xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33  *
34  * Ancestors:
35  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36  *	...and...
37  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38  *
39  * $FreeBSD$
40  */
41 
42 /*
43  * Null Layer
44  *
45  * (See mount_nullfs(8) for more information.)
46  *
47  * The null layer duplicates a portion of the filesystem
48  * name space under a new name.  In this respect, it is
49  * similar to the loopback filesystem.  It differs from
50  * the loopback fs in two respects:  it is implemented using
51  * a stackable layers techniques, and its "null-node"s stack above
52  * all lower-layer vnodes, not just over directory vnodes.
53  *
54  * The null layer has two purposes.  First, it serves as a demonstration
55  * of layering by proving a layer which does nothing.  (It actually
56  * does everything the loopback filesystem does, which is slightly
57  * more than nothing.)  Second, the null layer can serve as a prototype
58  * layer.  Since it provides all necessary layer framework,
59  * new filesystem layers can be created very easily be starting
60  * with a null layer.
61  *
62  * The remainder of this man page examines the null layer as a basis
63  * for constructing new layers.
64  *
65  *
66  * INSTANTIATING NEW NULL LAYERS
67  *
68  * New null layers are created with mount_nullfs(8).
69  * Mount_nullfs(8) takes two arguments, the pathname
70  * of the lower vfs (target-pn) and the pathname where the null
71  * layer will appear in the namespace (alias-pn).  After
72  * the null layer is put into place, the contents
73  * of target-pn subtree will be aliased under alias-pn.
74  *
75  *
76  * OPERATION OF A NULL LAYER
77  *
78  * The null layer is the minimum filesystem layer,
79  * simply bypassing all possible operations to the lower layer
80  * for processing there.  The majority of its activity centers
81  * on the bypass routine, through which nearly all vnode operations
82  * pass.
83  *
84  * The bypass routine accepts arbitrary vnode operations for
85  * handling by the lower layer.  It begins by examing vnode
86  * operation arguments and replacing any null-nodes by their
87  * lower-layer equivlants.  It then invokes the operation
88  * on the lower layer.  Finally, it replaces the null-nodes
89  * in the arguments and, if a vnode is return by the operation,
90  * stacks a null-node on top of the returned vnode.
91  *
92  * Although bypass handles most operations, vop_getattr, vop_lock,
93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94  * bypassed. Vop_getattr must change the fsid being returned.
95  * Vop_lock and vop_unlock must handle any locking for the
96  * current vnode as well as pass the lock request down.
97  * Vop_inactive and vop_reclaim are not bypassed so that
98  * they can handle freeing null-layer specific data. Vop_print
99  * is not bypassed to avoid excessive debugging information.
100  * Also, certain vnode operations change the locking state within
101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102  * and symlink). Ideally these operations should not change the
103  * lock state, but should be changed to let the caller of the
104  * function unlock them. Otherwise all intermediate vnode layers
105  * (such as union, umapfs, etc) must catch these functions to do
106  * the necessary locking at their layer.
107  *
108  *
109  * INSTANTIATING VNODE STACKS
110  *
111  * Mounting associates the null layer with a lower layer,
112  * effect stacking two VFSes.  Vnode stacks are instead
113  * created on demand as files are accessed.
114  *
115  * The initial mount creates a single vnode stack for the
116  * root of the new null layer.  All other vnode stacks
117  * are created as a result of vnode operations on
118  * this or other null vnode stacks.
119  *
120  * New vnode stacks come into existance as a result of
121  * an operation which returns a vnode.
122  * The bypass routine stacks a null-node above the new
123  * vnode before returning it to the caller.
124  *
125  * For example, imagine mounting a null layer with
126  * "mount_nullfs /usr/include /dev/layer/null".
127  * Changing directory to /dev/layer/null will assign
128  * the root null-node (which was created when the null layer was mounted).
129  * Now consider opening "sys".  A vop_lookup would be
130  * done on the root null-node.  This operation would bypass through
131  * to the lower layer which would return a vnode representing
132  * the UFS "sys".  Null_bypass then builds a null-node
133  * aliasing the UFS "sys" and returns this to the caller.
