1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * John Heidemann of the UCLA Ficus project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Ancestors: 35 * ...and... 36 */ 37 38 /* 39 * Null Layer 40 * 41 * (See mount_nullfs(8) for more information.) 42 * 43 * The null layer duplicates a portion of the filesystem 44 * name space under a new name. In this respect, it is 45 * similar to the loopback filesystem. It differs from 46 * the loopback fs in two respects: it is implemented using 47 * a stackable layers techniques, and its "null-node"s stack above 48 * all lower-layer vnodes, not just over directory vnodes. 49 * 50 * The null layer has two purposes. First, it serves as a demonstration 51 * of layering by proving a layer which does nothing. (It actually 52 * does everything the loopback filesystem does, which is slightly 53 * more than nothing.) Second, the null layer can serve as a prototype 54 * layer. Since it provides all necessary layer framework, 55 * new filesystem layers can be created very easily be starting 56 * with a null layer. 57 * 58 * The remainder of this man page examines the null layer as a basis 59 * for constructing new layers. 60 * 61 * 62 * INSTANTIATING NEW NULL LAYERS 63 * 64 * New null layers are created with mount_nullfs(8). 65 * Mount_nullfs(8) takes two arguments, the pathname 66 * of the lower vfs (target-pn) and the pathname where the null 67 * layer will appear in the namespace (alias-pn). After 68 * the null layer is put into place, the contents 69 * of target-pn subtree will be aliased under alias-pn. 70 * 71 * 72 * OPERATION OF A NULL LAYER 73 * 74 * The null layer is the minimum filesystem layer, 75 * simply bypassing all possible operations to the lower layer 76 * for processing there. The majority of its activity centers 77 * on the bypass routine, through which nearly all vnode operations 78 * pass. 79 * 80 * The bypass routine accepts arbitrary vnode operations for 81 * handling by the lower layer. It begins by examining vnode 82 * operation arguments and replacing any null-nodes by their 83 * lower-layer equivlants. It then invokes the operation 84 * on the lower layer. Finally, it replaces the null-nodes 85 * in the arguments and, if a vnode is return by the operation, 86 * stacks a null-node on top of the returned vnode. 87 * 88 * Although bypass handles most operations, vop_getattr, vop_lock, 89 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 90 * bypassed. Vop_getattr must change the fsid being returned. 91 * Vop_lock and vop_unlock must handle any locking for the 92 * current vnode as well as pass the lock request down. 93 * Vop_inactive and vop_reclaim are not bypassed so that 94 * they can handle freeing null-layer specific data. Vop_print 95 * is not bypassed to avoid excessive debugging information. 96 * Also, certain vnode operations change the locking state within 97 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 98 * and symlink). Ideally these operations should not change the 99 * lock state, but should be changed to let the caller of the 100 * function unlock them. Otherwise all intermediate vnode layers 101 * (such as union, umapfs, etc) must catch these functions to do 102 * the necessary locking at their layer. 103 * 104 * 105 * INSTANTIATING VNODE STACKS 106 * 107 * Mounting associates the null layer with a lower layer, 108 * effect stacking two VFSes. Vnode stacks are instead 109 * created on demand as files are accessed. 110 * 111 * The initial mount creates a single vnode stack for the 112 * root of the new null layer. All other vnode stacks 113 * are created as a result of vnode operations on 114 * this or other null vnode stacks. 115 * 116 * New vnode stacks come into existence as a result of 117 * an operation which returns a vnode. 118 * The bypass routine stacks a null-node above the new 119 * vnode before returning it to the caller. 120 * 121 * For example, imagine mounting a null layer with 122 * "mount_nullfs /usr/include /dev/layer/null". 123 * Changing directory to /dev/layer/null will assign 124 * the root null-node (which was created when the null layer was mounted). 