1 /* 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * John Heidemann of the UCLA Ficus project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 37 * 38 * Ancestors: 39 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 40 * ...and... 41 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 42 * 43 * $FreeBSD$ 44 */ 45 46 /* 47 * Null Layer 48 * 49 * (See mount_nullfs(8) for more information.) 50 * 51 * The null layer duplicates a portion of the filesystem 52 * name space under a new name. In this respect, it is 53 * similar to the loopback filesystem. It differs from 54 * the loopback fs in two respects: it is implemented using 55 * a stackable layers techniques, and its "null-node"s stack above 56 * all lower-layer vnodes, not just over directory vnodes. 57 * 58 * The null layer has two purposes. First, it serves as a demonstration 59 * of layering by proving a layer which does nothing. (It actually 60 * does everything the loopback filesystem does, which is slightly 61 * more than nothing.) Second, the null layer can serve as a prototype 62 * layer. Since it provides all necessary layer framework, 63 * new filesystem layers can be created very easily be starting 64 * with a null layer. 65 * 66 * The remainder of this man page examines the null layer as a basis 67 * for constructing new layers. 68 * 69 * 70 * INSTANTIATING NEW NULL LAYERS 71 * 72 * New null layers are created with mount_nullfs(8). 73 * Mount_nullfs(8) takes two arguments, the pathname 74 * of the lower vfs (target-pn) and the pathname where the null 75 * layer will appear in the namespace (alias-pn). After 76 * the null layer is put into place, the contents 77 * of target-pn subtree will be aliased under alias-pn. 78 * 79 * 80 * OPERATION OF A NULL LAYER 81 * 82 * The null layer is the minimum filesystem layer, 83 * simply bypassing all possible operations to the lower layer 84 * for processing there. The majority of its activity centers 85 * on the bypass routine, through which nearly all vnode operations 86 * pass. 87 * 88 * The bypass routine accepts arbitrary vnode operations for 89 * handling by the lower layer. It begins by examing vnode 90 * operation arguments and replacing any null-nodes by their 91 * lower-layer equivlants. It then invokes the operation 92 * on the lower layer. Finally, it replaces the null-nodes 93 * in the arguments and, if a vnode is return by the operation, 94 * stacks a null-node on top of the returned vnode. 95 * 96 * Although bypass handles most operations, vop_getattr, vop_lock, 97 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 98 * bypassed. Vop_getattr must change the fsid being returned. 99 * Vop_lock and vop_unlock must handle any locking for the 100 * current vnode as well as pass the lock request down. 101 * Vop_inactive and vop_reclaim are not bypassed so that 102 * they can handle freeing null-layer specific data. Vop_print 103 * is not bypassed to avoid excessive debugging information. 104 * Also, certain vnode operations change the locking state within 105 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 106 * and symlink). Ideally these operations should not change the 107 * lock state, but should be changed to let the caller of the 108 * function unlock them. Otherwise all intermediate vnode layers 109 * (such as union, umapfs, etc) must catch these functions to do 110 * the necessary locking at their layer. 111 * 112 * 113 * INSTANTIATING VNODE STACKS 114 * 115 * Mounting associates the null layer with a lower layer, 116 * effect stacking two VFSes. Vnode stacks are instead 117 * created on demand as files are accessed. 