xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
35  *
36  * Ancestors:
37  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
38  *	...and...
39  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
40  *
41  * $FreeBSD$
42  */
43 
44 /*
45  * Null Layer
46  *
47  * (See mount_nullfs(8) for more information.)
48  *
49  * The null layer duplicates a portion of the filesystem
50  * name space under a new name.  In this respect, it is
51  * similar to the loopback filesystem.  It differs from
52  * the loopback fs in two respects:  it is implemented using
53  * a stackable layers techniques, and its "null-node"s stack above
54  * all lower-layer vnodes, not just over directory vnodes.
55  *
56  * The null layer has two purposes.  First, it serves as a demonstration
57  * of layering by proving a layer which does nothing.  (It actually
58  * does everything the loopback filesystem does, which is slightly
59  * more than nothing.)  Second, the null layer can serve as a prototype
60  * layer.  Since it provides all necessary layer framework,
61  * new filesystem layers can be created very easily be starting
62  * with a null layer.
63  *
64  * The remainder of this man page examines the null layer as a basis
65  * for constructing new layers.
66  *
67  *
68  * INSTANTIATING NEW NULL LAYERS
69  *
70  * New null layers are created with mount_nullfs(8).
71  * Mount_nullfs(8) takes two arguments, the pathname
72  * of the lower vfs (target-pn) and the pathname where the null
73  * layer will appear in the namespace (alias-pn).  After
74  * the null layer is put into place, the contents
75  * of target-pn subtree will be aliased under alias-pn.
76  *
77  *
78  * OPERATION OF A NULL LAYER
79  *
80  * The null layer is the minimum filesystem layer,
81  * simply bypassing all possible operations to the lower layer
82  * for processing there.  The majority of its activity centers
83  * on the bypass routine, through which nearly all vnode operations
84  * pass.
85  *
86  * The bypass routine accepts arbitrary vnode operations for
87  * handling by the lower layer.  It begins by examing vnode
88  * operation arguments and replacing any null-nodes by their
89  * lower-layer equivlants.  It then invokes the operation
90  * on the lower layer.  Finally, it replaces the null-nodes
91  * in the arguments and, if a vnode is return by the operation,
92  * stacks a null-node on top of the returned vnode.
93  *
94  * Although bypass handles most operations, vop_getattr, vop_lock,
95  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
96  * bypassed. Vop_getattr must change the fsid being returned.
97  * Vop_lock and vop_unlock must handle any locking for the
98  * current vnode as well as pass the lock request down.
99  * Vop_inactive and vop_reclaim are not bypassed so that
100  * they can handle freeing null-layer specific data. Vop_print
101  * is not bypassed to avoid excessive debugging information.
102  * Also, certain vnode operations change the locking state within
103  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
104  * and symlink). Ideally these operations should not change the
105  * lock state, but should be changed to let the caller of the
106  * function unlock them. Otherwise all intermediate vnode layers
107  * (such as union, umapfs, etc) must catch these functions to do
108  * the necessary locking at their layer.
109  *
110  *
111  * INSTANTIATING VNODE STACKS
112  *
113  * Mounting associates the null layer with a lower layer,
114  * effect stacking two VFSes.  Vnode stacks are instead
115  * created on demand as files are accessed.
116  *
117  * The initial mount creates a single vnode stack for the
118  * root of the new null layer.  All other vnode stacks
119  * are created as a result of vnode operations on
120  * this or other null vnode stacks.
121  *
122  * New vnode stacks come into existence as a result of
123  * an operation which returns a vnode.
124  * The bypass routine stacks a null-node above the new
125  * vnode before returning it to the caller.
126  *
127  * For example, imagine mounting a null layer with
128  * "mount_nullfs /usr/include /dev/layer/null".
129  * Changing directory to /dev/layer/null will assign
130  * the root null-node (which was created when the null layer was mounted).
131  * Now consider opening "sys".  A vop_lookup would be
132  * done on the root null-node.  This operation would bypass through
133  * to the lower layer which would return a vnode representing
134  * the UFS "sys".  Null_bypass then builds a null-node
135  * aliasing the UFS "sys" and returns this to the caller.
136  * Later operations on the null-node "sys" will repeat this
137  * process when constructing other vnode stacks.
