xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 4f0c9b76cf75724ef0b9c59bb8c182be24361d7c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
35  *
36  * Ancestors:
37  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
38  *	...and...
39  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
40  *
41  * $FreeBSD$
42  */
43 
44 /*
45  * Null Layer
46  *
47  * (See mount_nullfs(8) for more information.)
48  *
49  * The null layer duplicates a portion of the filesystem
50  * name space under a new name.  In this respect, it is
51  * similar to the loopback filesystem.  It differs from
52  * the loopback fs in two respects:  it is implemented using
53  * a stackable layers techniques, and its "null-node"s stack above
54  * all lower-layer vnodes, not just over directory vnodes.
55  *
56  * The null layer has two purposes.  First, it serves as a demonstration
57  * of layering by proving a layer which does nothing.  (It actually
58  * does everything the loopback filesystem does, which is slightly
59  * more than nothing.)  Second, the null layer can serve as a prototype
60  * layer.  Since it provides all necessary layer framework,
61  * new filesystem layers can be created very easily be starting
62  * with a null layer.
63  *
64  * The remainder of this man page examines the null layer as a basis
65  * for constructing new layers.
66  *
67  *
68  * INSTANTIATING NEW NULL LAYERS
69  *
70  * New null layers are created with mount_nullfs(8).
71  * Mount_nullfs(8) takes two arguments, the pathname
72  * of the lower vfs (target-pn) and the pathname where the null
73  * layer will appear in the namespace (alias-pn).  After
74  * the null layer is put into place, the contents
75  * of target-pn subtree will be aliased under alias-pn.
76  *
77  *
78  * OPERATION OF A NULL LAYER
79  *
80  * The null layer is the minimum filesystem layer,
81  * simply bypassing all possible operations to the lower layer
82  * for processing there.  The majority of its activity centers
83  * on the bypass routine, through which nearly all vnode operations
84  * pass.
85  *
86  * The bypass routine accepts arbitrary vnode operations for
87  * handling by the lower layer.  It begins by examining vnode
88  * operation arguments and replacing any null-nodes by their
89  * lower-layer equivlants.  It then invokes the operation
90  * on the lower layer.  Finally, it replaces the null-nodes
91  * in the arguments and, if a vnode is return by the operation,
92  * stacks a null-node on top of the returned vnode.
93  *
94  * Although bypass handles most operations, vop_getattr, vop_lock,
95  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
96  * bypassed. Vop_getattr must change the fsid being returned.
97  * Vop_lock and vop_unlock must handle any locking for the
98  * current vnode as well as pass the lock request down.
99  * Vop_inactive and vop_reclaim are not bypassed so that
100  * they can handle freeing null-layer specific data. Vop_print
101  * is not bypassed to avoid excessive debugging information.
102  * Also, certain vnode operations change the locking state within
103  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
104  * and symlink). Ideally these operations should not change the
105  * lock state, but should be changed to let the caller of the
106  * function unlock them. Otherwise all intermediate vnode layers
107  * (such as union, umapfs, etc) must catch these functions to do
108  * the necessary locking at their layer.
109  *
110  *
111  * INSTANTIATING VNODE STACKS
112  *
113  * Mounting associates the null layer with a lower layer,
114  * effect stacking two VFSes.  Vnode stacks are instead
115  * created on demand as files are accessed.
116  *
117  * The initial mount creates a single vnode stack for the
118  * root of the new null layer.  All other vnode stacks
119  * are created as a result of vnode operations on
120  * this or other null vnode stacks.
121  *
122  * New vnode stacks come into existence as a result of
123  * an operation which returns a vnode.
124  * The bypass routine stacks a null-node above the new
125  * vnode before returning it to the caller.
126  *
127  * For example, imagine mounting a null layer with
128  * "mount_nullfs /usr/include /dev/layer/null".
129  * Changing directory to /dev/layer/null will assign
130  * the root null-node (which was created when the null layer was mounted).
131  * Now consider opening "sys".  A vop_lookup would be
132  * done on the root null-node.  This operation would bypass through
133  * to the lower layer which would return a vnode representing
134  * the UFS "sys".  Null_bypass then builds a null-node
135  * aliasing the UFS "sys" and returns this to the caller.
136  * Later operations on the null-node "sys" will repeat this
137  * process when constructing other vnode stacks.
138  *
139  *
140  * CREATING OTHER FILE SYSTEM LAYERS
141  *
142  * One of the easiest ways to construct new filesystem layers is to make
143  * a copy of the null layer, rename all files and variables, and
144  * then begin modifing the copy.  Sed can be used to easily rename
145  * all variables.
146  *
147  * The umap layer is an example of a layer descended from the
148  * null layer.
