xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision a316b26e50bbed7cf655fbba726ab87d8ab7599d)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.1 (Berkeley) 6/10/93
37  *
38  * $Id: null_vnops.c,v 1.5 1994/09/21 23:22:41 wollman Exp $
39  */
40 
41 /*
42  * Null Layer
43  *
44  * (See mount_null(8) for more information.)
45  *
46  * The null layer duplicates a portion of the file system
47  * name space under a new name.  In this respect, it is
48  * similar to the loopback file system.  It differs from
49  * the loopback fs in two respects:  it is implemented using
50  * a stackable layers techniques, and it's "null-node"s stack above
51  * all lower-layer vnodes, not just over directory vnodes.
52  *
53  * The null layer has two purposes.  First, it serves as a demonstration
54  * of layering by proving a layer which does nothing.  (It actually
55  * does everything the loopback file system does, which is slightly
56  * more than nothing.)  Second, the null layer can serve as a prototype
57  * layer.  Since it provides all necessary layer framework,
58  * new file system layers can be created very easily be starting
59  * with a null layer.
60  *
61  * The remainder of this man page examines the null layer as a basis
62  * for constructing new layers.
63  *
64  *
65  * INSTANTIATING NEW NULL LAYERS
66  *
67  * New null layers are created with mount_null(8).
68  * Mount_null(8) takes two arguments, the pathname
69  * of the lower vfs (target-pn) and the pathname where the null
70  * layer will appear in the namespace (alias-pn).  After
71  * the null layer is put into place, the contents
72  * of target-pn subtree will be aliased under alias-pn.
73  *
74  *
75  * OPERATION OF A NULL LAYER
76  *
77  * The null layer is the minimum file system layer,
78  * simply bypassing all possible operations to the lower layer
79  * for processing there.  The majority of its activity centers
80  * on the bypass routine, though which nearly all vnode operations
81  * pass.
82  *
83  * The bypass routine accepts arbitrary vnode operations for
84  * handling by the lower layer.  It begins by examing vnode
85  * operation arguments and replacing any null-nodes by their
86  * lower-layer equivlants.  It then invokes the operation
87  * on the lower layer.  Finally, it replaces the null-nodes
88  * in the arguments and, if a vnode is return by the operation,
89  * stacks a null-node on top of the returned vnode.
90  *
91  * Although bypass handles most operations,
92  * vop_getattr, _inactive, _reclaim, and _print are not bypassed.
93  * Vop_getattr must change the fsid being returned.
94  * Vop_inactive and vop_reclaim are not bypassed so that
95  * they can handle freeing null-layer specific data.
96  * Vop_print is not bypassed to avoid excessive debugging
97  * information.
98  *
99  *
100  * INSTANTIATING VNODE STACKS
101  *
102  * Mounting associates the null layer with a lower layer,
103  * effect stacking two VFSes.  Vnode stacks are instead
104  * created on demand as files are accessed.
105  *
106  * The initial mount creates a single vnode stack for the
107  * root of the new null layer.  All other vnode stacks
108  * are created as a result of vnode operations on
109  * this or other null vnode stacks.
110  *
111  * New vnode stacks come into existance as a result of
112  * an operation which returns a vnode.
113  * The bypass routine stacks a null-node above the new
114  * vnode before returning it to the caller.
115  *
116  * For example, imagine mounting a null layer with
117  * "mount_null /usr/include /dev/layer/null".
118  * Changing directory to /dev/layer/null will assign
119  * the root null-node (which was created when the null layer was mounted).
120  * Now consider opening "sys".  A vop_lookup would be
121  * done on the root null-node.  This operation would bypass through
122  * to the lower layer which would return a vnode representing
123  * the UFS "sys".  Null_bypass then builds a null-node
124  * aliasing the UFS "sys" and returns this to the caller.
125  * Later operations on the null-node "sys" will repeat this
126  * process when constructing other vnode stacks.
127  *
128  *
129  * CREATING OTHER FILE SYSTEM LAYERS
130  *
131  * One of the easiest ways to construct new file system layers is to make
132  * a copy of the null layer, rename all files and variables, and
133  * then begin modifing the copy.  Sed can be used to easily rename
134  * all variables.
135  *
136  * The umap layer is an example of a layer descended from the
137  * null layer.
138  *
139  *
140  * INVOKING OPERATIONS ON LOWER LAYERS
141  *
142  * There are two techniques to invoke operations on a lower layer
143  * when the operation cannot be completely bypassed.  Each method
144  * is appropriate in different situations.  In both cases,
145  * it is the responsibility of the aliasing layer to make
146  * the operation arguments "correct" for the lower layer
147  * by mapping an vnode arguments to the lower layer.
148  *
149  * The first approach is to call the aliasing layer's bypass routine.