138  *
139  *
140  * CREATING OTHER FILE SYSTEM LAYERS
141  *
142  * One of the easiest ways to construct new filesystem layers is to make
143  * a copy of the null layer, rename all files and variables, and
144  * then begin modifing the copy.  Sed can be used to easily rename
145  * all variables.
146  *
147  * The umap layer is an example of a layer descended from the
148  * null layer.
149  *
150  *
151  * INVOKING OPERATIONS ON LOWER LAYERS
152  *
153  * There are two techniques to invoke operations on a lower layer
154  * when the operation cannot be completely bypassed.  Each method
155  * is appropriate in different situations.  In both cases,
156  * it is the responsibility of the aliasing layer to make
157  * the operation arguments "correct" for the lower layer
158  * by mapping a vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.
161  * This method is most suitable when you wish to invoke the operation
162  * currently being handled on the lower layer.  It has the advantage
163  * that the bypass routine already must do argument mapping.
164  * An example of this is null_getattrs in the null layer.
165  *
166  * A second approach is to directly invoke vnode operations on
167  * the lower layer with the VOP_OPERATIONNAME interface.
168  * The advantage of this method is that it is easy to invoke
169  * arbitrary operations on the lower layer.  The disadvantage
170  * is that vnode arguments must be manualy mapped.
171  *
172  */
173 
174 #include <sys/param.h>
175 #include <sys/systm.h>
176 #include <sys/conf.h>
177 #include <sys/kernel.h>
178 #include <sys/lock.h>
179 #include <sys/malloc.h>
180 #include <sys/mount.h>
181 #include <sys/mutex.h>
182 #include <sys/namei.h>
183 #include <sys/sysctl.h>
184 #include <sys/vnode.h>
185 
186 #include <fs/nullfs/null.h>
187 
188 #include <vm/vm.h>
189 #include <vm/vm_extern.h>
190 #include <vm/vm_object.h>
191 #include <vm/vnode_pager.h>
192 
193 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
194 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
195 	&null_bug_bypass, 0, "");
196 
197 /*
198  * This is the 10-Apr-92 bypass routine.
199  *    This version has been optimized for speed, throwing away some
200  * safety checks.  It should still always work, but it's not as
201  * robust to programmer errors.
202  *
203  * In general, we map all vnodes going down and unmap them on the way back.
204  * As an exception to this, vnodes can be marked "unmapped" by setting
205  * the Nth bit in operation's vdesc_flags.
206  *
207  * Also, some BSD vnode operations have the side effect of vrele'ing
208  * their arguments.  With stacking, the reference counts are held
209  * by the upper node, not the lower one, so we must handle these
210  * side-effects here.  This is not of concern in Sun-derived systems
211  * since there are no such side-effects.
212  *
213  * This makes the following assumptions:
214  * - only one returned vpp
215  * - no INOUT vpp's (Sun's vop_open has one of these)
216  * - the vnode operation vector of the first vnode should be used
217  *   to determine what implementation of the op should be invoked
218  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
219  *   problems on rmdir'ing mount points and renaming?)
220  */
221 int
222 null_bypass(struct vop_generic_args *ap)
223 {
224 	struct vnode **this_vp_p;
225 	int error;
226 	struct vnode *old_vps[VDESC_MAX_VPS];
227 	struct vnode **vps_p[VDESC_MAX_VPS];
228 	struct vnode ***vppp;
229 	struct vnodeop_desc *descp = ap->a_desc;
230 	int reles, i;
231 
232 	if (null_bug_bypass)
233 		printf ("null_bypass: %s\n", descp->vdesc_name);
234 
235 #ifdef DIAGNOSTIC
236 	/*
237 	 * We require at least one vp.
238 	 */
239 	if (descp->vdesc_vp_offsets == NULL ||
240 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
241 		panic ("null_bypass: no vp's in map");
242 #endif
243 
244 	/*
245 	 * Map the vnodes going in.
246 	 * Later, we'll invoke the operation based on
247 	 * the first mapped vnode's operation vector.
248 	 */
249 	reles = descp->vdesc_flags;
250 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
251 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
252 			break;   /* bail out at end of list */
253 		vps_p[i] = this_vp_p =
254 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
255 		/*
256 		 * We're not guaranteed that any but the first vnode
257 		 * are of our type.  Check for and don't map any
258 		 * that aren't.  (We must always map first vp or vclean fails.)
