xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  *	...and...
41  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
42  *
43  * $FreeBSD$
44  */
45 
46 /*
47  * Null Layer
48  *
49  * (See mount_nullfs(8) for more information.)
50  *
51  * The null layer duplicates a portion of the filesystem
52  * name space under a new name.  In this respect, it is
53  * similar to the loopback filesystem.  It differs from
54  * the loopback fs in two respects:  it is implemented using
55  * a stackable layers techniques, and its "null-node"s stack above
56  * all lower-layer vnodes, not just over directory vnodes.
57  *
58  * The null layer has two purposes.  First, it serves as a demonstration
59  * of layering by proving a layer which does nothing.  (It actually
60  * does everything the loopback filesystem does, which is slightly
61  * more than nothing.)  Second, the null layer can serve as a prototype
62  * layer.  Since it provides all necessary layer framework,
63  * new filesystem layers can be created very easily be starting
64  * with a null layer.
65  *
66  * The remainder of this man page examines the null layer as a basis
67  * for constructing new layers.
68  *
69  *
70  * INSTANTIATING NEW NULL LAYERS
71  *
72  * New null layers are created with mount_nullfs(8).
73  * Mount_nullfs(8) takes two arguments, the pathname
74  * of the lower vfs (target-pn) and the pathname where the null
75  * layer will appear in the namespace (alias-pn).  After
76  * the null layer is put into place, the contents
77  * of target-pn subtree will be aliased under alias-pn.
78  *
79  *
80  * OPERATION OF A NULL LAYER
81  *
82  * The null layer is the minimum filesystem layer,
83  * simply bypassing all possible operations to the lower layer
84  * for processing there.  The majority of its activity centers
85  * on the bypass routine, through which nearly all vnode operations
86  * pass.
87  *
88  * The bypass routine accepts arbitrary vnode operations for
89  * handling by the lower layer.  It begins by examing vnode
90  * operation arguments and replacing any null-nodes by their
91  * lower-layer equivlants.  It then invokes the operation
92  * on the lower layer.  Finally, it replaces the null-nodes
93  * in the arguments and, if a vnode is return by the operation,
94  * stacks a null-node on top of the returned vnode.
95  *
96  * Although bypass handles most operations, vop_getattr, vop_lock,
97  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
98  * bypassed. Vop_getattr must change the fsid being returned.
99  * Vop_lock and vop_unlock must handle any locking for the
100  * current vnode as well as pass the lock request down.
101  * Vop_inactive and vop_reclaim are not bypassed so that
102  * they can handle freeing null-layer specific data. Vop_print
103  * is not bypassed to avoid excessive debugging information.
104  * Also, certain vnode operations change the locking state within
105  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
106  * and symlink). Ideally these operations should not change the
107  * lock state, but should be changed to let the caller of the
108  * function unlock them. Otherwise all intermediate vnode layers
109  * (such as union, umapfs, etc) must catch these functions to do
110  * the necessary locking at their layer.
111  *
112  *
113  * INSTANTIATING VNODE STACKS
114  *
115  * Mounting associates the null layer with a lower layer,
116  * effect stacking two VFSes.  Vnode stacks are instead
117  * created on demand as files are accessed.
118  *
119  * The initial mount creates a single vnode stack for the
120  * root of the new null layer.  All other vnode stacks
121  * are created as a result of vnode operations on
122  * this or other null vnode stacks.
123  *
124  * New vnode stacks come into existance as a result of
125  * an operation which returns a vnode.
126  * The bypass routine stacks a null-node above the new
127  * vnode before returning it to the caller.
128  *
129  * For example, imagine mounting a null layer with
130  * "mount_nullfs /usr/include /dev/layer/null".
131  * Changing directory to /dev/layer/null will assign
132  * the root null-node (which was created when the null layer was mounted).
133  * Now consider opening "sys".  A vop_lookup would be
134  * done on the root null-node.  This operation would bypass through
135  * to the lower layer which would return a vnode representing
136  * the UFS "sys".  Null_bypass then builds a null-node
137  * aliasing the UFS "sys" and returns this to the caller.
138  * Later operations on the null-node "sys" will repeat this
139  * process when constructing other vnode stacks.
