xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  * $FreeBSD$
41  *	...and...
42  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
43  *
44  * $FreeBSD$
45  */
46 
47 /*
48  * Null Layer
49  *
50  * (See mount_null(8) for more information.)
51  *
52  * The null layer duplicates a portion of the file system
53  * name space under a new name.  In this respect, it is
54  * similar to the loopback file system.  It differs from
55  * the loopback fs in two respects:  it is implemented using
56  * a stackable layers techniques, and its "null-node"s stack above
57  * all lower-layer vnodes, not just over directory vnodes.
58  *
59  * The null layer has two purposes.  First, it serves as a demonstration
60  * of layering by proving a layer which does nothing.  (It actually
61  * does everything the loopback file system does, which is slightly
62  * more than nothing.)  Second, the null layer can serve as a prototype
63  * layer.  Since it provides all necessary layer framework,
64  * new file system layers can be created very easily be starting
65  * with a null layer.
66  *
67  * The remainder of this man page examines the null layer as a basis
68  * for constructing new layers.
69  *
70  *
71  * INSTANTIATING NEW NULL LAYERS
72  *
73  * New null layers are created with mount_null(8).
74  * Mount_null(8) takes two arguments, the pathname
75  * of the lower vfs (target-pn) and the pathname where the null
76  * layer will appear in the namespace (alias-pn).  After
77  * the null layer is put into place, the contents
78  * of target-pn subtree will be aliased under alias-pn.
79  *
80  *
81  * OPERATION OF A NULL LAYER
82  *
83  * The null layer is the minimum file system layer,
84  * simply bypassing all possible operations to the lower layer
85  * for processing there.  The majority of its activity centers
86  * on the bypass routine, through which nearly all vnode operations
87  * pass.
88  *
89  * The bypass routine accepts arbitrary vnode operations for
90  * handling by the lower layer.  It begins by examing vnode
91  * operation arguments and replacing any null-nodes by their
92  * lower-layer equivlants.  It then invokes the operation
93  * on the lower layer.  Finally, it replaces the null-nodes
94  * in the arguments and, if a vnode is return by the operation,
95  * stacks a null-node on top of the returned vnode.
96  *
97  * Although bypass handles most operations, vop_getattr, vop_lock,
98  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
99  * bypassed. Vop_getattr must change the fsid being returned.
100  * Vop_lock and vop_unlock must handle any locking for the
101  * current vnode as well as pass the lock request down.
102  * Vop_inactive and vop_reclaim are not bypassed so that
103  * they can handle freeing null-layer specific data. Vop_print
104  * is not bypassed to avoid excessive debugging information.
105  * Also, certain vnode operations change the locking state within
106  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
107  * and symlink). Ideally these operations should not change the
108  * lock state, but should be changed to let the caller of the
109  * function unlock them. Otherwise all intermediate vnode layers
110  * (such as union, umapfs, etc) must catch these functions to do
111  * the necessary locking at their layer.
112  *
113  *
114  * INSTANTIATING VNODE STACKS
115  *
116  * Mounting associates the null layer with a lower layer,
117  * effect stacking two VFSes.  Vnode stacks are instead
118  * created on demand as files are accessed.
119  *
120  * The initial mount creates a single vnode stack for the
121  * root of the new null layer.  All other vnode stacks
122  * are created as a result of vnode operations on
123  * this or other null vnode stacks.
124  *
125  * New vnode stacks come into existance as a result of
126  * an operation which returns a vnode.
127  * The bypass routine stacks a null-node above the new
128  * vnode before returning it to the caller.
129  *
130  * For example, imagine mounting a null layer with
131  * "mount_null /usr/include /dev/layer/null".
132  * Changing directory to /dev/layer/null will assign
133  * the root null-node (which was created when the null layer was mounted).
134  * Now consider opening "sys".  A vop_lookup would be
135  * done on the root null-node.  This operation would bypass through
136  * to the lower layer which would return a vnode representing
137  * the UFS "sys".  Null_bypass then builds a null-node
138  * aliasing the UFS "sys" and returns this to the caller.
