xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 77a0943ded95b9e6438f7db70c4a28e4d93946d4)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  *	...and...
41  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
42  *
43  * $FreeBSD$
44  */
45 
46 /*
47  * Null Layer
48  *
49  * (See mount_null(8) for more information.)
50  *
51  * The null layer duplicates a portion of the file system
52  * name space under a new name.  In this respect, it is
53  * similar to the loopback file system.  It differs from
54  * the loopback fs in two respects:  it is implemented using
55  * a stackable layers techniques, and its "null-node"s stack above
56  * all lower-layer vnodes, not just over directory vnodes.
57  *
58  * The null layer has two purposes.  First, it serves as a demonstration
59  * of layering by proving a layer which does nothing.  (It actually
60  * does everything the loopback file system does, which is slightly
61  * more than nothing.)  Second, the null layer can serve as a prototype
62  * layer.  Since it provides all necessary layer framework,
63  * new file system layers can be created very easily be starting
64  * with a null layer.
65  *
66  * The remainder of this man page examines the null layer as a basis
67  * for constructing new layers.
68  *
69  *
70  * INSTANTIATING NEW NULL LAYERS
71  *
72  * New null layers are created with mount_null(8).
73  * Mount_null(8) takes two arguments, the pathname
74  * of the lower vfs (target-pn) and the pathname where the null
75  * layer will appear in the namespace (alias-pn).  After
76  * the null layer is put into place, the contents
77  * of target-pn subtree will be aliased under alias-pn.
78  *
79  *
80  * OPERATION OF A NULL LAYER
81  *
82  * The null layer is the minimum file system layer,
83  * simply bypassing all possible operations to the lower layer
84  * for processing there.  The majority of its activity centers
85  * on the bypass routine, through which nearly all vnode operations
86  * pass.
87  *
88  * The bypass routine accepts arbitrary vnode operations for
89  * handling by the lower layer.  It begins by examing vnode
90  * operation arguments and replacing any null-nodes by their
91  * lower-layer equivlants.  It then invokes the operation
92  * on the lower layer.  Finally, it replaces the null-nodes
93  * in the arguments and, if a vnode is return by the operation,
94  * stacks a null-node on top of the returned vnode.
95  *
96  * Although bypass handles most operations, vop_getattr, vop_lock,
97  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
98  * bypassed. Vop_getattr must change the fsid being returned.
99  * Vop_lock and vop_unlock must handle any locking for the
100  * current vnode as well as pass the lock request down.
101  * Vop_inactive and vop_reclaim are not bypassed so that
102  * they can handle freeing null-layer specific data. Vop_print
103  * is not bypassed to avoid excessive debugging information.
104  * Also, certain vnode operations change the locking state within
105  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
106  * and symlink). Ideally these operations should not change the
107  * lock state, but should be changed to let the caller of the
108  * function unlock them. Otherwise all intermediate vnode layers
109  * (such as union, umapfs, etc) must catch these functions to do
110  * the necessary locking at their layer.
111  *
112  *
113  * INSTANTIATING VNODE STACKS
114  *
115  * Mounting associates the null layer with a lower layer,
116  * effect stacking two VFSes.  Vnode stacks are instead
117  * created on demand as files are accessed.
118  *
119  * The initial mount creates a single vnode stack for the
120  * root of the new null layer.  All other vnode stacks
121  * are created as a result of vnode operations on
122  * this or other null vnode stacks.
123  *
124  * New vnode stacks come into existance as a result of
125  * an operation which returns a vnode.
126  * The bypass routine stacks a null-node above the new
127  * vnode before returning it to the caller.
128  *
129  * For example, imagine mounting a null layer with
130  * "mount_null /usr/include /dev/layer/null".
131  * Changing directory to /dev/layer/null will assign
132  * the root null-node (which was created when the null layer was mounted).
133  * Now consider opening "sys".  A vop_lookup would be
134  * done on the root null-node.  This operation would bypass through
135  * to the lower layer which would return a vnode representing
136  * the UFS "sys".  Null_bypass then builds a null-node
137  * aliasing the UFS "sys" and returns this to the caller.
138  * Later operations on the null-node "sys" will repeat this
139  * process when constructing other vnode stacks.
140  *
141  *
142  * CREATING OTHER FILE SYSTEM LAYERS
143  *
144  * One of the easiest ways to construct new file system layers is to make
145  * a copy of the null layer, rename all files and variables, and
146  * then begin modifing the copy.  Sed can be used to easily rename
147  * all variables.