140  *
141  *
142  * CREATING OTHER FILE SYSTEM LAYERS
143  *
144  * One of the easiest ways to construct new filesystem layers is to make
145  * a copy of the null layer, rename all files and variables, and
146  * then begin modifing the copy.  Sed can be used to easily rename
147  * all variables.
148  *
149  * The umap layer is an example of a layer descended from the
150  * null layer.
151  *
152  *
153  * INVOKING OPERATIONS ON LOWER LAYERS
154  *
155  * There are two techniques to invoke operations on a lower layer
156  * when the operation cannot be completely bypassed.  Each method
157  * is appropriate in different situations.  In both cases,
158  * it is the responsibility of the aliasing layer to make
159  * the operation arguments "correct" for the lower layer
160  * by mapping a vnode arguments to the lower layer.
161  *
162  * The first approach is to call the aliasing layer's bypass routine.
163  * This method is most suitable when you wish to invoke the operation
164  * currently being handled on the lower layer.  It has the advantage
165  * that the bypass routine already must do argument mapping.
166  * An example of this is null_getattrs in the null layer.
167  *
168  * A second approach is to directly invoke vnode operations on
169  * the lower layer with the VOP_OPERATIONNAME interface.
170  * The advantage of this method is that it is easy to invoke
171  * arbitrary operations on the lower layer.  The disadvantage
172  * is that vnode arguments must be manualy mapped.
173  *
174  */
175 
176 #include <sys/param.h>
177 #include <sys/systm.h>
178 #include <sys/conf.h>
179 #include <sys/kernel.h>
180 #include <sys/lock.h>
181 #include <sys/malloc.h>
182 #include <sys/mount.h>
183 #include <sys/mutex.h>
184 #include <sys/namei.h>
185 #include <sys/sysctl.h>
186 #include <sys/vnode.h>
187 
188 #include <fs/nullfs/null.h>
189 
190 #include <vm/vm.h>
191 #include <vm/vm_extern.h>
192 #include <vm/vm_object.h>
193 #include <vm/vnode_pager.h>
194 
195 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
196 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
197 	&null_bug_bypass, 0, "");
198 
199 static int	null_access(struct vop_access_args *ap);
200 static int	null_createvobject(struct vop_createvobject_args *ap);
201 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
202 static int	null_getattr(struct vop_getattr_args *ap);
203 static int	null_getvobject(struct vop_getvobject_args *ap);
204 static int	null_inactive(struct vop_inactive_args *ap);
205 static int	null_islocked(struct vop_islocked_args *ap);
206 static int	null_lock(struct vop_lock_args *ap);
207 static int	null_lookup(struct vop_lookup_args *ap);
208 static int	null_open(struct vop_open_args *ap);
209 static int	null_print(struct vop_print_args *ap);
210 static int	null_reclaim(struct vop_reclaim_args *ap);
211 static int	null_rename(struct vop_rename_args *ap);
212 static int	null_setattr(struct vop_setattr_args *ap);
213 static int	null_unlock(struct vop_unlock_args *ap);
214 
215 /*
216  * This is the 10-Apr-92 bypass routine.
217  *    This version has been optimized for speed, throwing away some
218  * safety checks.  It should still always work, but it's not as
219  * robust to programmer errors.
220  *
221  * In general, we map all vnodes going down and unmap them on the way back.
222  * As an exception to this, vnodes can be marked "unmapped" by setting
223  * the Nth bit in operation's vdesc_flags.
224  *
225  * Also, some BSD vnode operations have the side effect of vrele'ing
226  * their arguments.  With stacking, the reference counts are held
227  * by the upper node, not the lower one, so we must handle these
228  * side-effects here.  This is not of concern in Sun-derived systems
229  * since there are no such side-effects.
230  *
231  * This makes the following assumptions:
232  * - only one returned vpp
233  * - no INOUT vpp's (Sun's vop_open has one of these)
234  * - the vnode operation vector of the first vnode should be used
235  *   to determine what implementation of the op should be invoked
236  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
237  *   problems on rmdir'ing mount points and renaming?)