134  * Later operations on the null-node "sys" will repeat this
135  * process when constructing other vnode stacks.
136  *
137  *
138  * CREATING OTHER FILE SYSTEM LAYERS
139  *
140  * One of the easiest ways to construct new filesystem layers is to make
141  * a copy of the null layer, rename all files and variables, and
142  * then begin modifing the copy.  Sed can be used to easily rename
143  * all variables.
144  *
145  * The umap layer is an example of a layer descended from the
146  * null layer.
147  *
148  *
149  * INVOKING OPERATIONS ON LOWER LAYERS
150  *
151  * There are two techniques to invoke operations on a lower layer
152  * when the operation cannot be completely bypassed.  Each method
153  * is appropriate in different situations.  In both cases,
154  * it is the responsibility of the aliasing layer to make
155  * the operation arguments "correct" for the lower layer
156  * by mapping a vnode arguments to the lower layer.
157  *
158  * The first approach is to call the aliasing layer's bypass routine.
159  * This method is most suitable when you wish to invoke the operation
160  * currently being handled on the lower layer.  It has the advantage
161  * that the bypass routine already must do argument mapping.
162  * An example of this is null_getattrs in the null layer.
163  *
164  * A second approach is to directly invoke vnode operations on
165  * the lower layer with the VOP_OPERATIONNAME interface.
166  * The advantage of this method is that it is easy to invoke
167  * arbitrary operations on the lower layer.  The disadvantage
168  * is that vnode arguments must be manualy mapped.
169  *
170  */
171 
172 #include <sys/param.h>
173 #include <sys/systm.h>
174 #include <sys/conf.h>
175 #include <sys/kernel.h>
176 #include <sys/lock.h>
177 #include <sys/malloc.h>
178 #include <sys/mount.h>
179 #include <sys/mutex.h>
180 #include <sys/namei.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 
184 #include <fs/nullfs/null.h>
185 
186 #include <vm/vm.h>
187 #include <vm/vm_extern.h>
188 #include <vm/vm_object.h>
189 #include <vm/vnode_pager.h>
190 
191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193 	&null_bug_bypass, 0, "");
194 
195 /*
196  * This is the 10-Apr-92 bypass routine.
197  *    This version has been optimized for speed, throwing away some
198  * safety checks.  It should still always work, but it's not as
199  * robust to programmer errors.
200  *
201  * In general, we map all vnodes going down and unmap them on the way back.
202  * As an exception to this, vnodes can be marked "unmapped" by setting
203  * the Nth bit in operation's vdesc_flags.
204  *
205  * Also, some BSD vnode operations have the side effect of vrele'ing
206  * their arguments.  With stacking, the reference counts are held
207  * by the upper node, not the lower one, so we must handle these
208  * side-effects here.  This is not of concern in Sun-derived systems
209  * since there are no such side-effects.
210  *
211  * This makes the following assumptions:
212  * - only one returned vpp
213  * - no INOUT vpp's (Sun's vop_open has one of these)
214  * - the vnode operation vector of the first vnode should be used
215  *   to determine what implementation of the op should be invoked
216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217  *   problems on rmdir'ing mount points and renaming?)
218  */
219 int
220 null_bypass(struct vop_generic_args *ap)
221 {
222 	struct vnode **this_vp_p;
223 	int error;
224 	struct vnode *old_vps[VDESC_MAX_VPS];
225 	struct vnode **vps_p[VDESC_MAX_VPS];
226 	struct vnode ***vppp;
227 	struct vnodeop_desc *descp = ap->a_desc;
228 	int reles, i;
229 
230 	if (null_bug_bypass)
231 		printf ("null_bypass: %s\n", descp->vdesc_name);
232 
233 #ifdef DIAGNOSTIC
234 	/*
235 	 * We require at least one vp.
236 	 */
237 	if (descp->vdesc_vp_offsets == NULL ||
238 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
239 		panic ("null_bypass: no vp's in map");
240 #endif
241 
242 	/*
243 	 * Map the vnodes going in.