149  *
150  *
151  * INVOKING OPERATIONS ON LOWER LAYERS
152  *
153  * There are two techniques to invoke operations on a lower layer
154  * when the operation cannot be completely bypassed.  Each method
155  * is appropriate in different situations.  In both cases,
156  * it is the responsibility of the aliasing layer to make
157  * the operation arguments "correct" for the lower layer
158  * by mapping a vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.
161  * This method is most suitable when you wish to invoke the operation
162  * currently being handled on the lower layer.  It has the advantage
163  * that the bypass routine already must do argument mapping.
164  * An example of this is null_getattrs in the null layer.
165  *
166  * A second approach is to directly invoke vnode operations on
167  * the lower layer with the VOP_OPERATIONNAME interface.
168  * The advantage of this method is that it is easy to invoke
169  * arbitrary operations on the lower layer.  The disadvantage
170  * is that vnode arguments must be manualy mapped.
171  *
172  */
173 
174 #include <sys/param.h>
175 #include <sys/systm.h>
176 #include <sys/conf.h>
177 #include <sys/kernel.h>
178 #include <sys/lock.h>
179 #include <sys/malloc.h>
180 #include <sys/mount.h>
181 #include <sys/mutex.h>
182 #include <sys/namei.h>
183 #include <sys/sysctl.h>
184 #include <sys/vnode.h>
185 #include <sys/stat.h>
186 
187 #include <fs/nullfs/null.h>
188 
189 #include <vm/vm.h>
190 #include <vm/vm_extern.h>
191 #include <vm/vm_object.h>
192 #include <vm/vnode_pager.h>
193 
194 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
195 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
196 	&null_bug_bypass, 0, "");
197 
198 /*
199  * This is the 10-Apr-92 bypass routine.
200  *    This version has been optimized for speed, throwing away some
201  * safety checks.  It should still always work, but it's not as
202  * robust to programmer errors.
203  *
204  * In general, we map all vnodes going down and unmap them on the way back.
205  * As an exception to this, vnodes can be marked "unmapped" by setting
206  * the Nth bit in operation's vdesc_flags.
207  *
208  * Also, some BSD vnode operations have the side effect of vrele'ing
209  * their arguments.  With stacking, the reference counts are held
210  * by the upper node, not the lower one, so we must handle these
211  * side-effects here.  This is not of concern in Sun-derived systems
212  * since there are no such side-effects.
213  *
214  * This makes the following assumptions:
215  * - only one returned vpp
216  * - no INOUT vpp's (Sun's vop_open has one of these)
217  * - the vnode operation vector of the first vnode should be used
218  *   to determine what implementation of the op should be invoked
219  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
220  *   problems on rmdir'ing mount points and renaming?)
221  */
222 int
223 null_bypass(struct vop_generic_args *ap)
224 {
225 	struct vnode **this_vp_p;
226 	struct vnode *old_vps[VDESC_MAX_VPS];
227 	struct vnode **vps_p[VDESC_MAX_VPS];
228 	struct vnode ***vppp;
229 	struct vnode *lvp;
230 	struct vnodeop_desc *descp = ap->a_desc;
231 	int error, i, reles;
232 
233 	if (null_bug_bypass)
234 		printf ("null_bypass: %s\n", descp->vdesc_name);
235 
236 #ifdef DIAGNOSTIC
237 	/*
238 	 * We require at least one vp.
239 	 */
240 	if (descp->vdesc_vp_offsets == NULL ||
241 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242 		panic ("null_bypass: no vp's in map");
243 #endif
244 
245 	/*
246 	 * Map the vnodes going in.
247 	 * Later, we'll invoke the operation based on
248 	 * the first mapped vnode's operation vector.
249 	 */
250 	reles = descp->vdesc_flags;
251 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
252 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
253 			break;   /* bail out at end of list */
254 		vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **,
255 		    descp->vdesc_vp_offsets[i], ap);
256 
257 		/*
258 		 * We're not guaranteed that any but the first vnode
259 		 * are of our type.  Check for and don't map any
260 		 * that aren't.  (We must always map first vp or vclean fails.)
261 		 */
262 		if (i != 0 && (*this_vp_p == NULLVP ||
263 		    (*this_vp_p)->v_op != &null_vnodeops)) {
264 			old_vps[i] = NULLVP;
265 		} else {
266 			old_vps[i] = *this_vp_p;
267 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
268 
269 			/*
270 			 * The upper vnode reference to the lower
271 			 * vnode is the only reference that keeps our
272 			 * pointer to the lower vnode alive.  If lower
273 			 * vnode is relocked during the VOP call,
274 			 * upper vnode might become unlocked and
275 			 * reclaimed, which invalidates our reference.
276 			 * Add a transient hold around VOP call.