118 * 119 * The initial mount creates a single vnode stack for the 120 * root of the new null layer. All other vnode stacks 121 * are created as a result of vnode operations on 122 * this or other null vnode stacks. 123 * 124 * New vnode stacks come into existance as a result of 125 * an operation which returns a vnode. 126 * The bypass routine stacks a null-node above the new 127 * vnode before returning it to the caller. 128 * 129 * For example, imagine mounting a null layer with 130 * "mount_nullfs /usr/include /dev/layer/null". 131 * Changing directory to /dev/layer/null will assign 132 * the root null-node (which was created when the null layer was mounted). 133 * Now consider opening "sys". A vop_lookup would be 134 * done on the root null-node. This operation would bypass through 135 * to the lower layer which would return a vnode representing 136 * the UFS "sys". Null_bypass then builds a null-node 137 * aliasing the UFS "sys" and returns this to the caller. 138 * Later operations on the null-node "sys" will repeat this 139 * process when constructing other vnode stacks. 140 * 141 * 142 * CREATING OTHER FILE SYSTEM LAYERS 143 * 144 * One of the easiest ways to construct new filesystem layers is to make 145 * a copy of the null layer, rename all files and variables, and 146 * then begin modifing the copy. Sed can be used to easily rename 147 * all variables. 148 * 149 * The umap layer is an example of a layer descended from the 150 * null layer. 151 * 152 * 153 * INVOKING OPERATIONS ON LOWER LAYERS 154 * 155 * There are two techniques to invoke operations on a lower layer 156 * when the operation cannot be completely bypassed. Each method 157 * is appropriate in different situations. In both cases, 158 * it is the responsibility of the aliasing layer to make 159 * the operation arguments "correct" for the lower layer 160 * by mapping a vnode arguments to the lower layer. 161 * 162 * The first approach is to call the aliasing layer's bypass routine. 163 * This method is most suitable when you wish to invoke the operation 164 * currently being handled on the lower layer. It has the advantage 165 * that the bypass routine already must do argument mapping. 166 * An example of this is null_getattrs in the null layer. 167 * 168 * A second approach is to directly invoke vnode operations on 169 * the lower layer with the VOP_OPERATIONNAME interface. 170 * The advantage of this method is that it is easy to invoke 171 * arbitrary operations on the lower layer. The disadvantage 172 * is that vnode arguments must be manualy mapped. 173 * 174 */ 175 176 #include <sys/param.h> 177 #include <sys/systm.h> 178 #include <sys/conf.h> 179 #include <sys/kernel.h> 180 #include <sys/lock.h> 181 #include <sys/malloc.h> 182 #include <sys/mount.h> 183 #include <sys/mutex.h> 184 #include <sys/namei.h> 185 #include <sys/sysctl.h> 186 #include <sys/vnode.h> 187 188 #include <fs/nullfs/null.h> 189 190 #include <vm/vm.h> 191 #include <vm/vm_extern.h> 192 #include <vm/vm_object.h> 193 #include <vm/vnode_pager.h> 194 195 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 196 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 197 &null_bug_bypass, 0, ""); 198 199 static int null_access(struct vop_access_args *ap); 200 static int null_createvobject(struct vop_createvobject_args *ap); 201 static int null_destroyvobject(struct vop_destroyvobject_args *ap); 202 static int null_getattr(struct vop_getattr_args *ap); 203 static int null_getvobject(struct vop_getvobject_args *ap); 204 static int null_inactive(struct vop_inactive_args *ap); 205 static int null_islocked(struct vop_islocked_args *ap); 206 static int null_lock(struct vop_lock_args *ap); 207 static int null_lookup(struct vop_lookup_args *ap); 208 static int null_open(struct vop_open_args *ap); 209 static int null_print(struct vop_print_args *ap); 210 static int null_reclaim(struct vop_reclaim_args *ap); 211 static int null_rename(struct vop_rename_args *ap); 212 static int null_setattr(struct vop_setattr_args *ap); 213 static int null_unlock(struct vop_unlock_args *ap); 214 215 /* 216 * This is the 10-Apr-92 bypass routine. 