xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33  *
34  * Ancestors:
35  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36  *	...and...
37  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38  *
39  * $FreeBSD$
40  */
41 
42 /*
43  * Null Layer
44  *
45  * (See mount_nullfs(8) for more information.)
46  *
47  * The null layer duplicates a portion of the filesystem
48  * name space under a new name.  In this respect, it is
49  * similar to the loopback filesystem.  It differs from
50  * the loopback fs in two respects:  it is implemented using
51  * a stackable layers techniques, and its "null-node"s stack above
52  * all lower-layer vnodes, not just over directory vnodes.
53  *
54  * The null layer has two purposes.  First, it serves as a demonstration
55  * of layering by proving a layer which does nothing.  (It actually
56  * does everything the loopback filesystem does, which is slightly
57  * more than nothing.)  Second, the null layer can serve as a prototype
58  * layer.  Since it provides all necessary layer framework,
59  * new filesystem layers can be created very easily be starting
60  * with a null layer.
61  *
62  * The remainder of this man page examines the null layer as a basis
63  * for constructing new layers.
64  *
65  *
66  * INSTANTIATING NEW NULL LAYERS
67  *
68  * New null layers are created with mount_nullfs(8).
69  * Mount_nullfs(8) takes two arguments, the pathname
70  * of the lower vfs (target-pn) and the pathname where the null
71  * layer will appear in the namespace (alias-pn).  After
72  * the null layer is put into place, the contents
73  * of target-pn subtree will be aliased under alias-pn.
74  *
75  *
76  * OPERATION OF A NULL LAYER
77  *
78  * The null layer is the minimum filesystem layer,
79  * simply bypassing all possible operations to the lower layer
80  * for processing there.  The majority of its activity centers
81  * on the bypass routine, through which nearly all vnode operations
82  * pass.
83  *
84  * The bypass routine accepts arbitrary vnode operations for
85  * handling by the lower layer.  It begins by examing vnode
86  * operation arguments and replacing any null-nodes by their
87  * lower-layer equivlants.  It then invokes the operation
88  * on the lower layer.  Finally, it replaces the null-nodes
89  * in the arguments and, if a vnode is return by the operation,
90  * stacks a null-node on top of the returned vnode.
91  *
92  * Although bypass handles most operations, vop_getattr, vop_lock,
93  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94  * bypassed. Vop_getattr must change the fsid being returned.
95  * Vop_lock and vop_unlock must handle any locking for the
96  * current vnode as well as pass the lock request down.
97  * Vop_inactive and vop_reclaim are not bypassed so that
98  * they can handle freeing null-layer specific data. Vop_print
99  * is not bypassed to avoid excessive debugging information.
100  * Also, certain vnode operations change the locking state within
101  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102  * and symlink). Ideally these operations should not change the
103  * lock state, but should be changed to let the caller of the
104  * function unlock them. Otherwise all intermediate vnode layers
105  * (such as union, umapfs, etc) must catch these functions to do
106  * the necessary locking at their layer.
107  *
108  *
109  * INSTANTIATING VNODE STACKS
110  *
111  * Mounting associates the null layer with a lower layer,
112  * effect stacking two VFSes.  Vnode stacks are instead
113  * created on demand as files are accessed.
114  *
115  * The initial mount creates a single vnode stack for the
116  * root of the new null layer.  All other vnode stacks
117  * are created as a result of vnode operations on
118  * this or other null vnode stacks.
119  *
120  * New vnode stacks come into existance as a result of
121  * an operation which returns a vnode.
122  * The bypass routine stacks a null-node above the new
123  * vnode before returning it to the caller.
124  *
125  * For example, imagine mounting a null layer with
126  * "mount_nullfs /usr/include /dev/layer/null".
127  * Changing directory to /dev/layer/null will assign
128  * the root null-node (which was created when the null layer was mounted).
129  * Now consider opening "sys".  A vop_lookup would be
130  * done on the root null-node.  This operation would bypass through
131  * to the lower layer which would return a vnode representing
132  * the UFS "sys".  Null_bypass then builds a null-node
133  * aliasing the UFS "sys" and returns this to the caller.