277 			 */
278 			vhold(*this_vp_p);
279 
280 			/*
281 			 * XXX - Several operations have the side effect
282 			 * of vrele'ing their vp's.  We must account for
283 			 * that.  (This should go away in the future.)
284 			 */
285 			if (reles & VDESC_VP0_WILLRELE)
286 				vref(*this_vp_p);
287 		}
288 	}
289 
290 	/*
291 	 * Call the operation on the lower layer
292 	 * with the modified argument structure.
293 	 */
294 	if (vps_p[0] != NULL && *vps_p[0] != NULL) {
295 		error = VCALL(ap);
296 	} else {
297 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
298 		error = EINVAL;
299 	}
300 
301 	/*
302 	 * Maintain the illusion of call-by-value
303 	 * by restoring vnodes in the argument structure
304 	 * to their original value.
305 	 */
306 	reles = descp->vdesc_flags;
307 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
308 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
309 			break;   /* bail out at end of list */
310 		if (old_vps[i] != NULL) {
311 			lvp = *(vps_p[i]);
312 
313 			/*
314 			 * Get rid of the transient hold on lvp.
315 			 * If lowervp was unlocked during VOP
316 			 * operation, nullfs upper vnode could have
317 			 * been reclaimed, which changes its v_vnlock
318 			 * back to private v_lock.  In this case we
319 			 * must move lock ownership from lower to
320 			 * upper (reclaimed) vnode.
321 			 */
322 			if (lvp != NULLVP) {
323 				if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
324 				    old_vps[i]->v_vnlock != lvp->v_vnlock) {
325 					VOP_UNLOCK(lvp);
326 					VOP_LOCK(old_vps[i], LK_EXCLUSIVE |
327 					    LK_RETRY);
328 				}
329 				vdrop(lvp);
330 			}
331 
332 			*(vps_p[i]) = old_vps[i];
333 #if 0
334 			if (reles & VDESC_VP0_WILLUNLOCK)
335 				VOP_UNLOCK(*(vps_p[i]), 0);
336 #endif
337 			if (reles & VDESC_VP0_WILLRELE)
338 				vrele(*(vps_p[i]));
339 		}
340 	}
341 
342 	/*
343 	 * Map the possible out-going vpp
344 	 * (Assumes that the lower layer always returns
345 	 * a VREF'ed vpp unless it gets an error.)
346 	 */
347 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) {
348 		/*
349 		 * XXX - even though some ops have vpp returned vp's,
350 		 * several ops actually vrele this before returning.
351 		 * We must avoid these ops.
352 		 * (This should go away when these ops are regularized.)
353 		 */
354 		vppp = VOPARG_OFFSETTO(struct vnode ***,
355 		    descp->vdesc_vpp_offset, ap);
356 		if (*vppp != NULL)
357 			error = null_nodeget(old_vps[0]->v_mount, **vppp,
358 			    *vppp);
359 	}
360 
361 	return (error);
362 }
363 
364 static int
365 null_add_writecount(struct vop_add_writecount_args *ap)
366 {
367 	struct vnode *lvp, *vp;
368 	int error;
369 
370 	vp = ap->a_vp;
371 	lvp = NULLVPTOLOWERVP(vp);
372 	VI_LOCK(vp);
373 	/* text refs are bypassed to lowervp */
374 	VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
375 	VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
376 	    ("wrong writecount inc %d", ap->a_inc));
377 	error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
378 	if (error == 0)
379 		vp->v_writecount += ap->a_inc;
380 	VI_UNLOCK(vp);
381 	return (error);
382 }
383 
384 /*
385  * We have to carry on the locking protocol on the null layer vnodes
386  * as we progress through the tree. We also have to enforce read-only
387  * if this layer is mounted read-only.
388  */
389 static int
390 null_lookup(struct vop_lookup_args *ap)
391 {
392 	struct componentname *cnp = ap->a_cnp;
393 	struct vnode *dvp = ap->a_dvp;
394 	int flags = cnp->cn_flags;
395 	struct vnode *vp, *ldvp, *lvp;
396 	struct mount *mp;
397 	int error;
398 
399 	mp = dvp->v_mount;
400 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
401 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
402 		return (EROFS);
403 	/*
404 	 * Although it is possible to call null_bypass(), we'll do
405 	 * a direct call to reduce overhead
406 	 */
407 	ldvp = NULLVPTOLOWERVP(dvp);
408 	vp = lvp = NULL;
409 
410 	/*
411 	 * Renames in the lower mounts might create an inconsistent
412 	 * configuration where lower vnode is moved out of the
413 	 * directory tree remounted by our null mount.  Do not try to
414 	 * handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name
415 	 * which cannot be handled by VOP, at least passing over lower
416 	 * root.
