xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  *	$Id: null_vnops.c,v 1.32 1999/01/28 00:57:50 dillon Exp $
41  *	...and...
42  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
43  *
44  * $Id: null_vnops.c,v 1.32 1999/01/28 00:57:50 dillon Exp $
45  */
46 
47 /*
48  * Null Layer
49  *
50  * (See mount_null(8) for more information.)
51  *
52  * The null layer duplicates a portion of the file system
53  * name space under a new name.  In this respect, it is
54  * similar to the loopback file system.  It differs from
55  * the loopback fs in two respects:  it is implemented using
56  * a stackable layers techniques, and its "null-node"s stack above
57  * all lower-layer vnodes, not just over directory vnodes.
58  *
59  * The null layer has two purposes.  First, it serves as a demonstration
60  * of layering by proving a layer which does nothing.  (It actually
61  * does everything the loopback file system does, which is slightly
62  * more than nothing.)  Second, the null layer can serve as a prototype
63  * layer.  Since it provides all necessary layer framework,
64  * new file system layers can be created very easily be starting
65  * with a null layer.
66  *
67  * The remainder of this man page examines the null layer as a basis
68  * for constructing new layers.
69  *
70  *
71  * INSTANTIATING NEW NULL LAYERS
72  *
73  * New null layers are created with mount_null(8).
74  * Mount_null(8) takes two arguments, the pathname
75  * of the lower vfs (target-pn) and the pathname where the null
76  * layer will appear in the namespace (alias-pn).  After
77  * the null layer is put into place, the contents
78  * of target-pn subtree will be aliased under alias-pn.
79  *
80  *
81  * OPERATION OF A NULL LAYER
82  *
83  * The null layer is the minimum file system layer,
84  * simply bypassing all possible operations to the lower layer
85  * for processing there.  The majority of its activity centers
86  * on the bypass routine, through which nearly all vnode operations
87  * pass.
88  *
89  * The bypass routine accepts arbitrary vnode operations for
90  * handling by the lower layer.  It begins by examing vnode
91  * operation arguments and replacing any null-nodes by their
92  * lower-layer equivlants.  It then invokes the operation
93  * on the lower layer.  Finally, it replaces the null-nodes
94  * in the arguments and, if a vnode is return by the operation,
95  * stacks a null-node on top of the returned vnode.
96  *
97  * Although bypass handles most operations, vop_getattr, vop_lock,
98  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
99  * bypassed. Vop_getattr must change the fsid being returned.
100  * Vop_lock and vop_unlock must handle any locking for the
101  * current vnode as well as pass the lock request down.
102  * Vop_inactive and vop_reclaim are not bypassed so that
103  * they can handle freeing null-layer specific data. Vop_print
104  * is not bypassed to avoid excessive debugging information.
105  * Also, certain vnode operations change the locking state within
106  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
107  * and symlink). Ideally these operations should not change the
108  * lock state, but should be changed to let the caller of the
109  * function unlock them. Otherwise all intermediate vnode layers
110  * (such as union, umapfs, etc) must catch these functions to do
111  * the necessary locking at their layer.
112  *
113  *
114  * INSTANTIATING VNODE STACKS
115  *
116  * Mounting associates the null layer with a lower layer,
117  * effect stacking two VFSes.  Vnode stacks are instead
118  * created on demand as files are accessed.
119  *
120  * The initial mount creates a single vnode stack for the
121  * root of the new null layer.  All other vnode stacks
122  * are created as a result of vnode operations on
123  * this or other null vnode stacks.
124  *
125  * New vnode stacks come into existance as a result of
126  * an operation which returns a vnode.
127  * The bypass routine stacks a null-node above the new
128  * vnode before returning it to the caller.
129  *
130  * For example, imagine mounting a null layer with
131  * "mount_null /usr/include /dev/layer/null".
132  * Changing directory to /dev/layer/null will assign
133  * the root null-node (which was created when the null layer was mounted).