148  *
149  * The umap layer is an example of a layer descended from the
150  * null layer.
151  *
152  *
153  * INVOKING OPERATIONS ON LOWER LAYERS
154  *
155  * There are two techniques to invoke operations on a lower layer
156  * when the operation cannot be completely bypassed.  Each method
157  * is appropriate in different situations.  In both cases,
158  * it is the responsibility of the aliasing layer to make
159  * the operation arguments "correct" for the lower layer
160  * by mapping an vnode arguments to the lower layer.
161  *
162  * The first approach is to call the aliasing layer's bypass routine.
163  * This method is most suitable when you wish to invoke the operation
164  * currently being handled on the lower layer.  It has the advantage
165  * that the bypass routine already must do argument mapping.
166  * An example of this is null_getattrs in the null layer.
167  *
168  * A second approach is to directly invoke vnode operations on
169  * the lower layer with the VOP_OPERATIONNAME interface.
170  * The advantage of this method is that it is easy to invoke
171  * arbitrary operations on the lower layer.  The disadvantage
172  * is that vnode arguments must be manualy mapped.
173  *
174  */
175 
176 #include <sys/param.h>
177 #include <sys/systm.h>
178 #include <sys/kernel.h>
179 #include <sys/conf.h>
180 #include <sys/sysctl.h>
181 #include <sys/vnode.h>
182 #include <sys/mount.h>
183 #include <sys/namei.h>
184 #include <sys/malloc.h>
185 #include <miscfs/nullfs/null.h>
186 
187 #include <vm/vm.h>
188 #include <vm/vm_extern.h>
189 #include <vm/vm_object.h>
190 #include <vm/vnode_pager.h>
191 
192 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
193 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
194 	&null_bug_bypass, 0, "");
195 
196 static int	null_access(struct vop_access_args *ap);
197 static int	null_createvobject(struct vop_createvobject_args *ap);
198 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
199 static int	null_getattr(struct vop_getattr_args *ap);
200 static int	null_getvobject(struct vop_getvobject_args *ap);
201 static int	null_inactive(struct vop_inactive_args *ap);
202 static int	null_islocked(struct vop_islocked_args *ap);
203 static int	null_lock(struct vop_lock_args *ap);
204 static int	null_lookup(struct vop_lookup_args *ap);
205 static int	null_open(struct vop_open_args *ap);
206 static int	null_print(struct vop_print_args *ap);
207 static int	null_reclaim(struct vop_reclaim_args *ap);
208 static int	null_rename(struct vop_rename_args *ap);
209 static int	null_setattr(struct vop_setattr_args *ap);
210 static int	null_unlock(struct vop_unlock_args *ap);
211 
212 /*
213  * This is the 10-Apr-92 bypass routine.
214  *    This version has been optimized for speed, throwing away some
215  * safety checks.  It should still always work, but it's not as
216  * robust to programmer errors.
217  *
218  * In general, we map all vnodes going down and unmap them on the way back.
219  * As an exception to this, vnodes can be marked "unmapped" by setting
220  * the Nth bit in operation's vdesc_flags.
221  *
222  * Also, some BSD vnode operations have the side effect of vrele'ing
223  * their arguments.  With stacking, the reference counts are held
224  * by the upper node, not the lower one, so we must handle these
225  * side-effects here.  This is not of concern in Sun-derived systems
226  * since there are no such side-effects.
227  *
228  * This makes the following assumptions:
229  * - only one returned vpp
230  * - no INOUT vpp's (Sun's vop_open has one of these)
231  * - the vnode operation vector of the first vnode should be used
232  *   to determine what implementation of the op should be invoked
233  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
234  *   problems on rmdir'ing mount points and renaming?)
235  */
236 int
237 null_bypass(ap)
238 	struct vop_generic_args /* {
239 		struct vnodeop_desc *a_desc;
240 		<other random data follows, presumably>
241 	} */ *ap;
242 {
243 	register struct vnode **this_vp_p;
244 	int error;
245 	struct vnode *old_vps[VDESC_MAX_VPS];
246 	struct vnode **vps_p[VDESC_MAX_VPS];
247 	struct vnode ***vppp;
248 	struct vnodeop_desc *descp = ap->a_desc;
249 	int reles, i;
250 
251 	if (null_bug_bypass)
252 		printf ("null_bypass: %s\n", descp->vdesc_name);
253 
254 #ifdef DIAGNOSTIC
255 	/*
256 	 * We require at least one vp.
