1 /* 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * John Heidemann of the UCLA Ficus project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 33 * 34 * Ancestors: 35 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 36 * ...and... 37 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 38 * 39 * $FreeBSD$ 40 */ 41 42 /* 43 * Null Layer 44 * 45 * (See mount_nullfs(8) for more information.) 46 * 47 * The null layer duplicates a portion of the filesystem 48 * name space under a new name. In this respect, it is 49 * similar to the loopback filesystem. It differs from 50 * the loopback fs in two respects: it is implemented using 51 * a stackable layers techniques, and its "null-node"s stack above 52 * all lower-layer vnodes, not just over directory vnodes. 53 * 54 * The null layer has two purposes. First, it serves as a demonstration 55 * of layering by proving a layer which does nothing. (It actually 56 * does everything the loopback filesystem does, which is slightly 57 * more than nothing.) Second, the null layer can serve as a prototype 58 * layer. Since it provides all necessary layer framework, 59 * new filesystem layers can be created very easily be starting 60 * with a null layer. 61 * 62 * The remainder of this man page examines the null layer as a basis 63 * for constructing new layers. 64 * 65 * 66 * INSTANTIATING NEW NULL LAYERS 67 * 68 * New null layers are created with mount_nullfs(8). 69 * Mount_nullfs(8) takes two arguments, the pathname 70 * of the lower vfs (target-pn) and the pathname where the null 71 * layer will appear in the namespace (alias-pn). After 72 * the null layer is put into place, the contents 73 * of target-pn subtree will be aliased under alias-pn. 74 * 75 * 76 * OPERATION OF A NULL LAYER 77 * 78 * The null layer is the minimum filesystem layer, 79 * simply bypassing all possible operations to the lower layer 80 * for processing there. The majority of its activity centers 81 * on the bypass routine, through which nearly all vnode operations 82 * pass. 83 * 84 * The bypass routine accepts arbitrary vnode operations for 85 * handling by the lower layer. It begins by examing vnode 86 * operation arguments and replacing any null-nodes by their 87 * lower-layer equivlants. It then invokes the operation 88 * on the lower layer. Finally, it replaces the null-nodes 89 * in the arguments and, if a vnode is return by the operation, 90 * stacks a null-node on top of the returned vnode. 91 * 92 * Although bypass handles most operations, vop_getattr, vop_lock, 93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 94 * bypassed. Vop_getattr must change the fsid being returned. 95 * Vop_lock and vop_unlock must handle any locking for the 96 * current vnode as well as pass the lock request down. 97 * Vop_inactive and vop_reclaim are not bypassed so that 98 * they can handle freeing null-layer specific data. Vop_print 99 * is not bypassed to avoid excessive debugging information. 100 * Also, certain vnode operations change the locking state within 101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 102 * and symlink). Ideally these operations should not change the 103 * lock state, but should be changed to let the caller of the 104 * function unlock them. Otherwise all intermediate vnode layers 105 * (such as union, umapfs, etc) must catch these functions to do 106 * the necessary locking at their layer. 107 * 108 * 109 * INSTANTIATING VNODE STACKS 110 * 111 * Mounting associates the null layer with a lower layer, 112 * effect stacking two VFSes. Vnode stacks are instead 113 * created on demand as files are accessed. 114 * 115 * The initial mount creates a single vnode stack for the 116 * root of the new null layer. All other vnode stacks 117 * are created as a result of vnode operations on 118 * this or other null vnode stacks. 119 * 120 * New vnode stacks come into existance as a result of 121 * an operation which returns a vnode. 