259 		 */
260 		if (i && (*this_vp_p == NULLVP ||
261 		    (*this_vp_p)->v_op != &null_vnodeops)) {
262 			old_vps[i] = NULLVP;
263 		} else {
264 			old_vps[i] = *this_vp_p;
265 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
266 			/*
267 			 * XXX - Several operations have the side effect
268 			 * of vrele'ing their vp's.  We must account for
269 			 * that.  (This should go away in the future.)
270 			 */
271 			if (reles & VDESC_VP0_WILLRELE)
272 				VREF(*this_vp_p);
273 		}
274 
275 	}
276 
277 	/*
278 	 * Call the operation on the lower layer
279 	 * with the modified argument structure.
280 	 */
281 	if (vps_p[0] && *vps_p[0])
282 		error = VCALL(ap);
283 	else {
284 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
285 		error = EINVAL;
286 	}
287 
288 	/*
289 	 * Maintain the illusion of call-by-value
290 	 * by restoring vnodes in the argument structure
291 	 * to their original value.
292 	 */
293 	reles = descp->vdesc_flags;
294 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
295 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
296 			break;   /* bail out at end of list */
297 		if (old_vps[i]) {
298 			*(vps_p[i]) = old_vps[i];
299 #if 0
300 			if (reles & VDESC_VP0_WILLUNLOCK)
301 				VOP_UNLOCK(*(vps_p[i]), 0);
302 #endif
303 			if (reles & VDESC_VP0_WILLRELE)
304 				vrele(*(vps_p[i]));
305 		}
306 	}
307 
308 	/*
309 	 * Map the possible out-going vpp
310 	 * (Assumes that the lower layer always returns
311 	 * a VREF'ed vpp unless it gets an error.)
312 	 */
313 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
314 		/*
315 		 * XXX - even though some ops have vpp returned vp's,
316 		 * several ops actually vrele this before returning.
317 		 * We must avoid these ops.
318 		 * (This should go away when these ops are regularized.)
319 		 */
320 		vppp = VOPARG_OFFSETTO(struct vnode***,
321 				 descp->vdesc_vpp_offset,ap);
322 		if (*vppp)
323 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
324 	}
325 
326 	return (error);
327 }
328 
329 static int
330 null_add_writecount(struct vop_add_writecount_args *ap)
331 {
332 	struct vnode *lvp, *vp;
333 	int error;
334 
335 	vp = ap->a_vp;
336 	lvp = NULLVPTOLOWERVP(vp);
337 	VI_LOCK(vp);
338 	/* text refs are bypassed to lowervp */
339 	VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
340 	VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
341 	    ("wrong writecount inc %d", ap->a_inc));
342 	error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
343 	if (error == 0)
344 		vp->v_writecount += ap->a_inc;
345 	VI_UNLOCK(vp);
346 	return (error);
347 }
348 
349 /*
350  * We have to carry on the locking protocol on the null layer vnodes
351  * as we progress through the tree. We also have to enforce read-only
352  * if this layer is mounted read-only.
353  */
354 static int
355 null_lookup(struct vop_lookup_args *ap)
356 {
357 	struct componentname *cnp = ap->a_cnp;
358 	struct vnode *dvp = ap->a_dvp;
359 	int flags = cnp->cn_flags;
360 	struct vnode *vp, *ldvp, *lvp;
361 	struct mount *mp;
362 	int error;
363 
364 	mp = dvp->v_mount;
365 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
366 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
367 		return (EROFS);
368 	/*
369 	 * Although it is possible to call null_bypass(), we'll do
370 	 * a direct call to reduce overhead
371 	 */
372 	ldvp = NULLVPTOLOWERVP(dvp);
373 	vp = lvp = NULL;
374 	KASSERT((ldvp->v_vflag & VV_ROOT) == 0 ||
375 	    ((dvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) == 0),
376 	    ("ldvp %p fl %#x dvp %p fl %#x flags %#x", ldvp, ldvp->v_vflag,
377 	     dvp, dvp->v_vflag, flags));
378 
379 	/*
380 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
381 	 * case of dvp reclamation, and we need ldvp to move our lock
382 	 * from ldvp to dvp.
383 	 */
384 	vhold(ldvp);
385 
386 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
387 
388 	/*
389 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
390 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
391 	 * doomed state and return error.