217 * This version has been optimized for speed, throwing away some 218 * safety checks. It should still always work, but it's not as 219 * robust to programmer errors. 220 * 221 * In general, we map all vnodes going down and unmap them on the way back. 222 * As an exception to this, vnodes can be marked "unmapped" by setting 223 * the Nth bit in operation's vdesc_flags. 224 * 225 * Also, some BSD vnode operations have the side effect of vrele'ing 226 * their arguments. With stacking, the reference counts are held 227 * by the upper node, not the lower one, so we must handle these 228 * side-effects here. This is not of concern in Sun-derived systems 229 * since there are no such side-effects. 230 * 231 * This makes the following assumptions: 232 * - only one returned vpp 233 * - no INOUT vpp's (Sun's vop_open has one of these) 234 * - the vnode operation vector of the first vnode should be used 235 * to determine what implementation of the op should be invoked 236 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 237 * problems on rmdir'ing mount points and renaming?) 238 */ 239 int 240 null_bypass(ap) 241 struct vop_generic_args /* { 242 struct vnodeop_desc *a_desc; 243 <other random data follows, presumably> 244 } */ *ap; 245 { 246 register struct vnode **this_vp_p; 247 int error; 248 struct vnode *old_vps[VDESC_MAX_VPS]; 249 struct vnode **vps_p[VDESC_MAX_VPS]; 250 struct vnode ***vppp; 251 struct vnodeop_desc *descp = ap->a_desc; 252 int reles, i; 253 254 if (null_bug_bypass) 255 printf ("null_bypass: %s\n", descp->vdesc_name); 256 257 #ifdef DIAGNOSTIC 258 /* 259 * We require at least one vp. 260 */ 261 if (descp->vdesc_vp_offsets == NULL || 262 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 263 panic ("null_bypass: no vp's in map"); 264 #endif 265 266 /* 267 * Map the vnodes going in. 268 * Later, we'll invoke the operation based on 269 * the first mapped vnode's operation vector. 270 */ 271 reles = descp->vdesc_flags; 272 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 273 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 274 break; /* bail out at end of list */ 275 vps_p[i] = this_vp_p = 276 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); 277 /* 278 * We're not guaranteed that any but the first vnode 279 * are of our type. Check for and don't map any 280 * that aren't. (We must always map first vp or vclean fails.) 281 */ 282 if (i && (*this_vp_p == NULLVP || 283 (*this_vp_p)->v_op != null_vnodeop_p)) { 284 old_vps[i] = NULLVP; 285 } else { 286 old_vps[i] = *this_vp_p; 287 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 288 /* 289 * XXX - Several operations have the side effect 290 * of vrele'ing their vp's. We must account for 291 * that. (This should go away in the future.) 292 */ 293 if (reles & VDESC_VP0_WILLRELE) 294 VREF(*this_vp_p); 295 } 296 297 } 298 299 /* 300 * Call the operation on the lower layer 301 * with the modified argument structure. 302 */ 303 if (vps_p[0] && *vps_p[0]) 304 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap); 305 else { 306 printf("null_bypass: no map for %s\n", descp->vdesc_name); 307 error = EINVAL; 308 } 309 310 /* 311 * Maintain the illusion of call-by-value 312 * by restoring vnodes in the argument structure 313 * to their original value. 