238  */
239 int
240 null_bypass(ap)
241 	struct vop_generic_args /* {
242 		struct vnodeop_desc *a_desc;
243 		<other random data follows, presumably>
244 	} */ *ap;
245 {
246 	register struct vnode **this_vp_p;
247 	int error;
248 	struct vnode *old_vps[VDESC_MAX_VPS];
249 	struct vnode **vps_p[VDESC_MAX_VPS];
250 	struct vnode ***vppp;
251 	struct vnodeop_desc *descp = ap->a_desc;
252 	int reles, i;
253 
254 	if (null_bug_bypass)
255 		printf ("null_bypass: %s\n", descp->vdesc_name);
256 
257 #ifdef DIAGNOSTIC
258 	/*
259 	 * We require at least one vp.
260 	 */
261 	if (descp->vdesc_vp_offsets == NULL ||
262 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
263 		panic ("null_bypass: no vp's in map");
264 #endif
265 
266 	/*
267 	 * Map the vnodes going in.
268 	 * Later, we'll invoke the operation based on
269 	 * the first mapped vnode's operation vector.
270 	 */
271 	reles = descp->vdesc_flags;
272 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
273 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
274 			break;   /* bail out at end of list */
275 		vps_p[i] = this_vp_p =
276 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
277 		/*
278 		 * We're not guaranteed that any but the first vnode
279 		 * are of our type.  Check for and don't map any
280 		 * that aren't.  (We must always map first vp or vclean fails.)
281 		 */
282 		if (i && (*this_vp_p == NULLVP ||
283 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
284 			old_vps[i] = NULLVP;
285 		} else {
286 			old_vps[i] = *this_vp_p;
287 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
288 			/*
289 			 * XXX - Several operations have the side effect
290 			 * of vrele'ing their vp's.  We must account for
291 			 * that.  (This should go away in the future.)
292 			 */
293 			if (reles & VDESC_VP0_WILLRELE)
294 				VREF(*this_vp_p);
295 		}
296 
297 	}
298 
299 	/*
300 	 * Call the operation on the lower layer
301 	 * with the modified argument structure.
302 	 */
303 	if (vps_p[0] && *vps_p[0])
304 		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
305 	else {
306 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
307 		error = EINVAL;
308 	}
309 
310 	/*
311 	 * Maintain the illusion of call-by-value
312 	 * by restoring vnodes in the argument structure
313 	 * to their original value.
314 	 */
315 	reles = descp->vdesc_flags;
316 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
317 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
318 			break;   /* bail out at end of list */
319 		if (old_vps[i]) {
320 			*(vps_p[i]) = old_vps[i];
321 #if 0
322 			if (reles & VDESC_VP0_WILLUNLOCK)
323 				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
324 #endif
325 			if (reles & VDESC_VP0_WILLRELE)
326 				vrele(*(vps_p[i]));
327 		}
328 	}
329 
330 	/*
331 	 * Map the possible out-going vpp
332 	 * (Assumes that the lower layer always returns
333 	 * a VREF'ed vpp unless it gets an error.)
334 	 */
335 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
336 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
337 	    !error) {
338 		/*
339 		 * XXX - even though some ops have vpp returned vp's,
340 		 * several ops actually vrele this before returning.
341 		 * We must avoid these ops.
342 		 * (This should go away when these ops are regularized.)
343 		 */
344 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
345 			goto out;
346 		vppp = VOPARG_OFFSETTO(struct vnode***,
347 				 descp->vdesc_vpp_offset,ap);
348 		if (*vppp)
349 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
350 	}
351 
352  out:
353 	return (error);
354 }
355 
356 /*
357  * We have to carry on the locking protocol on the null layer vnodes
358  * as we progress through the tree. We also have to enforce read-only
359  * if this layer is mounted read-only.