257 	 */
258 	if (descp->vdesc_vp_offsets == NULL ||
259 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
260 		panic ("null_bypass: no vp's in map");
261 #endif
262 
263 	/*
264 	 * Map the vnodes going in.
265 	 * Later, we'll invoke the operation based on
266 	 * the first mapped vnode's operation vector.
267 	 */
268 	reles = descp->vdesc_flags;
269 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
270 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
271 			break;   /* bail out at end of list */
272 		vps_p[i] = this_vp_p =
273 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
274 		/*
275 		 * We're not guaranteed that any but the first vnode
276 		 * are of our type.  Check for and don't map any
277 		 * that aren't.  (We must always map first vp or vclean fails.)
278 		 */
279 		if (i && (*this_vp_p == NULLVP ||
280 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
281 			old_vps[i] = NULLVP;
282 		} else {
283 			old_vps[i] = *this_vp_p;
284 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
285 			/*
286 			 * XXX - Several operations have the side effect
287 			 * of vrele'ing their vp's.  We must account for
288 			 * that.  (This should go away in the future.)
289 			 */
290 			if (reles & VDESC_VP0_WILLRELE)
291 				VREF(*this_vp_p);
292 		}
293 
294 	}
295 
296 	/*
297 	 * Call the operation on the lower layer
298 	 * with the modified argument structure.
299 	 */
300 	if (vps_p[0] && *vps_p[0])
301 		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
302 	else {
303 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
304 		error = EINVAL;
305 	}
306 
307 	/*
308 	 * Maintain the illusion of call-by-value
309 	 * by restoring vnodes in the argument structure
310 	 * to their original value.
311 	 */
312 	reles = descp->vdesc_flags;
313 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
314 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
315 			break;   /* bail out at end of list */
316 		if (old_vps[i]) {
317 			*(vps_p[i]) = old_vps[i];
318 #if 0
319 			if (reles & VDESC_VP0_WILLUNLOCK)
320 				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curproc);
321 #endif
322 			if (reles & VDESC_VP0_WILLRELE)
323 				vrele(*(vps_p[i]));
324 		}
325 	}
326 
327 	/*
328 	 * Map the possible out-going vpp
329 	 * (Assumes that the lower layer always returns
330 	 * a VREF'ed vpp unless it gets an error.)
331 	 */
332 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
333 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
334 	    !error) {
335 		/*
336 		 * XXX - even though some ops have vpp returned vp's,
337 		 * several ops actually vrele this before returning.
338 		 * We must avoid these ops.
339 		 * (This should go away when these ops are regularized.)
340 		 */
341 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
342 			goto out;
343 		vppp = VOPARG_OFFSETTO(struct vnode***,
344 				 descp->vdesc_vpp_offset,ap);
345 		if (*vppp)
346 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
347 	}
348 
349  out:
350 	return (error);
351 }
352 
353 /*
354  * We have to carry on the locking protocol on the null layer vnodes
355  * as we progress through the tree. We also have to enforce read-only
356  * if this layer is mounted read-only.
357  */
358 static int
359 null_lookup(ap)
360 	struct vop_lookup_args /* {
361 		struct vnode * a_dvp;
362 		struct vnode ** a_vpp;
363 		struct componentname * a_cnp;
364 	} */ *ap;
365 {
366 	struct componentname *cnp = ap->a_cnp;
367 	struct vnode *dvp = ap->a_dvp;
368 	struct proc *p = cnp->cn_proc;
369 	int flags = cnp->cn_flags;
370 	struct vnode *vp, *ldvp, *lvp;
371 	int error;
372 
373 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
374 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
375 		return (EROFS);
376 	/*
377 	 * Although it is possible to call null_bypass(), we'll do
378 	 * a direct call to reduce overhead
379 	 */
380 	ldvp = NULLVPTOLOWERVP(dvp);
381 	vp = lvp = NULL;
382 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
383 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
384 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
385 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
386 		error = EROFS;
387 
388 	/*
389 	 * Rely only on the PDIRUNLOCK flag which should be carefully
390 	 * tracked by underlying filesystem.
391 	 */
392 	if (cnp->cn_flags & PDIRUNLOCK)
393 		VOP_UNLOCK(dvp, LK_THISLAYER, p);
394 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
395 		if (ldvp == lvp) {
396 			*ap->a_vpp = dvp;
397 			VREF(dvp);
398 			vrele(lvp);
399 		} else {
400 			error = null_node_create(dvp->v_mount, lvp, &vp);
401 			if (error == 0)
402 				*ap->a_vpp = vp;
403 		}
404 	}
405 	return (error);
406 }
407 
408 /*
409  * Setattr call. Disallow write attempts if the layer is mounted read-only.