244 	 * Later, we'll invoke the operation based on
245 	 * the first mapped vnode's operation vector.
246 	 */
247 	reles = descp->vdesc_flags;
248 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
249 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
250 			break;   /* bail out at end of list */
251 		vps_p[i] = this_vp_p =
252 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
253 		/*
254 		 * We're not guaranteed that any but the first vnode
255 		 * are of our type.  Check for and don't map any
256 		 * that aren't.  (We must always map first vp or vclean fails.)
257 		 */
258 		if (i && (*this_vp_p == NULLVP ||
259 		    (*this_vp_p)->v_op != &null_vnodeops)) {
260 			old_vps[i] = NULLVP;
261 		} else {
262 			old_vps[i] = *this_vp_p;
263 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
264 			/*
265 			 * XXX - Several operations have the side effect
266 			 * of vrele'ing their vp's.  We must account for
267 			 * that.  (This should go away in the future.)
268 			 */
269 			if (reles & VDESC_VP0_WILLRELE)
270 				VREF(*this_vp_p);
271 		}
272 
273 	}
274 
275 	/*
276 	 * Call the operation on the lower layer
277 	 * with the modified argument structure.
278 	 */
279 	if (vps_p[0] && *vps_p[0])
280 		error = VCALL(ap);
281 	else {
282 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
283 		error = EINVAL;
284 	}
285 
286 	/*
287 	 * Maintain the illusion of call-by-value
288 	 * by restoring vnodes in the argument structure
289 	 * to their original value.
290 	 */
291 	reles = descp->vdesc_flags;
292 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
293 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
294 			break;   /* bail out at end of list */
295 		if (old_vps[i]) {
296 			*(vps_p[i]) = old_vps[i];
297 #if 0
298 			if (reles & VDESC_VP0_WILLUNLOCK)
299 				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
300 #endif
301 			if (reles & VDESC_VP0_WILLRELE)
302 				vrele(*(vps_p[i]));
303 		}
304 	}
305 
306 	/*
307 	 * Map the possible out-going vpp
308 	 * (Assumes that the lower layer always returns
309 	 * a VREF'ed vpp unless it gets an error.)
310 	 */
311 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
312 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
313 	    !error) {
314 		/*
315 		 * XXX - even though some ops have vpp returned vp's,
316 		 * several ops actually vrele this before returning.
317 		 * We must avoid these ops.
318 		 * (This should go away when these ops are regularized.)
319 		 */
320 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
321 			goto out;
322 		vppp = VOPARG_OFFSETTO(struct vnode***,
323 				 descp->vdesc_vpp_offset,ap);
324 		if (*vppp)
325 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
326 	}
327 
328  out:
329 	return (error);
330 }
331 
332 /*
333  * We have to carry on the locking protocol on the null layer vnodes
334  * as we progress through the tree. We also have to enforce read-only
335  * if this layer is mounted read-only.
336  */
337 static int
338 null_lookup(struct vop_lookup_args *ap)
339 {
340 	struct componentname *cnp = ap->a_cnp;
341 	struct vnode *dvp = ap->a_dvp;
342 	struct thread *td = cnp->cn_thread;
343 	int flags = cnp->cn_flags;
344 	struct vnode *vp, *ldvp, *lvp;
345 	int error;
346 
347 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
348 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
349 		return (EROFS);
350 	/*
351 	 * Although it is possible to call null_bypass(), we'll do
352 	 * a direct call to reduce overhead
353 	 */
354 	ldvp = NULLVPTOLOWERVP(dvp);
355 	vp = lvp = NULL;
356 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
357 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
358 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
359 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
360 		error = EROFS;
361 
362 	/*
363 	 * Rely only on the PDIRUNLOCK flag which should be carefully
364 	 * tracked by underlying filesystem.