125 * Now consider opening "sys". A vop_lookup would be 126 * done on the root null-node. This operation would bypass through 127 * to the lower layer which would return a vnode representing 128 * the UFS "sys". Null_bypass then builds a null-node 129 * aliasing the UFS "sys" and returns this to the caller. 130 * Later operations on the null-node "sys" will repeat this 131 * process when constructing other vnode stacks. 132 * 133 * 134 * CREATING OTHER FILE SYSTEM LAYERS 135 * 136 * One of the easiest ways to construct new filesystem layers is to make 137 * a copy of the null layer, rename all files and variables, and 138 * then begin modifing the copy. Sed can be used to easily rename 139 * all variables. 140 * 141 * The umap layer is an example of a layer descended from the 142 * null layer. 143 * 144 * 145 * INVOKING OPERATIONS ON LOWER LAYERS 146 * 147 * There are two techniques to invoke operations on a lower layer 148 * when the operation cannot be completely bypassed. Each method 149 * is appropriate in different situations. In both cases, 150 * it is the responsibility of the aliasing layer to make 151 * the operation arguments "correct" for the lower layer 152 * by mapping a vnode arguments to the lower layer. 153 * 154 * The first approach is to call the aliasing layer's bypass routine. 155 * This method is most suitable when you wish to invoke the operation 156 * currently being handled on the lower layer. It has the advantage 157 * that the bypass routine already must do argument mapping. 158 * An example of this is null_getattrs in the null layer. 159 * 160 * A second approach is to directly invoke vnode operations on 161 * the lower layer with the VOP_OPERATIONNAME interface. 162 * The advantage of this method is that it is easy to invoke 163 * arbitrary operations on the lower layer. The disadvantage 164 * is that vnode arguments must be manualy mapped. 165 * 166 */ 167 168 #include <sys/param.h> 169 #include <sys/systm.h> 170 #include <sys/conf.h> 171 #include <sys/kernel.h> 172 #include <sys/lock.h> 173 #include <sys/malloc.h> 174 #include <sys/mount.h> 175 #include <sys/mutex.h> 176 #include <sys/namei.h> 177 #include <sys/sysctl.h> 178 #include <sys/vnode.h> 179 #include <sys/stat.h> 180 181 #include <fs/nullfs/null.h> 182 183 #include <vm/vm.h> 184 #include <vm/vm_extern.h> 185 #include <vm/vm_object.h> 186 #include <vm/vnode_pager.h> 187 188 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 189 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 190 &null_bug_bypass, 0, ""); 191 192 /* 193 * Synchronize inotify flags with the lower vnode: 194 * - If the upper vnode has the flag set and the lower does not, then the lower 195 * vnode is unwatched and the upper vnode does not need to go through 196 * VOP_INOTIFY. 197 * - If the lower vnode is watched, then the upper vnode should go through 198 * VOP_INOTIFY, so copy the flag up. 199 */ 200 static void 201 null_copy_inotify(struct vnode *vp, struct vnode *lvp, short flag) 202 { 203 if ((vn_irflag_read(vp) & flag) != 0) { 204 if (__predict_false((vn_irflag_read(lvp) & flag) == 0)) 205 vn_irflag_unset(vp, flag); 206 } else if ((vn_irflag_read(lvp) & flag) != 0) { 207 if (__predict_false((vn_irflag_read(vp) & flag) == 0)) 208 vn_irflag_set(vp, flag); 209 } 210 } 211 212 /* 213 * This is the 10-Apr-92 bypass routine. 214 * This version has been optimized for speed, throwing away some 215 * safety checks. It should still always work, but it's not as 216 * robust to programmer errors. 217 * 218 * In general, we map all vnodes going down and unmap them on the way back. 219 * As an exception to this, vnodes can be marked "unmapped" by setting 220 * the Nth bit in operation's vdesc_flags. 221 * 222 * Also, some BSD vnode operations have the side effect of vrele'ing 223 * their arguments. With stacking, the reference counts are held 224 * by the upper node, not the lower one, so we must handle these 225 * side-effects here. This is not of concern in Sun-derived systems 226 * since there are no such side-effects. 227 * 228 * This makes the following assumptions: 229 * - only one returned vpp 230 * - no INOUT vpp's (Sun's vop_open has one of these) 231 * - the vnode operation vector of the first vnode should be used 232 * to determine what implementation of the op should be invoked 233 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 234 * problems on rmdir'ing mount points and renaming?) 