1 /*- 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * John Heidemann of the UCLA Ficus project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 33 * 34 * Ancestors: 35 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 36 * ...and... 37 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 38 * 39 * $FreeBSD$ 40 */ 41 42 /* 43 * Null Layer 44 * 45 * (See mount_nullfs(8) for more information.) 46 * 47 * The null layer duplicates a portion of the filesystem 48 * name space under a new name. In this respect, it is 49 * similar to the loopback filesystem. It differs from 50 * the loopback fs in two respects: it is implemented using 51 * a stackable layers techniques, and its "null-node"s stack above 52 * all lower-layer vnodes, not just over directory vnodes. 53 * 54 * The null layer has two purposes. First, it serves as a demonstration 55 * of layering by proving a layer which does nothing. (It actually 56 * does everything the loopback filesystem does, which is slightly 57 * more than nothing.) Second, the null layer can serve as a prototype 58 * layer. Since it provides all necessary layer framework, 59 * new filesystem layers can be created very easily be starting 60 * with a null layer. 61 * 62 * The remainder of this man page examines the null layer as a basis 63 * for constructing new layers. 64 * 65 * 66 * INSTANTIATING NEW NULL LAYERS 67 * 68 * New null layers are created with mount_nullfs(8). 69 * Mount_nullfs(8) takes two arguments, the pathname 70 * of the lower vfs (target-pn) and the pathname where the null 71 * layer will appear in the namespace (alias-pn). After 72 * the null layer is put into place, the contents 73 * of target-pn subtree will be aliased under alias-pn. 74 * 75 * 76 * OPERATION OF A NULL LAYER 77 * 78 * The null layer is the minimum filesystem layer, 79 * simply bypassing all possible operations to the lower layer 80 * for processing there. The majority of its activity centers 81 * on the bypass routine, through which nearly all vnode operations 82 * pass. 83 * 84 * The bypass routine accepts arbitrary vnode operations for 85 * handling by the lower layer. It begins by examing vnode 86 * operation arguments and replacing any null-nodes by their 87 * lower-layer equivlants. It then invokes the operation 88 * on the lower layer. Finally, it replaces the null-nodes 89 * in the arguments and, if a vnode is return by the operation, 90 * stacks a null-node on top of the returned vnode. 91 * 92 * Although bypass handles most operations, vop_getattr, vop_lock, 93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 94 * bypassed. Vop_getattr must change the fsid being returned. 95 * Vop_lock and vop_unlock must handle any locking for the 96 * current vnode as well as pass the lock request down. 97 * Vop_inactive and vop_reclaim are not bypassed so that 98 * they can handle freeing null-layer specific data. Vop_print 99 * is not bypassed to avoid excessive debugging information. 100 * Also, certain vnode operations change the locking state within 101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 102 * and symlink). Ideally these operations should not change the 103 * lock state, but should be changed to let the caller of the 104 * function unlock them. Otherwise all intermediate vnode layers 105 * (such as union, umapfs, etc) must catch these functions to do 106 * the necessary locking at their layer. 107 * 108 * 109 * INSTANTIATING VNODE STACKS 110 * 111 * Mounting associates the null layer with a lower layer, 112 * effect stacking two VFSes. Vnode stacks are instead 113 * created on demand as files are accessed. 114 * 115 * The initial mount creates a single vnode stack for the 116 * root of the new null layer. All other vnode stacks 117 * are created as a result of vnode operations on 118 * this or other null vnode stacks. 