360  */
361 static int
362 null_lookup(ap)
363 	struct vop_lookup_args /* {
364 		struct vnode * a_dvp;
365 		struct vnode ** a_vpp;
366 		struct componentname * a_cnp;
367 	} */ *ap;
368 {
369 	struct componentname *cnp = ap->a_cnp;
370 	struct vnode *dvp = ap->a_dvp;
371 	struct thread *td = cnp->cn_thread;
372 	int flags = cnp->cn_flags;
373 	struct vnode *vp, *ldvp, *lvp;
374 	int error;
375 
376 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
377 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
378 		return (EROFS);
379 	/*
380 	 * Although it is possible to call null_bypass(), we'll do
381 	 * a direct call to reduce overhead
382 	 */
383 	ldvp = NULLVPTOLOWERVP(dvp);
384 	vp = lvp = NULL;
385 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
386 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
387 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
388 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
389 		error = EROFS;
390 
391 	/*
392 	 * Rely only on the PDIRUNLOCK flag which should be carefully
393 	 * tracked by underlying filesystem.
394 	 */
395 	if (cnp->cn_flags & PDIRUNLOCK)
396 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
397 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
398 		if (ldvp == lvp) {
399 			*ap->a_vpp = dvp;
400 			VREF(dvp);
401 			vrele(lvp);
402 		} else {
403 			error = null_nodeget(dvp->v_mount, lvp, &vp);
404 			if (error) {
405 				/* XXX Cleanup needed... */
406 				panic("null_nodeget failed");
407 			}
408 			*ap->a_vpp = vp;
409 		}
410 	}
411 	return (error);
412 }
413 
414 /*
415  * Setattr call. Disallow write attempts if the layer is mounted read-only.
416  */
417 static int
418 null_setattr(ap)
419 	struct vop_setattr_args /* {
420 		struct vnodeop_desc *a_desc;
421 		struct vnode *a_vp;
422 		struct vattr *a_vap;
423 		struct ucred *a_cred;
424 		struct thread *a_td;
425 	} */ *ap;
426 {
427 	struct vnode *vp = ap->a_vp;
428 	struct vattr *vap = ap->a_vap;
429 
430   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
431 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
432 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
433 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
434 		return (EROFS);
435 	if (vap->va_size != VNOVAL) {
436  		switch (vp->v_type) {
437  		case VDIR:
438  			return (EISDIR);
439  		case VCHR:
440  		case VBLK:
441  		case VSOCK:
442  		case VFIFO:
443 			if (vap->va_flags != VNOVAL)
444 				return (EOPNOTSUPP);
445 			return (0);
446 		case VREG:
447 		case VLNK:
448  		default:
449 			/*
450 			 * Disallow write attempts if the filesystem is
451 			 * mounted read-only.
452 			 */
453 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
454 				return (EROFS);
455 		}
456 	}
457 
458 	return (null_bypass((struct vop_generic_args *)ap));
459 }
460 
461 /*
462  *  We handle getattr only to change the fsid.
463  */
464 static int
465 null_getattr(ap)
466 	struct vop_getattr_args /* {
467 		struct vnode *a_vp;
468 		struct vattr *a_vap;
469 		struct ucred *a_cred;
470 		struct thread *a_td;
471 	} */ *ap;
472 {
473 	int error;
474 
475 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
476 		return (error);
477 
478 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
479 	return (0);
480 }
481 
482 /*
483  * Handle to disallow write access if mounted read-only.
484  */
485 static int
486 null_access(ap)
487 	struct vop_access_args /* {
488 		struct vnode *a_vp;
489 		int  a_mode;
490 		struct ucred *a_cred;
491 		struct thread *a_td;
492 	} */ *ap;
493 {
494 	struct vnode *vp = ap->a_vp;
495 	mode_t mode = ap->a_mode;
496 
497 	/*
498 	 * Disallow write attempts on read-only layers;
499 	 * unless the file is a socket, fifo, or a block or
500 	 * character device resident on the filesystem.
501 	 */
502 	if (mode & VWRITE) {
503 		switch (vp->v_type) {
504 		case VDIR:
505 		case VLNK:
506 		case VREG:
507 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
508 				return (EROFS);
509 			break;
510 		default:
511 			break;
512 		}
513 	}
514 	return (null_bypass((struct vop_generic_args *)ap));
515 }
516 
517 /*
518  * We must handle open to be able to catch MNT_NODEV and friends.