410  */
411 int
412 null_setattr(ap)
413 	struct vop_setattr_args /* {
414 		struct vnodeop_desc *a_desc;
415 		struct vnode *a_vp;
416 		struct vattr *a_vap;
417 		struct ucred *a_cred;
418 		struct proc *a_p;
419 	} */ *ap;
420 {
421 	struct vnode *vp = ap->a_vp;
422 	struct vattr *vap = ap->a_vap;
423 
424   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
425 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
426 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
427 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
428 		return (EROFS);
429 	if (vap->va_size != VNOVAL) {
430  		switch (vp->v_type) {
431  		case VDIR:
432  			return (EISDIR);
433  		case VCHR:
434  		case VBLK:
435  		case VSOCK:
436  		case VFIFO:
437 			if (vap->va_flags != VNOVAL)
438 				return (EOPNOTSUPP);
439 			return (0);
440 		case VREG:
441 		case VLNK:
442  		default:
443 			/*
444 			 * Disallow write attempts if the filesystem is
445 			 * mounted read-only.
446 			 */
447 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
448 				return (EROFS);
449 		}
450 	}
451 
452 	return (null_bypass((struct vop_generic_args *)ap));
453 }
454 
455 /*
456  *  We handle getattr only to change the fsid.
457  */
458 static int
459 null_getattr(ap)
460 	struct vop_getattr_args /* {
461 		struct vnode *a_vp;
462 		struct vattr *a_vap;
463 		struct ucred *a_cred;
464 		struct proc *a_p;
465 	} */ *ap;
466 {
467 	int error;
468 
469 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
470 		return (error);
471 
472 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
473 	return (0);
474 }
475 
476 /*
477  * Handle to disallow write access if mounted read-only.
478  */
479 static int
480 null_access(ap)
481 	struct vop_access_args /* {
482 		struct vnode *a_vp;
483 		int  a_mode;
484 		struct ucred *a_cred;
485 		struct proc *a_p;
486 	} */ *ap;
487 {
488 	struct vnode *vp = ap->a_vp;
489 	mode_t mode = ap->a_mode;
490 
491 	/*
492 	 * Disallow write attempts on read-only layers;
493 	 * unless the file is a socket, fifo, or a block or
494 	 * character device resident on the file system.
495 	 */
496 	if (mode & VWRITE) {
497 		switch (vp->v_type) {
498 		case VDIR:
499 		case VLNK:
500 		case VREG:
501 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
502 				return (EROFS);
503 			break;
504 		default:
505 			break;
506 		}
507 	}
508 	return (null_bypass((struct vop_generic_args *)ap));
509 }
510 
511 /*
512  * We must handle open to be able to catch MNT_NODEV and friends.
513  */
514 static int
515 null_open(ap)
516 	struct vop_open_args /* {
517 		struct vnode *a_vp;
518 		int  a_mode;
519 		struct ucred *a_cred;
520 		struct proc *a_p;
521 	} */ *ap;
522 {
523 	struct vnode *vp = ap->a_vp;
524 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
525 
526 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
527 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
528 		return ENXIO;
529 
530 	return (null_bypass((struct vop_generic_args *)ap));
531 }
532 
533 /*
534  * We handle this to eliminate null FS to lower FS
535  * file moving. Don't know why we don't allow this,
536  * possibly we should.
537  */
538 static int
539 null_rename(ap)
540 	struct vop_rename_args /* {
541 		struct vnode *a_fdvp;
542 		struct vnode *a_fvp;
543 		struct componentname *a_fcnp;
544 		struct vnode *a_tdvp;
545 		struct vnode *a_tvp;
546 		struct componentname *a_tcnp;
547 	} */ *ap;
548 {
549 	struct vnode *tdvp = ap->a_tdvp;
550 	struct vnode *fvp = ap->a_fvp;
551 	struct vnode *fdvp = ap->a_fdvp;
552 	struct vnode *tvp = ap->a_tvp;
553 
554 	/* Check for cross-device rename. */
555 	if ((fvp->v_mount != tdvp->v_mount) ||
556 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
557 		if (tdvp == tvp)
558 			vrele(tdvp);
559 		else
560 			vput(tdvp);
561 		if (tvp)
562 			vput(tvp);
563 		vrele(fdvp);
564 		vrele(fvp);
565 		return (EXDEV);
566 	}
567 
568 	return (null_bypass((struct vop_generic_args *)ap));
569 }
570 
571 /*
572  * We need to process our own vnode lock and then clear the
573  * interlock flag as it applies only to our vnode, not the
574  * vnodes below us on the stack.
