xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  * $FreeBSD$
41  *	...and...
42  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
43  *
44  * $FreeBSD$
45  */
46 
47 /*
48  * Null Layer
49  *
50  * (See mount_null(8) for more information.)
51  *
52  * The null layer duplicates a portion of the file system
53  * name space under a new name.  In this respect, it is
54  * similar to the loopback file system.  It differs from
55  * the loopback fs in two respects:  it is implemented using
56  * a stackable layers techniques, and its "null-node"s stack above
57  * all lower-layer vnodes, not just over directory vnodes.
58  *
59  * The null layer has two purposes.  First, it serves as a demonstration
60  * of layering by proving a layer which does nothing.  (It actually
61  * does everything the loopback file system does, which is slightly
62  * more than nothing.)  Second, the null layer can serve as a prototype
63  * layer.  Since it provides all necessary layer framework,
64  * new file system layers can be created very easily be starting
65  * with a null layer.
66  *
67  * The remainder of this man page examines the null layer as a basis
68  * for constructing new layers.
69  *
70  *
71  * INSTANTIATING NEW NULL LAYERS
72  *
73  * New null layers are created with mount_null(8).
74  * Mount_null(8) takes two arguments, the pathname
75  * of the lower vfs (target-pn) and the pathname where the null
76  * layer will appear in the namespace (alias-pn).  After
77  * the null layer is put into place, the contents
78  * of target-pn subtree will be aliased under alias-pn.
79  *
80  *
81  * OPERATION OF A NULL LAYER
82  *
83  * The null layer is the minimum file system layer,
84  * simply bypassing all possible operations to the lower layer
85  * for processing there.  The majority of its activity centers
86  * on the bypass routine, through which nearly all vnode operations
87  * pass.
88  *
89  * The bypass routine accepts arbitrary vnode operations for
90  * handling by the lower layer.  It begins by examing vnode
91  * operation arguments and replacing any null-nodes by their
92  * lower-layer equivlants.  It then invokes the operation
93  * on the lower layer.  Finally, it replaces the null-nodes
94  * in the arguments and, if a vnode is return by the operation,
95  * stacks a null-node on top of the returned vnode.
96  *
97  * Although bypass handles most operations, vop_getattr, vop_lock,
98  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
99  * bypassed. Vop_getattr must change the fsid being returned.
100  * Vop_lock and vop_unlock must handle any locking for the
101  * current vnode as well as pass the lock request down.
102  * Vop_inactive and vop_reclaim are not bypassed so that
103  * they can handle freeing null-layer specific data. Vop_print
104  * is not bypassed to avoid excessive debugging information.
105  * Also, certain vnode operations change the locking state within
106  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
107  * and symlink). Ideally these operations should not change the
108  * lock state, but should be changed to let the caller of the
109  * function unlock them. Otherwise all intermediate vnode layers
110  * (such as union, umapfs, etc) must catch these functions to do
111  * the necessary locking at their layer.
112  *
113  *
114  * INSTANTIATING VNODE STACKS
115  *
116  * Mounting associates the null layer with a lower layer,
117  * effect stacking two VFSes.  Vnode stacks are instead
118  * created on demand as files are accessed.
119  *
120  * The initial mount creates a single vnode stack for the
121  * root of the new null layer.  All other vnode stacks
122  * are created as a result of vnode operations on
123  * this or other null vnode stacks.
124  *
125  * New vnode stacks come into existance as a result of
126  * an operation which returns a vnode.
127  * The bypass routine stacks a null-node above the new
128  * vnode before returning it to the caller.
129  *
130  * For example, imagine mounting a null layer with
131  * "mount_null /usr/include /dev/layer/null".
132  * Changing directory to /dev/layer/null will assign
133  * the root null-node (which was created when the null layer was mounted).
134  * Now consider opening "sys".  A vop_lookup would be
135  * done on the root null-node.  This operation would bypass through
136  * to the lower layer which would return a vnode representing
137  * the UFS "sys".  Null_bypass then builds a null-node
138  * aliasing the UFS "sys" and returns this to the caller.
139  * Later operations on the null-node "sys" will repeat this
140  * process when constructing other vnode stacks.
141  *
142  *
143  * CREATING OTHER FILE SYSTEM LAYERS
144  *
145  * One of the easiest ways to construct new file system layers is to make
146  * a copy of the null layer, rename all files and variables, and
147  * then begin modifing the copy.  Sed can be used to easily rename
148  * all variables.
149  *
150  * The umap layer is an example of a layer descended from the
151  * null layer.
152  *
153  *
154  * INVOKING OPERATIONS ON LOWER LAYERS
155  *
156  * There are two techniques to invoke operations on a lower layer
157  * when the operation cannot be completely bypassed.  Each method
158  * is appropriate in different situations.  In both cases,
159  * it is the responsibility of the aliasing layer to make
160  * the operation arguments "correct" for the lower layer
161  * by mapping an vnode arguments to the lower layer.
162  *
163  * The first approach is to call the aliasing layer's bypass routine.
164  * This method is most suitable when you wish to invoke the operation
165  * currently being handled on the lower layer.  It has the advantage
166  * that the bypass routine already must do argument mapping.
167  * An example of this is null_getattrs in the null layer.
168  *
169  * A second approach is to directly invoke vnode operations on
170  * the lower layer with the VOP_OPERATIONNAME interface.
171  * The advantage of this method is that it is easy to invoke
172  * arbitrary operations on the lower layer.  The disadvantage
173  * is that vnode arguments must be manualy mapped.