519  */
520 static int
521 null_open(ap)
522 	struct vop_open_args /* {
523 		struct vnode *a_vp;
524 		int  a_mode;
525 		struct ucred *a_cred;
526 		struct thread *a_td;
527 	} */ *ap;
528 {
529 	struct vnode *vp = ap->a_vp;
530 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
531 
532 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
533 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
534 		return ENXIO;
535 
536 	return (null_bypass((struct vop_generic_args *)ap));
537 }
538 
539 /*
540  * We handle this to eliminate null FS to lower FS
541  * file moving. Don't know why we don't allow this,
542  * possibly we should.
543  */
544 static int
545 null_rename(ap)
546 	struct vop_rename_args /* {
547 		struct vnode *a_fdvp;
548 		struct vnode *a_fvp;
549 		struct componentname *a_fcnp;
550 		struct vnode *a_tdvp;
551 		struct vnode *a_tvp;
552 		struct componentname *a_tcnp;
553 	} */ *ap;
554 {
555 	struct vnode *tdvp = ap->a_tdvp;
556 	struct vnode *fvp = ap->a_fvp;
557 	struct vnode *fdvp = ap->a_fdvp;
558 	struct vnode *tvp = ap->a_tvp;
559 
560 	/* Check for cross-device rename. */
561 	if ((fvp->v_mount != tdvp->v_mount) ||
562 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
563 		if (tdvp == tvp)
564 			vrele(tdvp);
565 		else
566 			vput(tdvp);
567 		if (tvp)
568 			vput(tvp);
569 		vrele(fdvp);
570 		vrele(fvp);
571 		return (EXDEV);
572 	}
573 
574 	return (null_bypass((struct vop_generic_args *)ap));
575 }
576 
577 /*
578  * We need to process our own vnode lock and then clear the
579  * interlock flag as it applies only to our vnode, not the
580  * vnodes below us on the stack.
581  */
582 static int
583 null_lock(ap)
584 	struct vop_lock_args /* {
585 		struct vnode *a_vp;
586 		int a_flags;
587 		struct thread *a_td;
588 	} */ *ap;
589 {
590 	struct vnode *vp = ap->a_vp;
591 	int flags = ap->a_flags;
592 	struct thread *td = ap->a_td;
593 	struct vnode *lvp;
594 	int error;
595 	struct null_node *nn;
596 
597 	if (flags & LK_THISLAYER) {
598 		if (vp->v_vnlock != NULL) {
599 			/* lock is shared across layers */
600 			if (flags & LK_INTERLOCK)
601 				mtx_unlock(&vp->v_interlock);
602 			return 0;
603 		}
604 		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
605 		    &vp->v_interlock, td);
606 		return (error);
607 	}
608 
609 	if (vp->v_vnlock != NULL) {
610 		/*
611 		 * The lower level has exported a struct lock to us. Use
612 		 * it so that all vnodes in the stack lock and unlock
613 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
614 		 * decommissions the lock - just because our vnode is
615 		 * going away doesn't mean the struct lock below us is.
616 		 * LK_EXCLUSIVE is fine.
617 		 */
618 		if ((flags & LK_INTERLOCK) == 0) {
619 			VI_LOCK(vp);
620 			flags |= LK_INTERLOCK;
621 		}
622 		nn = VTONULL(vp);
623 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
624 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
625 			/*
626 			 * Emulate lock draining by waiting for all other
627 			 * pending locks to complete.  Afterwards the
628 			 * lockmgr call might block, but no other threads
629 			 * will attempt to use this nullfs vnode due to the
630 			 * VI_XLOCK flag.
631 			 */
632 			while (nn->null_pending_locks > 0) {
633 				nn->null_drain_wakeup = 1;
634 				msleep(&nn->null_pending_locks,
635 				       VI_MTX(vp),
636 				       PVFS,
637 				       "nuldr", 0);
638 			}
639 			error = lockmgr(vp->v_vnlock,
640 					(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
641 					VI_MTX(vp), td);
642 			return error;
643 		}
644 		nn->null_pending_locks++;
645 		error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
646 		VI_LOCK(vp);
647 		/*
648 		 * If we're called from vrele then v_usecount can have been 0
649 		 * and another process might have initiated a recycle
650 		 * operation.  When that happens, just back out.