392 	 */
393 	if ((error == 0 || error == EJUSTRETURN) &&
394 	    VN_IS_DOOMED(dvp)) {
395 		error = ENOENT;
396 		if (lvp != NULL)
397 			vput(lvp);
398 
399 		/*
400 		 * If vgone() did reclaimed dvp before curthread
401 		 * relocked ldvp, the locks of dvp and ldpv are no
402 		 * longer shared.  In this case, relock of ldvp in
403 		 * lower fs VOP_LOOKUP() does not restore the locking
404 		 * state of dvp.  Compensate for this by unlocking
405 		 * ldvp and locking dvp, which is also correct if the
406 		 * locks are still shared.
407 		 */
408 		VOP_UNLOCK(ldvp);
409 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
410 	}
411 	vdrop(ldvp);
412 
413 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
414 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
415 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
416 		error = EROFS;
417 
418 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
419 		if (ldvp == lvp) {
420 			*ap->a_vpp = dvp;
421 			VREF(dvp);
422 			vrele(lvp);
423 		} else {
424 			error = null_nodeget(mp, lvp, &vp);
425 			if (error == 0)
426 				*ap->a_vpp = vp;
427 		}
428 	}
429 	return (error);
430 }
431 
432 static int
433 null_open(struct vop_open_args *ap)
434 {
435 	int retval;
436 	struct vnode *vp, *ldvp;
437 
438 	vp = ap->a_vp;
439 	ldvp = NULLVPTOLOWERVP(vp);
440 	retval = null_bypass(&ap->a_gen);
441 	if (retval == 0)
442 		vp->v_object = ldvp->v_object;
443 	return (retval);
444 }
445 
446 /*
447  * Setattr call. Disallow write attempts if the layer is mounted read-only.
448  */
449 static int
450 null_setattr(struct vop_setattr_args *ap)
451 {
452 	struct vnode *vp = ap->a_vp;
453 	struct vattr *vap = ap->a_vap;
454 
455   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
456 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
457 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
458 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
459 		return (EROFS);
460 	if (vap->va_size != VNOVAL) {
461  		switch (vp->v_type) {
462  		case VDIR:
463  			return (EISDIR);
464  		case VCHR:
465  		case VBLK:
466  		case VSOCK:
467  		case VFIFO:
468 			if (vap->va_flags != VNOVAL)
469 				return (EOPNOTSUPP);
470 			return (0);
471 		case VREG:
472 		case VLNK:
473  		default:
474 			/*
475 			 * Disallow write attempts if the filesystem is
476 			 * mounted read-only.
477 			 */
478 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
479 				return (EROFS);
480 		}
481 	}
482 
483 	return (null_bypass((struct vop_generic_args *)ap));
484 }
485 
486 /*
487  *  We handle getattr only to change the fsid.
488  */
489 static int
490 null_getattr(struct vop_getattr_args *ap)
491 {
492 	int error;
493 
494 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
495 		return (error);
496 
497 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
498 	return (0);
499 }
500 
501 /*
502  * Handle to disallow write access if mounted read-only.
503  */
504 static int
505 null_access(struct vop_access_args *ap)
506 {
507 	struct vnode *vp = ap->a_vp;
508 	accmode_t accmode = ap->a_accmode;
509 
510 	/*
511 	 * Disallow write attempts on read-only layers;
512 	 * unless the file is a socket, fifo, or a block or
513 	 * character device resident on the filesystem.
514 	 */
515 	if (accmode & VWRITE) {
516 		switch (vp->v_type) {
517 		case VDIR:
518 		case VLNK:
519 		case VREG:
520 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
521 				return (EROFS);
522 			break;
523 		default:
524 			break;
525 		}
526 	}
527 	return (null_bypass((struct vop_generic_args *)ap));
528 }
529 
530 static int
531 null_accessx(struct vop_accessx_args *ap)
532 {
533 	struct vnode *vp = ap->a_vp;
534 	accmode_t accmode = ap->a_accmode;
535 
536 	/*
537 	 * Disallow write attempts on read-only layers;
538 	 * unless the file is a socket, fifo, or a block or
539 	 * character device resident on the filesystem.
540 	 */
541 	if (accmode & VWRITE) {
542 		switch (vp->v_type) {
543 		case VDIR:
544 		case VLNK:
545 		case VREG:
546 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
547 				return (EROFS);
548 			break;
549 		default:
550 			break;
551 		}
552 	}
553 	return (null_bypass((struct vop_generic_args *)ap));
554 }
555 
556 /*
557  * Increasing refcount of lower vnode is needed at least for the case
558  * when lower FS is NFS to do sillyrename if the file is in use.