235 */ 236 int 237 null_bypass(struct vop_generic_args *ap) 238 { 239 struct vnode **this_vp_p; 240 struct vnode *old_vps[VDESC_MAX_VPS]; 241 struct vnode **vps_p[VDESC_MAX_VPS]; 242 struct vnode ***vppp; 243 struct vnode *lvp; 244 struct vnodeop_desc *descp = ap->a_desc; 245 int error, i, reles; 246 247 if (null_bug_bypass) 248 printf ("null_bypass: %s\n", descp->vdesc_name); 249 250 #ifdef DIAGNOSTIC 251 /* 252 * We require at least one vp. 253 */ 254 if (descp->vdesc_vp_offsets == NULL || 255 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 256 panic ("null_bypass: no vp's in map"); 257 #endif 258 259 /* 260 * Map the vnodes going in. 261 * Later, we'll invoke the operation based on 262 * the first mapped vnode's operation vector. 263 */ 264 reles = descp->vdesc_flags; 265 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 266 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 267 break; /* bail out at end of list */ 268 vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **, 269 descp->vdesc_vp_offsets[i], ap); 270 271 /* 272 * We're not guaranteed that any but the first vnode 273 * are of our type. Check for and don't map any 274 * that aren't. (We must always map first vp or vclean fails.) 275 */ 276 if (i != 0 && (*this_vp_p == NULLVP || 277 (*this_vp_p)->v_op != &null_vnodeops)) { 278 old_vps[i] = NULLVP; 279 } else { 280 old_vps[i] = *this_vp_p; 281 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 282 283 /* 284 * The upper vnode reference to the lower 285 * vnode is the only reference that keeps our 286 * pointer to the lower vnode alive. If lower 287 * vnode is relocked during the VOP call, 288 * upper vnode might become unlocked and 289 * reclaimed, which invalidates our reference. 290 * Add a transient hold around VOP call. 291 */ 292 vhold(*this_vp_p); 293 294 /* 295 * XXX - Several operations have the side effect 296 * of vrele'ing their vp's. We must account for 297 * that. (This should go away in the future.) 298 */ 299 if (reles & VDESC_VP0_WILLRELE) 300 vref(*this_vp_p); 301 } 302 } 303 304 /* 305 * Call the operation on the lower layer 306 * with the modified argument structure. 307 */ 308 if (vps_p[0] != NULL && *vps_p[0] != NULL) { 309 error = VCALL(ap); 310 } else { 311 printf("null_bypass: no map for %s\n", descp->vdesc_name); 312 error = EINVAL; 313 } 314 315 /* 316 * Maintain the illusion of call-by-value 317 * by restoring vnodes in the argument structure 318 * to their original value. 319 */ 320 reles = descp->vdesc_flags; 321 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 322 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 323 break; /* bail out at end of list */ 324 if (old_vps[i] != NULL) { 325 lvp = *(vps_p[i]); 326 327 /* 328 * Get rid of the transient hold on lvp. Copy inotify 329 * flags up in case something is watching the lower 330 * layer. 331 * 332 * If lowervp was unlocked during VOP 333 * operation, nullfs upper vnode could have 334 * been reclaimed, which changes its v_vnlock 335 * back to private v_lock. In this case we 336 * must move lock ownership from lower to 337 * upper (reclaimed) vnode. 338 */ 339 if (lvp != NULLVP) { 340 null_copy_inotify(old_vps[i], lvp, 341 VIRF_INOTIFY); 342 null_copy_inotify(old_vps[i], lvp, 343 VIRF_INOTIFY_PARENT); 344 if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE && 345 old_vps[i]->v_vnlock != lvp->v_vnlock) { 346 VOP_UNLOCK(lvp); 347 VOP_LOCK(old_vps[i], LK_EXCLUSIVE | 348 LK_RETRY); 349 } 350 vdrop(lvp); 351 } 352 353 *(vps_p[i]) = old_vps[i]; 354 #if 0 355 if (reles & VDESC_VP0_WILLUNLOCK) 356 VOP_UNLOCK(*(vps_p[i]), 0); 357 #endif 358 if (reles & VDESC_VP0_WILLRELE) 359 vrele(*(vps_p[i])); 360 } 361 } 362 363 /* 364 * Map the possible out-going vpp 365 * (Assumes that the lower layer always returns 366 * a VREF'ed vpp unless it gets an error.) 367 */ 368 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) { 369 /* 370 * XXX - even though some ops have vpp returned vp's, 371 * several ops actually vrele this before returning. 