417 	 */
418 	if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) {
419 		KASSERT((dvp->v_vflag & VV_ROOT) == 0,
420 		    ("ldvp %p fl %#x dvp %p fl %#x flags %#x",
421 		    ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags));
422 		return (ENOENT);
423 	}
424 
425 	/*
426 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
427 	 * case of dvp reclamation, and we need ldvp to move our lock
428 	 * from ldvp to dvp.
429 	 */
430 	vhold(ldvp);
431 
432 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
433 
434 	/*
435 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
436 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
437 	 * doomed state and return error.
438 	 */
439 	if (VN_IS_DOOMED(dvp)) {
440 		if (error == 0 || error == EJUSTRETURN) {
441 			if (lvp != NULL)
442 				vput(lvp);
443 			error = ENOENT;
444 		}
445 
446 		/*
447 		 * If vgone() did reclaimed dvp before curthread
448 		 * relocked ldvp, the locks of dvp and ldpv are no
449 		 * longer shared.  In this case, relock of ldvp in
450 		 * lower fs VOP_LOOKUP() does not restore the locking
451 		 * state of dvp.  Compensate for this by unlocking
452 		 * ldvp and locking dvp, which is also correct if the
453 		 * locks are still shared.
454 		 */
455 		VOP_UNLOCK(ldvp);
456 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
457 	}
458 	vdrop(ldvp);
459 
460 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
461 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
462 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
463 		error = EROFS;
464 
465 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
466 		if (ldvp == lvp) {
467 			*ap->a_vpp = dvp;
468 			VREF(dvp);
469 			vrele(lvp);
470 		} else {
471 			error = null_nodeget(mp, lvp, &vp);
472 			if (error == 0)
473 				*ap->a_vpp = vp;
474 		}
475 	}
476 	return (error);
477 }
478 
479 static int
480 null_open(struct vop_open_args *ap)
481 {
482 	int retval;
483 	struct vnode *vp, *ldvp;
484 
485 	vp = ap->a_vp;
486 	ldvp = NULLVPTOLOWERVP(vp);
487 	retval = null_bypass(&ap->a_gen);
488 	if (retval == 0) {
489 		vp->v_object = ldvp->v_object;
490 		if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
491 			MPASS(vp->v_object != NULL);
492 			if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
493 				vn_irflag_set_cond(vp, VIRF_PGREAD);
494 			}
495 		}
496 	}
497 	return (retval);
498 }
499 
500 /*
501  * Setattr call. Disallow write attempts if the layer is mounted read-only.
502  */
503 static int
504 null_setattr(struct vop_setattr_args *ap)
505 {
506 	struct vnode *vp = ap->a_vp;
507 	struct vattr *vap = ap->a_vap;
508 
509   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
510 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
511 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
512 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
513 		return (EROFS);
514 	if (vap->va_size != VNOVAL) {
515  		switch (vp->v_type) {
516  		case VDIR:
517  			return (EISDIR);
518  		case VCHR:
519  		case VBLK:
520  		case VSOCK:
521  		case VFIFO:
522 			if (vap->va_flags != VNOVAL)
523 				return (EOPNOTSUPP);
524 			return (0);
525 		case VREG:
526 		case VLNK:
527  		default:
528 			/*
529 			 * Disallow write attempts if the filesystem is
530 			 * mounted read-only.
531 			 */
532 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
533 				return (EROFS);
534 		}
535 	}
536 
537 	return (null_bypass((struct vop_generic_args *)ap));
538 }
539 
540 /*
541  *  We handle stat and getattr only to change the fsid.
542  */
543 static int
544 null_stat(struct vop_stat_args *ap)
545 {
546 	int error;
547 
548 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
549 		return (error);
550 
551 	ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
552 	return (0);
553 }
554 
555 static int
556 null_getattr(struct vop_getattr_args *ap)
557 {
558 	int error;
559 
560 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
561 		return (error);
562 
563 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
564 	return (0);
565 }
566 
567 /*
568  * Handle to disallow write access if mounted read-only.
569  */
570 static int
571 null_access(struct vop_access_args *ap)
572 {
573 	struct vnode *vp = ap->a_vp;
574 	accmode_t accmode = ap->a_accmode;
575 
576 	/*
577 	 * Disallow write attempts on read-only layers;
578 	 * unless the file is a socket, fifo, or a block or
579 	 * character device resident on the filesystem.
580 	 */
581 	if (accmode & VWRITE) {
582 		switch (vp->v_type) {
583 		case VDIR:
584 		case VLNK:
585 		case VREG:
586 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
587 				return (EROFS);
588 			break;
589 		default:
590 			break;
591 		}
592 	}
593 	return (null_bypass((struct vop_generic_args *)ap));
594 }
595 
596 static int
597 null_accessx(struct vop_accessx_args *ap)
598 {
599 	struct vnode *vp = ap->a_vp;
600 	accmode_t accmode = ap->a_accmode;
601 
602 	/*
603 	 * Disallow write attempts on read-only layers;
604 	 * unless the file is a socket, fifo, or a block or
605 	 * character device resident on the filesystem.