150  * This method is most suitable when you wish to invoke the operation
151  * currently being hanldled on the lower layer.  It has the advantage
152  * that the bypass routine already must do argument mapping.
153  * An example of this is null_getattrs in the null layer.
154  *
155  * A second approach is to directly invoked vnode operations on
156  * the lower layer with the VOP_OPERATIONNAME interface.
157  * The advantage of this method is that it is easy to invoke
158  * arbitrary operations on the lower layer.  The disadvantage
159  * is that vnodes arguments must be manualy mapped.
160  *
161  */
162 
163 #include <sys/param.h>
164 #include <sys/systm.h>
165 #include <sys/kernel.h>
166 #include <sys/proc.h>
167 #include <sys/time.h>
168 #include <sys/types.h>
169 #include <sys/vnode.h>
170 #include <sys/mount.h>
171 #include <sys/namei.h>
172 #include <sys/malloc.h>
173 #include <sys/buf.h>
174 #include <miscfs/nullfs/null.h>
175 
176 
177 int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
178 
179 /*
180  * This is the 10-Apr-92 bypass routine.
181  *    This version has been optimized for speed, throwing away some
182  * safety checks.  It should still always work, but it's not as
183  * robust to programmer errors.
184  *    Define SAFETY to include some error checking code.
185  *
186  * In general, we map all vnodes going down and unmap them on the way back.
187  * As an exception to this, vnodes can be marked "unmapped" by setting
188  * the Nth bit in operation's vdesc_flags.
189  *
190  * Also, some BSD vnode operations have the side effect of vrele'ing
191  * their arguments.  With stacking, the reference counts are held
192  * by the upper node, not the lower one, so we must handle these
193  * side-effects here.  This is not of concern in Sun-derived systems
194  * since there are no such side-effects.
195  *
196  * This makes the following assumptions:
197  * - only one returned vpp
198  * - no INOUT vpp's (Sun's vop_open has one of these)
199  * - the vnode operation vector of the first vnode should be used
200  *   to determine what implementation of the op should be invoked
201  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
202  *   problems on rmdir'ing mount points and renaming?)
203  */
204 int
205 null_bypass(ap)
206 	struct vop_generic_args /* {
207 		struct vnodeop_desc *a_desc;
208 		<other random data follows, presumably>
209 	} */ *ap;
210 {
211 	register struct vnode **this_vp_p;
212 	int error;
213 	struct vnode *old_vps[VDESC_MAX_VPS];
214 	struct vnode **vps_p[VDESC_MAX_VPS];
215 	struct vnode ***vppp;
216 	struct vnodeop_desc *descp = ap->a_desc;
217 	int reles, i;
218 
219 	if (null_bug_bypass)
220 		printf ("null_bypass: %s\n", descp->vdesc_name);
221 
222 #ifdef SAFETY
223 	/*
224 	 * We require at least one vp.
225 	 */
226 	if (descp->vdesc_vp_offsets == NULL ||
227 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
228 		panic ("null_bypass: no vp's in map.\n");
229 #endif
230 
231 	/*
232 	 * Map the vnodes going in.
233 	 * Later, we'll invoke the operation based on
234 	 * the first mapped vnode's operation vector.
235 	 */
236 	reles = descp->vdesc_flags;
237 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
238 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
239 			break;   /* bail out at end of list */
240 		vps_p[i] = this_vp_p =
241 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
242 		/*
243 		 * We're not guaranteed that any but the first vnode
244 		 * are of our type.  Check for and don't map any
245 		 * that aren't.  (We must always map first vp or vclean fails.)
246 		 */
247 		if (i && (*this_vp_p)->v_op != null_vnodeop_p) {
248 			old_vps[i] = NULL;
249 		} else {
250 			old_vps[i] = *this_vp_p;
251 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
252 			/*
253 			 * XXX - Several operations have the side effect
254 			 * of vrele'ing their vp's.  We must account for
255 			 * that.  (This should go away in the future.)
256 			 */
257 			if (reles & 1)
258 				VREF(*this_vp_p);
259 		}
260 
261 	}
262 
263 	/*
264 	 * Call the operation on the lower layer
265 	 * with the modified argument structure.
266 	 */
267 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
268 
269 	/*
270 	 * Maintain the illusion of call-by-value
271 	 * by restoring vnodes in the argument structure
272 	 * to their original value.
273 	 */
274 	reles = descp->vdesc_flags;
275 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
276 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
277 			break;   /* bail out at end of list */
278 		if (old_vps[i]) {
279 			*(vps_p[i]) = old_vps[i];
280 			if (reles & 1)
281 				vrele(*(vps_p[i]));
282 		}
283 	}
284 
285 	/*
286 	 * Map the possible out-going vpp
287 	 * (Assumes that the lower layer always returns
288 	 * a VREF'ed vpp unless it gets an error.)