372 * We must avoid these ops. 373 * (This should go away when these ops are regularized.) 374 */ 375 vppp = VOPARG_OFFSETTO(struct vnode ***, 376 descp->vdesc_vpp_offset, ap); 377 if (*vppp != NULL) 378 error = null_nodeget(old_vps[0]->v_mount, **vppp, 379 *vppp); 380 } 381 382 return (error); 383 } 384 385 static int 386 null_add_writecount(struct vop_add_writecount_args *ap) 387 { 388 struct vnode *lvp, *vp; 389 int error; 390 391 vp = ap->a_vp; 392 lvp = NULLVPTOLOWERVP(vp); 393 VI_LOCK(vp); 394 /* text refs are bypassed to lowervp */ 395 VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount")); 396 VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp, 397 ("wrong writecount inc %d", ap->a_inc)); 398 error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc); 399 if (error == 0) 400 vp->v_writecount += ap->a_inc; 401 VI_UNLOCK(vp); 402 return (error); 403 } 404 405 /* 406 * We have to carry on the locking protocol on the null layer vnodes 407 * as we progress through the tree. We also have to enforce read-only 408 * if this layer is mounted read-only. 409 */ 410 static int 411 null_lookup(struct vop_lookup_args *ap) 412 { 413 struct componentname *cnp = ap->a_cnp; 414 struct vnode *dvp = ap->a_dvp; 415 uint64_t flags = cnp->cn_flags; 416 struct vnode *vp, *ldvp, *lvp; 417 struct mount *mp; 418 int error; 419 420 mp = dvp->v_mount; 421 if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 && 422 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 423 return (EROFS); 424 /* 425 * Although it is possible to call null_bypass(), we'll do 426 * a direct call to reduce overhead 427 */ 428 ldvp = NULLVPTOLOWERVP(dvp); 429 vp = lvp = NULL; 430 431 /* 432 * Renames in the lower mounts might create an inconsistent 433 * configuration where lower vnode is moved out of the directory tree 434 * remounted by our null mount. 435 * 436 * Do not try to handle it fancy, just avoid VOP_LOOKUP() with DOTDOT 437 * name which cannot be handled by the VOP. 438 */ 439 if ((flags & ISDOTDOT) != 0) { 440 struct nameidata *ndp; 441 442 if ((ldvp->v_vflag & VV_ROOT) != 0) { 443 KASSERT((dvp->v_vflag & VV_ROOT) == 0, 444 ("ldvp %p fl %#x dvp %p fl %#x flags %#jx", 445 ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, 446 (uintmax_t)flags)); 447 return (ENOENT); 448 } 449 ndp = vfs_lookup_nameidata(cnp); 450 if (ndp != NULL && vfs_lookup_isroot(ndp, ldvp)) 451 return (ENOENT); 452 } 453 454 /* 455 * Hold ldvp. The reference on it, owned by dvp, is lost in 456 * case of dvp reclamation, and we need ldvp to move our lock 457 * from ldvp to dvp. 458 */ 459 vhold(ldvp); 460 461 error = VOP_LOOKUP(ldvp, &lvp, cnp); 462 463 /* 464 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows 465 * dvp to be reclaimed due to shared v_vnlock. Check for the 466 * doomed state and return error. 467 */ 468 if (VN_IS_DOOMED(dvp)) { 469 if (error == 0 || error == EJUSTRETURN) { 470 if (lvp != NULL) 471 vput(lvp); 472 error = ENOENT; 473 } 474 475 /* 476 * If vgone() did reclaimed dvp before curthread 477 * relocked ldvp, the locks of dvp and ldpv are no 478 * longer shared. In this case, relock of ldvp in 479 * lower fs VOP_LOOKUP() does not restore the locking 480 * state of dvp. Compensate for this by unlocking 481 * ldvp and locking dvp, which is also correct if the 482 * locks are still shared. 483 */ 484 VOP_UNLOCK(ldvp); 485 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 486 } 487 vdrop(ldvp); 488 489 if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 && 490 (mp->mnt_flag & MNT_RDONLY) != 0 && 491 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 492 error = EROFS; 493 494 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 495 if (ldvp == lvp) { 496 *ap->a_vpp = dvp; 497 VREF(dvp); 498 vrele(lvp); 499 } else { 500 error = null_nodeget(mp, lvp, &vp); 501 if (error == 0) 502 *ap->a_vpp = vp; 503 } 504 } 505 return (error); 506 } 507 508 static int 509 null_open(struct vop_open_args *ap) 510 { 511 int retval; 512 struct vnode *vp, *ldvp; 513 514 vp = ap->a_vp; 515 ldvp = NULLVPTOLOWERVP(vp); 516 retval = null_bypass(&ap->a_gen); 517 if (retval == 0) { 518 vp->v_object = ldvp->v_object; 519 if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) { 520 MPASS(vp->v_object != NULL); 521 