365 	 */
366 	if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock)
367 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
368 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
369 		if (ldvp == lvp) {
370 			*ap->a_vpp = dvp;
371 			VREF(dvp);
372 			vrele(lvp);
373 		} else {
374 			error = null_nodeget(dvp->v_mount, lvp, &vp);
375 			if (error) {
376 				/* XXX Cleanup needed... */
377 				panic("null_nodeget failed");
378 			}
379 			*ap->a_vpp = vp;
380 		}
381 	}
382 	return (error);
383 }
384 
385 static int
386 null_open(struct vop_open_args *ap)
387 {
388 	int retval;
389 	struct vnode *vp, *ldvp;
390 
391 	vp = ap->a_vp;
392 	ldvp = NULLVPTOLOWERVP(vp);
393 	retval = null_bypass(&ap->a_gen);
394 	if (retval == 0)
395 		vp->v_object = ldvp->v_object;
396 	return (retval);
397 }
398 
399 /*
400  * Setattr call. Disallow write attempts if the layer is mounted read-only.
401  */
402 static int
403 null_setattr(struct vop_setattr_args *ap)
404 {
405 	struct vnode *vp = ap->a_vp;
406 	struct vattr *vap = ap->a_vap;
407 
408   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
409 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
410 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
411 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
412 		return (EROFS);
413 	if (vap->va_size != VNOVAL) {
414  		switch (vp->v_type) {
415  		case VDIR:
416  			return (EISDIR);
417  		case VCHR:
418  		case VBLK:
419  		case VSOCK:
420  		case VFIFO:
421 			if (vap->va_flags != VNOVAL)
422 				return (EOPNOTSUPP);
423 			return (0);
424 		case VREG:
425 		case VLNK:
426  		default:
427 			/*
428 			 * Disallow write attempts if the filesystem is
429 			 * mounted read-only.
430 			 */
431 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
432 				return (EROFS);
433 		}
434 	}
435 
436 	return (null_bypass((struct vop_generic_args *)ap));
437 }
438 
439 /*
440  *  We handle getattr only to change the fsid.
441  */
442 static int
443 null_getattr(struct vop_getattr_args *ap)
444 {
445 	int error;
446 
447 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
448 		return (error);
449 
450 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
451 	return (0);
452 }
453 
454 /*
455  * Handle to disallow write access if mounted read-only.
456  */
457 static int
458 null_access(struct vop_access_args *ap)
459 {
460 	struct vnode *vp = ap->a_vp;
461 	mode_t mode = ap->a_mode;
462 
463 	/*
464 	 * Disallow write attempts on read-only layers;
465 	 * unless the file is a socket, fifo, or a block or
466 	 * character device resident on the filesystem.
467 	 */
468 	if (mode & VWRITE) {
469 		switch (vp->v_type) {
470 		case VDIR:
471 		case VLNK:
472 		case VREG:
473 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
474 				return (EROFS);
475 			break;
476 		default:
477 			break;
478 		}
479 	}
480 	return (null_bypass((struct vop_generic_args *)ap));
481 }
482 
483 /*
484  * We handle this to eliminate null FS to lower FS
485  * file moving. Don't know why we don't allow this,
486  * possibly we should.
487  */
488 static int
489 null_rename(struct vop_rename_args *ap)
490 {
491 	struct vnode *tdvp = ap->a_tdvp;
492 	struct vnode *fvp = ap->a_fvp;
493 	struct vnode *fdvp = ap->a_fdvp;
494 	struct vnode *tvp = ap->a_tvp;
495 
496 	/* Check for cross-device rename. */
497 	if ((fvp->v_mount != tdvp->v_mount) ||
498 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
499 		if (tdvp == tvp)
500 			vrele(tdvp);
501 		else
502 			vput(tdvp);
503 		if (tvp)
504 			vput(tvp);
505 		vrele(fdvp);
506 		vrele(fvp);
507 		return (EXDEV);
508 	}
509 
510 	return (null_bypass((struct vop_generic_args *)ap));
511 }
512 
513 /*
514  * We need to process our own vnode lock and then clear the
515  * interlock flag as it applies only to our vnode, not the
516  * vnodes below us on the stack.