122 * The bypass routine stacks a null-node above the new 123 * vnode before returning it to the caller. 124 * 125 * For example, imagine mounting a null layer with 126 * "mount_nullfs /usr/include /dev/layer/null". 127 * Changing directory to /dev/layer/null will assign 128 * the root null-node (which was created when the null layer was mounted). 129 * Now consider opening "sys". A vop_lookup would be 130 * done on the root null-node. This operation would bypass through 131 * to the lower layer which would return a vnode representing 132 * the UFS "sys". Null_bypass then builds a null-node 133 * aliasing the UFS "sys" and returns this to the caller. 134 * Later operations on the null-node "sys" will repeat this 135 * process when constructing other vnode stacks. 136 * 137 * 138 * CREATING OTHER FILE SYSTEM LAYERS 139 * 140 * One of the easiest ways to construct new filesystem layers is to make 141 * a copy of the null layer, rename all files and variables, and 142 * then begin modifing the copy. Sed can be used to easily rename 143 * all variables. 144 * 145 * The umap layer is an example of a layer descended from the 146 * null layer. 147 * 148 * 149 * INVOKING OPERATIONS ON LOWER LAYERS 150 * 151 * There are two techniques to invoke operations on a lower layer 152 * when the operation cannot be completely bypassed. Each method 153 * is appropriate in different situations. In both cases, 154 * it is the responsibility of the aliasing layer to make 155 * the operation arguments "correct" for the lower layer 156 * by mapping a vnode arguments to the lower layer. 157 * 158 * The first approach is to call the aliasing layer's bypass routine. 159 * This method is most suitable when you wish to invoke the operation 160 * currently being handled on the lower layer. It has the advantage 161 * that the bypass routine already must do argument mapping. 162 * An example of this is null_getattrs in the null layer. 163 * 164 * A second approach is to directly invoke vnode operations on 165 * the lower layer with the VOP_OPERATIONNAME interface. 166 * The advantage of this method is that it is easy to invoke 167 * arbitrary operations on the lower layer. The disadvantage 168 * is that vnode arguments must be manualy mapped. 169 * 170 */ 171 172 #include <sys/param.h> 173 #include <sys/systm.h> 174 #include <sys/conf.h> 175 #include <sys/kernel.h> 176 #include <sys/lock.h> 177 #include <sys/malloc.h> 178 #include <sys/mount.h> 179 #include <sys/mutex.h> 180 #include <sys/namei.h> 181 #include <sys/sysctl.h> 182 #include <sys/vnode.h> 183 184 #include <fs/nullfs/null.h> 185 186 #include <vm/vm.h> 187 #include <vm/vm_extern.h> 188 #include <vm/vm_object.h> 189 #include <vm/vnode_pager.h> 190 191 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 193 &null_bug_bypass, 0, ""); 194 195 static int null_access(struct vop_access_args *ap); 196 static int null_createvobject(struct vop_createvobject_args *ap); 197 static int null_destroyvobject(struct vop_destroyvobject_args *ap); 198 static int null_getattr(struct vop_getattr_args *ap); 199 static int null_getvobject(struct vop_getvobject_args *ap); 200 static int null_inactive(struct vop_inactive_args *ap); 201 static int null_islocked(struct vop_islocked_args *ap); 202 static int null_lock(struct vop_lock_args *ap); 203 static int null_lookup(struct vop_lookup_args *ap); 204 static int null_open(struct vop_open_args *ap); 205 static int null_print(struct vop_print_args *ap); 206 static int null_reclaim(struct vop_reclaim_args *ap); 207 static int null_rename(struct vop_rename_args *ap); 208 static int null_setattr(struct vop_setattr_args *ap); 209 static int null_unlock(struct vop_unlock_args *ap); 210 211 /* 212 * This is the 10-Apr-92 bypass routine. 213 * This version has been optimized for speed, throwing away some 214 * safety checks. It should still always work, but it's not as 215 * robust to programmer errors. 