if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) { 522 vn_irflag_set_cond(vp, VIRF_PGREAD); 523 } 524 } 525 } 526 return (retval); 527 } 528 529 /* 530 * Setattr call. Disallow write attempts if the layer is mounted read-only. 531 */ 532 static int 533 null_setattr(struct vop_setattr_args *ap) 534 { 535 struct vnode *vp = ap->a_vp; 536 struct vattr *vap = ap->a_vap; 537 538 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 539 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 540 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 541 (vp->v_mount->mnt_flag & MNT_RDONLY)) 542 return (EROFS); 543 if (vap->va_size != VNOVAL) { 544 switch (vp->v_type) { 545 case VDIR: 546 return (EISDIR); 547 case VCHR: 548 case VBLK: 549 case VSOCK: 550 case VFIFO: 551 if (vap->va_flags != VNOVAL) 552 return (EOPNOTSUPP); 553 return (0); 554 case VREG: 555 case VLNK: 556 default: 557 /* 558 * Disallow write attempts if the filesystem is 559 * mounted read-only. 560 */ 561 if (vp->v_mount->mnt_flag & MNT_RDONLY) 562 return (EROFS); 563 } 564 } 565 566 return (null_bypass(&ap->a_gen)); 567 } 568 569 /* 570 * We handle stat and getattr only to change the fsid. 571 */ 572 static int 573 null_stat(struct vop_stat_args *ap) 574 { 575 int error; 576 577 if ((error = null_bypass(&ap->a_gen)) != 0) 578 return (error); 579 580 ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 581 return (0); 582 } 583 584 static int 585 null_getattr(struct vop_getattr_args *ap) 586 { 587 int error; 588 589 if ((error = null_bypass(&ap->a_gen)) != 0) 590 return (error); 591 592 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 593 return (0); 594 } 595 596 /* 597 * Handle to disallow write access if mounted read-only. 598 */ 599 static int 600 null_access(struct vop_access_args *ap) 601 { 602 struct vnode *vp = ap->a_vp; 603 accmode_t accmode = ap->a_accmode; 604 605 /* 606 * Disallow write attempts on read-only layers; 607 * unless the file is a socket, fifo, or a block or 608 * character device resident on the filesystem. 609 */ 610 if (accmode & VWRITE) { 611 switch (vp->v_type) { 612 case VDIR: 613 case VLNK: 614 case VREG: 615 if (vp->v_mount->mnt_flag & MNT_RDONLY) 616 return (EROFS); 617 break; 618 default: 619 break; 620 } 621 } 622 return (null_bypass(&ap->a_gen)); 623 } 624 625 static int 626 null_accessx(struct vop_accessx_args *ap) 627 { 628 struct vnode *vp = ap->a_vp; 629 accmode_t accmode = ap->a_accmode; 630 631 /* 632 * Disallow write attempts on read-only layers; 633 * unless the file is a socket, fifo, or a block or 634 * character device resident on the filesystem. 635 */ 636 if (accmode & VWRITE) { 637 switch (vp->v_type) { 638 case VDIR: 639 case VLNK: 640 case VREG: 641 if (vp->v_mount->mnt_flag & MNT_RDONLY) 642 return (EROFS); 643 break; 644 default: 645 break; 646 } 647 } 648 return (null_bypass(&ap->a_gen)); 649 } 650 651 /* 652 * Increasing refcount of lower vnode is needed at least for the case 653 * when lower FS is NFS to do sillyrename if the file is in use. 654 * Unfortunately v_usecount is incremented in many places in 655 * the kernel and, as such, there may be races that result in 656 * the NFS client doing an extraneous silly rename, but that seems 657 * preferable to not doing a silly rename when it is needed. 658 */ 659 static int 660 null_remove(struct vop_remove_args *ap) 661 { 662 int retval, vreleit; 663 struct vnode *lvp, *vp; 664 665 vp = ap->a_vp; 666 if (vrefcnt(vp) > 1) { 667 lvp = NULLVPTOLOWERVP(vp); 668 VREF(lvp); 669 vreleit = 1; 670 } else 671 vreleit = 0; 672 VTONULL(vp)->null_flags |= NULLV_DROP; 673 retval = null_bypass(&ap->a_gen); 674 if (vreleit != 0) 675 vrele(lvp); 676 return (retval); 677 } 678 679 /* 680 * We handle this to eliminate null FS to lower FS 681 * file moving. Don't know why we don't allow this, 682 * possibly we should. 