517  */
518 static int
519 null_lock(struct vop_lock_args *ap)
520 {
521 	struct vnode *vp = ap->a_vp;
522 	int flags = ap->a_flags;
523 	struct thread *td = ap->a_td;
524 	struct vnode *lvp;
525 	int error;
526 	struct null_node *nn;
527 
528 	if (flags & LK_THISLAYER) {
529 		if (vp->v_vnlock != NULL) {
530 			/* lock is shared across layers */
531 			if (flags & LK_INTERLOCK)
532 				mtx_unlock(&vp->v_interlock);
533 			return 0;
534 		}
535 		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
536 		    &vp->v_interlock, td);
537 		return (error);
538 	}
539 
540 	if (vp->v_vnlock != NULL) {
541 		/*
542 		 * The lower level has exported a struct lock to us. Use
543 		 * it so that all vnodes in the stack lock and unlock
544 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
545 		 * decommissions the lock - just because our vnode is
546 		 * going away doesn't mean the struct lock below us is.
547 		 * LK_EXCLUSIVE is fine.
548 		 */
549 		if ((flags & LK_INTERLOCK) == 0) {
550 			VI_LOCK(vp);
551 			flags |= LK_INTERLOCK;
552 		}
553 		nn = VTONULL(vp);
554 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
555 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
556 			/*
557 			 * Emulate lock draining by waiting for all other
558 			 * pending locks to complete.  Afterwards the
559 			 * lockmgr call might block, but no other threads
560 			 * will attempt to use this nullfs vnode due to the
561 			 * VI_XLOCK flag.
562 			 */
563 			while (nn->null_pending_locks > 0) {
564 				nn->null_drain_wakeup = 1;
565 				msleep(&nn->null_pending_locks,
566 				       VI_MTX(vp),
567 				       PVFS,
568 				       "nuldr", 0);
569 			}
570 			error = lockmgr(vp->v_vnlock,
571 					(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
572 					VI_MTX(vp), td);
573 			return error;
574 		}
575 		nn->null_pending_locks++;
576 		error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
577 		VI_LOCK(vp);
578 		/*
579 		 * If we're called from vrele then v_usecount can have been 0
580 		 * and another process might have initiated a recycle
581 		 * operation.  When that happens, just back out.
582 		 */
583 		if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
584 		    td != vp->v_vxthread) {
585 			lockmgr(vp->v_vnlock,
586 				(flags & ~LK_TYPE_MASK) | LK_RELEASE,
587 				VI_MTX(vp), td);
588 			VI_LOCK(vp);
589 			error = ENOENT;
590 		}
591 		nn->null_pending_locks--;
592 		/*
593 		 * Wakeup the process draining the vnode after all
594 		 * pending lock attempts has been failed.
595 		 */
596 		if (nn->null_pending_locks == 0 &&
597 		    nn->null_drain_wakeup != 0) {
598 			nn->null_drain_wakeup = 0;
599 			wakeup(&nn->null_pending_locks);
600 		}
601 		if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
602 		    vp->v_vxthread != curthread) {
603 			vp->v_iflag |= VI_XWANT;
604 			msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
605 		}
606 		VI_UNLOCK(vp);
607 		return error;
608 	} else {
609 		/*
610 		 * To prevent race conditions involving doing a lookup
611 		 * on "..", we have to lock the lower node, then lock our
612 		 * node. Most of the time it won't matter that we lock our
613 		 * node (as any locking would need the lower one locked
614 		 * first). But we can LK_DRAIN the upper lock as a step
615 		 * towards decomissioning it.
616 		 */
617 		lvp = NULLVPTOLOWERVP(vp);
618 		if (lvp == NULL)
619 			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
620 		if (flags & LK_INTERLOCK) {
621 			mtx_unlock(&vp->v_interlock);
622 			flags &= ~LK_INTERLOCK;
623 		}
624 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
625 			error = VOP_LOCK(lvp,
626 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
627 		} else
628 			error = VOP_LOCK(lvp, flags, td);
629 		if (error)
630 			return (error);
631 		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
632 		if (error)
633 			VOP_UNLOCK(lvp, 0, td);
634 		return (error);
635 	}
636 }
637 
638 /*
639  * We need to process our own vnode unlock and then clear the
640  * interlock flag as it applies only to our vnode, not the
641  * vnodes below us on the stack.