559  * Unfortunately v_usecount is incremented in many places in
560  * the kernel and, as such, there may be races that result in
561  * the NFS client doing an extraneous silly rename, but that seems
562  * preferable to not doing a silly rename when it is needed.
563  */
564 static int
565 null_remove(struct vop_remove_args *ap)
566 {
567 	int retval, vreleit;
568 	struct vnode *lvp, *vp;
569 
570 	vp = ap->a_vp;
571 	if (vrefcnt(vp) > 1) {
572 		lvp = NULLVPTOLOWERVP(vp);
573 		VREF(lvp);
574 		vreleit = 1;
575 	} else
576 		vreleit = 0;
577 	VTONULL(vp)->null_flags |= NULLV_DROP;
578 	retval = null_bypass(&ap->a_gen);
579 	if (vreleit != 0)
580 		vrele(lvp);
581 	return (retval);
582 }
583 
584 /*
585  * We handle this to eliminate null FS to lower FS
586  * file moving. Don't know why we don't allow this,
587  * possibly we should.
588  */
589 static int
590 null_rename(struct vop_rename_args *ap)
591 {
592 	struct vnode *tdvp = ap->a_tdvp;
593 	struct vnode *fvp = ap->a_fvp;
594 	struct vnode *fdvp = ap->a_fdvp;
595 	struct vnode *tvp = ap->a_tvp;
596 	struct null_node *tnn;
597 
598 	/* Check for cross-device rename. */
599 	if ((fvp->v_mount != tdvp->v_mount) ||
600 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
601 		if (tdvp == tvp)
602 			vrele(tdvp);
603 		else
604 			vput(tdvp);
605 		if (tvp)
606 			vput(tvp);
607 		vrele(fdvp);
608 		vrele(fvp);
609 		return (EXDEV);
610 	}
611 
612 	if (tvp != NULL) {
613 		tnn = VTONULL(tvp);
614 		tnn->null_flags |= NULLV_DROP;
615 	}
616 	return (null_bypass((struct vop_generic_args *)ap));
617 }
618 
619 static int
620 null_rmdir(struct vop_rmdir_args *ap)
621 {
622 
623 	VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
624 	return (null_bypass(&ap->a_gen));
625 }
626 
627 /*
628  * We need to process our own vnode lock and then clear the
629  * interlock flag as it applies only to our vnode, not the
630  * vnodes below us on the stack.
631  */
632 static int
633 null_lock(struct vop_lock1_args *ap)
634 {
635 	struct vnode *vp = ap->a_vp;
636 	int flags;
637 	struct null_node *nn;
638 	struct vnode *lvp;
639 	int error;
640 
641 	if ((ap->a_flags & LK_INTERLOCK) == 0)
642 		VI_LOCK(vp);
643 	else
644 		ap->a_flags &= ~LK_INTERLOCK;
645 	flags = ap->a_flags;
646 	nn = VTONULL(vp);
647 	/*
648 	 * If we're still active we must ask the lower layer to
649 	 * lock as ffs has special lock considerations in its
650 	 * vop lock.
651 	 */
652 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
653 		/*
654 		 * We have to hold the vnode here to solve a potential
655 		 * reclaim race.  If we're forcibly vgone'd while we
656 		 * still have refs, a thread could be sleeping inside
657 		 * the lowervp's vop_lock routine.  When we vgone we will
658 		 * drop our last ref to the lowervp, which would allow it
659 		 * to be reclaimed.  The lowervp could then be recycled,
660 		 * in which case it is not legal to be sleeping in its VOP.
661 		 * We prevent it from being recycled by holding the vnode
662 		 * here.
663 		 */
664 		vholdnz(lvp);
665 		VI_UNLOCK(vp);
666 		error = VOP_LOCK(lvp, flags);
667 
668 		/*
669 		 * We might have slept to get the lock and someone might have
670 		 * clean our vnode already, switching vnode lock from one in
671 		 * lowervp to v_lock in our own vnode structure.  Handle this
672 		 * case by reacquiring correct lock in requested mode.