683 */ 684 static int 685 null_rename(struct vop_rename_args *ap) 686 { 687 struct vnode *fdvp, *fvp, *tdvp, *tvp; 688 struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp; 689 struct null_node *fdnn, *fnn, *tdnn, *tnn; 690 int error; 691 692 tdvp = ap->a_tdvp; 693 fvp = ap->a_fvp; 694 fdvp = ap->a_fdvp; 695 tvp = ap->a_tvp; 696 lfdvp = NULL; 697 698 /* Check for cross-device rename. */ 699 if ((fvp->v_mount != tdvp->v_mount) || 700 (tvp != NULL && fvp->v_mount != tvp->v_mount)) { 701 error = EXDEV; 702 goto upper_err; 703 } 704 705 VI_LOCK(fdvp); 706 fdnn = VTONULL(fdvp); 707 if (fdnn == NULL) { /* fdvp is not locked, can be doomed */ 708 VI_UNLOCK(fdvp); 709 error = ENOENT; 710 goto upper_err; 711 } 712 lfdvp = fdnn->null_lowervp; 713 vref(lfdvp); 714 VI_UNLOCK(fdvp); 715 716 VI_LOCK(fvp); 717 fnn = VTONULL(fvp); 718 if (fnn == NULL) { 719 VI_UNLOCK(fvp); 720 error = ENOENT; 721 goto upper_err; 722 } 723 lfvp = fnn->null_lowervp; 724 vref(lfvp); 725 VI_UNLOCK(fvp); 726 727 tdnn = VTONULL(tdvp); 728 ltdvp = tdnn->null_lowervp; 729 vref(ltdvp); 730 731 if (tvp != NULL) { 732 tnn = VTONULL(tvp); 733 ltvp = tnn->null_lowervp; 734 vref(ltvp); 735 tnn->null_flags |= NULLV_DROP; 736 } else { 737 ltvp = NULL; 738 } 739 740 error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp); 741 vrele(fdvp); 742 vrele(fvp); 743 vrele(tdvp); 744 if (tvp != NULL) 745 vrele(tvp); 746 return (error); 747 748 upper_err: 749 if (tdvp == tvp) 750 vrele(tdvp); 751 else 752 vput(tdvp); 753 if (tvp) 754 vput(tvp); 755 if (lfdvp != NULL) 756 vrele(lfdvp); 757 vrele(fdvp); 758 vrele(fvp); 759 return (error); 760 } 761 762 static int 763 null_rmdir(struct vop_rmdir_args *ap) 764 { 765 766 VTONULL(ap->a_vp)->null_flags |= NULLV_DROP; 767 return (null_bypass(&ap->a_gen)); 768 } 769 770 /* 771 * We need to process our own vnode lock and then clear the 772 * interlock flag as it applies only to our vnode, not the 773 * vnodes below us on the stack. 774 */ 775 static int 776 null_lock(struct vop_lock1_args *ap) 777 { 778 struct vnode *vp = ap->a_vp; 779 int flags; 780 struct null_node *nn; 781 struct vnode *lvp; 782 int error; 783 784 if ((ap->a_flags & LK_INTERLOCK) == 0) 785 VI_LOCK(vp); 786 else 787 ap->a_flags &= ~LK_INTERLOCK; 788 flags = ap->a_flags; 789 nn = VTONULL(vp); 790 /* 791 * If we're still active we must ask the lower layer to 792 * lock as ffs has special lock considerations in its 793 * vop lock. 794 */ 795 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 796 /* 797 * We have to hold the vnode here to solve a potential 798 * reclaim race. If we're forcibly vgone'd while we 799 * still have refs, a thread could be sleeping inside 800 * the lowervp's vop_lock routine. When we vgone we will 801 * drop our last ref to the lowervp, which would allow it 802 * to be reclaimed. The lowervp could then be recycled, 803 * in which case it is not legal to be sleeping in its VOP. 804 * We prevent it from being recycled by holding the vnode 805 * here. 806 */ 807 vholdnz(lvp); 808 VI_UNLOCK(vp); 809 error = VOP_LOCK(lvp, flags); 810 811 /* 812 * We might have slept to get the lock and someone might have 813 * clean our vnode already, switching vnode lock from one in 814 * lowervp to v_lock in our own vnode structure. Handle this 815 * case by reacquiring correct lock in requested mode. 816 */ 817 if (VTONULL(vp) == NULL && error == 0) { 818 ap->a_flags &= ~LK_TYPE_MASK; 819 switch (flags & LK_TYPE_MASK) { 820 case LK_SHARED: 821 ap->a_flags |= LK_SHARED; 822 break; 823 case LK_UPGRADE: 824 case LK_EXCLUSIVE: 825 ap->a_flags |= LK_EXCLUSIVE; 826 break; 827 default: 828 panic("Unsupported lock request %d\n", 829 ap->a_flags); 830 } 831 VOP_UNLOCK(lvp); 832 error = vop_stdlock(ap); 833 } 834 vdrop(lvp); 835 } else { 836 VI_UNLOCK(vp); 837 error = vop_stdlock(ap); 838 } 839 840 return (error); 841 } 842 843 /* 844 * We need to process our own vnode unlock and then clear the 845 * interlock flag as it applies only to our vnode, not the 846 * vnodes below us on the stack. 