134  * Now consider opening "sys".  A vop_lookup would be
135  * done on the root null-node.  This operation would bypass through
136  * to the lower layer which would return a vnode representing
137  * the UFS "sys".  Null_bypass then builds a null-node
138  * aliasing the UFS "sys" and returns this to the caller.
139  * Later operations on the null-node "sys" will repeat this
140  * process when constructing other vnode stacks.
141  *
142  *
143  * CREATING OTHER FILE SYSTEM LAYERS
144  *
145  * One of the easiest ways to construct new file system layers is to make
146  * a copy of the null layer, rename all files and variables, and
147  * then begin modifing the copy.  Sed can be used to easily rename
148  * all variables.
149  *
150  * The umap layer is an example of a layer descended from the
151  * null layer.
152  *
153  *
154  * INVOKING OPERATIONS ON LOWER LAYERS
155  *
156  * There are two techniques to invoke operations on a lower layer
157  * when the operation cannot be completely bypassed.  Each method
158  * is appropriate in different situations.  In both cases,
159  * it is the responsibility of the aliasing layer to make
160  * the operation arguments "correct" for the lower layer
161  * by mapping an vnode arguments to the lower layer.
162  *
163  * The first approach is to call the aliasing layer's bypass routine.
164  * This method is most suitable when you wish to invoke the operation
165  * currently being handled on the lower layer.  It has the advantage
166  * that the bypass routine already must do argument mapping.
167  * An example of this is null_getattrs in the null layer.
168  *
169  * A second approach is to directly invoke vnode operations on
170  * the lower layer with the VOP_OPERATIONNAME interface.
171  * The advantage of this method is that it is easy to invoke
172  * arbitrary operations on the lower layer.  The disadvantage
173  * is that vnode arguments must be manualy mapped.
174  *
175  */
176 
177 #include "opt_debug_nullfs.h"
178 
179 #include <sys/param.h>
180 #include <sys/systm.h>
181 #include <sys/kernel.h>
182 #include <sys/sysctl.h>
183 #include <sys/vnode.h>
184 #include <sys/mount.h>
185 #include <sys/namei.h>
186 #include <sys/malloc.h>
187 #include <sys/buf.h>
188 #include <miscfs/nullfs/null.h>
189 
190 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
191 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
192 	&null_bug_bypass, 0, "");
193 
194 static int	null_access __P((struct vop_access_args *ap));
195 static int	null_getattr __P((struct vop_getattr_args *ap));
196 static int	null_inactive __P((struct vop_inactive_args *ap));
197 static int	null_lock __P((struct vop_lock_args *ap));
198 static int	null_lookup __P((struct vop_lookup_args *ap));
199 static int	null_print __P((struct vop_print_args *ap));
200 static int	null_reclaim __P((struct vop_reclaim_args *ap));
201 static int	null_setattr __P((struct vop_setattr_args *ap));
202 static int	null_unlock __P((struct vop_unlock_args *ap));
203 
204 /*
205  * This is the 10-Apr-92 bypass routine.
206  *    This version has been optimized for speed, throwing away some
207  * safety checks.  It should still always work, but it's not as
208  * robust to programmer errors.
209  *    Define SAFETY to include some error checking code.
210  *
211  * In general, we map all vnodes going down and unmap them on the way back.
212  * As an exception to this, vnodes can be marked "unmapped" by setting
213  * the Nth bit in operation's vdesc_flags.
214  *
215  * Also, some BSD vnode operations have the side effect of vrele'ing
216  * their arguments.  With stacking, the reference counts are held
217  * by the upper node, not the lower one, so we must handle these
218  * side-effects here.  This is not of concern in Sun-derived systems
219  * since there are no such side-effects.
220  *
221  * This makes the following assumptions:
222  * - only one returned vpp
223  * - no INOUT vpp's (Sun's vop_open has one of these)
224  * - the vnode operation vector of the first vnode should be used
225  *   to determine what implementation of the op should be invoked
226  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
227  *   problems on rmdir'ing mount points and renaming?)