134  * Later operations on the null-node "sys" will repeat this
135  * process when constructing other vnode stacks.
136  *
137  *
138  * CREATING OTHER FILE SYSTEM LAYERS
139  *
140  * One of the easiest ways to construct new filesystem layers is to make
141  * a copy of the null layer, rename all files and variables, and
142  * then begin modifing the copy.  Sed can be used to easily rename
143  * all variables.
144  *
145  * The umap layer is an example of a layer descended from the
146  * null layer.
147  *
148  *
149  * INVOKING OPERATIONS ON LOWER LAYERS
150  *
151  * There are two techniques to invoke operations on a lower layer
152  * when the operation cannot be completely bypassed.  Each method
153  * is appropriate in different situations.  In both cases,
154  * it is the responsibility of the aliasing layer to make
155  * the operation arguments "correct" for the lower layer
156  * by mapping a vnode arguments to the lower layer.
157  *
158  * The first approach is to call the aliasing layer's bypass routine.
159  * This method is most suitable when you wish to invoke the operation
160  * currently being handled on the lower layer.  It has the advantage
161  * that the bypass routine already must do argument mapping.
162  * An example of this is null_getattrs in the null layer.
163  *
164  * A second approach is to directly invoke vnode operations on
165  * the lower layer with the VOP_OPERATIONNAME interface.
166  * The advantage of this method is that it is easy to invoke
167  * arbitrary operations on the lower layer.  The disadvantage
168  * is that vnode arguments must be manualy mapped.
169  *
170  */
171 
172 #include <sys/param.h>
173 #include <sys/systm.h>
174 #include <sys/conf.h>
175 #include <sys/kernel.h>
176 #include <sys/lock.h>
177 #include <sys/malloc.h>
178 #include <sys/mount.h>
179 #include <sys/mutex.h>
180 #include <sys/namei.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 
184 #include <fs/nullfs/null.h>
185 
186 #include <vm/vm.h>
187 #include <vm/vm_extern.h>
188 #include <vm/vm_object.h>
189 #include <vm/vnode_pager.h>
190 
191 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193 	&null_bug_bypass, 0, "");
194 
195 static int	null_access(struct vop_access_args *ap);
196 static int	null_createvobject(struct vop_createvobject_args *ap);
197 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
198 static int	null_getattr(struct vop_getattr_args *ap);
199 static int	null_getvobject(struct vop_getvobject_args *ap);
200 static int	null_inactive(struct vop_inactive_args *ap);
201 static int	null_islocked(struct vop_islocked_args *ap);
202 static int	null_lock(struct vop_lock_args *ap);
203 static int	null_lookup(struct vop_lookup_args *ap);
204 static int	null_open(struct vop_open_args *ap);
205 static int	null_print(struct vop_print_args *ap);
206 static int	null_reclaim(struct vop_reclaim_args *ap);
207 static int	null_rename(struct vop_rename_args *ap);
208 static int	null_setattr(struct vop_setattr_args *ap);
209 static int	null_unlock(struct vop_unlock_args *ap);
210 
211 /*
212  * This is the 10-Apr-92 bypass routine.
213  *    This version has been optimized for speed, throwing away some
214  * safety checks.  It should still always work, but it's not as
215  * robust to programmer errors.
216  *
217  * In general, we map all vnodes going down and unmap them on the way back.
218  * As an exception to this, vnodes can be marked "unmapped" by setting
219  * the Nth bit in operation's vdesc_flags.
220  *
221  * Also, some BSD vnode operations have the side effect of vrele'ing
222  * their arguments.  With stacking, the reference counts are held
223  * by the upper node, not the lower one, so we must handle these
224  * side-effects here.  This is not of concern in Sun-derived systems
225  * since there are no such side-effects.
226  *
227  * This makes the following assumptions:
228  * - only one returned vpp
229  * - no INOUT vpp's (Sun's vop_open has one of these)
230  * - the vnode operation vector of the first vnode should be used
231  *   to determine what implementation of the op should be invoked
232  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
233  *   problems on rmdir'ing mount points and renaming?)
