 			if (reles & VDESC_VP0_WILLUNLOCK)
299 				VOP_UNLOCK(*(vps_p[i]), 0);
300 #endif
301 			if (reles & VDESC_VP0_WILLRELE)
302 				vrele(*(vps_p[i]));
303 		}
304 	}
305 
306 	/*
307 	 * Map the possible out-going vpp
308 	 * (Assumes that the lower layer always returns
309 	 * a VREF'ed vpp unless it gets an error.)
310 	 */
311 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
312 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
313 	    !error) {
314 		/*
315 		 * XXX - even though some ops have vpp returned vp's,
316 		 * several ops actually vrele this before returning.
317 		 * We must avoid these ops.
318 		 * (This should go away when these ops are regularized.)
319 		 */
320 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
321 			goto out;
322 		vppp = VOPARG_OFFSETTO(struct vnode***,
323 				 descp->vdesc_vpp_offset,ap);
324 		if (*vppp)
325 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
326 	}
327 
328  out:
329 	return (error);
330 }
331 
332 /*
333  * We have to carry on the locking protocol on the null layer vnodes
334  * as we progress through the tree. We also have to enforce read-only
335  * if this layer is mounted read-only.
336  */
337 static int
338 null_lookup(struct vop_lookup_args *ap)
339 {
340 	struct componentname *cnp = ap->a_cnp;
341 	struct vnode *dvp = ap->a_dvp;
342 	int flags = cnp->cn_flags;
343 	struct vnode *vp, *ldvp, *lvp;
344 	int error;
345 
346 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
347 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
348 		return (EROFS);
349 	/*
350 	 * Although it is possible to call null_bypass(), we'll do
351 	 * a direct call to reduce overhead
352 	 */
353 	ldvp = NULLVPTOLOWERVP(dvp);
354 	vp = lvp = NULL;
355 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
356 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
357 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
358 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
359 		error = EROFS;
360 
361 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
362 		if (ldvp == lvp) {
363 			*ap->a_vpp = dvp;
364 			VREF(dvp);
365 			vrele(lvp);
366 		} else {
367 			error = null_nodeget(dvp->v_mount, lvp, &vp);
368 			if (error)
369 				vput(lvp);
370 			else
371 				*ap->a_vpp = vp;
372 		}
373 	}
374 	return (error);
375 }
376 
377 static int
378 null_open(struct vop_open_args *ap)
379 {
380 	int retval;
381 	struct vnode *vp, *ldvp;
382 
383 	vp = ap->a_vp;
384 	ldvp = NULLVPTOLOWERVP(vp);
385 	retval = null_bypass(&ap->a_gen);
386 	if (retval == 0)
387 		vp->v_object = ldvp->v_object;
388 	return (retval);
389 }
390 
391 /*
392  * Setattr call. Disallow write attempts if the layer is mounted read-only.
393  */
394 static int
395 null_setattr(struct vop_setattr_args *ap)
396 {
397 	struct vnode *vp = ap->a_vp;
398 	struct vattr *vap = ap->a_vap;
399 
400   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
401 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
402 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
403 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
404 		return (EROFS);
405 	if (vap->va_size != VNOVAL) {
406  		switch (vp->v_type) {
407  		case VDIR:
408  			return (EISDIR);
409  		case VCHR:
410  		case VBLK:
411  		case VSOCK:
412  		case VFIFO:
413 			if (vap->va_flags != VNOVAL)
414 				return (EOPNOTSUPP);
415 			return (0);
416 		case VREG:
417 		case VLNK:
418  		default:
419 			/*
420 			 * Disallow write attempts if the filesystem is
421 			 * mounted read-only.
422 			 */
423 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
424 				return (EROFS);
425 		}
426 	}
427 
428 	return (null_bypass((struct vop_generic_args *)ap));
429 }
430 
431 /*
432  *  We handle getattr only to change the fsid.
433  */
434 static int
435 null_getattr(struct vop_getattr_args *ap)
436 {
437 	int error;
438 
439 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
440 		return (error);
441 
442 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
443 	return (0);
444 }
445 
446 /*
447  * Handle to disallow write access if mounted read-only.