139  * Later operations on the null-node "sys" will repeat this
140  * process when constructing other vnode stacks.
141  *
142  *
143  * CREATING OTHER FILE SYSTEM LAYERS
144  *
145  * One of the easiest ways to construct new file system layers is to make
146  * a copy of the null layer, rename all files and variables, and
147  * then begin modifing the copy.  Sed can be used to easily rename
148  * all variables.
149  *
150  * The umap layer is an example of a layer descended from the
151  * null layer.
152  *
153  *
154  * INVOKING OPERATIONS ON LOWER LAYERS
155  *
156  * There are two techniques to invoke operations on a lower layer
157  * when the operation cannot be completely bypassed.  Each method
158  * is appropriate in different situations.  In both cases,
159  * it is the responsibility of the aliasing layer to make
160  * the operation arguments "correct" for the lower layer
161  * by mapping an vnode arguments to the lower layer.
162  *
163  * The first approach is to call the aliasing layer's bypass routine.
164  * This method is most suitable when you wish to invoke the operation
165  * currently being handled on the lower layer.  It has the advantage
166  * that the bypass routine already must do argument mapping.
167  * An example of this is null_getattrs in the null layer.
168  *
169  * A second approach is to directly invoke vnode operations on
170  * the lower layer with the VOP_OPERATIONNAME interface.
171  * The advantage of this method is that it is easy to invoke
172  * arbitrary operations on the lower layer.  The disadvantage
173  * is that vnode arguments must be manualy mapped.
174  *
175  */
176 
177 #include <sys/param.h>
178 #include <sys/systm.h>
179 #include <sys/kernel.h>
180 #include <sys/sysctl.h>
181 #include <sys/vnode.h>
182 #include <sys/mount.h>
183 #include <sys/namei.h>
184 #include <sys/malloc.h>
185 #include <sys/buf.h>
186 #include <miscfs/nullfs/null.h>
187 
188 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
189 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
190 	&null_bug_bypass, 0, "");
191 
192 static int	null_access __P((struct vop_access_args *ap));
193 static int	null_getattr __P((struct vop_getattr_args *ap));
194 static int	null_inactive __P((struct vop_inactive_args *ap));
195 static int	null_lock __P((struct vop_lock_args *ap));
196 static int	null_lookup __P((struct vop_lookup_args *ap));
197 static int	null_print __P((struct vop_print_args *ap));
198 static int	null_reclaim __P((struct vop_reclaim_args *ap));
199 static int	null_setattr __P((struct vop_setattr_args *ap));
200 static int	null_unlock __P((struct vop_unlock_args *ap));
201 
202 /*
203  * This is the 10-Apr-92 bypass routine.
204  *    This version has been optimized for speed, throwing away some
205  * safety checks.  It should still always work, but it's not as
206  * robust to programmer errors.
207  *
208  * In general, we map all vnodes going down and unmap them on the way back.
209  * As an exception to this, vnodes can be marked "unmapped" by setting
210  * the Nth bit in operation's vdesc_flags.
211  *
212  * Also, some BSD vnode operations have the side effect of vrele'ing
213  * their arguments.  With stacking, the reference counts are held
214  * by the upper node, not the lower one, so we must handle these
215  * side-effects here.  This is not of concern in Sun-derived systems
216  * since there are no such side-effects.
217  *
218  * This makes the following assumptions:
219  * - only one returned vpp
220  * - no INOUT vpp's (Sun's vop_open has one of these)
221  * - the vnode operation vector of the first vnode should be used
222  *   to determine what implementation of the op should be invoked
223  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
224  *   problems on rmdir'ing mount points and renaming?)