234  */
235 int
236 null_bypass(ap)
237 	struct vop_generic_args /* {
238 		struct vnodeop_desc *a_desc;
239 		<other random data follows, presumably>
240 	} */ *ap;
241 {
242 	register struct vnode **this_vp_p;
243 	int error;
244 	struct vnode *old_vps[VDESC_MAX_VPS];
245 	struct vnode **vps_p[VDESC_MAX_VPS];
246 	struct vnode ***vppp;
247 	struct vnodeop_desc *descp = ap->a_desc;
248 	int reles, i;
249 
250 	if (null_bug_bypass)
251 		printf ("null_bypass: %s\n", descp->vdesc_name);
252 
253 #ifdef DIAGNOSTIC
254 	/*
255 	 * We require at least one vp.
256 	 */
257 	if (descp->vdesc_vp_offsets == NULL ||
258 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
259 		panic ("null_bypass: no vp's in map");
260 #endif
261 
262 	/*
263 	 * Map the vnodes going in.
264 	 * Later, we'll invoke the operation based on
265 	 * the first mapped vnode's operation vector.
266 	 */
267 	reles = descp->vdesc_flags;
268 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
269 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
270 			break;   /* bail out at end of list */
271 		vps_p[i] = this_vp_p =
272 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
273 		/*
274 		 * We're not guaranteed that any but the first vnode
275 		 * are of our type.  Check for and don't map any
276 		 * that aren't.  (We must always map first vp or vclean fails.)
277 		 */
278 		if (i && (*this_vp_p == NULLVP ||
279 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
280 			old_vps[i] = NULLVP;
281 		} else {
282 			old_vps[i] = *this_vp_p;
283 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
284 			/*
285 			 * XXX - Several operations have the side effect
286 			 * of vrele'ing their vp's.  We must account for
287 			 * that.  (This should go away in the future.)
288 			 */
289 			if (reles & VDESC_VP0_WILLRELE)
290 				VREF(*this_vp_p);
291 		}
292 
293 	}
294 
295 	/*
296 	 * Call the operation on the lower layer
297 	 * with the modified argument structure.
298 	 */
299 	if (vps_p[0] && *vps_p[0])
300 		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
301 	else {
302 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
303 		error = EINVAL;
304 	}
305 
306 	/*
307 	 * Maintain the illusion of call-by-value
308 	 * by restoring vnodes in the argument structure
309 	 * to their original value.
310 	 */
311 	reles = descp->vdesc_flags;
312 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
313 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
314 			break;   /* bail out at end of list */
315 		if (old_vps[i]) {
316 			*(vps_p[i]) = old_vps[i];
317 #if 0
318 			if (reles & VDESC_VP0_WILLUNLOCK)
319 				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
320 #endif
321 			if (reles & VDESC_VP0_WILLRELE)
322 				vrele(*(vps_p[i]));
323 		}
324 	}
325 
326 	/*
327 	 * Map the possible out-going vpp
328 	 * (Assumes that the lower layer always returns
329 	 * a VREF'ed vpp unless it gets an error.)
330 	 */
331 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
332 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
333 	    !error) {
334 		/*
335 		 * XXX - even though some ops have vpp returned vp's,
336 		 * several ops actually vrele this before returning.
337 		 * We must avoid these ops.
338 		 * (This should go away when these ops are regularized.)
339 		 */
340 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
341 			goto out;
342 		vppp = VOPARG_OFFSETTO(struct vnode***,
343 				 descp->vdesc_vpp_offset,ap);
344 		if (*vppp)
345 			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
346 	}
347 
348  out:
349 	return (error);
350 }
351 
352 /*
353  * We have to carry on the locking protocol on the null layer vnodes
354  * as we progress through the tree. We also have to enforce read-only
355  * if this layer is mounted read-only.