216 * 217 * In general, we map all vnodes going down and unmap them on the way back. 218 * As an exception to this, vnodes can be marked "unmapped" by setting 219 * the Nth bit in operation's vdesc_flags. 220 * 221 * Also, some BSD vnode operations have the side effect of vrele'ing 222 * their arguments. With stacking, the reference counts are held 223 * by the upper node, not the lower one, so we must handle these 224 * side-effects here. This is not of concern in Sun-derived systems 225 * since there are no such side-effects. 226 * 227 * This makes the following assumptions: 228 * - only one returned vpp 229 * - no INOUT vpp's (Sun's vop_open has one of these) 230 * - the vnode operation vector of the first vnode should be used 231 * to determine what implementation of the op should be invoked 232 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 233 * problems on rmdir'ing mount points and renaming?) 234 */ 235 int 236 null_bypass(ap) 237 struct vop_generic_args /* { 238 struct vnodeop_desc *a_desc; 239 <other random data follows, presumably> 240 } */ *ap; 241 { 242 register struct vnode **this_vp_p; 243 int error; 244 struct vnode *old_vps[VDESC_MAX_VPS]; 245 struct vnode **vps_p[VDESC_MAX_VPS]; 246 struct vnode ***vppp; 247 struct vnodeop_desc *descp = ap->a_desc; 248 int reles, i; 249 250 if (null_bug_bypass) 251 printf ("null_bypass: %s\n", descp->vdesc_name); 252 253 #ifdef DIAGNOSTIC 254 /* 255 * We require at least one vp. 256 */ 257 if (descp->vdesc_vp_offsets == NULL || 258 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 259 panic ("null_bypass: no vp's in map"); 260 #endif 261 262 /* 263 * Map the vnodes going in. 264 * Later, we'll invoke the operation based on 265 * the first mapped vnode's operation vector. 266 */ 267 reles = descp->vdesc_flags; 268 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 269 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 270 break; /* bail out at end of list */ 271 vps_p[i] = this_vp_p = 272 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); 273 /* 274 * We're not guaranteed that any but the first vnode 275 * are of our type. Check for and don't map any 276 * that aren't. (We must always map first vp or vclean fails.) 277 */ 278 if (i && (*this_vp_p == NULLVP || 279 (*this_vp_p)->v_op != null_vnodeop_p)) { 280 old_vps[i] = NULLVP; 281 } else { 282 old_vps[i] = *this_vp_p; 283 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 284 /* 285 * XXX - Several operations have the side effect 286 * of vrele'ing their vp's. We must account for 287 * that. (This should go away in the future.) 288 */ 289 if (reles & VDESC_VP0_WILLRELE) 290 VREF(*this_vp_p); 291 } 292 293 } 294 295 /* 296 * Call the operation on the lower layer 297 * with the modified argument structure. 298 */ 299 if (vps_p[0] && *vps_p[0]) 300 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap); 301 else { 302 printf("null_bypass: no map for %s\n", descp->vdesc_name); 303 error = EINVAL; 304 } 305 306 /* 307 * Maintain the illusion of call-by-value 308 * by restoring vnodes in the argument structure 309 * to their original value. 310 */ 311 reles = descp->vdesc_flags; 312 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 313 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 314 break; /* bail out at end of list */ 315 if (old_vps[i]) { 316 *(vps_p[i]) = old_vps[i]; 317 #if 0 318 if (reles & VDESC_VP0_WILLUNLOCK) 319 VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread); 320 #endif 321 if (reles & VDESC_VP0_WILLRELE) 322 vrele(*(vps_p[i])); 323 } 324 } 325 326 /* 327 * Map the possible out-going vpp 328 * (Assumes that the lower layer always returns 329 * a VREF'ed vpp unless it gets an error.) 