119 * 120 * New vnode stacks come into existance as a result of 121 * an operation which returns a vnode. 122 * The bypass routine stacks a null-node above the new 123 * vnode before returning it to the caller. 124 * 125 * For example, imagine mounting a null layer with 126 * "mount_nullfs /usr/include /dev/layer/null". 127 * Changing directory to /dev/layer/null will assign 128 * the root null-node (which was created when the null layer was mounted). 129 * Now consider opening "sys". A vop_lookup would be 130 * done on the root null-node. This operation would bypass through 131 * to the lower layer which would return a vnode representing 132 * the UFS "sys". Null_bypass then builds a null-node 133 * aliasing the UFS "sys" and returns this to the caller. 134 * Later operations on the null-node "sys" will repeat this 135 * process when constructing other vnode stacks. 136 * 137 * 138 * CREATING OTHER FILE SYSTEM LAYERS 139 * 140 * One of the easiest ways to construct new filesystem layers is to make 141 * a copy of the null layer, rename all files and variables, and 142 * then begin modifing the copy. Sed can be used to easily rename 143 * all variables. 144 * 145 * The umap layer is an example of a layer descended from the 146 * null layer. 147 * 148 * 149 * INVOKING OPERATIONS ON LOWER LAYERS 150 * 151 * There are two techniques to invoke operations on a lower layer 152 * when the operation cannot be completely bypassed. Each method 153 * is appropriate in different situations. In both cases, 154 * it is the responsibility of the aliasing layer to make 155 * the operation arguments "correct" for the lower layer 156 * by mapping a vnode arguments to the lower layer. 157 * 158 * The first approach is to call the aliasing layer's bypass routine. 159 * This method is most suitable when you wish to invoke the operation 160 * currently being handled on the lower layer. It has the advantage 161 * that the bypass routine already must do argument mapping. 162 * An example of this is null_getattrs in the null layer. 163 * 164 * A second approach is to directly invoke vnode operations on 165 * the lower layer with the VOP_OPERATIONNAME interface. 166 * The advantage of this method is that it is easy to invoke 167 * arbitrary operations on the lower layer. The disadvantage 168 * is that vnode arguments must be manualy mapped. 169 * 170 */ 171 172 #include <sys/param.h> 173 #include <sys/systm.h> 174 #include <sys/conf.h> 175 #include <sys/kernel.h> 176 #include <sys/lock.h> 177 #include <sys/malloc.h> 178 #include <sys/mount.h> 179 #include <sys/mutex.h> 180 #include <sys/namei.h> 181 #include <sys/sysctl.h> 182 #include <sys/vnode.h> 183 184 #include <fs/nullfs/null.h> 185 186 #include <vm/vm.h> 187 #include <vm/vm_extern.h> 188 #include <vm/vm_object.h> 189 #include <vm/vnode_pager.h> 190 191 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 193 &null_bug_bypass, 0, ""); 194 195 /* 196 * This is the 10-Apr-92 bypass routine. 197 * This version has been optimized for speed, throwing away some 198 * safety checks. It should still always work, but it's not as 199 * robust to programmer errors. 200 * 201 * In general, we map all vnodes going down and unmap them on the way back. 202 * As an exception to this, vnodes can be marked "unmapped" by setting 203 * the Nth bit in operation's vdesc_flags. 204 * 205 * Also, some BSD vnode operations have the side effect of vrele'ing 206 * their arguments. With stacking, the reference counts are held 207 * by the upper node, not the lower one, so we must handle these 208 * side-effects here. This is not of concern in Sun-derived systems 209 * since there are no such side-effects. 