228  */
229 int
230 null_bypass(ap)
231 	struct vop_generic_args /* {
232 		struct vnodeop_desc *a_desc;
233 		<other random data follows, presumably>
234 	} */ *ap;
235 {
236 	register struct vnode **this_vp_p;
237 	int error;
238 	struct vnode *old_vps[VDESC_MAX_VPS];
239 	struct vnode **vps_p[VDESC_MAX_VPS];
240 	struct vnode ***vppp;
241 	struct vnodeop_desc *descp = ap->a_desc;
242 	int reles, i;
243 
244 	if (null_bug_bypass)
245 		printf ("null_bypass: %s\n", descp->vdesc_name);
246 
247 #ifdef SAFETY
248 	/*
249 	 * We require at least one vp.
250 	 */
251 	if (descp->vdesc_vp_offsets == NULL ||
252 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
253 		panic ("null_bypass: no vp's in map.");
254 #endif
255 
256 	/*
257 	 * Map the vnodes going in.
258 	 * Later, we'll invoke the operation based on
259 	 * the first mapped vnode's operation vector.
260 	 */
261 	reles = descp->vdesc_flags;
262 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
263 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
264 			break;   /* bail out at end of list */
265 		vps_p[i] = this_vp_p =
266 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
267 		/*
268 		 * We're not guaranteed that any but the first vnode
269 		 * are of our type.  Check for and don't map any
270 		 * that aren't.  (We must always map first vp or vclean fails.)
271 		 */
272 		if (i && (*this_vp_p == NULLVP ||
273 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
274 			old_vps[i] = NULLVP;
275 		} else {
276 			old_vps[i] = *this_vp_p;
277 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
278 			/*
279 			 * XXX - Several operations have the side effect
280 			 * of vrele'ing their vp's.  We must account for
281 			 * that.  (This should go away in the future.)
282 			 */
283 			if (reles & 1)
284 				VREF(*this_vp_p);
285 		}
286 
287 	}
288 
289 	/*
290 	 * Call the operation on the lower layer
291 	 * with the modified argument structure.
292 	 */
293 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
294 
295 	/*
296 	 * Maintain the illusion of call-by-value
297 	 * by restoring vnodes in the argument structure
298 	 * to their original value.
299 	 */
300 	reles = descp->vdesc_flags;
301 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
302 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
303 			break;   /* bail out at end of list */
304 		if (old_vps[i]) {
305 			*(vps_p[i]) = old_vps[i];
306 			if (reles & 1)
307 				vrele(*(vps_p[i]));
308 		}
309 	}
310 
311 	/*
312 	 * Map the possible out-going vpp
313 	 * (Assumes that the lower layer always returns
314 	 * a VREF'ed vpp unless it gets an error.)
315 	 */
316 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
317 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
318 	    !error) {
319 		/*
320 		 * XXX - even though some ops have vpp returned vp's,
321 		 * several ops actually vrele this before returning.
322 		 * We must avoid these ops.
323 		 * (This should go away when these ops are regularized.)
324 		 */
325 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
326 			goto out;
327 		vppp = VOPARG_OFFSETTO(struct vnode***,
328 				 descp->vdesc_vpp_offset,ap);
329 		if (*vppp)
330 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
331 	}
332 
333  out:
334 	return (error);
335 }
336 
337 /*
338  * We have to carry on the locking protocol on the null layer vnodes
339  * as we progress through the tree. We also have to enforce read-only
340  * if this layer is mounted read-only.