606 	 */
607 	if (accmode & VWRITE) {
608 		switch (vp->v_type) {
609 		case VDIR:
610 		case VLNK:
611 		case VREG:
612 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
613 				return (EROFS);
614 			break;
615 		default:
616 			break;
617 		}
618 	}
619 	return (null_bypass((struct vop_generic_args *)ap));
620 }
621 
622 /*
623  * Increasing refcount of lower vnode is needed at least for the case
624  * when lower FS is NFS to do sillyrename if the file is in use.
625  * Unfortunately v_usecount is incremented in many places in
626  * the kernel and, as such, there may be races that result in
627  * the NFS client doing an extraneous silly rename, but that seems
628  * preferable to not doing a silly rename when it is needed.
629  */
630 static int
631 null_remove(struct vop_remove_args *ap)
632 {
633 	int retval, vreleit;
634 	struct vnode *lvp, *vp;
635 
636 	vp = ap->a_vp;
637 	if (vrefcnt(vp) > 1) {
638 		lvp = NULLVPTOLOWERVP(vp);
639 		VREF(lvp);
640 		vreleit = 1;
641 	} else
642 		vreleit = 0;
643 	VTONULL(vp)->null_flags |= NULLV_DROP;
644 	retval = null_bypass(&ap->a_gen);
645 	if (vreleit != 0)
646 		vrele(lvp);
647 	return (retval);
648 }
649 
650 /*
651  * We handle this to eliminate null FS to lower FS
652  * file moving. Don't know why we don't allow this,
653  * possibly we should.
654  */
655 static int
656 null_rename(struct vop_rename_args *ap)
657 {
658 	struct vnode *fdvp, *fvp, *tdvp, *tvp;
659 	struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp;
660 	struct null_node *fdnn, *fnn, *tdnn, *tnn;
661 	int error;
662 
663 	tdvp = ap->a_tdvp;
664 	fvp = ap->a_fvp;
665 	fdvp = ap->a_fdvp;
666 	tvp = ap->a_tvp;
667 	lfdvp = NULL;
668 
669 	/* Check for cross-device rename. */
670 	if ((fvp->v_mount != tdvp->v_mount) ||
671 	    (tvp != NULL && fvp->v_mount != tvp->v_mount)) {
672 		error = EXDEV;
673 		goto upper_err;
674 	}
675 
676 	VI_LOCK(fdvp);
677 	fdnn = VTONULL(fdvp);
678 	if (fdnn == NULL) {	/* fdvp is not locked, can be doomed */
679 		VI_UNLOCK(fdvp);
680 		error = ENOENT;
681 		goto upper_err;
682 	}
683 	lfdvp = fdnn->null_lowervp;
684 	vref(lfdvp);
685 	VI_UNLOCK(fdvp);
686 
687 	VI_LOCK(fvp);
688 	fnn = VTONULL(fvp);
689 	if (fnn == NULL) {
690 		VI_UNLOCK(fvp);
691 		error = ENOENT;
692 		goto upper_err;
693 	}
694 	lfvp = fnn->null_lowervp;
695 	vref(lfvp);
696 	VI_UNLOCK(fvp);
697 
698 	tdnn = VTONULL(tdvp);
699 	ltdvp = tdnn->null_lowervp;
700 	vref(ltdvp);
701 
702 	if (tvp != NULL) {
703 		tnn = VTONULL(tvp);
704 		ltvp = tnn->null_lowervp;
705 		vref(ltvp);
706 		tnn->null_flags |= NULLV_DROP;
707 	} else {
708 		ltvp = NULL;
709 	}
710 
711 	error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp);
712 	vrele(fdvp);
713 	vrele(fvp);
714 	vrele(tdvp);
715 	if (tvp != NULL)
716 		vrele(tvp);
717 	return (error);
718 
719 upper_err:
720 	if (tdvp == tvp)
721 		vrele(tdvp);
722 	else
723 		vput(tdvp);
724 	if (tvp)
725 		vput(tvp);
726 	if (lfdvp != NULL)
727 		vrele(lfdvp);
728 	vrele(fdvp);
729 	vrele(fvp);
730 	return (error);
731 }
732 
733 static int
734 null_rmdir(struct vop_rmdir_args *ap)
735 {
736 
737 	VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
738 	return (null_bypass(&ap->a_gen));
739 }
740 
741 /*
742  * We need to process our own vnode lock and then clear the
743  * interlock flag as it applies only to our vnode, not the
744  * vnodes below us on the stack.