356  */
357 static int
358 null_lookup(ap)
359 	struct vop_lookup_args /* {
360 		struct vnode * a_dvp;
361 		struct vnode ** a_vpp;
362 		struct componentname * a_cnp;
363 	} */ *ap;
364 {
365 	struct componentname *cnp = ap->a_cnp;
366 	struct vnode *dvp = ap->a_dvp;
367 	struct thread *td = cnp->cn_thread;
368 	int flags = cnp->cn_flags;
369 	struct vnode *vp, *ldvp, *lvp;
370 	int error;
371 
372 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
373 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
374 		return (EROFS);
375 	/*
376 	 * Although it is possible to call null_bypass(), we'll do
377 	 * a direct call to reduce overhead
378 	 */
379 	ldvp = NULLVPTOLOWERVP(dvp);
380 	vp = lvp = NULL;
381 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
382 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
383 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
384 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
385 		error = EROFS;
386 
387 	/*
388 	 * Rely only on the PDIRUNLOCK flag which should be carefully
389 	 * tracked by underlying filesystem.
390 	 */
391 	if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock)
392 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
393 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
394 		if (ldvp == lvp) {
395 			*ap->a_vpp = dvp;
396 			VREF(dvp);
397 			vrele(lvp);
398 		} else {
399 			error = null_nodeget(dvp->v_mount, lvp, &vp);
400 			if (error) {
401 				/* XXX Cleanup needed... */
402 				panic("null_nodeget failed");
403 			}
404 			*ap->a_vpp = vp;
405 		}
406 	}
407 	return (error);
408 }
409 
410 /*
411  * Setattr call. Disallow write attempts if the layer is mounted read-only.
412  */
413 static int
414 null_setattr(ap)
415 	struct vop_setattr_args /* {
416 		struct vnodeop_desc *a_desc;
417 		struct vnode *a_vp;
418 		struct vattr *a_vap;
419 		struct ucred *a_cred;
420 		struct thread *a_td;
421 	} */ *ap;
422 {
423 	struct vnode *vp = ap->a_vp;
424 	struct vattr *vap = ap->a_vap;
425 
426   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
427 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
428 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
429 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
430 		return (EROFS);
431 	if (vap->va_size != VNOVAL) {
432  		switch (vp->v_type) {
433  		case VDIR:
434  			return (EISDIR);
435  		case VCHR:
436  		case VBLK:
437  		case VSOCK:
438  		case VFIFO:
439 			if (vap->va_flags != VNOVAL)
440 				return (EOPNOTSUPP);
441 			return (0);
442 		case VREG:
443 		case VLNK:
444  		default:
445 			/*
446 			 * Disallow write attempts if the filesystem is
447 			 * mounted read-only.
448 			 */
449 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
450 				return (EROFS);
451 		}
452 	}
453 
454 	return (null_bypass((struct vop_generic_args *)ap));
455 }
456 
457 /*
458  *  We handle getattr only to change the fsid.
459  */
460 static int
461 null_getattr(ap)
462 	struct vop_getattr_args /* {
463 		struct vnode *a_vp;
464 		struct vattr *a_vap;
465 		struct ucred *a_cred;
466 		struct thread *a_td;
467 	} */ *ap;
468 {
469 	int error;
470 
471 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
472 		return (error);
473 
474 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
475 	return (0);
476 }
477 
478 /*
479  * Handle to disallow write access if mounted read-only.
480  */
481 static int
482 null_access(ap)
483 	struct vop_access_args /* {
484 		struct vnode *a_vp;
485 		int  a_mode;
486 		struct ucred *a_cred;
487 		struct thread *a_td;
488 	} */ *ap;
489 {
490 	struct vnode *vp = ap->a_vp;
491 	mode_t mode = ap->a_mode;
492 
493 	/*
494 	 * Disallow write attempts on read-only layers;
495 	 * unless the file is a socket, fifo, or a block or
496 	 * character device resident on the filesystem.
497 	 */
498 	if (mode & VWRITE) {
499 		switch (vp->v_type) {
500 		case VDIR:
501 		case VLNK:
502 		case VREG:
503 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
504 				return (EROFS);
505 			break;
506 		default:
507 			break;
508 		}
509 	}
510 	return (null_bypass((struct vop_generic_args *)ap));
511 }
512 
513 /*
514  * We must handle open to be able to catch MNT_NODEV and friends.