289 	 */
290 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
291 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
292 	    !error) {
293 		/*
294 		 * XXX - even though some ops have vpp returned vp's,
295 		 * several ops actually vrele this before returning.
296 		 * We must avoid these ops.
297 		 * (This should go away when these ops are regularized.)
298 		 */
299 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
300 			goto out;
301 		vppp = VOPARG_OFFSETTO(struct vnode***,
302 				 descp->vdesc_vpp_offset,ap);
303 		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
304 	}
305 
306  out:
307 	return (error);
308 }
309 
310 
311 /*
312  *  We handle getattr only to change the fsid.
313  */
314 int
315 null_getattr(ap)
316 	struct vop_getattr_args /* {
317 		struct vnode *a_vp;
318 		struct vattr *a_vap;
319 		struct ucred *a_cred;
320 		struct proc *a_p;
321 	} */ *ap;
322 {
323 	int error;
324 	error = null_bypass(ap);
325 	if (error)
326 		return (error);
327 	/* Requires that arguments be restored. */
328 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
329 	return (0);
330 }
331 
332 
333 int
334 null_inactive(ap)
335 	struct vop_inactive_args /* {
336 		struct vnode *a_vp;
337 	} */ *ap;
338 {
339 	/*
340 	 * Do nothing (and _don't_ bypass).
341 	 * Wait to vrele lowervp until reclaim,
342 	 * so that until then our null_node is in the
343 	 * cache and reusable.
344 	 *
345 	 * NEEDSWORK: Someday, consider inactive'ing
346 	 * the lowervp and then trying to reactivate it
347 	 * with capabilities (v_id)
348 	 * like they do in the name lookup cache code.
349 	 * That's too much work for now.
350 	 */
351 	return (0);
352 }
353 
354 int
355 null_reclaim(ap)
356 	struct vop_reclaim_args /* {
357 		struct vnode *a_vp;
358 	} */ *ap;
359 {
360 	struct vnode *vp = ap->a_vp;
361 	struct null_node *xp = VTONULL(vp);
362 	struct vnode *lowervp = xp->null_lowervp;
363 
364 	/*
365 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
366 	 * so we can't call VOPs on ourself.
367 	 */
368 	/* After this assignment, this node will not be re-used. */
369 	xp->null_lowervp = NULL;
370 	remque(xp);
371 	FREE(vp->v_data, M_TEMP);
372 	vp->v_data = NULL;
373 	vrele (lowervp);
374 	return (0);
375 }
376 
377 
378 int
379 null_print(ap)
380 	struct vop_print_args /* {
381 		struct vnode *a_vp;
382 	} */ *ap;
383 {
384 	register struct vnode *vp = ap->a_vp;
385 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
386 	return (0);
387 }
388 
389 
390 /*
391  * XXX - vop_strategy must be hand coded because it has no
392  * vnode in its arguments.
393  * This goes away with a merged VM/buffer cache.
394  */
395 int
396 null_strategy(ap)
397 	struct vop_strategy_args /* {
398 		struct buf *a_bp;
399 	} */ *ap;
400 {
401 	struct buf *bp = ap->a_bp;
402 	int error;
403 	struct vnode *savedvp;
404 
405 	savedvp = bp->b_vp;
406 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
407 
408 	error = VOP_STRATEGY(bp);
409 
410 	bp->b_vp = savedvp;
411 
412 	return (error);
413 }
414 
415 
416 /*
417  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
418  * vnode in its arguments.
419  * This goes away with a merged VM/buffer cache.
420  */
421 int
422 null_bwrite(ap)
423 	struct vop_bwrite_args /* {
424 		struct buf *a_bp;
425 	} */ *ap;
426 {
427 	struct buf *bp = ap->a_bp;
428 	int error;
429 	struct vnode *savedvp;
430 
431 	savedvp = bp->b_vp;
432 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
433 
434 	error = VOP_BWRITE(bp);
435 
436 	bp->b_vp = savedvp;
437 
438 	return (error);
439 }
440 
441 /*
442  * Global vfs data structures
443  */
444 int (**null_vnodeop_p)();
445 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
446 	{ &vop_default_desc, null_bypass },
447 
448 	{ &vop_getattr_desc, null_getattr },
449 	{ &vop_inactive_desc, null_inactive },
450 	{ &vop_reclaim_desc, null_reclaim },
451 	{ &vop_print_desc, null_print },
452 
453 	{ &vop_strategy_desc, null_strategy },
454 	{ &vop_bwrite_desc, null_bwrite },
455 
456 	{ (struct vnodeop_desc*)NULL, (int(*)())NULL }
457 };
458 struct vnodeopv_desc null_vnodeop_opv_desc =
459 	{ &null_vnodeop_p, null_vnodeop_entries };
460 
461 VNODEOP_SET(null_vnodeop_opv_desc);
462