330 */ 331 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 332 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 333 !error) { 334 /* 335 * XXX - even though some ops have vpp returned vp's, 336 * several ops actually vrele this before returning. 337 * We must avoid these ops. 338 * (This should go away when these ops are regularized.) 339 */ 340 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 341 goto out; 342 vppp = VOPARG_OFFSETTO(struct vnode***, 343 descp->vdesc_vpp_offset,ap); 344 if (*vppp) 345 error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp); 346 } 347 348 out: 349 return (error); 350 } 351 352 /* 353 * We have to carry on the locking protocol on the null layer vnodes 354 * as we progress through the tree. We also have to enforce read-only 355 * if this layer is mounted read-only. 356 */ 357 static int 358 null_lookup(ap) 359 struct vop_lookup_args /* { 360 struct vnode * a_dvp; 361 struct vnode ** a_vpp; 362 struct componentname * a_cnp; 363 } */ *ap; 364 { 365 struct componentname *cnp = ap->a_cnp; 366 struct vnode *dvp = ap->a_dvp; 367 struct thread *td = cnp->cn_thread; 368 int flags = cnp->cn_flags; 369 struct vnode *vp, *ldvp, *lvp; 370 int error; 371 372 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 373 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 374 return (EROFS); 375 /* 376 * Although it is possible to call null_bypass(), we'll do 377 * a direct call to reduce overhead 378 */ 379 ldvp = NULLVPTOLOWERVP(dvp); 380 vp = lvp = NULL; 381 error = VOP_LOOKUP(ldvp, &lvp, cnp); 382 if (error == EJUSTRETURN && (flags & ISLASTCN) && 383 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 384 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 385 error = EROFS; 386 387 /* 388 * Rely only on the PDIRUNLOCK flag which should be carefully 389 * tracked by underlying filesystem. 390 */ 391 if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock) 392 VOP_UNLOCK(dvp, LK_THISLAYER, td); 393 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 394 if (ldvp == lvp) { 395 *ap->a_vpp = dvp; 396 VREF(dvp); 397 vrele(lvp); 398 } else { 399 error = null_nodeget(dvp->v_mount, lvp, &vp); 400 if (error) { 401 /* XXX Cleanup needed... */ 402 panic("null_nodeget failed"); 403 } 404 *ap->a_vpp = vp; 405 } 406 } 407 return (error); 408 } 409 410 /* 411 * Setattr call. Disallow write attempts if the layer is mounted read-only. 412 */ 413 static int 414 null_setattr(ap) 415 struct vop_setattr_args /* { 416 struct vnodeop_desc *a_desc; 417 struct vnode *a_vp; 418 struct vattr *a_vap; 419 struct ucred *a_cred; 420 struct thread *a_td; 421 } */ *ap; 422 { 423 struct vnode *vp = ap->a_vp; 424 struct vattr *vap = ap->a_vap; 425 426 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 427 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 428 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 429 (vp->v_mount->mnt_flag & MNT_RDONLY)) 430 return (EROFS); 431 if (vap->va_size != VNOVAL) { 432 switch (vp->v_type) { 433 case VDIR: 434 return (EISDIR); 435 case VCHR: 436 case VBLK: 437 case VSOCK: 438 case VFIFO: 439 if (vap->va_flags != VNOVAL) 440 return (EOPNOTSUPP); 441 return (0); 442 case VREG: 443 case VLNK: 444 default: 445 /* 446 * Disallow write attempts if the filesystem is 447 * mounted read-only. 448 */ 449 if (vp->v_mount->mnt_flag & MNT_RDONLY) 450 return (EROFS); 451 } 452 } 453 454 return (null_bypass((struct vop_generic_args *)ap)); 455 } 456 457 /* 458 * We handle getattr only to change the fsid. 459 */ 460 static int 461 null_getattr(ap) 462 struct vop_getattr_args /* { 463 struct vnode *a_vp; 464 struct vattr *a_vap; 465 struct ucred *a_cred; 466 struct thread *a_td; 467 } */ *ap; 468 { 469 int error; 470 471 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 472 return (error); 473 474 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 475 return (0); 476 } 477 478 /* 479 * Handle to disallow write access if mounted read-only. 480 */ 481 static int 482 null_access(ap) 483 struct vop_access_args /* { 484 struct vnode *a_vp; 485 int a_mode; 486 struct ucred *a_cred; 487 struct thread *a_td; 488 } */ *ap; 489 { 490 struct vnode *vp = ap->a_vp; 491 mode_t mode = ap->a_mode; 492 493 /* 494 * Disallow write attempts on read-only layers; 495 * unless the file is a socket, fifo, or a block or 496 * character device resident on the filesystem. 