673 		 */
674 		if (VTONULL(vp) == NULL && error == 0) {
675 			ap->a_flags &= ~LK_TYPE_MASK;
676 			switch (flags & LK_TYPE_MASK) {
677 			case LK_SHARED:
678 				ap->a_flags |= LK_SHARED;
679 				break;
680 			case LK_UPGRADE:
681 			case LK_EXCLUSIVE:
682 				ap->a_flags |= LK_EXCLUSIVE;
683 				break;
684 			default:
685 				panic("Unsupported lock request %d\n",
686 				    ap->a_flags);
687 			}
688 			VOP_UNLOCK(lvp);
689 			error = vop_stdlock(ap);
690 		}
691 		vdrop(lvp);
692 	} else {
693 		VI_UNLOCK(vp);
694 		error = vop_stdlock(ap);
695 	}
696 
697 	return (error);
698 }
699 
700 /*
701  * We need to process our own vnode unlock and then clear the
702  * interlock flag as it applies only to our vnode, not the
703  * vnodes below us on the stack.
704  */
705 static int
706 null_unlock(struct vop_unlock_args *ap)
707 {
708 	struct vnode *vp = ap->a_vp;
709 	struct null_node *nn;
710 	struct vnode *lvp;
711 	int error;
712 
713 	nn = VTONULL(vp);
714 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
715 		vholdnz(lvp);
716 		error = VOP_UNLOCK(lvp);
717 		vdrop(lvp);
718 	} else {
719 		error = vop_stdunlock(ap);
720 	}
721 
722 	return (error);
723 }
724 
725 /*
726  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
727  * since the reference count on the lower vnode is not related to
728  * ours.
729  */
730 static int
731 null_want_recycle(struct vnode *vp)
732 {
733 	struct vnode *lvp;
734 	struct null_node *xp;
735 	struct mount *mp;
736 	struct null_mount *xmp;
737 
738 	xp = VTONULL(vp);
739 	lvp = NULLVPTOLOWERVP(vp);
740 	mp = vp->v_mount;
741 	xmp = MOUNTTONULLMOUNT(mp);
742 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
743 	    (xp->null_flags & NULLV_DROP) != 0 ||
744 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
745 		/*
746 		 * If this is the last reference and caching of the
747 		 * nullfs vnodes is not enabled, or the lower vnode is
748 		 * deleted, then free up the vnode so as not to tie up
749 		 * the lower vnodes.
750 		 */
751 		return (1);
752 	}
753 	return (0);
754 }
755 
756 static int
757 null_inactive(struct vop_inactive_args *ap)
758 {
759 	struct vnode *vp;
760 
761 	vp = ap->a_vp;
762 	if (null_want_recycle(vp)) {
763 		vp->v_object = NULL;
764 		vrecycle(vp);
765 	}
766 	return (0);
767 }
768 
769 static int
770 null_need_inactive(struct vop_need_inactive_args *ap)
771 {
772 
773 	return (null_want_recycle(ap->a_vp));
774 }
775 
776 /*
777  * Now, the nullfs vnode and, due to the sharing lock, the lower
778  * vnode, are exclusively locked, and we shall destroy the null vnode.
779  */
780 static int
781 null_reclaim(struct vop_reclaim_args *ap)
782 {
783 	struct vnode *vp;
784 	struct null_node *xp;
785 	struct vnode *lowervp;
786 
787 	vp = ap->a_vp;
788 	xp = VTONULL(vp);
789 	lowervp = xp->null_lowervp;
790 
791 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
792 	    ("Reclaiming incomplete null vnode %p", vp));
793 
794 	null_hashrem(xp);
795 	/*
796 	 * Use the interlock to protect the clearing of v_data to
797 	 * prevent faults in null_lock().
798 	 */
799 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
800 	VI_LOCK(vp);
801 	vp->v_data = NULL;
802 	vp->v_object = NULL;
803 	vp->v_vnlock = &vp->v_lock;
804 
805 	/*
806 	 * If we were opened for write, we leased the write reference
807 	 * to the lower vnode.  If this is a reclamation due to the
808 	 * forced unmount, undo the reference now.