225  */
226 int
227 null_bypass(ap)
228 	struct vop_generic_args /* {
229 		struct vnodeop_desc *a_desc;
230 		<other random data follows, presumably>
231 	} */ *ap;
232 {
233 	register struct vnode **this_vp_p;
234 	int error;
235 	struct vnode *old_vps[VDESC_MAX_VPS];
236 	struct vnode **vps_p[VDESC_MAX_VPS];
237 	struct vnode ***vppp;
238 	struct vnodeop_desc *descp = ap->a_desc;
239 	int reles, i;
240 
241 	if (null_bug_bypass)
242 		printf ("null_bypass: %s\n", descp->vdesc_name);
243 
244 #ifdef DIAGNOSTIC
245 	/*
246 	 * We require at least one vp.
247 	 */
248 	if (descp->vdesc_vp_offsets == NULL ||
249 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
250 		panic ("null_bypass: no vp's in map");
251 #endif
252 
253 	/*
254 	 * Map the vnodes going in.
255 	 * Later, we'll invoke the operation based on
256 	 * the first mapped vnode's operation vector.
257 	 */
258 	reles = descp->vdesc_flags;
259 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
260 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
261 			break;   /* bail out at end of list */
262 		vps_p[i] = this_vp_p =
263 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
264 		/*
265 		 * We're not guaranteed that any but the first vnode
266 		 * are of our type.  Check for and don't map any
267 		 * that aren't.  (We must always map first vp or vclean fails.)
268 		 */
269 		if (i && (*this_vp_p == NULLVP ||
270 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
271 			old_vps[i] = NULLVP;
272 		} else {
273 			old_vps[i] = *this_vp_p;
274 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
275 			/*
276 			 * XXX - Several operations have the side effect
277 			 * of vrele'ing their vp's.  We must account for
278 			 * that.  (This should go away in the future.)
279 			 */
280 			if (reles & 1)
281 				VREF(*this_vp_p);
282 		}
283 
284 	}
285 
286 	/*
287 	 * Call the operation on the lower layer
288 	 * with the modified argument structure.
289 	 */
290 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
291 
292 	/*
293 	 * Maintain the illusion of call-by-value
294 	 * by restoring vnodes in the argument structure
295 	 * to their original value.
296 	 */
297 	reles = descp->vdesc_flags;
298 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
299 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
300 			break;   /* bail out at end of list */
301 		if (old_vps[i]) {
302 			*(vps_p[i]) = old_vps[i];
303 			if (reles & 1)
304 				vrele(*(vps_p[i]));
305 		}
306 	}
307 
308 	/*
309 	 * Map the possible out-going vpp
310 	 * (Assumes that the lower layer always returns
311 	 * a VREF'ed vpp unless it gets an error.)
312 	 */
313 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
314 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
315 	    !error) {
316 		/*
317 		 * XXX - even though some ops have vpp returned vp's,
318 		 * several ops actually vrele this before returning.
319 		 * We must avoid these ops.
320 		 * (This should go away when these ops are regularized.)
321 		 */
322 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
323 			goto out;
324 		vppp = VOPARG_OFFSETTO(struct vnode***,
325 				 descp->vdesc_vpp_offset,ap);
326 		if (*vppp)
327 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
328 	}
329 
330  out:
331 	return (error);
332 }
333 
334 /*
335  * We have to carry on the locking protocol on the null layer vnodes
336  * as we progress through the tree. We also have to enforce read-only
337  * if this layer is mounted read-only.
338  */
339 static int
340 null_lookup(ap)
341 	struct vop_lookup_args /* {
342 		struct vnode * a_dvp;
343 		struct vnode ** a_vpp;
344 		struct componentname * a_cnp;
345 	} */ *ap;
346 {
347 	struct componentname *cnp = ap->a_cnp;
348 	struct proc *p = cnp->cn_proc;
349 	int flags = cnp->cn_flags;
350 	struct vop_lock_args lockargs;
351 	struct vop_unlock_args unlockargs;
352 	struct vnode *dvp, *vp;
353 	int error;
354 
355 	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
356 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
357 		return (EROFS);
358 	error = null_bypass((struct vop_generic_args *)ap);
359 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
360 	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
361 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
362 		error = EROFS;
363 	/*
364 	 * We must do the same locking and unlocking at this layer as
365 	 * is done in the layers below us. We could figure this out
366 	 * based on the error return and the LASTCN, LOCKPARENT, and
367 	 * LOCKLEAF flags. However, it is more expidient to just find
368 	 * out the state of the lower level vnodes and set ours to the
369 	 * same state.