448  */
449 static int
450 null_access(struct vop_access_args *ap)
451 {
452 	struct vnode *vp = ap->a_vp;
453 	accmode_t accmode = ap->a_accmode;
454 
455 	/*
456 	 * Disallow write attempts on read-only layers;
457 	 * unless the file is a socket, fifo, or a block or
458 	 * character device resident on the filesystem.
459 	 */
460 	if (accmode & VWRITE) {
461 		switch (vp->v_type) {
462 		case VDIR:
463 		case VLNK:
464 		case VREG:
465 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
466 				return (EROFS);
467 			break;
468 		default:
469 			break;
470 		}
471 	}
472 	return (null_bypass((struct vop_generic_args *)ap));
473 }
474 
475 static int
476 null_accessx(struct vop_accessx_args *ap)
477 {
478 	struct vnode *vp = ap->a_vp;
479 	accmode_t accmode = ap->a_accmode;
480 
481 	/*
482 	 * Disallow write attempts on read-only layers;
483 	 * unless the file is a socket, fifo, or a block or
484 	 * character device resident on the filesystem.
485 	 */
486 	if (accmode & VWRITE) {
487 		switch (vp->v_type) {
488 		case VDIR:
489 		case VLNK:
490 		case VREG:
491 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
492 				return (EROFS);
493 			break;
494 		default:
495 			break;
496 		}
497 	}
498 	return (null_bypass((struct vop_generic_args *)ap));
499 }
500 
501 /*
502  * We handle this to eliminate null FS to lower FS
503  * file moving. Don't know why we don't allow this,
504  * possibly we should.
505  */
506 static int
507 null_rename(struct vop_rename_args *ap)
508 {
509 	struct vnode *tdvp = ap->a_tdvp;
510 	struct vnode *fvp = ap->a_fvp;
511 	struct vnode *fdvp = ap->a_fdvp;
512 	struct vnode *tvp = ap->a_tvp;
513 
514 	/* Check for cross-device rename. */
515 	if ((fvp->v_mount != tdvp->v_mount) ||
516 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
517 		if (tdvp == tvp)
518 			vrele(tdvp);
519 		else
520 			vput(tdvp);
521 		if (tvp)
522 			vput(tvp);
523 		vrele(fdvp);
524 		vrele(fvp);
525 		return (EXDEV);
526 	}
527 
528 	return (null_bypass((struct vop_generic_args *)ap));
529 }
530 
531 /*
532  * We need to process our own vnode lock and then clear the
533  * interlock flag as it applies only to our vnode, not the
534  * vnodes below us on the stack.
535  */
536 static int
537 null_lock(struct vop_lock1_args *ap)
538 {
539 	struct vnode *vp = ap->a_vp;
540 	int flags = ap->a_flags;
541 	struct null_node *nn;
542 	struct vnode *lvp;
543 	int error;
544 
545 
546 	if ((flags & LK_INTERLOCK) == 0) {
547 		VI_LOCK(vp);
548 		ap->a_flags = flags |= LK_INTERLOCK;
549 	}
550 	nn = VTONULL(vp);
551 	/*
552 	 * If we're still active we must ask the lower layer to
553 	 * lock as ffs has special lock considerations in it's
554 	 * vop lock.
555 	 */
556 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
557 		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
558 		VI_UNLOCK(vp);
559 		/*
560 		 * We have to hold the vnode here to solve a potential
561 		 * reclaim race.  If we're forcibly vgone'd while we
562 		 * still have refs, a thread could be sleeping inside
563 		 * the lowervp's vop_lock routine.  When we vgone we will
564 		 * drop our last ref to the lowervp, which would allow it
565 		 * to be reclaimed.  The lowervp could then be recycled,
566 		 * in which case it is not legal to be sleeping in it's VOP.
567 		 * We prevent it from being recycled by holding the vnode
568 		 * here.