341  */
342 static int
343 null_lookup(ap)
344 	struct vop_lookup_args /* {
345 		struct vnode * a_dvp;
346 		struct vnode ** a_vpp;
347 		struct componentname * a_cnp;
348 	} */ *ap;
349 {
350 	struct componentname *cnp = ap->a_cnp;
351 	struct proc *p = cnp->cn_proc;
352 	int flags = cnp->cn_flags;
353 	struct vop_lock_args lockargs;
354 	struct vop_unlock_args unlockargs;
355 	struct vnode *dvp, *vp;
356 	int error;
357 
358 	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
359 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
360 		return (EROFS);
361 	error = null_bypass((struct vop_generic_args *)ap);
362 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
363 	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
364 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
365 		error = EROFS;
366 	/*
367 	 * We must do the same locking and unlocking at this layer as
368 	 * is done in the layers below us. We could figure this out
369 	 * based on the error return and the LASTCN, LOCKPARENT, and
370 	 * LOCKLEAF flags. However, it is more expidient to just find
371 	 * out the state of the lower level vnodes and set ours to the
372 	 * same state.
373 	 */
374 	dvp = ap->a_dvp;
375 	vp = *ap->a_vpp;
376 	if (dvp == vp)
377 		return (error);
378 	if (!VOP_ISLOCKED(dvp)) {
379 		unlockargs.a_vp = dvp;
380 		unlockargs.a_flags = 0;
381 		unlockargs.a_p = p;
382 		vop_nounlock(&unlockargs);
383 	}
384 	if (vp != NULLVP && VOP_ISLOCKED(vp)) {
385 		lockargs.a_vp = vp;
386 		lockargs.a_flags = LK_SHARED;
387 		lockargs.a_p = p;
388 		vop_nolock(&lockargs);
389 	}
390 	return (error);
391 }
392 
393 /*
394  * Setattr call. Disallow write attempts if the layer is mounted read-only.
395  */
396 int
397 null_setattr(ap)
398 	struct vop_setattr_args /* {
399 		struct vnodeop_desc *a_desc;
400 		struct vnode *a_vp;
401 		struct vattr *a_vap;
402 		struct ucred *a_cred;
403 		struct proc *a_p;
404 	} */ *ap;
405 {
406 	struct vnode *vp = ap->a_vp;
407 	struct vattr *vap = ap->a_vap;
408 
409   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
410 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
411 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
412 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
413 		return (EROFS);
414 	if (vap->va_size != VNOVAL) {
415  		switch (vp->v_type) {
416  		case VDIR:
417  			return (EISDIR);
418  		case VCHR:
419  		case VBLK:
420  		case VSOCK:
421  		case VFIFO:
422 			if (vap->va_flags != VNOVAL)
423 				return (EOPNOTSUPP);
424 			return (0);
425 		case VREG:
426 		case VLNK:
427  		default:
428 			/*
429 			 * Disallow write attempts if the filesystem is
430 			 * mounted read-only.
431 			 */
432 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
433 				return (EROFS);
434 		}
435 	}
436 	return (null_bypass((struct vop_generic_args *)ap));
437 }
438 
439 /*
440  *  We handle getattr only to change the fsid.
441  */
442 static int
443 null_getattr(ap)
444 	struct vop_getattr_args /* {
445 		struct vnode *a_vp;
446 		struct vattr *a_vap;
447 		struct ucred *a_cred;
448 		struct proc *a_p;
449 	} */ *ap;
450 {
451 	int error;
452 
453 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
454 		return (error);
455 	/* Requires that arguments be restored. */
456 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
457 	return (0);
458 }
459 
460 static int
461 null_access(ap)
462 	struct vop_access_args /* {
463 		struct vnode *a_vp;
464 		int  a_mode;
465 		struct ucred *a_cred;
466 		struct proc *a_p;
467 	} */ *ap;
468 {
469 	struct vnode *vp = ap->a_vp;
470 	mode_t mode = ap->a_mode;
471 
472 	/*
473 	 * Disallow write attempts on read-only layers;
474 	 * unless the file is a socket, fifo, or a block or
475 	 * character device resident on the file system.
476 	 */
477 	if (mode & VWRITE) {
478 		switch (vp->v_type) {
479 		case VDIR:
480 		case VLNK:
481 		case VREG:
482 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
483 				return (EROFS);
484 			break;
485 		default:
486 			break;
487 		}
488 	}
489 	return (null_bypass((struct vop_generic_args *)ap));
490 }
491 
492 /*
493  * We need to process our own vnode lock and then clear the
494  * interlock flag as it applies only to our vnode, not the
495  * vnodes below us on the stack.