210 * 211 * This makes the following assumptions: 212 * - only one returned vpp 213 * - no INOUT vpp's (Sun's vop_open has one of these) 214 * - the vnode operation vector of the first vnode should be used 215 * to determine what implementation of the op should be invoked 216 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 217 * problems on rmdir'ing mount points and renaming?) 218 */ 219 int 220 null_bypass(struct vop_generic_args *ap) 221 { 222 struct vnode **this_vp_p; 223 int error; 224 struct vnode *old_vps[VDESC_MAX_VPS]; 225 struct vnode **vps_p[VDESC_MAX_VPS]; 226 struct vnode ***vppp; 227 struct vnodeop_desc *descp = ap->a_desc; 228 int reles, i; 229 230 if (null_bug_bypass) 231 printf ("null_bypass: %s\n", descp->vdesc_name); 232 233 #ifdef DIAGNOSTIC 234 /* 235 * We require at least one vp. 236 */ 237 if (descp->vdesc_vp_offsets == NULL || 238 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 239 panic ("null_bypass: no vp's in map"); 240 #endif 241 242 /* 243 * Map the vnodes going in. 244 * Later, we'll invoke the operation based on 245 * the first mapped vnode's operation vector. 246 */ 247 reles = descp->vdesc_flags; 248 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 249 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 250 break; /* bail out at end of list */ 251 vps_p[i] = this_vp_p = 252 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); 253 /* 254 * We're not guaranteed that any but the first vnode 255 * are of our type. Check for and don't map any 256 * that aren't. (We must always map first vp or vclean fails.) 257 */ 258 if (i && (*this_vp_p == NULLVP || 259 (*this_vp_p)->v_op != &null_vnodeops)) { 260 old_vps[i] = NULLVP; 261 } else { 262 old_vps[i] = *this_vp_p; 263 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 264 /* 265 * XXX - Several operations have the side effect 266 * of vrele'ing their vp's. We must account for 267 * that. (This should go away in the future.) 268 */ 269 if (reles & VDESC_VP0_WILLRELE) 270 VREF(*this_vp_p); 271 } 272 273 } 274 275 /* 276 * Call the operation on the lower layer 277 * with the modified argument structure. 278 */ 279 if (vps_p[0] && *vps_p[0]) 280 error = VCALL(ap); 281 else { 282 printf("null_bypass: no map for %s\n", descp->vdesc_name); 283 error = EINVAL; 284 } 285 286 /* 287 * Maintain the illusion of call-by-value 288 * by restoring vnodes in the argument structure 289 * to their original value. 290 */ 291 reles = descp->vdesc_flags; 292 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 293 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 294 break; /* bail out at end of list */ 295 if (old_vps[i]) { 296 *(vps_p[i]) = old_vps[i]; 297 #if 0 298 if (reles & VDESC_VP0_WILLUNLOCK) 299 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread); 300 #endif 301 if (reles & VDESC_VP0_WILLRELE) 302 vrele(*(vps_p[i])); 303 } 304 } 305 306 /* 307 * Map the possible out-going vpp 308 * (Assumes that the lower layer always returns 309 * a VREF'ed vpp unless it gets an error.) 310 */ 311 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 312 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 313 !error) { 314 /* 315 * XXX - even though some ops have vpp returned vp's, 316 * several ops actually vrele this before returning. 317 * We must avoid these ops. 318 * (This should go away when these ops are regularized.) 319 */ 320 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 321 goto out; 322 vppp = VOPARG_OFFSETTO(struct vnode***, 323 descp->vdesc_vpp_offset,ap); 324 if (*vppp) 325 error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp); 326 } 327 328 out: 329 return (error); 330 } 331 332 /* 333 * We have to carry on the locking protocol on the null layer vnodes 334 * as we progress through the tree. We also have to enforce read-only 335 * if this layer is mounted read-only. 336 */ 337 static int 338 null_lookup(struct vop_lookup_args *ap) 339 { 340 struct componentname *cnp = ap->a_cnp; 341 struct vnode *dvp = ap->a_dvp; 342 struct thread *td = cnp->cn_thread; 343 int flags = cnp->cn_flags; 344 struct vnode *vp, *ldvp, *lvp; 345 int error; 346 347 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 348 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 349 return (EROFS); 350 /* 351 * Although it is possible to call null_bypass(), we'll do 352 * a direct call to reduce overhead 353 */ 354 ldvp = NULLVPTOLOWERVP(dvp); 355 vp = lvp = NULL; 356 error = VOP_LOOKUP(ldvp, &lvp, cnp); 357 if (error == EJUSTRETURN && (flags & ISLASTCN) && 358 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 359 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 360 error = EROFS; 361 362 /* 363 * Rely only on the PDIRUNLOCK flag which should be carefully 364 * tracked by underlying filesystem. 365 */ 366 if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock) 367 VOP_UNLOCK(dvp, LK_THISLAYER, td); 368 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 369 if (ldvp == lvp) { 370 *ap->a_vpp = dvp; 371 VREF(dvp); 372 vrele(lvp); 373 } else { 374 error = null_nodeget(dvp->v_mount, lvp, &vp); 375 if (error) { 376 /* XXX Cleanup needed... */ 377 panic("null_nodeget failed"); 378 } 379 *ap->a_vpp = vp; 380 } 381 } 382 return (error); 383 } 384 385 static int 386 null_open(struct vop_open_args *ap) 387 { 388 int retval; 389 struct vnode *vp, *ldvp; 390 391 vp = ap->a_vp; 392 ldvp = NULLVPTOLOWERVP(vp); 393 retval = null_bypass(&ap->a_gen); 394 if (retval == 0) 395 vp->v_object = ldvp->v_object; 396 return (retval); 397 } 398 399 /* 400 * Setattr call. Disallow write attempts if the layer is mounted read-only. 401 */ 402 static int 403 null_setattr(struct vop_setattr_args *ap) 404 { 405 struct vnode *vp = ap->a_vp; 406 struct vattr *vap = ap->a_vap; 407 408 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 409 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 410 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 411 (vp->v_mount->mnt_flag & MNT_RDONLY)) 412 return (EROFS); 413 if (vap->va_size != VNOVAL) { 414 switch (vp->v_type) { 415 case VDIR: 416 return (EISDIR); 417 case VCHR: 418 case VBLK: 419 case VSOCK: 420 case VFIFO: 421 if (vap->va_flags != VNOVAL) 422 return (EOPNOTSUPP); 423 return (0); 424 case VREG: 425 case VLNK: 426 default: 427 /* 428 * Disallow write attempts if the filesystem is 429 * mounted read-only. 430 */ 431 if (vp->v_mount->mnt_flag & MNT_RDONLY) 432 return (EROFS); 433 } 434 } 435 436 return (null_bypass((struct vop_generic_args *)ap)); 437 } 438 439 /* 440 * We handle getattr only to change the fsid. 441 */ 442 static int 443 null_getattr(struct vop_getattr_args *ap) 444 { 445 int error; 446 447 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 448 return (error); 449 450 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 451 return (0); 452 } 453 454 /* 455 * Handle to disallow write access if mounted read-only. 456 */ 457 static int 458 null_access(struct vop_access_args *ap) 459 { 460 struct vnode *vp = ap->a_vp; 461 mode_t mode = ap->a_mode; 462 463 /* 464 * Disallow write attempts on read-only layers; 465 * unless the file is a socket, fifo, or a block or 466 * character device resident on the filesystem. 467 */ 468 if (mode & VWRITE) { 469 switch (vp->v_type) { 470 case VDIR: 471 case VLNK: 472 case VREG: 473 if (vp->v_mount->mnt_flag & MNT_RDONLY) 474 return (EROFS); 475 break; 476 default: 477 break; 478 } 479 } 480 return (null_bypass((struct vop_generic_args *)ap)); 481 } 482 483 /* 484 * We handle this to eliminate null FS to lower FS 485 * file moving. Don't know why we don't allow this, 486 * possibly we should. 