569 		 */
570 		vholdl(lvp);
571 		error = VOP_LOCK(lvp, flags);
572 
573 		/*
574 		 * We might have slept to get the lock and someone might have
575 		 * clean our vnode already, switching vnode lock from one in
576 		 * lowervp to v_lock in our own vnode structure.  Handle this
577 		 * case by reacquiring correct lock in requested mode.
578 		 */
579 		if (VTONULL(vp) == NULL && error == 0) {
580 			ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
581 			switch (flags & LK_TYPE_MASK) {
582 			case LK_SHARED:
583 				ap->a_flags |= LK_SHARED;
584 				break;
585 			case LK_UPGRADE:
586 			case LK_EXCLUSIVE:
587 				ap->a_flags |= LK_EXCLUSIVE;
588 				break;
589 			default:
590 				panic("Unsupported lock request %d\n",
591 				    ap->a_flags);
592 			}
593 			VOP_UNLOCK(lvp, 0);
594 			error = vop_stdlock(ap);
595 		}
596 		vdrop(lvp);
597 	} else
598 		error = vop_stdlock(ap);
599 
600 	return (error);
601 }
602 
603 /*
604  * We need to process our own vnode unlock and then clear the
605  * interlock flag as it applies only to our vnode, not the
606  * vnodes below us on the stack.
607  */
608 static int
609 null_unlock(struct vop_unlock_args *ap)
610 {
611 	struct vnode *vp = ap->a_vp;
612 	int flags = ap->a_flags;
613 	int mtxlkflag = 0;
614 	struct null_node *nn;
615 	struct vnode *lvp;
616 	int error;
617 
618 	if ((flags & LK_INTERLOCK) != 0)
619 		mtxlkflag = 1;
620 	else if (mtx_owned(VI_MTX(vp)) == 0) {
621 		VI_LOCK(vp);
622 		mtxlkflag = 2;
623 	}
624 	nn = VTONULL(vp);
625 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
626 		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
627 		flags |= LK_INTERLOCK;
628 		vholdl(lvp);
629 		VI_UNLOCK(vp);
630 		error = VOP_UNLOCK(lvp, flags);
631 		vdrop(lvp);
632 		if (mtxlkflag == 0)
633 			VI_LOCK(vp);
634 	} else {
635 		if (mtxlkflag == 2)
636 			VI_UNLOCK(vp);
637 		error = vop_stdunlock(ap);
638 	}
639 
640 	return (error);
641 }
642 
643 /*
644  * There is no way to tell that someone issued remove/rmdir operation
645  * on the underlying filesystem. For now we just have to release lowervp
646  * as soon as possible.
647  *
648  * Note, we can't release any resources nor remove vnode from hash before
649  * appropriate VXLOCK stuff is is done because other process can find this
650  * vnode in hash during inactivation and may be sitting in vget() and waiting
651  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
652  */
653 static int
654 null_inactive(struct vop_inactive_args *ap)
655 {
656 	struct vnode *vp = ap->a_vp;
657 	struct thread *td = ap->a_td;
658 
659 	vp->v_object = NULL;
660 
661 	/*
662 	 * If this is the last reference, then free up the vnode
663 	 * so as not to tie up the lower vnodes.
664 	 */
665 	vrecycle(vp, td);
666 
667 	return (0);
668 }
669 
670 /*
671  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
672  */
673 static int
674 null_reclaim(struct vop_reclaim_args *ap)
675 {
676 	struct vnode *vp = ap->a_vp;
677 	struct null_node *xp = VTONULL(vp);
678 	struct vnode *lowervp = xp->null_lowervp;
679 
680 	if (lowervp)
681 		null_hashrem(xp);
682 	/*
683 	 * Use the interlock to protect the clearing of v_data to
684 	 * prevent faults in null_lock().