497 */ 498 if (mode & VWRITE) { 499 switch (vp->v_type) { 500 case VDIR: 501 case VLNK: 502 case VREG: 503 if (vp->v_mount->mnt_flag & MNT_RDONLY) 504 return (EROFS); 505 break; 506 default: 507 break; 508 } 509 } 510 return (null_bypass((struct vop_generic_args *)ap)); 511 } 512 513 /* 514 * We must handle open to be able to catch MNT_NODEV and friends. 515 */ 516 static int 517 null_open(ap) 518 struct vop_open_args /* { 519 struct vnode *a_vp; 520 int a_mode; 521 struct ucred *a_cred; 522 struct thread *a_td; 523 } */ *ap; 524 { 525 struct vnode *vp = ap->a_vp; 526 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 527 528 if ((vp->v_mount->mnt_flag & MNT_NODEV) && 529 (lvp->v_type == VBLK || lvp->v_type == VCHR)) 530 return ENXIO; 531 532 return (null_bypass((struct vop_generic_args *)ap)); 533 } 534 535 /* 536 * We handle this to eliminate null FS to lower FS 537 * file moving. Don't know why we don't allow this, 538 * possibly we should. 539 */ 540 static int 541 null_rename(ap) 542 struct vop_rename_args /* { 543 struct vnode *a_fdvp; 544 struct vnode *a_fvp; 545 struct componentname *a_fcnp; 546 struct vnode *a_tdvp; 547 struct vnode *a_tvp; 548 struct componentname *a_tcnp; 549 } */ *ap; 550 { 551 struct vnode *tdvp = ap->a_tdvp; 552 struct vnode *fvp = ap->a_fvp; 553 struct vnode *fdvp = ap->a_fdvp; 554 struct vnode *tvp = ap->a_tvp; 555 556 /* Check for cross-device rename. */ 557 if ((fvp->v_mount != tdvp->v_mount) || 558 (tvp && (fvp->v_mount != tvp->v_mount))) { 559 if (tdvp == tvp) 560 vrele(tdvp); 561 else 562 vput(tdvp); 563 if (tvp) 564 vput(tvp); 565 vrele(fdvp); 566 vrele(fvp); 567 return (EXDEV); 568 } 569 570 return (null_bypass((struct vop_generic_args *)ap)); 571 } 572 573 /* 574 * We need to process our own vnode lock and then clear the 575 * interlock flag as it applies only to our vnode, not the 576 * vnodes below us on the stack. 577 */ 578 static int 579 null_lock(ap) 580 struct vop_lock_args /* { 581 struct vnode *a_vp; 582 int a_flags; 583 struct thread *a_td; 584 } */ *ap; 585 { 586 struct vnode *vp = ap->a_vp; 587 int flags = ap->a_flags; 588 struct thread *td = ap->a_td; 589 struct vnode *lvp; 590 int error; 591 struct null_node *nn; 592 593 if (flags & LK_THISLAYER) { 594 if (vp->v_vnlock != NULL) { 595 /* lock is shared across layers */ 596 if (flags & LK_INTERLOCK) 597 mtx_unlock(&vp->v_interlock); 598 return 0; 599 } 600 error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER, 601 &vp->v_interlock, td); 602 return (error); 603 } 604 605 if (vp->v_vnlock != NULL) { 606 /* 607 * The lower level has exported a struct lock to us. Use 608 * it so that all vnodes in the stack lock and unlock 609 * simultaneously. Note: we don't DRAIN the lock as DRAIN 610 * decommissions the lock - just because our vnode is 611 * going away doesn't mean the struct lock below us is. 612 * LK_EXCLUSIVE is fine. 613 */ 614 if ((flags & LK_INTERLOCK) == 0) { 615 VI_LOCK(vp); 616 flags |= LK_INTERLOCK; 617 } 618 nn = VTONULL(vp); 619 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 620 NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n"); 621 /* 622 * Emulate lock draining by waiting for all other 623 * pending locks to complete. Afterwards the 624 * lockmgr call might block, but no other threads 625 * will attempt to use this nullfs vnode due to the 626 * VI_XLOCK flag. 627 */ 628 while (nn->null_pending_locks > 0) { 629 nn->null_drain_wakeup = 1; 630 msleep(&nn->null_pending_locks, 631 VI_MTX(vp), 632 PVFS, 633 "nuldr", 0); 634 } 635 error = lockmgr(vp->v_vnlock, 636 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 637 VI_MTX(vp), td); 638 return error; 639 } 640 nn->null_pending_locks++; 641 error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td); 642 VI_LOCK(vp); 643 /* 644 * If we're called from vrele then v_usecount can have been 0 645 * and another process might have initiated a recycle 646 * operation. When that happens, just back out. 647 */ 648 if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 && 649 td != vp->v_vxthread) { 650 lockmgr(vp->v_vnlock, 651 (flags & ~LK_TYPE_MASK) | LK_RELEASE, 652 VI_MTX(vp), td); 653 VI_LOCK(vp); 654 error = ENOENT; 655 } 656 nn->null_pending_locks--; 657 /* 658 * Wakeup the process draining the vnode after all 659 * pending lock attempts has been failed. 660 */ 661 if (nn->null_pending_locks == 0 && 662 nn->null_drain_wakeup != 0) { 663 nn->null_drain_wakeup = 0; 664 wakeup(&nn->null_pending_locks); 665 } 666 if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 && 667 vp->v_vxthread != curthread) { 668 vp->v_iflag |= VI_XWANT; 669 msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0); 670 } 671 VI_UNLOCK(vp); 672 return error; 673 } else { 674 /* 675 * To prevent race conditions involving doing a lookup 676 * on "..", we have to lock the lower node, then lock our 677 * node. Most of the time it won't matter that we lock our 678 * node (as any locking would need the lower one locked 679 * first). But we can LK_DRAIN the upper lock as a step 680 * towards decomissioning it. 681 */ 682 lvp = NULLVPTOLOWERVP(vp); 683 if (lvp == NULL) 684 return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td)); 685 if (flags & LK_INTERLOCK) { 686 mtx_unlock(&vp->v_interlock); 687 flags &= ~LK_INTERLOCK; 688 } 689 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 690 error = VOP_LOCK(lvp, 691 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td); 692 } else 693 error = VOP_LOCK(lvp, flags, td); 694 if (error) 695 return (error); 696 error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td); 697 if (error) 698 VOP_UNLOCK(lvp, 0, td); 699 return (error); 700 } 701 } 702 703 /* 704 * We need to process our own vnode unlock and then clear the 705 * interlock flag as it applies only to our vnode, not the 706 * vnodes below us on the stack. 707 */ 708 static int 709 null_unlock(ap) 710 struct vop_unlock_args /* { 711 struct vnode *a_vp; 712 int a_flags; 713 struct thread *a_td; 714 } */ *ap; 715 { 716 struct vnode *vp = ap->a_vp; 717 int flags = ap->a_flags; 718 struct thread *td = ap->a_td; 719 struct vnode *lvp; 720 721 if (vp->v_vnlock != NULL) { 722 if (flags & LK_THISLAYER) 723 return 0; /* the lock is shared across layers */ 724 flags &= ~LK_THISLAYER; 725 return (lockmgr(vp->v_vnlock, flags | LK_RELEASE, 726 &vp->v_interlock, td)); 727 } 728 lvp = NULLVPTOLOWERVP(vp); 729 if (lvp == NULL) 730 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 731 if ((flags & LK_THISLAYER) == 0) { 732 if (flags & LK_INTERLOCK) { 733 mtx_unlock(&vp->v_interlock); 734 flags &= ~LK_INTERLOCK; 735 } 736 VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td); 737 } else 738 flags &= ~LK_THISLAYER; 739 return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td)); 740 } 741 742 static int 743 null_islocked(ap) 744 struct vop_islocked_args /* { 745 struct vnode *a_vp; 746 struct thread *a_td; 747 } */ *ap; 748 { 749 struct vnode *vp = ap->a_vp; 750 struct thread *td = ap->a_td; 751 752 if (vp->v_vnlock != NULL) 753 return (lockstatus(vp->v_vnlock, td)); 754 return (lockstatus(&vp->v_lock, td)); 755 } 756 757 /* 758 * There is no way to tell that someone issued remove/rmdir operation 759 * on the underlying filesystem. For now we just have to release lowevrp 760 * as soon as possible. 