651 		 */
652 		if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
653 		    td != vp->v_vxproc) {
654 			lockmgr(vp->v_vnlock,
655 				(flags & ~LK_TYPE_MASK) | LK_RELEASE,
656 				VI_MTX(vp), td);
657 			VI_LOCK(vp);
658 			error = ENOENT;
659 		}
660 		nn->null_pending_locks--;
661 		/*
662 		 * Wakeup the process draining the vnode after all
663 		 * pending lock attempts has been failed.
664 		 */
665 		if (nn->null_pending_locks == 0 &&
666 		    nn->null_drain_wakeup != 0) {
667 			nn->null_drain_wakeup = 0;
668 			wakeup(&nn->null_pending_locks);
669 		}
670 		if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
671 		    vp->v_vxproc != curthread) {
672 			vp->v_iflag |= VI_XWANT;
673 			msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
674 		}
675 		VI_UNLOCK(vp);
676 		return error;
677 	} else {
678 		/*
679 		 * To prevent race conditions involving doing a lookup
680 		 * on "..", we have to lock the lower node, then lock our
681 		 * node. Most of the time it won't matter that we lock our
682 		 * node (as any locking would need the lower one locked
683 		 * first). But we can LK_DRAIN the upper lock as a step
684 		 * towards decomissioning it.
685 		 */
686 		lvp = NULLVPTOLOWERVP(vp);
687 		if (lvp == NULL)
688 			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
689 		if (flags & LK_INTERLOCK) {
690 			mtx_unlock(&vp->v_interlock);
691 			flags &= ~LK_INTERLOCK;
692 		}
693 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
694 			error = VOP_LOCK(lvp,
695 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
696 		} else
697 			error = VOP_LOCK(lvp, flags, td);
698 		if (error)
699 			return (error);
700 		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
701 		if (error)
702 			VOP_UNLOCK(lvp, 0, td);
703 		return (error);
704 	}
705 }
706 
707 /*
708  * We need to process our own vnode unlock and then clear the
709  * interlock flag as it applies only to our vnode, not the
710  * vnodes below us on the stack.
711  */
712 static int
713 null_unlock(ap)
714 	struct vop_unlock_args /* {
715 		struct vnode *a_vp;
716 		int a_flags;
717 		struct thread *a_td;
718 	} */ *ap;
719 {
720 	struct vnode *vp = ap->a_vp;
721 	int flags = ap->a_flags;
722 	struct thread *td = ap->a_td;
723 	struct vnode *lvp;
724 
725 	if (vp->v_vnlock != NULL) {
726 		if (flags & LK_THISLAYER)
727 			return 0;	/* the lock is shared across layers */
728 		flags &= ~LK_THISLAYER;
729 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
730 			&vp->v_interlock, td));
731 	}
732 	lvp = NULLVPTOLOWERVP(vp);
733 	if (lvp == NULL)
734 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
735 	if ((flags & LK_THISLAYER) == 0) {
736 		if (flags & LK_INTERLOCK) {
737 			mtx_unlock(&vp->v_interlock);
738 			flags &= ~LK_INTERLOCK;
739 		}
740 		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
741 	} else
742 		flags &= ~LK_THISLAYER;
743 	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
744 }
745 
746 static int
747 null_islocked(ap)
748 	struct vop_islocked_args /* {
749 		struct vnode *a_vp;
750 		struct thread *a_td;
751 	} */ *ap;
752 {
753 	struct vnode *vp = ap->a_vp;
754 	struct thread *td = ap->a_td;
755 
756 	if (vp->v_vnlock != NULL)
757 		return (lockstatus(vp->v_vnlock, td));
758 	return (lockstatus(&vp->v_lock, td));
759 }
760 
761 /*
762  * There is no way to tell that someone issued remove/rmdir operation
763  * on the underlying filesystem. For now we just have to release lowevrp
764  * as soon as possible.