487 */ 488 static int 489 null_rename(struct vop_rename_args *ap) 490 { 491 struct vnode *tdvp = ap->a_tdvp; 492 struct vnode *fvp = ap->a_fvp; 493 struct vnode *fdvp = ap->a_fdvp; 494 struct vnode *tvp = ap->a_tvp; 495 496 /* Check for cross-device rename. */ 497 if ((fvp->v_mount != tdvp->v_mount) || 498 (tvp && (fvp->v_mount != tvp->v_mount))) { 499 if (tdvp == tvp) 500 vrele(tdvp); 501 else 502 vput(tdvp); 503 if (tvp) 504 vput(tvp); 505 vrele(fdvp); 506 vrele(fvp); 507 return (EXDEV); 508 } 509 510 return (null_bypass((struct vop_generic_args *)ap)); 511 } 512 513 /* 514 * We need to process our own vnode lock and then clear the 515 * interlock flag as it applies only to our vnode, not the 516 * vnodes below us on the stack. 517 */ 518 static int 519 null_lock(struct vop_lock_args *ap) 520 { 521 struct vnode *vp = ap->a_vp; 522 int flags = ap->a_flags; 523 struct thread *td = ap->a_td; 524 struct vnode *lvp; 525 int error; 526 struct null_node *nn; 527 528 if (flags & LK_THISLAYER) { 529 if (vp->v_vnlock != NULL) { 530 /* lock is shared across layers */ 531 if (flags & LK_INTERLOCK) 532 mtx_unlock(&vp->v_interlock); 533 return 0; 534 } 535 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER, 536 &vp->v_interlock, td); 537 return (error); 538 } 539 540 if (vp->v_vnlock != NULL) { 541 /* 542 * The lower level has exported a struct lock to us. Use 543 * it so that all vnodes in the stack lock and unlock 544 * simultaneously. Note: we don't DRAIN the lock as DRAIN 545 * decommissions the lock - just because our vnode is 546 * going away doesn't mean the struct lock below us is. 547 * LK_EXCLUSIVE is fine. 548 */ 549 if ((flags & LK_INTERLOCK) == 0) { 550 VI_LOCK(vp); 551 flags |= LK_INTERLOCK; 552 } 553 nn = VTONULL(vp); 554 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 555 NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n"); 556 /* 557 * Emulate lock draining by waiting for all other 558 * pending locks to complete. Afterwards the 559 * lockmgr call might block, but no other threads 560 * will attempt to use this nullfs vnode due to the 561 * VI_XLOCK flag. 562 */ 563 while (nn->null_pending_locks > 0) { 564 nn->null_drain_wakeup = 1; 565 msleep(&nn->null_pending_locks, 566 VI_MTX(vp), 567 PVFS, 568 "nuldr", 0); 569 } 570 error = lockmgr(vp->v_vnlock, 571 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 572 VI_MTX(vp), td); 573 return error; 574 } 575 nn->null_pending_locks++; 576 error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td); 577 VI_LOCK(vp); 578 /* 579 * If we're called from vrele then v_usecount can have been 0 580 * and another process might have initiated a recycle 581 * operation. When that happens, just back out. 582 */ 583 if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 && 584 td != vp->v_vxthread) { 585 lockmgr(vp->v_vnlock, 586 (flags & ~LK_TYPE_MASK) | LK_RELEASE, 587 VI_MTX(vp), td); 588 VI_LOCK(vp); 589 error = ENOENT; 590 } 591 nn->null_pending_locks--; 592 /* 593 * Wakeup the process draining the vnode after all 594 * pending lock attempts has been failed. 595 */ 596 if (nn->null_pending_locks == 0 && 597 nn->null_drain_wakeup != 0) { 598 nn->null_drain_wakeup = 0; 599 wakeup(&nn->null_pending_locks); 600 } 601 if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 && 602 vp->v_vxthread != curthread) { 603 vp->v_iflag |= VI_XWANT; 604 msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0); 605 } 606 VI_UNLOCK(vp); 607 return error; 608 } else { 609 /* 610 * To prevent race conditions involving doing a lookup 611 * on "..", we have to lock the lower node, then lock our 612 * node. Most of the time it won't matter that we lock our 613 * node (as any locking would need the lower one locked 614 * first). But we can LK_DRAIN the upper lock as a step 615 * towards decomissioning it. 616 */ 617 lvp = NULLVPTOLOWERVP(vp); 618 if (lvp == NULL) 619 return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td)); 620 if (flags & LK_INTERLOCK) { 621 mtx_unlock(&vp->v_interlock); 622 flags &= ~LK_INTERLOCK; 623 } 624 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 625 error = VOP_LOCK(lvp, 626 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td); 627 } else 628 error = VOP_LOCK(lvp, flags, td); 629 if (error) 630 return (error); 631 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td); 632 if (error) 633 VOP_UNLOCK(lvp, 0, td); 634 return (error); 635 } 636 } 637 638 /* 639 * We need to process our own vnode unlock and then clear the 640 * interlock flag as it applies only to our vnode, not the 641 * vnodes below us on the stack. 