575  */
576 static int
577 null_lock(ap)
578 	struct vop_lock_args /* {
579 		struct vnode *a_vp;
580 		int a_flags;
581 		struct proc *a_p;
582 	} */ *ap;
583 {
584 	struct vnode *vp = ap->a_vp;
585 	int flags = ap->a_flags;
586 	struct proc *p = ap->a_p;
587 	struct vnode *lvp;
588 	int error;
589 
590 	if (flags & LK_THISLAYER) {
591 		if (vp->v_vnlock != NULL)
592 			return 0;	/* lock is shared across layers */
593 		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
594 		    &vp->v_interlock, p);
595 		return (error);
596 	}
597 
598 	if (vp->v_vnlock != NULL) {
599 		/*
600 		 * The lower level has exported a struct lock to us. Use
601 		 * it so that all vnodes in the stack lock and unlock
602 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
603 		 * decommissions the lock - just because our vnode is
604 		 * going away doesn't mean the struct lock below us is.
605 		 * LK_EXCLUSIVE is fine.
606 		 */
607 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
608 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
609 			return(lockmgr(vp->v_vnlock,
610 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
611 				&vp->v_interlock, p));
612 		}
613 		return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, p));
614 	} else {
615 		/*
616 		 * To prevent race conditions involving doing a lookup
617 		 * on "..", we have to lock the lower node, then lock our
618 		 * node. Most of the time it won't matter that we lock our
619 		 * node (as any locking would need the lower one locked
620 		 * first). But we can LK_DRAIN the upper lock as a step
621 		 * towards decomissioning it.
622 		 */
623 		lvp = NULLVPTOLOWERVP(vp);
624 		if (lvp == NULL)
625 			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, p));
626 		if (flags & LK_INTERLOCK) {
627 			mtx_exit(&vp->v_interlock, MTX_DEF);
628 			flags &= ~LK_INTERLOCK;
629 		}
630 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
631 			error = VOP_LOCK(lvp,
632 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, p);
633 		} else
634 			error = VOP_LOCK(lvp, flags, p);
635 		if (error)
636 			return (error);
637 		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, p);
638 		if (error)
639 			VOP_UNLOCK(lvp, 0, p);
640 		return (error);
641 	}
642 }
643 
644 /*
645  * We need to process our own vnode unlock and then clear the
646  * interlock flag as it applies only to our vnode, not the
647  * vnodes below us on the stack.
648  */
649 static int
650 null_unlock(ap)
651 	struct vop_unlock_args /* {
652 		struct vnode *a_vp;
653 		int a_flags;
654 		struct proc *a_p;
655 	} */ *ap;
656 {
657 	struct vnode *vp = ap->a_vp;
658 	int flags = ap->a_flags;
659 	struct proc *p = ap->a_p;
660 	struct vnode *lvp;
661 
662 	if (vp->v_vnlock != NULL) {
663 		if (flags & LK_THISLAYER)
664 			return 0;	/* the lock is shared across layers */
665 		flags &= ~LK_THISLAYER;
666 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
667 			&vp->v_interlock, p));
668 	}
669 	lvp = NULLVPTOLOWERVP(vp);
670 	if (lvp == NULL)
671 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
672 	if ((flags & LK_THISLAYER) == 0) {
673 		if (flags & LK_INTERLOCK) {
674 			mtx_exit(&vp->v_interlock, MTX_DEF);
675 			flags &= ~LK_INTERLOCK;
676 		}
677 		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, p);
678 	} else
679 		flags &= ~LK_THISLAYER;
680 	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
681 }
682 
683 static int
684 null_islocked(ap)
685 	struct vop_islocked_args /* {
686 		struct vnode *a_vp;
687 		struct proc *a_p;
688 	} */ *ap;
689 {
690 	struct vnode *vp = ap->a_vp;
691 	struct proc *p = ap->a_p;
692 
693 	if (vp->v_vnlock != NULL)
694 		return (lockstatus(vp->v_vnlock, p));
695 	return (lockstatus(&vp->v_lock, p));
696 }
697 
698 /*
699  * There is no way to tell that someone issued remove/rmdir operation
700  * on the underlying filesystem. For now we just have to release lowevrp
701  * as soon as possible.