847 */ 848 static int 849 null_unlock(struct vop_unlock_args *ap) 850 { 851 struct vnode *vp = ap->a_vp; 852 struct null_node *nn; 853 struct vnode *lvp; 854 int error; 855 856 nn = VTONULL(vp); 857 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 858 vholdnz(lvp); 859 error = VOP_UNLOCK(lvp); 860 vdrop(lvp); 861 } else { 862 error = vop_stdunlock(ap); 863 } 864 865 return (error); 866 } 867 868 /* 869 * Do not allow the VOP_INACTIVE to be passed to the lower layer, 870 * since the reference count on the lower vnode is not related to 871 * ours. 872 */ 873 static int 874 null_want_recycle(struct vnode *vp) 875 { 876 struct vnode *lvp; 877 struct null_node *xp; 878 struct mount *mp; 879 struct null_mount *xmp; 880 881 xp = VTONULL(vp); 882 lvp = NULLVPTOLOWERVP(vp); 883 mp = vp->v_mount; 884 xmp = MOUNTTONULLMOUNT(mp); 885 if ((xmp->nullm_flags & NULLM_CACHE) == 0 || 886 (xp->null_flags & NULLV_DROP) != 0 || 887 (lvp->v_vflag & VV_NOSYNC) != 0) { 888 /* 889 * If this is the last reference and caching of the 890 * nullfs vnodes is not enabled, or the lower vnode is 891 * deleted, then free up the vnode so as not to tie up 892 * the lower vnodes. 893 */ 894 return (1); 895 } 896 return (0); 897 } 898 899 static int 900 null_inactive(struct vop_inactive_args *ap) 901 { 902 struct vnode *vp; 903 904 vp = ap->a_vp; 905 if (null_want_recycle(vp)) { 906 vp->v_object = NULL; 907 vrecycle(vp); 908 } 909 return (0); 910 } 911 912 static int 913 null_need_inactive(struct vop_need_inactive_args *ap) 914 { 915 916 return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp)); 917 } 918 919 /* 920 * Now, the nullfs vnode and, due to the sharing lock, the lower 921 * vnode, are exclusively locked, and we shall destroy the null vnode. 922 */ 923 static int 924 null_reclaim(struct vop_reclaim_args *ap) 925 { 926 struct vnode *vp; 927 struct null_node *xp; 928 struct vnode *lowervp; 929 930 vp = ap->a_vp; 931 xp = VTONULL(vp); 932 lowervp = xp->null_lowervp; 933 934 KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock, 935 ("Reclaiming incomplete null vnode %p", vp)); 936 937 null_hashrem(xp); 938 /* 939 * Use the interlock to protect the clearing of v_data to 940 * prevent faults in null_lock(). 941 */ 942 lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL); 943 VI_LOCK(vp); 944 vp->v_data = NULL; 945 vp->v_object = NULL; 946 vp->v_vnlock = &vp->v_lock; 947 948 /* 949 * If we were opened for write, we leased the write reference 950 * to the lower vnode. If this is a reclamation due to the 951 * forced unmount, undo the reference now. 952 */ 953 if (vp->v_writecount > 0) 954 VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount); 955 else if (vp->v_writecount < 0) 956 vp->v_writecount = 0; 957 958 VI_UNLOCK(vp); 959 960 if ((xp->null_flags & NULLV_NOUNLOCK) != 0) 961 vunref(lowervp); 962 else 963 vput(lowervp); 964 free(xp, M_NULLFSNODE); 965 966 return (0); 967 } 968 969 static int 970 null_print(struct vop_print_args *ap) 971 { 972 struct vnode *vp = ap->a_vp; 973 974 printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp); 975 return (0); 976 } 977 978 /* ARGSUSED */ 979 static int 980 null_getwritemount(struct vop_getwritemount_args *ap) 981 { 982 struct null_node *xp; 983 struct vnode *lowervp; 984 struct vnode *vp; 985 986 vp = ap->a_vp; 987 VI_LOCK(vp); 988 xp = VTONULL(vp); 989 if (xp && (lowervp = xp->null_lowervp)) { 990 vholdnz(lowervp); 991 VI_UNLOCK(vp); 992 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp); 993 vdrop(lowervp); 994 } else { 995 VI_UNLOCK(vp); 996 *(ap->a_mpp) = NULL; 997 } 998 return (0); 999 } 1000 1001 static int 1002 null_vptofh(struct vop_vptofh_args *ap) 1003 { 1004 struct vnode *lvp; 1005 1006 lvp = NULLVPTOLOWERVP(ap->a_vp); 1007 return VOP_VPTOFH(lvp, ap->a_fhp); 1008 } 1009 1010 static int 1011 null_vptocnp(struct vop_vptocnp_args *ap) 1012 { 1013 struct vnode *vp = ap->a_vp; 1014 struct vnode **dvp = ap->a_vpp; 1015 struct vnode *lvp, *ldvp; 1016 struct mount *mp; 1017 int error, locked; 1018 1019 locked = VOP_ISLOCKED(vp); 1020 lvp = NULLVPTOLOWERVP(vp); 1021 mp = vp->v_mount; 1022 error = vfs_busy(mp, MBF_NOWAIT); 1023 if (error != 0) 1024 return (error); 1025 vhold(lvp); 1026 VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */ 1027 ldvp = lvp; 1028 vref(lvp); 1029 error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen); 1030 vdrop(lvp); 1031 if (error != 0) { 1032 vn_lock(vp, locked | LK_RETRY); 1033 vfs_unbusy(mp); 1034 return (ENOENT); 1035 } 1036 1037 error = vn_lock(ldvp, LK_SHARED); 1038 if (error != 0) { 1039 vrele(ldvp); 1040 vn_lock(vp, locked | LK_RETRY); 1041 vfs_unbusy(mp); 1042 return (ENOENT); 1043 } 1044 error = null_nodeget(mp, ldvp, dvp); 1045 if (error == 0) { 1046 #ifdef DIAGNOSTIC 1047 NULLVPTOLOWERVP(*dvp); 