314 */ 315 reles = descp->vdesc_flags; 316 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 317 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 318 break; /* bail out at end of list */ 319 if (old_vps[i]) { 320 *(vps_p[i]) = old_vps[i]; 321 #if 0 322 if (reles & VDESC_VP0_WILLUNLOCK) 323 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread); 324 #endif 325 if (reles & VDESC_VP0_WILLRELE) 326 vrele(*(vps_p[i])); 327 } 328 } 329 330 /* 331 * Map the possible out-going vpp 332 * (Assumes that the lower layer always returns 333 * a VREF'ed vpp unless it gets an error.) 334 */ 335 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 336 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 337 !error) { 338 /* 339 * XXX - even though some ops have vpp returned vp's, 340 * several ops actually vrele this before returning. 341 * We must avoid these ops. 342 * (This should go away when these ops are regularized.) 343 */ 344 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 345 goto out; 346 vppp = VOPARG_OFFSETTO(struct vnode***, 347 descp->vdesc_vpp_offset,ap); 348 if (*vppp) 349 error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp); 350 } 351 352 out: 353 return (error); 354 } 355 356 /* 357 * We have to carry on the locking protocol on the null layer vnodes 358 * as we progress through the tree. We also have to enforce read-only 359 * if this layer is mounted read-only. 360 */ 361 static int 362 null_lookup(ap) 363 struct vop_lookup_args /* { 364 struct vnode * a_dvp; 365 struct vnode ** a_vpp; 366 struct componentname * a_cnp; 367 } */ *ap; 368 { 369 struct componentname *cnp = ap->a_cnp; 370 struct vnode *dvp = ap->a_dvp; 371 struct thread *td = cnp->cn_thread; 372 int flags = cnp->cn_flags; 373 struct vnode *vp, *ldvp, *lvp; 374 int error; 375 376 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 377 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 378 return (EROFS); 379 /* 380 * Although it is possible to call null_bypass(), we'll do 381 * a direct call to reduce overhead 382 */ 383 ldvp = NULLVPTOLOWERVP(dvp); 384 vp = lvp = NULL; 385 error = VOP_LOOKUP(ldvp, &lvp, cnp); 386 if (error == EJUSTRETURN && (flags & ISLASTCN) && 387 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 388 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 389 error = EROFS; 390 391 /* 392 * Rely only on the PDIRUNLOCK flag which should be carefully 393 * tracked by underlying filesystem. 394 */ 395 if (cnp->cn_flags & PDIRUNLOCK) 396 VOP_UNLOCK(dvp, LK_THISLAYER, td); 397 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 398 if (ldvp == lvp) { 399 *ap->a_vpp = dvp; 400 VREF(dvp); 401 vrele(lvp); 402 } else { 403 error = null_nodeget(dvp->v_mount, lvp, &vp); 404 if (error) { 405 /* XXX Cleanup needed... */ 406 panic("null_nodeget failed"); 407 } 408 *ap->a_vpp = vp; 409 } 410 } 411 return (error); 412 } 413 414 /* 415 * Setattr call. Disallow write attempts if the layer is mounted read-only. 416 */ 417 static int 418 null_setattr(ap) 419 struct vop_setattr_args /* { 420 struct vnodeop_desc *a_desc; 421 struct vnode *a_vp; 422 struct vattr *a_vap; 423 struct ucred *a_cred; 424 struct thread *a_td; 425 } */ *ap; 426 { 427 struct vnode *vp = ap->a_vp; 428 struct vattr *vap = ap->a_vap; 429 430 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 431 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 432 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 433 (vp->v_mount->mnt_flag & MNT_RDONLY)) 434 return (EROFS); 435 if (vap->va_size != VNOVAL) { 436 switch (vp->v_type) { 437 case VDIR: 438 return (EISDIR); 439 case VCHR: 440 case VBLK: 441 case VSOCK: 442 case VFIFO: 443 if (vap->va_flags != VNOVAL) 444 return (EOPNOTSUPP); 445 return (0); 446 case VREG: 447 case VLNK: 448 default: 449 /* 450 * Disallow write attempts if the filesystem is 451 * mounted read-only. 452 */ 453 if (vp->v_mount->mnt_flag & MNT_RDONLY) 454 return (EROFS); 455 } 456 } 457 458 return (null_bypass((struct vop_generic_args *)ap)); 459 } 460 461 /* 462 * We handle getattr only to change the fsid. 463 */ 464 static int 465 null_getattr(ap) 466 struct vop_getattr_args /* { 467 struct vnode *a_vp; 468 struct vattr *a_vap; 469 struct ucred *a_cred; 470 struct thread *a_td; 471 } */ *ap; 472 { 473 int error; 474 475 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 476 return (error); 477 478 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 479 return (0); 480 } 481 482 /* 483 * Handle to disallow write access if mounted read-only. 484 */ 485 static int 486 null_access(ap) 487 struct vop_access_args /* { 488 struct vnode *a_vp; 489 int a_mode; 490 struct ucred *a_cred; 491 struct thread *a_td; 492 } */ *ap; 493 { 494 struct vnode *vp = ap->a_vp; 495 mode_t mode = ap->a_mode; 496 497 /* 498 * Disallow write attempts on read-only layers; 499 * unless the file is a socket, fifo, or a block or 500 * character device resident on the filesystem. 501 */ 502 if (mode & VWRITE) { 503 switch (vp->v_type) { 504 case VDIR: 505 case VLNK: 506 case VREG: 507 if (vp->v_mount->mnt_flag & MNT_RDONLY) 508 return (EROFS); 509 break; 510 default: 511 break; 512 } 513 } 514 return (null_bypass((struct vop_generic_args *)ap)); 515 } 516 517 /* 518 * We must handle open to be able to catch MNT_NODEV and friends. 519 */ 520 static int 521 null_open(ap) 522 struct vop_open_args /* { 523 struct vnode *a_vp; 524 int a_mode; 525 struct ucred *a_cred; 526 struct thread *a_td; 527 } */ *ap; 528 { 529 struct vnode *vp = ap->a_vp; 530 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 531 532 if ((vp->v_mount->mnt_flag & MNT_NODEV) && 533 (lvp->v_type == VBLK || lvp->v_type == VCHR)) 534 return ENXIO; 535 536 return (null_bypass((struct vop_generic_args *)ap)); 537 } 538 539 /* 540 * We handle this to eliminate null FS to lower FS 541 * file moving. Don't know why we don't allow this, 542 * possibly we should. 543 */ 544 static int 545 null_rename(ap) 546 struct vop_rename_args /* { 547 struct vnode *a_fdvp; 548 struct vnode *a_fvp; 549 struct componentname *a_fcnp; 550 struct vnode *a_tdvp; 551 struct vnode *a_tvp; 552 struct componentname *a_tcnp; 553 } */ *ap; 554 { 555 struct vnode *tdvp = ap->a_tdvp; 556 struct vnode *fvp = ap->a_fvp; 557 struct vnode *fdvp = ap->a_fdvp; 558 struct vnode *tvp = ap->a_tvp; 559 560 /* Check for cross-device rename. */ 561 if ((fvp->v_mount != tdvp->v_mount) || 562 (tvp && (fvp->v_mount != tvp->v_mount))) { 563 if (tdvp == tvp) 564 vrele(tdvp); 565 else 566 vput(tdvp); 567 if (tvp) 568 vput(tvp); 569 vrele(fdvp); 570 vrele(fvp); 571 return (EXDEV); 572 } 573 574 return (null_bypass((struct vop_generic_args *)ap)); 575 } 576 577 /* 578 * We need to process our own vnode lock and then clear the 579 * interlock flag as it applies only to our vnode, not the 580 * vnodes below us on the stack. 