702  */
703 static int
704 null_inactive(ap)
705 	struct vop_inactive_args /* {
706 		struct vnode *a_vp;
707 		struct proc *a_p;
708 	} */ *ap;
709 {
710 	struct vnode *vp = ap->a_vp;
711 	struct proc *p = ap->a_p;
712 	struct null_node *xp = VTONULL(vp);
713 	struct vnode *lowervp = xp->null_lowervp;
714 
715 	lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, p);
716 	LIST_REMOVE(xp, null_hash);
717 	lockmgr(&null_hashlock, LK_RELEASE, NULL, p);
718 
719 	xp->null_lowervp = NULLVP;
720 	if (vp->v_vnlock != NULL) {
721 		vp->v_vnlock = &vp->v_lock;	/* we no longer share the lock */
722 	} else
723 		VOP_UNLOCK(vp, LK_THISLAYER, p);
724 
725 	vput(lowervp);
726 	/*
727 	 * Now it is safe to drop references to the lower vnode.
728 	 * VOP_INACTIVE() will be called by vrele() if necessary.
729 	 */
730 	vrele (lowervp);
731 
732 	return (0);
733 }
734 
735 /*
736  * We can free memory in null_inactive, but we do this
737  * here. (Possible to guard vp->v_data to point somewhere)
738  */
739 static int
740 null_reclaim(ap)
741 	struct vop_reclaim_args /* {
742 		struct vnode *a_vp;
743 		struct proc *a_p;
744 	} */ *ap;
745 {
746 	struct vnode *vp = ap->a_vp;
747 	void *vdata = vp->v_data;
748 
749 	vp->v_data = NULL;
750 	FREE(vdata, M_NULLFSNODE);
751 
752 	return (0);
753 }
754 
755 static int
756 null_print(ap)
757 	struct vop_print_args /* {
758 		struct vnode *a_vp;
759 	} */ *ap;
760 {
761 	register struct vnode *vp = ap->a_vp;
762 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
763 	return (0);
764 }
765 
766 /*
767  * Let an underlying filesystem do the work
768  */
769 static int
770 null_createvobject(ap)
771 	struct vop_createvobject_args /* {
772 		struct vnode *vp;
773 		struct ucred *cred;
774 		struct proc *p;
775 	} */ *ap;
776 {
777 	struct vnode *vp = ap->a_vp;
778 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
779 	int error;
780 
781 	if (vp->v_type == VNON || lowervp == NULL)
782 		return 0;
783 	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_p);
784 	if (error)
785 		return (error);
786 	vp->v_flag |= VOBJBUF;
787 	return (0);
788 }
789 
790 /*
791  * We have nothing to destroy and this operation shouldn't be bypassed.
792  */
793 static int
794 null_destroyvobject(ap)
795 	struct vop_destroyvobject_args /* {
796 		struct vnode *vp;
797 	} */ *ap;
798 {
799 	struct vnode *vp = ap->a_vp;
800 
801 	vp->v_flag &= ~VOBJBUF;
802 	return (0);
803 }
804 
805 static int
806 null_getvobject(ap)
807 	struct vop_getvobject_args /* {
808 		struct vnode *vp;
809 		struct vm_object **objpp;
810 	} */ *ap;
811 {
812 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
813 
814 	if (lvp == NULL)
815 		return EINVAL;
816 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
817 }
818 
819 /*
820  * Global vfs data structures
821  */
822 vop_t **null_vnodeop_p;
823 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
824 	{ &vop_default_desc,		(vop_t *) null_bypass },
825 
826 	{ &vop_access_desc,		(vop_t *) null_access },
827 	{ &vop_bmap_desc,		(vop_t *) vop_eopnotsupp },
828 	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
829 	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
830 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
831 	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
832 	{ &vop_getwritemount_desc,	(vop_t *) vop_stdgetwritemount},
833 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
834 	{ &vop_islocked_desc,		(vop_t *) null_islocked },
835 	{ &vop_lock_desc,		(vop_t *) null_lock },
836 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
837 	{ &vop_open_desc,		(vop_t *) null_open },
838 	{ &vop_print_desc,		(vop_t *) null_print },
839 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
840 	{ &vop_rename_desc,		(vop_t *) null_rename },
841 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
842 	{ &vop_strategy_desc,		(vop_t *) vop_eopnotsupp },
843 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
844 	{ NULL, NULL }
845 };
846 static struct vnodeopv_desc null_vnodeop_opv_desc =
847 	{ &null_vnodeop_p, null_vnodeop_entries };
848 
849 VNODEOP_SET(null_vnodeop_opv_desc);
850