642  */
643 static int
644 null_unlock(struct vop_unlock_args *ap)
645 {
646 	struct vnode *vp = ap->a_vp;
647 	int flags = ap->a_flags;
648 	struct thread *td = ap->a_td;
649 	struct vnode *lvp;
650 
651 	if (vp->v_vnlock != NULL) {
652 		if (flags & LK_THISLAYER)
653 			return 0;	/* the lock is shared across layers */
654 		flags &= ~LK_THISLAYER;
655 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
656 			&vp->v_interlock, td));
657 	}
658 	lvp = NULLVPTOLOWERVP(vp);
659 	if (lvp == NULL)
660 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
661 	if ((flags & LK_THISLAYER) == 0) {
662 		if (flags & LK_INTERLOCK) {
663 			mtx_unlock(&vp->v_interlock);
664 			flags &= ~LK_INTERLOCK;
665 		}
666 		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
667 	} else
668 		flags &= ~LK_THISLAYER;
669 	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
670 }
671 
672 static int
673 null_islocked(struct vop_islocked_args *ap)
674 {
675 	struct vnode *vp = ap->a_vp;
676 	struct thread *td = ap->a_td;
677 
678 	if (vp->v_vnlock != NULL)
679 		return (lockstatus(vp->v_vnlock, td));
680 	return (lockstatus(&vp->v_lock, td));
681 }
682 
683 /*
684  * There is no way to tell that someone issued remove/rmdir operation
685  * on the underlying filesystem. For now we just have to release lowevrp
686  * as soon as possible.
687  *
688  * Note, we can't release any resources nor remove vnode from hash before
689  * appropriate VXLOCK stuff is is done because other process can find this
690  * vnode in hash during inactivation and may be sitting in vget() and waiting
691  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
692  */
693 static int
694 null_inactive(struct vop_inactive_args *ap)
695 {
696 	struct vnode *vp = ap->a_vp;
697 	struct thread *td = ap->a_td;
698 
699 	vp->v_object = NULL;
700 	VOP_UNLOCK(vp, 0, td);
701 
702 	/*
703 	 * If this is the last reference, then free up the vnode
704 	 * so as not to tie up the lower vnodes.
705 	 */
706 	vrecycle(vp, td);
707 
708 	return (0);
709 }
710 
711 /*
712  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
713  */
714 static int
715 null_reclaim(struct vop_reclaim_args *ap)
716 {
717 	struct vnode *vp = ap->a_vp;
718 	struct null_node *xp = VTONULL(vp);
719 	struct vnode *lowervp = xp->null_lowervp;
720 
721 	if (lowervp) {
722 		null_hashrem(xp);
723 
724 		vrele(lowervp);
725 		vrele(lowervp);
726 	}
727 
728 	vp->v_data = NULL;
729 	vp->v_object = NULL;
730 	vp->v_vnlock = &vp->v_lock;
731 	FREE(xp, M_NULLFSNODE);
732 
733 	return (0);
734 }
735 
736 static int
737 null_print(struct vop_print_args *ap)
738 {
739 	struct vnode *vp = ap->a_vp;
740 	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
741 	return (0);
742 }
743 
744 /*
745  * Global vfs data structures
746  */
747 struct vop_vector null_vnodeops = {
748 	.vop_bypass =		null_bypass,
749 
750 	.vop_access =		null_access,
751 	.vop_bmap =		VOP_EOPNOTSUPP,
752 	.vop_getattr =		null_getattr,
753 	.vop_getwritemount =	vop_stdgetwritemount,
754 	.vop_inactive =		null_inactive,
755 	.vop_islocked =		null_islocked,
756 	.vop_lock =		null_lock,
757 	.vop_lookup =		null_lookup,
758 	.vop_open =		null_open,
759 	.vop_print =		null_print,
760 	.vop_reclaim =		null_reclaim,
761 	.vop_rename =		null_rename,
762 	.vop_setattr =		null_setattr,
763 	.vop_strategy =		VOP_EOPNOTSUPP,
764 	.vop_unlock =		null_unlock,
765 };
766