370 	 */
371 	dvp = ap->a_dvp;
372 	vp = *ap->a_vpp;
373 	if (dvp == vp)
374 		return (error);
375 	if (!VOP_ISLOCKED(dvp)) {
376 		unlockargs.a_vp = dvp;
377 		unlockargs.a_flags = 0;
378 		unlockargs.a_p = p;
379 		vop_nounlock(&unlockargs);
380 	}
381 	if (vp != NULLVP && VOP_ISLOCKED(vp)) {
382 		lockargs.a_vp = vp;
383 		lockargs.a_flags = LK_SHARED;
384 		lockargs.a_p = p;
385 		vop_nolock(&lockargs);
386 	}
387 	return (error);
388 }
389 
390 /*
391  * Setattr call. Disallow write attempts if the layer is mounted read-only.
392  */
393 int
394 null_setattr(ap)
395 	struct vop_setattr_args /* {
396 		struct vnodeop_desc *a_desc;
397 		struct vnode *a_vp;
398 		struct vattr *a_vap;
399 		struct ucred *a_cred;
400 		struct proc *a_p;
401 	} */ *ap;
402 {
403 	struct vnode *vp = ap->a_vp;
404 	struct vattr *vap = ap->a_vap;
405 
406   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
407 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
408 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
409 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
410 		return (EROFS);
411 	if (vap->va_size != VNOVAL) {
412  		switch (vp->v_type) {
413  		case VDIR:
414  			return (EISDIR);
415  		case VCHR:
416  		case VBLK:
417  		case VSOCK:
418  		case VFIFO:
419 			if (vap->va_flags != VNOVAL)
420 				return (EOPNOTSUPP);
421 			return (0);
422 		case VREG:
423 		case VLNK:
424  		default:
425 			/*
426 			 * Disallow write attempts if the filesystem is
427 			 * mounted read-only.
428 			 */
429 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
430 				return (EROFS);
431 		}
432 	}
433 	return (null_bypass((struct vop_generic_args *)ap));
434 }
435 
436 /*
437  *  We handle getattr only to change the fsid.
438  */
439 static int
440 null_getattr(ap)
441 	struct vop_getattr_args /* {
442 		struct vnode *a_vp;
443 		struct vattr *a_vap;
444 		struct ucred *a_cred;
445 		struct proc *a_p;
446 	} */ *ap;
447 {
448 	int error;
449 
450 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
451 		return (error);
452 	return (0);
453 }
454 
455 static int
456 null_access(ap)
457 	struct vop_access_args /* {
458 		struct vnode *a_vp;
459 		int  a_mode;
460 		struct ucred *a_cred;
461 		struct proc *a_p;
462 	} */ *ap;
463 {
464 	struct vnode *vp = ap->a_vp;
465 	mode_t mode = ap->a_mode;
466 
467 	/*
468 	 * Disallow write attempts on read-only layers;
469 	 * unless the file is a socket, fifo, or a block or
470 	 * character device resident on the file system.
471 	 */
472 	if (mode & VWRITE) {
473 		switch (vp->v_type) {
474 		case VDIR:
475 		case VLNK:
476 		case VREG:
477 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
478 				return (EROFS);
479 			break;
480 		default:
481 			break;
482 		}
483 	}
484 	return (null_bypass((struct vop_generic_args *)ap));
485 }
486 
487 /*
488  * We need to process our own vnode lock and then clear the
489  * interlock flag as it applies only to our vnode, not the
490  * vnodes below us on the stack.