515  */
516 static int
517 null_open(ap)
518 	struct vop_open_args /* {
519 		struct vnode *a_vp;
520 		int  a_mode;
521 		struct ucred *a_cred;
522 		struct thread *a_td;
523 	} */ *ap;
524 {
525 	struct vnode *vp = ap->a_vp;
526 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
527 
528 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
529 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
530 		return ENXIO;
531 
532 	return (null_bypass((struct vop_generic_args *)ap));
533 }
534 
535 /*
536  * We handle this to eliminate null FS to lower FS
537  * file moving. Don't know why we don't allow this,
538  * possibly we should.
539  */
540 static int
541 null_rename(ap)
542 	struct vop_rename_args /* {
543 		struct vnode *a_fdvp;
544 		struct vnode *a_fvp;
545 		struct componentname *a_fcnp;
546 		struct vnode *a_tdvp;
547 		struct vnode *a_tvp;
548 		struct componentname *a_tcnp;
549 	} */ *ap;
550 {
551 	struct vnode *tdvp = ap->a_tdvp;
552 	struct vnode *fvp = ap->a_fvp;
553 	struct vnode *fdvp = ap->a_fdvp;
554 	struct vnode *tvp = ap->a_tvp;
555 
556 	/* Check for cross-device rename. */
557 	if ((fvp->v_mount != tdvp->v_mount) ||
558 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
559 		if (tdvp == tvp)
560 			vrele(tdvp);
561 		else
562 			vput(tdvp);
563 		if (tvp)
564 			vput(tvp);
565 		vrele(fdvp);
566 		vrele(fvp);
567 		return (EXDEV);
568 	}
569 
570 	return (null_bypass((struct vop_generic_args *)ap));
571 }
572 
573 /*
574  * We need to process our own vnode lock and then clear the
575  * interlock flag as it applies only to our vnode, not the
576  * vnodes below us on the stack.
577  */
578 static int
579 null_lock(ap)
580 	struct vop_lock_args /* {
581 		struct vnode *a_vp;
582 		int a_flags;
583 		struct thread *a_td;
584 	} */ *ap;
585 {
586 	struct vnode *vp = ap->a_vp;
587 	int flags = ap->a_flags;
588 	struct thread *td = ap->a_td;
589 	struct vnode *lvp;
590 	int error;
591 	struct null_node *nn;
592 
593 	if (flags & LK_THISLAYER) {
594 		if (vp->v_vnlock != NULL) {
595 			/* lock is shared across layers */
596 			if (flags & LK_INTERLOCK)
597 				mtx_unlock(&vp->v_interlock);
598 			return 0;
599 		}
600 		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
601 		    &vp->v_interlock, td);
602 		return (error);
603 	}
604 
605 	if (vp->v_vnlock != NULL) {
606 		/*
607 		 * The lower level has exported a struct lock to us. Use
608 		 * it so that all vnodes in the stack lock and unlock
609 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
610 		 * decommissions the lock - just because our vnode is
611 		 * going away doesn't mean the struct lock below us is.
612 		 * LK_EXCLUSIVE is fine.
613 		 */
614 		if ((flags & LK_INTERLOCK) == 0) {
615 			VI_LOCK(vp);
616 			flags |= LK_INTERLOCK;
617 		}
618 		nn = VTONULL(vp);
619 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
620 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
621 			/*
622 			 * Emulate lock draining by waiting for all other
623 			 * pending locks to complete.  Afterwards the
624 			 * lockmgr call might block, but no other threads
625 			 * will attempt to use this nullfs vnode due to the
626 			 * VI_XLOCK flag.
627 			 */
628 			while (nn->null_pending_locks > 0) {
629 				nn->null_drain_wakeup = 1;
630 				msleep(&nn->null_pending_locks,
631 				       VI_MTX(vp),
632 				       PVFS,
633 				       "nuldr", 0);
634 			}
635 			error = lockmgr(vp->v_vnlock,
636 					(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
637 					VI_MTX(vp), td);
638 			return error;
639 		}
640 		nn->null_pending_locks++;
641 		error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
642 		VI_LOCK(vp);
643 		/*
644 		 * If we're called from vrele then v_usecount can have been 0
645 		 * and another process might have initiated a recycle
646 		 * operation.  When that happens, just back out.