642 */ 643 static int 644 null_unlock(struct vop_unlock_args *ap) 645 { 646 struct vnode *vp = ap->a_vp; 647 int flags = ap->a_flags; 648 struct thread *td = ap->a_td; 649 struct vnode *lvp; 650 651 if (vp->v_vnlock != NULL) { 652 if (flags & LK_THISLAYER) 653 return 0; /* the lock is shared across layers */ 654 flags &= ~LK_THISLAYER; 655 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE, 656 &vp->v_interlock, td)); 657 } 658 lvp = NULLVPTOLOWERVP(vp); 659 if (lvp == NULL) 660 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 661 if ((flags & LK_THISLAYER) == 0) { 662 if (flags & LK_INTERLOCK) { 663 mtx_unlock(&vp->v_interlock); 664 flags &= ~LK_INTERLOCK; 665 } 666 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td); 667 } else 668 flags &= ~LK_THISLAYER; 669 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 670 } 671 672 static int 673 null_islocked(struct vop_islocked_args *ap) 674 { 675 struct vnode *vp = ap->a_vp; 676 struct thread *td = ap->a_td; 677 678 if (vp->v_vnlock != NULL) 679 return (lockstatus(vp->v_vnlock, td)); 680 return (lockstatus(&vp->v_lock, td)); 681 } 682 683 /* 684 * There is no way to tell that someone issued remove/rmdir operation 685 * on the underlying filesystem. For now we just have to release lowevrp 686 * as soon as possible. 687 * 688 * Note, we can't release any resources nor remove vnode from hash before 689 * appropriate VXLOCK stuff is is done because other process can find this 690 * vnode in hash during inactivation and may be sitting in vget() and waiting 691 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM. 692 */ 693 static int 694 null_inactive(struct vop_inactive_args *ap) 695 { 696 struct vnode *vp = ap->a_vp; 697 struct thread *td = ap->a_td; 698 699 vp->v_object = NULL; 700 VOP_UNLOCK(vp, 0, td); 701 702 /* 703 * If this is the last reference, then free up the vnode 704 * so as not to tie up the lower vnodes. 705 */ 706 vrecycle(vp, td); 707 708 return (0); 709 } 710 711 /* 712 * Now, the VXLOCK is in force and we're free to destroy the null vnode. 713 */ 714 static int 715 null_reclaim(struct vop_reclaim_args *ap) 716 { 717 struct vnode *vp = ap->a_vp; 718 struct null_node *xp = VTONULL(vp); 719 struct vnode *lowervp = xp->null_lowervp; 720 721 if (lowervp) { 722 null_hashrem(xp); 723 724 vrele(lowervp); 725 vrele(lowervp); 726 } 727 728 vp->v_data = NULL; 729 vp->v_object = NULL; 730 vp->v_vnlock = &vp->v_lock; 731 FREE(xp, M_NULLFSNODE); 732 733 return (0); 734 } 735 736 static int 737 null_print(struct vop_print_args *ap) 738 { 739 struct vnode *vp = ap->a_vp; 740 printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp)); 741 return (0); 742 } 743 744 /* 745 * Global vfs data structures 746 */ 747 struct vop_vector null_vnodeops = { 748 .vop_bypass = null_bypass, 749 750 .vop_access = null_access, 751 .vop_bmap = VOP_EOPNOTSUPP, 752 .vop_getattr = null_getattr, 753 .vop_getwritemount = vop_stdgetwritemount, 754 .vop_inactive = null_inactive, 755 .vop_islocked = null_islocked, 756 .vop_lock = null_lock, 757 .vop_lookup = null_lookup, 758 .vop_open = null_open, 759 .vop_print = null_print, 760 .vop_reclaim = null_reclaim, 761 .vop_rename = null_rename, 762 .vop_setattr = null_setattr, 763 .vop_strategy = VOP_EOPNOTSUPP, 764 .vop_unlock = null_unlock, 765 }; 766