581 */ 582 static int 583 null_lock(ap) 584 struct vop_lock_args /* { 585 struct vnode *a_vp; 586 int a_flags; 587 struct thread *a_td; 588 } */ *ap; 589 { 590 struct vnode *vp = ap->a_vp; 591 int flags = ap->a_flags; 592 struct thread *td = ap->a_td; 593 struct vnode *lvp; 594 int error; 595 596 if (flags & LK_THISLAYER) { 597 if (vp->v_vnlock != NULL) { 598 /* lock is shared across layers */ 599 if (flags & LK_INTERLOCK) 600 mtx_unlock(&vp->v_interlock); 601 return 0; 602 } 603 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER, 604 &vp->v_interlock, td); 605 return (error); 606 } 607 608 if (vp->v_vnlock != NULL) { 609 /* 610 * The lower level has exported a struct lock to us. Use 611 * it so that all vnodes in the stack lock and unlock 612 * simultaneously. Note: we don't DRAIN the lock as DRAIN 613 * decommissions the lock - just because our vnode is 614 * going away doesn't mean the struct lock below us is. 615 * LK_EXCLUSIVE is fine. 616 */ 617 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 618 NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n"); 619 return(lockmgr(vp->v_vnlock, 620 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 621 &vp->v_interlock, td)); 622 } 623 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td)); 624 } else { 625 /* 626 * To prevent race conditions involving doing a lookup 627 * on "..", we have to lock the lower node, then lock our 628 * node. Most of the time it won't matter that we lock our 629 * node (as any locking would need the lower one locked 630 * first). But we can LK_DRAIN the upper lock as a step 631 * towards decomissioning it. 632 */ 633 lvp = NULLVPTOLOWERVP(vp); 634 if (lvp == NULL) 635 return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td)); 636 if (flags & LK_INTERLOCK) { 637 mtx_unlock(&vp->v_interlock); 638 flags &= ~LK_INTERLOCK; 639 } 640 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 641 error = VOP_LOCK(lvp, 642 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td); 643 } else 644 error = VOP_LOCK(lvp, flags, td); 645 if (error) 646 return (error); 647 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td); 648 if (error) 649 VOP_UNLOCK(lvp, 0, td); 650 return (error); 651 } 652 } 653 654 /* 655 * We need to process our own vnode unlock and then clear the 656 * interlock flag as it applies only to our vnode, not the 657 * vnodes below us on the stack. 658 */ 659 static int 660 null_unlock(ap) 661 struct vop_unlock_args /* { 662 struct vnode *a_vp; 663 int a_flags; 664 struct thread *a_td; 665 } */ *ap; 666 { 667 struct vnode *vp = ap->a_vp; 668 int flags = ap->a_flags; 669 struct thread *td = ap->a_td; 670 struct vnode *lvp; 671 672 if (vp->v_vnlock != NULL) { 673 if (flags & LK_THISLAYER) 674 return 0; /* the lock is shared across layers */ 675 flags &= ~LK_THISLAYER; 676 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE, 677 &vp->v_interlock, td)); 678 } 679 lvp = NULLVPTOLOWERVP(vp); 680 if (lvp == NULL) 681 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 682 if ((flags & LK_THISLAYER) == 0) { 683 if (flags & LK_INTERLOCK) { 684 mtx_unlock(&vp->v_interlock); 685 flags &= ~LK_INTERLOCK; 686 } 687 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td); 688 } else 689 flags &= ~LK_THISLAYER; 690 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 691 } 692 693 static int 694 null_islocked(ap) 695 struct vop_islocked_args /* { 696 struct vnode *a_vp; 697 struct thread *a_td; 698 } */ *ap; 699 { 700 struct vnode *vp = ap->a_vp; 701 struct thread *td = ap->a_td; 702 703 if (vp->v_vnlock != NULL) 704 return (lockstatus(vp->v_vnlock, td)); 705 return (lockstatus(&vp->v_lock, td)); 706 } 707 708 /* 709 * There is no way to tell that someone issued remove/rmdir operation 710 * on the underlying filesystem. For now we just have to release lowevrp 711 * as soon as possible. 712 * 713 * Note, we can't release any resources nor remove vnode from hash before 714 * appropriate VXLOCK stuff is is done because other process can find this 715 * vnode in hash during inactivation and may be sitting in vget() and waiting 716 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM. 717 */ 718 static int 719 null_inactive(ap) 720 struct vop_inactive_args /* { 721 struct vnode *a_vp; 722 struct thread *a_td; 723 } */ *ap; 724 { 725 struct vnode *vp = ap->a_vp; 726 struct thread *td = ap->a_td; 727 728 VOP_UNLOCK(vp, 0, td); 729 730 /* 731 * If this is the last reference, then free up the vnode 732 * so as not to tie up the lower vnodes. 