647 		 */
648 		if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
649 		    td != vp->v_vxthread) {
650 			lockmgr(vp->v_vnlock,
651 				(flags & ~LK_TYPE_MASK) | LK_RELEASE,
652 				VI_MTX(vp), td);
653 			VI_LOCK(vp);
654 			error = ENOENT;
655 		}
656 		nn->null_pending_locks--;
657 		/*
658 		 * Wakeup the process draining the vnode after all
659 		 * pending lock attempts has been failed.
660 		 */
661 		if (nn->null_pending_locks == 0 &&
662 		    nn->null_drain_wakeup != 0) {
663 			nn->null_drain_wakeup = 0;
664 			wakeup(&nn->null_pending_locks);
665 		}
666 		if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
667 		    vp->v_vxthread != curthread) {
668 			vp->v_iflag |= VI_XWANT;
669 			msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
670 		}
671 		VI_UNLOCK(vp);
672 		return error;
673 	} else {
674 		/*
675 		 * To prevent race conditions involving doing a lookup
676 		 * on "..", we have to lock the lower node, then lock our
677 		 * node. Most of the time it won't matter that we lock our
678 		 * node (as any locking would need the lower one locked
679 		 * first). But we can LK_DRAIN the upper lock as a step
680 		 * towards decomissioning it.
681 		 */
682 		lvp = NULLVPTOLOWERVP(vp);
683 		if (lvp == NULL)
684 			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
685 		if (flags & LK_INTERLOCK) {
686 			mtx_unlock(&vp->v_interlock);
687 			flags &= ~LK_INTERLOCK;
688 		}
689 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
690 			error = VOP_LOCK(lvp,
691 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
692 		} else
693 			error = VOP_LOCK(lvp, flags, td);
694 		if (error)
695 			return (error);
696 		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
697 		if (error)
698 			VOP_UNLOCK(lvp, 0, td);
699 		return (error);
700 	}
701 }
702 
703 /*
704  * We need to process our own vnode unlock and then clear the
705  * interlock flag as it applies only to our vnode, not the
706  * vnodes below us on the stack.
707  */
708 static int
709 null_unlock(ap)
710 	struct vop_unlock_args /* {
711 		struct vnode *a_vp;
712 		int a_flags;
713 		struct thread *a_td;
714 	} */ *ap;
715 {
716 	struct vnode *vp = ap->a_vp;
717 	int flags = ap->a_flags;
718 	struct thread *td = ap->a_td;
719 	struct vnode *lvp;
720 
721 	if (vp->v_vnlock != NULL) {
722 		if (flags & LK_THISLAYER)
723 			return 0;	/* the lock is shared across layers */
724 		flags &= ~LK_THISLAYER;
725 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
726 			&vp->v_interlock, td));
727 	}
728 	lvp = NULLVPTOLOWERVP(vp);
729 	if (lvp == NULL)
730 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
731 	if ((flags & LK_THISLAYER) == 0) {
732 		if (flags & LK_INTERLOCK) {
733 			mtx_unlock(&vp->v_interlock);
734 			flags &= ~LK_INTERLOCK;
735 		}
736 		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
737 	} else
738 		flags &= ~LK_THISLAYER;
739 	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
740 }
741 
742 static int
743 null_islocked(ap)
744 	struct vop_islocked_args /* {
745 		struct vnode *a_vp;
746 		struct thread *a_td;
747 	} */ *ap;
748 {
749 	struct vnode *vp = ap->a_vp;
750 	struct thread *td = ap->a_td;
751 
752 	if (vp->v_vnlock != NULL)
753 		return (lockstatus(vp->v_vnlock, td));
754 	return (lockstatus(&vp->v_lock, td));
755 }
756 
757 /*
758  * There is no way to tell that someone issued remove/rmdir operation
759  * on the underlying filesystem. For now we just have to release lowevrp
760  * as soon as possible.
761  *
762  * Note, we can't release any resources nor remove vnode from hash before
763  * appropriate VXLOCK stuff is is done because other process can find this
764  * vnode in hash during inactivation and may be sitting in vget() and waiting
765  * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
766  */
767 static int
768 null_inactive(ap)
769 	struct vop_inactive_args /* {
770 		struct vnode *a_vp;
771 		struct thread *a_td;
772 	} */ *ap;
773 {
774 	struct vnode *vp = ap->a_vp;
775 	struct thread *td = ap->a_td;
776 
777 	VOP_UNLOCK(vp, 0, td);
778 
779 	/*
780 	 * If this is the last reference, then free up the vnode
781 	 * so as not to tie up the lower vnodes.