745  */
746 static int
747 null_lock(struct vop_lock1_args *ap)
748 {
749 	struct vnode *vp = ap->a_vp;
750 	int flags;
751 	struct null_node *nn;
752 	struct vnode *lvp;
753 	int error;
754 
755 	if ((ap->a_flags & LK_INTERLOCK) == 0)
756 		VI_LOCK(vp);
757 	else
758 		ap->a_flags &= ~LK_INTERLOCK;
759 	flags = ap->a_flags;
760 	nn = VTONULL(vp);
761 	/*
762 	 * If we're still active we must ask the lower layer to
763 	 * lock as ffs has special lock considerations in its
764 	 * vop lock.
765 	 */
766 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
767 		/*
768 		 * We have to hold the vnode here to solve a potential
769 		 * reclaim race.  If we're forcibly vgone'd while we
770 		 * still have refs, a thread could be sleeping inside
771 		 * the lowervp's vop_lock routine.  When we vgone we will
772 		 * drop our last ref to the lowervp, which would allow it
773 		 * to be reclaimed.  The lowervp could then be recycled,
774 		 * in which case it is not legal to be sleeping in its VOP.
775 		 * We prevent it from being recycled by holding the vnode
776 		 * here.
777 		 */
778 		vholdnz(lvp);
779 		VI_UNLOCK(vp);
780 		error = VOP_LOCK(lvp, flags);
781 
782 		/*
783 		 * We might have slept to get the lock and someone might have
784 		 * clean our vnode already, switching vnode lock from one in
785 		 * lowervp to v_lock in our own vnode structure.  Handle this
786 		 * case by reacquiring correct lock in requested mode.
787 		 */
788 		if (VTONULL(vp) == NULL && error == 0) {
789 			ap->a_flags &= ~LK_TYPE_MASK;
790 			switch (flags & LK_TYPE_MASK) {
791 			case LK_SHARED:
792 				ap->a_flags |= LK_SHARED;
793 				break;
794 			case LK_UPGRADE:
795 			case LK_EXCLUSIVE:
796 				ap->a_flags |= LK_EXCLUSIVE;
797 				break;
798 			default:
799 				panic("Unsupported lock request %d\n",
800 				    ap->a_flags);
801 			}
802 			VOP_UNLOCK(lvp);
803 			error = vop_stdlock(ap);
804 		}
805 		vdrop(lvp);
806 	} else {
807 		VI_UNLOCK(vp);
808 		error = vop_stdlock(ap);
809 	}
810 
811 	return (error);
812 }
813 
814 /*
815  * We need to process our own vnode unlock and then clear the
816  * interlock flag as it applies only to our vnode, not the
817  * vnodes below us on the stack.
818  */
819 static int
820 null_unlock(struct vop_unlock_args *ap)
821 {
822 	struct vnode *vp = ap->a_vp;
823 	struct null_node *nn;
824 	struct vnode *lvp;
825 	int error;
826 
827 	nn = VTONULL(vp);
828 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
829 		vholdnz(lvp);
830 		error = VOP_UNLOCK(lvp);
831 		vdrop(lvp);
832 	} else {
833 		error = vop_stdunlock(ap);
834 	}
835 
836 	return (error);
837 }
838 
839 /*
840  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
841  * since the reference count on the lower vnode is not related to
842  * ours.
843  */
844 static int
845 null_want_recycle(struct vnode *vp)
846 {
847 	struct vnode *lvp;
848 	struct null_node *xp;
849 	struct mount *mp;
850 	struct null_mount *xmp;
851 
852 	xp = VTONULL(vp);
853 	lvp = NULLVPTOLOWERVP(vp);
854 	mp = vp->v_mount;
855 	xmp = MOUNTTONULLMOUNT(mp);
856 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
857 	    (xp->null_flags & NULLV_DROP) != 0 ||
858 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
859 		/*
860 		 * If this is the last reference and caching of the
861 		 * nullfs vnodes is not enabled, or the lower vnode is
862 		 * deleted, then free up the vnode so as not to tie up
863 		 * the lower vnodes.
864 		 */
865 		return (1);
866 	}
867 	return (0);
868 }
869 
870 static int
871 null_inactive(struct vop_inactive_args *ap)
872 {
873 	struct vnode *vp;
874 
875 	vp = ap->a_vp;
876 	if (null_want_recycle(vp)) {
877 		vp->v_object = NULL;
878 		vrecycle(vp);
879 	}
880 	return (0);
881 }
882 
883 static int
884 null_need_inactive(struct vop_need_inactive_args *ap)
885 {
886 
887 	return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp));
888 }
889 
890 /*
891  * Now, the nullfs vnode and, due to the sharing lock, the lower
892  * vnode, are exclusively locked, and we shall destroy the null vnode.