765  *
766  * Note, we can't release any resources nor remove vnode from hash before
767  * appropriate VXLOCK stuff is is done because other process can find this
768  * vnode in hash during inactivation and may be sitting in vget() and waiting
769  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
770  */
771 static int
772 null_inactive(ap)
773 	struct vop_inactive_args /* {
774 		struct vnode *a_vp;
775 		struct thread *a_td;
776 	} */ *ap;
777 {
778 	struct vnode *vp = ap->a_vp;
779 	struct thread *td = ap->a_td;
780 
781 	VOP_UNLOCK(vp, 0, td);
782 
783 	/*
784 	 * If this is the last reference, then free up the vnode
785 	 * so as not to tie up the lower vnodes.
786 	 */
787 	vrecycle(vp, NULL, td);
788 
789 	return (0);
790 }
791 
792 /*
793  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
794  */
795 static int
796 null_reclaim(ap)
797 	struct vop_reclaim_args /* {
798 		struct vnode *a_vp;
799 		struct thread *a_td;
800 	} */ *ap;
801 {
802 	struct vnode *vp = ap->a_vp;
803 	struct null_node *xp = VTONULL(vp);
804 	struct vnode *lowervp = xp->null_lowervp;
805 
806 	if (lowervp) {
807 		null_hashrem(xp);
808 
809 		vrele(lowervp);
810 		vrele(lowervp);
811 	}
812 
813 	vp->v_data = NULL;
814 	vp->v_vnlock = &vp->v_lock;
815 	FREE(xp, M_NULLFSNODE);
816 
817 	return (0);
818 }
819 
820 static int
821 null_print(ap)
822 	struct vop_print_args /* {
823 		struct vnode *a_vp;
824 	} */ *ap;
825 {
826 	register struct vnode *vp = ap->a_vp;
827 	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
828 	return (0);
829 }
830 
831 /*
832  * Let an underlying filesystem do the work
833  */
834 static int
835 null_createvobject(ap)
836 	struct vop_createvobject_args /* {
837 		struct vnode *vp;
838 		struct ucred *cred;
839 		struct thread *td;
840 	} */ *ap;
841 {
842 	struct vnode *vp = ap->a_vp;
843 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
844 	int error;
845 
846 	if (vp->v_type == VNON || lowervp == NULL)
847 		return 0;
848 	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
849 	if (error)
850 		return (error);
851 	vp->v_vflag |= VV_OBJBUF;
852 	return (0);
853 }
854 
855 /*
856  * We have nothing to destroy and this operation shouldn't be bypassed.
857  */
858 static int
859 null_destroyvobject(ap)
860 	struct vop_destroyvobject_args /* {
861 		struct vnode *vp;
862 	} */ *ap;
863 {
864 	struct vnode *vp = ap->a_vp;
865 
866 	vp->v_vflag &= ~VV_OBJBUF;
867 	return (0);
868 }
869 
870 static int
871 null_getvobject(ap)
872 	struct vop_getvobject_args /* {
873 		struct vnode *vp;
874 		struct vm_object **objpp;
875 	} */ *ap;
876 {
877 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
878 
879 	if (lvp == NULL)
880 		return EINVAL;
881 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
882 }
883 
884 /*
885  * Global vfs data structures
886  */
887 vop_t **null_vnodeop_p;
888 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
889 	{ &vop_default_desc,		(vop_t *) null_bypass },
890 
891 	{ &vop_access_desc,		(vop_t *) null_access },
892 	{ &vop_bmap_desc,		(vop_t *) vop_eopnotsupp },
893 	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
894 	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
895 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
896 	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
897 	{ &vop_getwritemount_desc,	(vop_t *) vop_stdgetwritemount},
898 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
899 	{ &vop_islocked_desc,		(vop_t *) null_islocked },
900 	{ &vop_lock_desc,		(vop_t *) null_lock },
901 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
902 	{ &vop_open_desc,		(vop_t *) null_open },
903 	{ &vop_print_desc,		(vop_t *) null_print },
904 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
905 	{ &vop_rename_desc,		(vop_t *) null_rename },
906 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
907 	{ &vop_strategy_desc,		(vop_t *) vop_eopnotsupp },
908 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
909 	{ NULL, NULL }
910 };
911 static struct vnodeopv_desc null_vnodeop_opv_desc =
912 	{ &null_vnodeop_p, null_vnodeop_entries };
913 
914 VNODEOP_SET(null_vnodeop_opv_desc);
915