685 	 */
686 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
687 	VI_LOCK(vp);
688 	vp->v_data = NULL;
689 	vp->v_object = NULL;
690 	vp->v_vnlock = &vp->v_lock;
691 	VI_UNLOCK(vp);
692 	if (lowervp)
693 		vput(lowervp);
694 	else
695 		panic("null_reclaim: reclaiming a node with no lowervp");
696 	free(xp, M_NULLFSNODE);
697 
698 	return (0);
699 }
700 
701 static int
702 null_print(struct vop_print_args *ap)
703 {
704 	struct vnode *vp = ap->a_vp;
705 
706 	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
707 	return (0);
708 }
709 
710 /* ARGSUSED */
711 static int
712 null_getwritemount(struct vop_getwritemount_args *ap)
713 {
714 	struct null_node *xp;
715 	struct vnode *lowervp;
716 	struct vnode *vp;
717 
718 	vp = ap->a_vp;
719 	VI_LOCK(vp);
720 	xp = VTONULL(vp);
721 	if (xp && (lowervp = xp->null_lowervp)) {
722 		VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
723 		VI_UNLOCK(vp);
724 		vholdl(lowervp);
725 		VI_UNLOCK(lowervp);
726 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
727 		vdrop(lowervp);
728 	} else {
729 		VI_UNLOCK(vp);
730 		*(ap->a_mpp) = NULL;
731 	}
732 	return (0);
733 }
734 
735 static int
736 null_vptofh(struct vop_vptofh_args *ap)
737 {
738 	struct vnode *lvp;
739 
740 	lvp = NULLVPTOLOWERVP(ap->a_vp);
741 	return VOP_VPTOFH(lvp, ap->a_fhp);
742 }
743 
744 static int
745 null_vptocnp(struct vop_vptocnp_args *ap)
746 {
747 	struct vnode *vp = ap->a_vp;
748 	struct vnode **dvp = ap->a_vpp;
749 	struct vnode *lvp, *ldvp;
750 	struct ucred *cred = ap->a_cred;
751 	int error, locked;
752 
753 	if (vp->v_type == VDIR)
754 		return (vop_stdvptocnp(ap));
755 
756 	locked = VOP_ISLOCKED(vp);
757 	lvp = NULLVPTOLOWERVP(vp);
758 	vhold(lvp);
759 	VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */
760 	ldvp = lvp;
761 	error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
762 	vdrop(lvp);
763 	if (error != 0) {
764 		vn_lock(vp, locked | LK_RETRY);
765 		return (ENOENT);
766 	}
767 
768 	/*
769 	 * Exclusive lock is required by insmntque1 call in
770 	 * null_nodeget()
771 	 */
772 	error = vn_lock(ldvp, LK_EXCLUSIVE);
773 	if (error != 0) {
774 		vn_lock(vp, locked | LK_RETRY);
775 		vdrop(ldvp);
776 		return (ENOENT);
777 	}
778 	vref(ldvp);
779 	vdrop(ldvp);
780 	error = null_nodeget(vp->v_mount, ldvp, dvp);
781 	if (error == 0) {
782 #ifdef DIAGNOSTIC
783 		NULLVPTOLOWERVP(*dvp);
784 #endif
785 		vhold(*dvp);
786 		vput(*dvp);
787 	} else
788 		vput(ldvp);
789 
790 	vn_lock(vp, locked | LK_RETRY);
791 	return (error);
792 }
793 
794 /*
795  * Global vfs data structures
796  */
797 struct vop_vector null_vnodeops = {
798 	.vop_bypass =		null_bypass,
799 	.vop_access =		null_access,
800 	.vop_accessx =		null_accessx,
801 	.vop_advlockpurge =	vop_stdadvlockpurge,
802 	.vop_bmap =		VOP_EOPNOTSUPP,
803 	.vop_getattr =		null_getattr,
804 	.vop_getwritemount =	null_getwritemount,
805 	.vop_inactive =		null_inactive,
806 	.vop_islocked =		vop_stdislocked,
807 	.vop_lock1 =		null_lock,
808 	.vop_lookup =		null_lookup,
809 	.vop_open =		null_open,
810 	.vop_print =		null_print,
811 	.vop_reclaim =		null_reclaim,
812 	.vop_rename =		null_rename,
813 	.vop_setattr =		null_setattr,
814 	.vop_strategy =		VOP_EOPNOTSUPP,
815 	.vop_unlock =		null_unlock,
816 	.vop_vptocnp =		null_vptocnp,
817 	.vop_vptofh =		null_vptofh,
818 };
819