893  */
894 static int
895 null_reclaim(struct vop_reclaim_args *ap)
896 {
897 	struct vnode *vp;
898 	struct null_node *xp;
899 	struct vnode *lowervp;
900 
901 	vp = ap->a_vp;
902 	xp = VTONULL(vp);
903 	lowervp = xp->null_lowervp;
904 
905 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
906 	    ("Reclaiming incomplete null vnode %p", vp));
907 
908 	null_hashrem(xp);
909 	/*
910 	 * Use the interlock to protect the clearing of v_data to
911 	 * prevent faults in null_lock().
912 	 */
913 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
914 	VI_LOCK(vp);
915 	vp->v_data = NULL;
916 	vp->v_object = NULL;
917 	vp->v_vnlock = &vp->v_lock;
918 
919 	/*
920 	 * If we were opened for write, we leased the write reference
921 	 * to the lower vnode.  If this is a reclamation due to the
922 	 * forced unmount, undo the reference now.
923 	 */
924 	if (vp->v_writecount > 0)
925 		VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
926 	else if (vp->v_writecount < 0)
927 		vp->v_writecount = 0;
928 
929 	VI_UNLOCK(vp);
930 
931 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
932 		vunref(lowervp);
933 	else
934 		vput(lowervp);
935 	free(xp, M_NULLFSNODE);
936 
937 	return (0);
938 }
939 
940 static int
941 null_print(struct vop_print_args *ap)
942 {
943 	struct vnode *vp = ap->a_vp;
944 
945 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
946 	return (0);
947 }
948 
949 /* ARGSUSED */
950 static int
951 null_getwritemount(struct vop_getwritemount_args *ap)
952 {
953 	struct null_node *xp;
954 	struct vnode *lowervp;
955 	struct vnode *vp;
956 
957 	vp = ap->a_vp;
958 	VI_LOCK(vp);
959 	xp = VTONULL(vp);
960 	if (xp && (lowervp = xp->null_lowervp)) {
961 		vholdnz(lowervp);
962 		VI_UNLOCK(vp);
963 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
964 		vdrop(lowervp);
965 	} else {
966 		VI_UNLOCK(vp);
967 		*(ap->a_mpp) = NULL;
968 	}
969 	return (0);
970 }
971 
972 static int
973 null_vptofh(struct vop_vptofh_args *ap)
974 {
975 	struct vnode *lvp;
976 
977 	lvp = NULLVPTOLOWERVP(ap->a_vp);
978 	return VOP_VPTOFH(lvp, ap->a_fhp);
979 }
980 
981 static int
982 null_vptocnp(struct vop_vptocnp_args *ap)
983 {
984 	struct vnode *vp = ap->a_vp;
985 	struct vnode **dvp = ap->a_vpp;
986 	struct vnode *lvp, *ldvp;
987 	struct mount *mp;
988 	int error, locked;
989 
990 	locked = VOP_ISLOCKED(vp);
991 	lvp = NULLVPTOLOWERVP(vp);
992 	mp = vp->v_mount;
993 	error = vfs_busy(mp, MBF_NOWAIT);
994 	if (error != 0)
995 		return (error);
996 	vhold(lvp);
997 	VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
998 	ldvp = lvp;
999 	vref(lvp);
1000 	error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
1001 	vdrop(lvp);
1002 	if (error != 0) {
1003 		vn_lock(vp, locked | LK_RETRY);
1004 		vfs_unbusy(mp);
1005 		return (ENOENT);
1006 	}
1007 
1008 	error = vn_lock(ldvp, LK_SHARED);
1009 	if (error != 0) {
1010 		vrele(ldvp);
1011 		vn_lock(vp, locked | LK_RETRY);
1012 		vfs_unbusy(mp);
1013 		return (ENOENT);
1014 	}
1015 	error = null_nodeget(mp, ldvp, dvp);
1016 	if (error == 0) {
1017 #ifdef DIAGNOSTIC
1018 		NULLVPTOLOWERVP(*dvp);
1019 #endif
1020 		VOP_UNLOCK(*dvp); /* keep reference on *dvp */
1021 	}
1022 	vn_lock(vp, locked | LK_RETRY);
1023 	vfs_unbusy(mp);
1024 	return (error);
1025 }
1026 
1027 static int
1028 null_read_pgcache(struct vop_read_pgcache_args *ap)
1029 {
1030 	struct vnode *lvp, *vp;
1031 	struct null_node *xp;
1032 	int error;
1033 
1034 	vp = ap->a_vp;
1035 	VI_LOCK(vp);
1036 	xp = VTONULL(vp);
1037 	if (xp == NULL) {
1038 		VI_UNLOCK(vp);
1039 		return (EJUSTRETURN);
1040 	}
1041 	lvp = xp->null_lowervp;
1042 	vref(lvp);
1043 	VI_UNLOCK(vp);
1044 	error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
1045 	vrele(lvp);
1046 	return (error);
1047 }
1048 
1049 static int
1050 null_advlock(struct vop_advlock_args *ap)
1051 {
1052 	struct vnode *lvp, *vp;
1053 	struct null_node *xp;
1054 	int error;
1055 
1056 	vp = ap->a_vp;
1057 	VI_LOCK(vp);
1058 	xp = VTONULL(vp);
1059 	if (xp == NULL) {
1060 		VI_UNLOCK(vp);
1061 		return (EBADF);
1062 	}
1063 	lvp = xp->null_lowervp;
1064 	vref(lvp);
1065 	VI_UNLOCK(vp);
1066 	error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags);
1067 	vrele(lvp);
1068 	return (error);
1069 }
1070 
1071 /*
1072  * Avoid standard bypass, since lower dvp and vp could be no longer
1073  * valid after vput().