809 	 */
810 	if (vp->v_writecount > 0)
811 		VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
812 	else if (vp->v_writecount < 0)
813 		vp->v_writecount = 0;
814 
815 	VI_UNLOCK(vp);
816 
817 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
818 		vunref(lowervp);
819 	else
820 		vput(lowervp);
821 	free(xp, M_NULLFSNODE);
822 
823 	return (0);
824 }
825 
826 static int
827 null_print(struct vop_print_args *ap)
828 {
829 	struct vnode *vp = ap->a_vp;
830 
831 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
832 	return (0);
833 }
834 
835 /* ARGSUSED */
836 static int
837 null_getwritemount(struct vop_getwritemount_args *ap)
838 {
839 	struct null_node *xp;
840 	struct vnode *lowervp;
841 	struct vnode *vp;
842 
843 	vp = ap->a_vp;
844 	VI_LOCK(vp);
845 	xp = VTONULL(vp);
846 	if (xp && (lowervp = xp->null_lowervp)) {
847 		vholdnz(lowervp);
848 		VI_UNLOCK(vp);
849 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
850 		vdrop(lowervp);
851 	} else {
852 		VI_UNLOCK(vp);
853 		*(ap->a_mpp) = NULL;
854 	}
855 	return (0);
856 }
857 
858 static int
859 null_vptofh(struct vop_vptofh_args *ap)
860 {
861 	struct vnode *lvp;
862 
863 	lvp = NULLVPTOLOWERVP(ap->a_vp);
864 	return VOP_VPTOFH(lvp, ap->a_fhp);
865 }
866 
867 static int
868 null_vptocnp(struct vop_vptocnp_args *ap)
869 {
870 	struct vnode *vp = ap->a_vp;
871 	struct vnode **dvp = ap->a_vpp;
872 	struct vnode *lvp, *ldvp;
873 	struct ucred *cred = ap->a_cred;
874 	struct mount *mp;
875 	int error, locked;
876 
877 	locked = VOP_ISLOCKED(vp);
878 	lvp = NULLVPTOLOWERVP(vp);
879 	vhold(lvp);
880 	mp = vp->v_mount;
881 	vfs_ref(mp);
882 	VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
883 	ldvp = lvp;
884 	vref(lvp);
885 	error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen);
886 	vdrop(lvp);
887 	if (error != 0) {
888 		vn_lock(vp, locked | LK_RETRY);
889 		vfs_rel(mp);
890 		return (ENOENT);
891 	}
892 
893 	error = vn_lock(ldvp, LK_SHARED);
894 	if (error != 0) {
895 		vrele(ldvp);
896 		vn_lock(vp, locked | LK_RETRY);
897 		vfs_rel(mp);
898 		return (ENOENT);
899 	}
900 	error = null_nodeget(mp, ldvp, dvp);
901 	if (error == 0) {
902 #ifdef DIAGNOSTIC
903 		NULLVPTOLOWERVP(*dvp);
904 #endif
905 		VOP_UNLOCK(*dvp); /* keep reference on *dvp */
906 	}
907 	vn_lock(vp, locked | LK_RETRY);
908 	vfs_rel(mp);
909 	return (error);
910 }
911 
912 /*
913  * Global vfs data structures
914  */
915 struct vop_vector null_vnodeops = {
916 	.vop_bypass =		null_bypass,
917 	.vop_access =		null_access,
918 	.vop_accessx =		null_accessx,
919 	.vop_advlockpurge =	vop_stdadvlockpurge,
920 	.vop_bmap =		VOP_EOPNOTSUPP,
921 	.vop_getattr =		null_getattr,
922 	.vop_getwritemount =	null_getwritemount,
923 	.vop_inactive =		null_inactive,
924 	.vop_need_inactive =	null_need_inactive,
925 	.vop_islocked =		vop_stdislocked,
926 	.vop_lock1 =		null_lock,
927 	.vop_lookup =		null_lookup,
928 	.vop_open =		null_open,
929 	.vop_print =		null_print,
930 	.vop_reclaim =		null_reclaim,
931 	.vop_remove =		null_remove,
932 	.vop_rename =		null_rename,
933 	.vop_rmdir =		null_rmdir,
934 	.vop_setattr =		null_setattr,
935 	.vop_strategy =		VOP_EOPNOTSUPP,
936 	.vop_unlock =		null_unlock,
937 	.vop_vptocnp =		null_vptocnp,
938 	.vop_vptofh =		null_vptofh,
939 	.vop_add_writecount =	null_add_writecount,
940 };
941 VFS_VOP_VECTOR_REGISTER(null_vnodeops);
942