1048 #endif 1049 VOP_UNLOCK(*dvp); /* keep reference on *dvp */ 1050 } 1051 vn_lock(vp, locked | LK_RETRY); 1052 vfs_unbusy(mp); 1053 return (error); 1054 } 1055 1056 static int 1057 null_read_pgcache(struct vop_read_pgcache_args *ap) 1058 { 1059 struct vnode *lvp, *vp; 1060 struct null_node *xp; 1061 int error; 1062 1063 vp = ap->a_vp; 1064 VI_LOCK(vp); 1065 xp = VTONULL(vp); 1066 if (xp == NULL) { 1067 VI_UNLOCK(vp); 1068 return (EJUSTRETURN); 1069 } 1070 lvp = xp->null_lowervp; 1071 vref(lvp); 1072 VI_UNLOCK(vp); 1073 error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred); 1074 vrele(lvp); 1075 return (error); 1076 } 1077 1078 static int 1079 null_advlock(struct vop_advlock_args *ap) 1080 { 1081 struct vnode *lvp, *vp; 1082 struct null_node *xp; 1083 int error; 1084 1085 vp = ap->a_vp; 1086 VI_LOCK(vp); 1087 xp = VTONULL(vp); 1088 if (xp == NULL) { 1089 VI_UNLOCK(vp); 1090 return (EBADF); 1091 } 1092 lvp = xp->null_lowervp; 1093 vref(lvp); 1094 VI_UNLOCK(vp); 1095 error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags); 1096 vrele(lvp); 1097 return (error); 1098 } 1099 1100 /* 1101 * Avoid standard bypass, since lower dvp and vp could be no longer 1102 * valid after vput(). 1103 */ 1104 static int 1105 null_vput_pair(struct vop_vput_pair_args *ap) 1106 { 1107 struct mount *mp; 1108 struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp; 1109 int error, res; 1110 1111 dvp = ap->a_dvp; 1112 ldvp = NULLVPTOLOWERVP(dvp); 1113 vref(ldvp); 1114 1115 vpp = ap->a_vpp; 1116 vp = NULL; 1117 lvp = NULL; 1118 mp = NULL; 1119 if (vpp != NULL) 1120 vp = *vpp; 1121 if (vp != NULL) { 1122 lvp = NULLVPTOLOWERVP(vp); 1123 vref(lvp); 1124 if (!ap->a_unlock_vp) { 1125 vhold(vp); 1126 vhold(lvp); 1127 mp = vp->v_mount; 1128 vfs_ref(mp); 1129 } 1130 } 1131 1132 res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true); 1133 if (vp != NULL && ap->a_unlock_vp) 1134 vrele(vp); 1135 vrele(dvp); 1136 1137 if (vp == NULL || ap->a_unlock_vp) 1138 return (res); 1139 1140 /* lvp has been unlocked and vp might be reclaimed */ 1141 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 1142 if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) { 1143 vput(vp); 1144 vget(lvp, LK_EXCLUSIVE | LK_RETRY); 1145 if (VN_IS_DOOMED(lvp)) { 1146 vput(lvp); 1147 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1148 } else { 1149 error = null_nodeget(mp, lvp, &vp1); 1150 if (error == 0) { 1151 *vpp = vp1; 1152 } else { 1153 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1154 } 1155 } 1156 vfs_unbusy(mp); 1157 } 1158 vdrop(lvp); 1159 vdrop(vp); 1160 vfs_rel(mp); 1161 1162 return (res); 1163 } 1164 1165 static int 1166 null_getlowvnode(struct vop_getlowvnode_args *ap) 1167 { 1168 struct vnode *vp, *vpl; 1169 1170 vp = ap->a_vp; 1171 if (vn_lock(vp, LK_SHARED) != 0) 1172 return (EBADF); 1173 1174 vpl = NULLVPTOLOWERVP(vp); 1175 vhold(vpl); 1176 VOP_UNLOCK(vp); 1177 VOP_GETLOWVNODE(vpl, ap->a_vplp, ap->a_flags); 1178 vdrop(vpl); 1179 return (0); 1180 } 1181 1182 /* 1183 * Global vfs data structures 1184 */ 1185 struct vop_vector null_vnodeops = { 1186 .vop_bypass = null_bypass, 1187 .vop_access = null_access, 1188 .vop_accessx = null_accessx, 1189 .vop_advlock = null_advlock, 1190 .vop_advlockpurge = vop_stdadvlockpurge, 1191 .vop_bmap = VOP_EOPNOTSUPP, 1192 .vop_stat = null_stat, 1193 .vop_getattr = null_getattr, 1194 .vop_getlowvnode = null_getlowvnode, 1195 .vop_getwritemount = null_getwritemount, 1196 .vop_inactive = null_inactive, 1197 .vop_need_inactive = null_need_inactive, 1198 .vop_islocked = vop_stdislocked, 1199 .vop_lock1 = null_lock, 1200 .vop_lookup = null_lookup, 1201 .vop_open = null_open, 1202 .vop_print = null_print, 1203 .vop_read_pgcache = null_read_pgcache, 1204 .vop_reclaim = null_reclaim, 1205 .vop_remove = null_remove, 1206 .vop_rename = null_rename, 1207 .vop_rmdir = null_rmdir, 1208 .vop_setattr = null_setattr, 1209 .vop_strategy = VOP_EOPNOTSUPP, 1210 .vop_unlock = null_unlock, 1211 .vop_vptocnp = null_vptocnp, 1212 .vop_vptofh = null_vptofh, 1213 .vop_add_writecount = null_add_writecount, 1214 .vop_vput_pair = null_vput_pair, 1215 .vop_copy_file_range = VOP_PANIC, 1216 }; 1217 VFS_VOP_VECTOR_REGISTER(null_vnodeops); 1218