491  */
492 static int
493 null_lock(ap)
494 	struct vop_lock_args /* {
495 		struct vnode *a_vp;
496 		int a_flags;
497 		struct proc *a_p;
498 	} */ *ap;
499 {
500 
501 	vop_nolock(ap);
502 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
503 		return (0);
504 	ap->a_flags &= ~LK_INTERLOCK;
505 	return (null_bypass((struct vop_generic_args *)ap));
506 }
507 
508 /*
509  * We need to process our own vnode unlock and then clear the
510  * interlock flag as it applies only to our vnode, not the
511  * vnodes below us on the stack.
512  */
513 static int
514 null_unlock(ap)
515 	struct vop_unlock_args /* {
516 		struct vnode *a_vp;
517 		int a_flags;
518 		struct proc *a_p;
519 	} */ *ap;
520 {
521 	vop_nounlock(ap);
522 	ap->a_flags &= ~LK_INTERLOCK;
523 	return (null_bypass((struct vop_generic_args *)ap));
524 }
525 
526 static int
527 null_inactive(ap)
528 	struct vop_inactive_args /* {
529 		struct vnode *a_vp;
530 		struct proc *a_p;
531 	} */ *ap;
532 {
533 	struct vnode *vp = ap->a_vp;
534 	struct null_node *xp = VTONULL(vp);
535 	struct vnode *lowervp = xp->null_lowervp;
536 	/*
537 	 * Do nothing (and _don't_ bypass).
538 	 * Wait to vrele lowervp until reclaim,
539 	 * so that until then our null_node is in the
540 	 * cache and reusable.
541 	 * We still have to tell the lower layer the vnode
542 	 * is now inactive though.
543 	 *
544 	 * NEEDSWORK: Someday, consider inactive'ing
545 	 * the lowervp and then trying to reactivate it
546 	 * with capabilities (v_id)
547 	 * like they do in the name lookup cache code.
548 	 * That's too much work for now.
549 	 */
550 	VOP_INACTIVE(lowervp, ap->a_p);
551 	VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
552 	return (0);
553 }
554 
555 static int
556 null_reclaim(ap)
557 	struct vop_reclaim_args /* {
558 		struct vnode *a_vp;
559 		struct proc *a_p;
560 	} */ *ap;
561 {
562 	struct vnode *vp = ap->a_vp;
563 	struct null_node *xp = VTONULL(vp);
564 	struct vnode *lowervp = xp->null_lowervp;
565 
566 	/*
567 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
568 	 * so we can't call VOPs on ourself.
569 	 */
570 	/* After this assignment, this node will not be re-used. */
571 	xp->null_lowervp = NULLVP;
572 	LIST_REMOVE(xp, null_hash);
573 	FREE(vp->v_data, M_TEMP);
574 	vp->v_data = NULL;
575 	vrele (lowervp);
576 	return (0);
577 }
578 
579 static int
580 null_print(ap)
581 	struct vop_print_args /* {
582 		struct vnode *a_vp;
583 	} */ *ap;
584 {
585 	register struct vnode *vp = ap->a_vp;
586 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
587 	return (0);
588 }
589 
590 /*
591  * Global vfs data structures
592  */
593 vop_t **null_vnodeop_p;
594 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
595 	{ &vop_default_desc,		(vop_t *) null_bypass },
596 	{ &vop_access_desc,		(vop_t *) null_access },
597 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
598 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
599 	{ &vop_lock_desc,		(vop_t *) null_lock },
600 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
601 	{ &vop_print_desc,		(vop_t *) null_print },
602 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
603 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
604 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
605 	{ NULL, NULL }
606 };
607 static struct vnodeopv_desc null_vnodeop_opv_desc =
608 	{ &null_vnodeop_p, null_vnodeop_entries };
609 
610 VNODEOP_SET(null_vnodeop_opv_desc);
611