782 	 */
783 	vrecycle(vp, NULL, td);
784 
785 	return (0);
786 }
787 
788 /*
789  * Now, the VXLOCK is in force and we're free to destroy the null vnode.
790  */
791 static int
792 null_reclaim(ap)
793 	struct vop_reclaim_args /* {
794 		struct vnode *a_vp;
795 		struct thread *a_td;
796 	} */ *ap;
797 {
798 	struct vnode *vp = ap->a_vp;
799 	struct null_node *xp = VTONULL(vp);
800 	struct vnode *lowervp = xp->null_lowervp;
801 
802 	if (lowervp) {
803 		null_hashrem(xp);
804 
805 		vrele(lowervp);
806 		vrele(lowervp);
807 	}
808 
809 	vp->v_data = NULL;
810 	vp->v_vnlock = &vp->v_lock;
811 	FREE(xp, M_NULLFSNODE);
812 
813 	return (0);
814 }
815 
816 static int
817 null_print(ap)
818 	struct vop_print_args /* {
819 		struct vnode *a_vp;
820 	} */ *ap;
821 {
822 	register struct vnode *vp = ap->a_vp;
823 	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
824 	return (0);
825 }
826 
827 /*
828  * Let an underlying filesystem do the work
829  */
830 static int
831 null_createvobject(ap)
832 	struct vop_createvobject_args /* {
833 		struct vnode *vp;
834 		struct ucred *cred;
835 		struct thread *td;
836 	} */ *ap;
837 {
838 	struct vnode *vp = ap->a_vp;
839 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
840 	int error;
841 
842 	if (vp->v_type == VNON || lowervp == NULL)
843 		return 0;
844 	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
845 	if (error)
846 		return (error);
847 	vp->v_vflag |= VV_OBJBUF;
848 	return (0);
849 }
850 
851 /*
852  * We have nothing to destroy and this operation shouldn't be bypassed.
853  */
854 static int
855 null_destroyvobject(ap)
856 	struct vop_destroyvobject_args /* {
857 		struct vnode *vp;
858 	} */ *ap;
859 {
860 	struct vnode *vp = ap->a_vp;
861 
862 	vp->v_vflag &= ~VV_OBJBUF;
863 	return (0);
864 }
865 
866 static int
867 null_getvobject(ap)
868 	struct vop_getvobject_args /* {
869 		struct vnode *vp;
870 		struct vm_object **objpp;
871 	} */ *ap;
872 {
873 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
874 
875 	if (lvp == NULL)
876 		return EINVAL;
877 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
878 }
879 
880 /*
881  * Global vfs data structures
882  */
883 vop_t **null_vnodeop_p;
884 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
885 	{ &vop_default_desc,		(vop_t *) null_bypass },
886 
887 	{ &vop_access_desc,		(vop_t *) null_access },
888 	{ &vop_bmap_desc,		(vop_t *) vop_eopnotsupp },
889 	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
890 	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
891 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
892 	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
893 	{ &vop_getwritemount_desc,	(vop_t *) vop_stdgetwritemount},
894 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
895 	{ &vop_islocked_desc,		(vop_t *) null_islocked },
896 	{ &vop_lock_desc,		(vop_t *) null_lock },
897 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
898 	{ &vop_open_desc,		(vop_t *) null_open },
899 	{ &vop_print_desc,		(vop_t *) null_print },
900 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
901 	{ &vop_rename_desc,		(vop_t *) null_rename },
902 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
903 	{ &vop_strategy_desc,		(vop_t *) vop_eopnotsupp },
904 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
905 	{ NULL, NULL }
906 };
907 static struct vnodeopv_desc null_vnodeop_opv_desc =
908 	{ &null_vnodeop_p, null_vnodeop_entries };
909 
910 VNODEOP_SET(null_vnodeop_opv_desc);
911