761 * 762 * Note, we can't release any resources nor remove vnode from hash before 763 * appropriate VXLOCK stuff is is done because other process can find this 764 * vnode in hash during inactivation and may be sitting in vget() and waiting 765 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM. 766 */ 767 static int 768 null_inactive(ap) 769 struct vop_inactive_args /* { 770 struct vnode *a_vp; 771 struct thread *a_td; 772 } */ *ap; 773 { 774 struct vnode *vp = ap->a_vp; 775 struct thread *td = ap->a_td; 776 777 VOP_UNLOCK(vp, 0, td); 778 779 /* 780 * If this is the last reference, then free up the vnode 781 * so as not to tie up the lower vnodes. 782 */ 783 vrecycle(vp, NULL, td); 784 785 return (0); 786 } 787 788 /* 789 * Now, the VXLOCK is in force and we're free to destroy the null vnode. 790 */ 791 static int 792 null_reclaim(ap) 793 struct vop_reclaim_args /* { 794 struct vnode *a_vp; 795 struct thread *a_td; 796 } */ *ap; 797 { 798 struct vnode *vp = ap->a_vp; 799 struct null_node *xp = VTONULL(vp); 800 struct vnode *lowervp = xp->null_lowervp; 801 802 if (lowervp) { 803 null_hashrem(xp); 804 805 vrele(lowervp); 806 vrele(lowervp); 807 } 808 809 vp->v_data = NULL; 810 vp->v_vnlock = &vp->v_lock; 811 FREE(xp, M_NULLFSNODE); 812 813 return (0); 814 } 815 816 static int 817 null_print(ap) 818 struct vop_print_args /* { 819 struct vnode *a_vp; 820 } */ *ap; 821 { 822 register struct vnode *vp = ap->a_vp; 823 printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp)); 824 return (0); 825 } 826 827 /* 828 * Let an underlying filesystem do the work 829 */ 830 static int 831 null_createvobject(ap) 832 struct vop_createvobject_args /* { 833 struct vnode *vp; 834 struct ucred *cred; 835 struct thread *td; 836 } */ *ap; 837 { 838 struct vnode *vp = ap->a_vp; 839 struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL; 840 int error; 841 842 if (vp->v_type == VNON || lowervp == NULL) 843 return 0; 844 error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td); 845 if (error) 846 return (error); 847 vp->v_vflag |= VV_OBJBUF; 848 return (0); 849 } 850 851 /* 852 * We have nothing to destroy and this operation shouldn't be bypassed. 853 */ 854 static int 855 null_destroyvobject(ap) 856 struct vop_destroyvobject_args /* { 857 struct vnode *vp; 858 } */ *ap; 859 { 860 struct vnode *vp = ap->a_vp; 861 862 vp->v_vflag &= ~VV_OBJBUF; 863 return (0); 864 } 865 866 static int 867 null_getvobject(ap) 868 struct vop_getvobject_args /* { 869 struct vnode *vp; 870 struct vm_object **objpp; 871 } */ *ap; 872 { 873 struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp); 874 875 if (lvp == NULL) 876 return EINVAL; 877 return (VOP_GETVOBJECT(lvp, ap->a_objpp)); 878 } 879 880 /* 881 * Global vfs data structures 882 */ 883 vop_t **null_vnodeop_p; 884 static struct vnodeopv_entry_desc null_vnodeop_entries[] = { 885 { &vop_default_desc, (vop_t *) null_bypass }, 886 887 { &vop_access_desc, (vop_t *) null_access }, 888 { &vop_bmap_desc, (vop_t *) vop_eopnotsupp }, 889 { &vop_createvobject_desc, (vop_t *) null_createvobject }, 890 { &vop_destroyvobject_desc, (vop_t *) null_destroyvobject }, 891 { &vop_getattr_desc, (vop_t *) null_getattr }, 892 { &vop_getvobject_desc, (vop_t *) null_getvobject }, 893 { &vop_getwritemount_desc, (vop_t *) vop_stdgetwritemount}, 894 { &vop_inactive_desc, (vop_t *) null_inactive }, 895 { &vop_islocked_desc, (vop_t *) null_islocked }, 896 { &vop_lock_desc, (vop_t *) null_lock }, 897 { &vop_lookup_desc, (vop_t *) null_lookup }, 898 { &vop_open_desc, (vop_t *) null_open }, 899 { &vop_print_desc, (vop_t *) null_print }, 900 { &vop_reclaim_desc, (vop_t *) null_reclaim }, 901 { &vop_rename_desc, (vop_t *) null_rename }, 902 { &vop_setattr_desc, (vop_t *) null_setattr }, 903 { &vop_strategy_desc, (vop_t *) vop_eopnotsupp }, 904 { &vop_unlock_desc, (vop_t *) null_unlock }, 905 { NULL, NULL } 906 }; 907 static struct vnodeopv_desc null_vnodeop_opv_desc = 908 { &null_vnodeop_p, null_vnodeop_entries }; 909 910 VNODEOP_SET(null_vnodeop_opv_desc); 911