1074  */
1075 static int
1076 null_vput_pair(struct vop_vput_pair_args *ap)
1077 {
1078 	struct mount *mp;
1079 	struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
1080 	int error, res;
1081 
1082 	dvp = ap->a_dvp;
1083 	ldvp = NULLVPTOLOWERVP(dvp);
1084 	vref(ldvp);
1085 
1086 	vpp = ap->a_vpp;
1087 	vp = NULL;
1088 	lvp = NULL;
1089 	mp = NULL;
1090 	if (vpp != NULL)
1091 		vp = *vpp;
1092 	if (vp != NULL) {
1093 		lvp = NULLVPTOLOWERVP(vp);
1094 		vref(lvp);
1095 		if (!ap->a_unlock_vp) {
1096 			vhold(vp);
1097 			vhold(lvp);
1098 			mp = vp->v_mount;
1099 			vfs_ref(mp);
1100 		}
1101 	}
1102 
1103 	res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true);
1104 	if (vp != NULL && ap->a_unlock_vp)
1105 		vrele(vp);
1106 	vrele(dvp);
1107 
1108 	if (vp == NULL || ap->a_unlock_vp)
1109 		return (res);
1110 
1111 	/* lvp has been unlocked and vp might be reclaimed */
1112 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1113 	if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
1114 		vput(vp);
1115 		vget(lvp, LK_EXCLUSIVE | LK_RETRY);
1116 		if (VN_IS_DOOMED(lvp)) {
1117 			vput(lvp);
1118 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1119 		} else {
1120 			error = null_nodeget(mp, lvp, &vp1);
1121 			if (error == 0) {
1122 				*vpp = vp1;
1123 			} else {
1124 				vget(vp, LK_EXCLUSIVE | LK_RETRY);
1125 			}
1126 		}
1127 		vfs_unbusy(mp);
1128 	}
1129 	vdrop(lvp);
1130 	vdrop(vp);
1131 	vfs_rel(mp);
1132 
1133 	return (res);
1134 }
1135 
1136 /*
1137  * Global vfs data structures
1138  */
1139 struct vop_vector null_vnodeops = {
1140 	.vop_bypass =		null_bypass,
1141 	.vop_access =		null_access,
1142 	.vop_accessx =		null_accessx,
1143 	.vop_advlock =		null_advlock,
1144 	.vop_advlockpurge =	vop_stdadvlockpurge,
1145 	.vop_bmap =		VOP_EOPNOTSUPP,
1146 	.vop_stat =		null_stat,
1147 	.vop_getattr =		null_getattr,
1148 	.vop_getwritemount =	null_getwritemount,
1149 	.vop_inactive =		null_inactive,
1150 	.vop_need_inactive =	null_need_inactive,
1151 	.vop_islocked =		vop_stdislocked,
1152 	.vop_lock1 =		null_lock,
1153 	.vop_lookup =		null_lookup,
1154 	.vop_open =		null_open,
1155 	.vop_print =		null_print,
1156 	.vop_read_pgcache =	null_read_pgcache,
1157 	.vop_reclaim =		null_reclaim,
1158 	.vop_remove =		null_remove,
1159 	.vop_rename =		null_rename,
1160 	.vop_rmdir =		null_rmdir,
1161 	.vop_setattr =		null_setattr,
1162 	.vop_strategy =		VOP_EOPNOTSUPP,
1163 	.vop_unlock =		null_unlock,
1164 	.vop_vptocnp =		null_vptocnp,
1165 	.vop_vptofh =		null_vptofh,
1166 	.vop_add_writecount =	null_add_writecount,
1167 	.vop_vput_pair =	null_vput_pair,
1168 };
1169 VFS_VOP_VECTOR_REGISTER(null_vnodeops);
1170