733 */ 734 vrecycle(vp, NULL, td); 735 736 return (0); 737 } 738 739 /* 740 * Now, the VXLOCK is in force and we're free to destroy the null vnode. 741 */ 742 static int 743 null_reclaim(ap) 744 struct vop_reclaim_args /* { 745 struct vnode *a_vp; 746 struct thread *a_td; 747 } */ *ap; 748 { 749 struct vnode *vp = ap->a_vp; 750 struct null_node *xp = VTONULL(vp); 751 struct vnode *lowervp = xp->null_lowervp; 752 753 if (lowervp) { 754 null_hashrem(xp); 755 756 vrele(lowervp); 757 vrele(lowervp); 758 } 759 760 vp->v_data = NULL; 761 vp->v_vnlock = &vp->v_lock; 762 FREE(xp, M_NULLFSNODE); 763 764 return (0); 765 } 766 767 static int 768 null_print(ap) 769 struct vop_print_args /* { 770 struct vnode *a_vp; 771 } */ *ap; 772 { 773 register struct vnode *vp = ap->a_vp; 774 printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp)); 775 return (0); 776 } 777 778 /* 779 * Let an underlying filesystem do the work 780 */ 781 static int 782 null_createvobject(ap) 783 struct vop_createvobject_args /* { 784 struct vnode *vp; 785 struct ucred *cred; 786 struct thread *td; 787 } */ *ap; 788 { 789 struct vnode *vp = ap->a_vp; 790 struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL; 791 int error; 792 793 if (vp->v_type == VNON || lowervp == NULL) 794 return 0; 795 error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td); 796 if (error) 797 return (error); 798 vp->v_vflag |= VV_OBJBUF; 799 return (0); 800 } 801 802 /* 803 * We have nothing to destroy and this operation shouldn't be bypassed. 804 */ 805 static int 806 null_destroyvobject(ap) 807 struct vop_destroyvobject_args /* { 808 struct vnode *vp; 809 } */ *ap; 810 { 811 struct vnode *vp = ap->a_vp; 812 813 vp->v_vflag &= ~VV_OBJBUF; 814 return (0); 815 } 816 817 static int 818 null_getvobject(ap) 819 struct vop_getvobject_args /* { 820 struct vnode *vp; 821 struct vm_object **objpp; 822 } */ *ap; 823 { 824 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 825 826 if (lvp == NULL) 827 return EINVAL; 828 return (VOP_GETVOBJECT(lvp, ap->a_objpp)); 829 } 830 831 /* 832 * Global vfs data structures 833 */ 834 vop_t **null_vnodeop_p; 835 static struct vnodeopv_entry_desc null_vnodeop_entries[] = { 836 { &vop_default_desc, (vop_t *) null_bypass }, 837 838 { &vop_access_desc, (vop_t *) null_access }, 839 { &vop_bmap_desc, (vop_t *) vop_eopnotsupp }, 840 { &vop_createvobject_desc, (vop_t *) null_createvobject }, 841 { &vop_destroyvobject_desc, (vop_t *) null_destroyvobject }, 842 { &vop_getattr_desc, (vop_t *) null_getattr }, 843 { &vop_getvobject_desc, (vop_t *) null_getvobject }, 844 { &vop_getwritemount_desc, (vop_t *) vop_stdgetwritemount}, 845 { &vop_inactive_desc, (vop_t *) null_inactive }, 846 { &vop_islocked_desc, (vop_t *) null_islocked }, 847 { &vop_lock_desc, (vop_t *) null_lock }, 848 { &vop_lookup_desc, (vop_t *) null_lookup }, 849 { &vop_open_desc, (vop_t *) null_open }, 850 { &vop_print_desc, (vop_t *) null_print }, 851 { &vop_reclaim_desc, (vop_t *) null_reclaim }, 852 { &vop_rename_desc, (vop_t *) null_rename }, 853 { &vop_setattr_desc, (vop_t *) null_setattr }, 854 { &vop_strategy_desc, (vop_t *) vop_eopnotsupp }, 855 { &vop_unlock_desc, (vop_t *) null_unlock }, 856 { NULL, NULL } 857 }; 858 static struct vnodeopv_desc null_vnodeop_opv_desc = 859 { &null_vnodeop_p, null_vnodeop_entries }; 860 861 VNODEOP_SET(null_vnodeop_opv_desc); 862