496  */
497 static int
498 null_lock(ap)
499 	struct vop_lock_args /* {
500 		struct vnode *a_vp;
501 		int a_flags;
502 		struct proc *a_p;
503 	} */ *ap;
504 {
505 
506 	vop_nolock(ap);
507 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
508 		return (0);
509 	ap->a_flags &= ~LK_INTERLOCK;
510 	return (null_bypass((struct vop_generic_args *)ap));
511 }
512 
513 /*
514  * We need to process our own vnode unlock and then clear the
515  * interlock flag as it applies only to our vnode, not the
516  * vnodes below us on the stack.
517  */
518 static int
519 null_unlock(ap)
520 	struct vop_unlock_args /* {
521 		struct vnode *a_vp;
522 		int a_flags;
523 		struct proc *a_p;
524 	} */ *ap;
525 {
526 	vop_nounlock(ap);
527 	ap->a_flags &= ~LK_INTERLOCK;
528 	return (null_bypass((struct vop_generic_args *)ap));
529 }
530 
531 static int
532 null_inactive(ap)
533 	struct vop_inactive_args /* {
534 		struct vnode *a_vp;
535 		struct proc *a_p;
536 	} */ *ap;
537 {
538 	struct vnode *vp = ap->a_vp;
539 	struct null_node *xp = VTONULL(vp);
540 	struct vnode *lowervp = xp->null_lowervp;
541 	/*
542 	 * Do nothing (and _don't_ bypass).
543 	 * Wait to vrele lowervp until reclaim,
544 	 * so that until then our null_node is in the
545 	 * cache and reusable.
546 	 * We still have to tell the lower layer the vnode
547 	 * is now inactive though.
548 	 *
549 	 * NEEDSWORK: Someday, consider inactive'ing
550 	 * the lowervp and then trying to reactivate it
551 	 * with capabilities (v_id)
552 	 * like they do in the name lookup cache code.
553 	 * That's too much work for now.
554 	 */
555 	VOP_INACTIVE(lowervp, ap->a_p);
556 	VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
557 	return (0);
558 }
559 
560 static int
561 null_reclaim(ap)
562 	struct vop_reclaim_args /* {
563 		struct vnode *a_vp;
564 		struct proc *a_p;
565 	} */ *ap;
566 {
567 	struct vnode *vp = ap->a_vp;
568 	struct null_node *xp = VTONULL(vp);
569 	struct vnode *lowervp = xp->null_lowervp;
570 
571 	/*
572 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
573 	 * so we can't call VOPs on ourself.
574 	 */
575 	/* After this assignment, this node will not be re-used. */
576 	xp->null_lowervp = NULLVP;
577 	LIST_REMOVE(xp, null_hash);
578 	FREE(vp->v_data, M_TEMP);
579 	vp->v_data = NULL;
580 	vrele (lowervp);
581 	return (0);
582 }
583 
584 static int
585 null_print(ap)
586 	struct vop_print_args /* {
587 		struct vnode *a_vp;
588 	} */ *ap;
589 {
590 	register struct vnode *vp = ap->a_vp;
591 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
592 	return (0);
593 }
594 
595 /*
596  * Global vfs data structures
597  */
598 vop_t **null_vnodeop_p;
599 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
600 	{ &vop_default_desc,		(vop_t *) null_bypass },
601 	{ &vop_access_desc,		(vop_t *) null_access },
602 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
603 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
604 	{ &vop_lock_desc,		(vop_t *) null_lock },
605 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
606 	{ &vop_print_desc,		(vop_t *) null_print },
607 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
608 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
609 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
610 	{ NULL, NULL }
611 };
612 static struct vnodeopv_desc null_vnodeop_opv_desc =
613 	{ &null_vnodeop_p, null_vnodeop_entries };
614 
615 VNODEOP_SET(null_vnodeop_opv_desc);
616