174  *
175  */
176 
177 #include <sys/param.h>
178 #include <sys/systm.h>
179 #include <sys/kernel.h>
180 #include <sys/sysctl.h>
181 #include <sys/vnode.h>
182 #include <sys/mount.h>
183 #include <sys/namei.h>
184 #include <sys/malloc.h>
185 #include <miscfs/nullfs/null.h>
186 
187 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
188 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
189 	&null_bug_bypass, 0, "");
190 
191 static int	null_access __P((struct vop_access_args *ap));
192 static int	null_getattr __P((struct vop_getattr_args *ap));
193 static int	null_inactive __P((struct vop_inactive_args *ap));
194 static int	null_lock __P((struct vop_lock_args *ap));
195 static int	null_lookup __P((struct vop_lookup_args *ap));
196 static int	null_print __P((struct vop_print_args *ap));
197 static int	null_reclaim __P((struct vop_reclaim_args *ap));
198 static int	null_setattr __P((struct vop_setattr_args *ap));
199 static int	null_unlock __P((struct vop_unlock_args *ap));
200 
201 /*
202  * This is the 10-Apr-92 bypass routine.
203  *    This version has been optimized for speed, throwing away some
204  * safety checks.  It should still always work, but it's not as
205  * robust to programmer errors.
206  *
207  * In general, we map all vnodes going down and unmap them on the way back.
208  * As an exception to this, vnodes can be marked "unmapped" by setting
209  * the Nth bit in operation's vdesc_flags.
210  *
211  * Also, some BSD vnode operations have the side effect of vrele'ing
212  * their arguments.  With stacking, the reference counts are held
213  * by the upper node, not the lower one, so we must handle these
214  * side-effects here.  This is not of concern in Sun-derived systems
215  * since there are no such side-effects.
216  *
217  * This makes the following assumptions:
218  * - only one returned vpp
219  * - no INOUT vpp's (Sun's vop_open has one of these)
220  * - the vnode operation vector of the first vnode should be used
221  *   to determine what implementation of the op should be invoked
222  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
223  *   problems on rmdir'ing mount points and renaming?)
224  */
225 int
226 null_bypass(ap)
227 	struct vop_generic_args /* {
228 		struct vnodeop_desc *a_desc;
229 		<other random data follows, presumably>
230 	} */ *ap;
231 {
232 	register struct vnode **this_vp_p;
233 	int error;
234 	struct vnode *old_vps[VDESC_MAX_VPS];
235 	struct vnode **vps_p[VDESC_MAX_VPS];
236 	struct vnode ***vppp;
237 	struct vnodeop_desc *descp = ap->a_desc;
238 	int reles, i;
239 
240 	if (null_bug_bypass)
241 		printf ("null_bypass: %s\n", descp->vdesc_name);
242 
243 #ifdef DIAGNOSTIC
244 	/*
245 	 * We require at least one vp.
246 	 */
247 	if (descp->vdesc_vp_offsets == NULL ||
248 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
249 		panic ("null_bypass: no vp's in map");
250 #endif
251 
252 	/*
253 	 * Map the vnodes going in.
254 	 * Later, we'll invoke the operation based on
255 	 * the first mapped vnode's operation vector.
256 	 */
257 	reles = descp->vdesc_flags;
258 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
259 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
260 			break;   /* bail out at end of list */
261 		vps_p[i] = this_vp_p =
262 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
263 		/*
264 		 * We're not guaranteed that any but the first vnode
265 		 * are of our type.  Check for and don't map any
266 		 * that aren't.  (We must always map first vp or vclean fails.)
267 		 */
268 		if (i && (*this_vp_p == NULLVP ||
269 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
270 			old_vps[i] = NULLVP;
271 		} else {
272 			old_vps[i] = *this_vp_p;
273 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
274 			/*
275 			 * XXX - Several operations have the side effect
276 			 * of vrele'ing their vp's.  We must account for
277 			 * that.  (This should go away in the future.)
278 			 */
279 			if (reles & 1)
280 				VREF(*this_vp_p);
281 		}
282 
283 	}
284 
285 	/*
286 	 * Call the operation on the lower layer
287 	 * with the modified argument structure.
288 	 */
289 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
290 
291 	/*
292 	 * Maintain the illusion of call-by-value
293 	 * by restoring vnodes in the argument structure
294 	 * to their original value.
295 	 */
296 	reles = descp->vdesc_flags;
297 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
298 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
299 			break;   /* bail out at end of list */
300 		if (old_vps[i]) {
301 			*(vps_p[i]) = old_vps[i];
302 			if (reles & 1)
303 				vrele(*(vps_p[i]));
304 		}
305 	}
306 
307 	/*
308 	 * Map the possible out-going vpp
309 	 * (Assumes that the lower layer always returns
310 	 * a VREF'ed vpp unless it gets an error.)
311 	 */
312 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
313 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
314 	    !error) {
315 		/*
316 		 * XXX - even though some ops have vpp returned vp's,
317 		 * several ops actually vrele this before returning.
318 		 * We must avoid these ops.
319 		 * (This should go away when these ops are regularized.)
320 		 */
321 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
322 			goto out;
323 		vppp = VOPARG_OFFSETTO(struct vnode***,
324 				 descp->vdesc_vpp_offset,ap);
325 		if (*vppp)
326 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
327 	}
328 
329  out:
330 	return (error);
331 }
332 
333 /*
334  * We have to carry on the locking protocol on the null layer vnodes
335  * as we progress through the tree. We also have to enforce read-only
336  * if this layer is mounted read-only.
337  */
338 static int
339 null_lookup(ap)
340 	struct vop_lookup_args /* {
341 		struct vnode * a_dvp;
342 		struct vnode ** a_vpp;
343 		struct componentname * a_cnp;
344 	} */ *ap;
345 {
346 	struct componentname *cnp = ap->a_cnp;
347 	struct proc *p = cnp->cn_proc;
348 	int flags = cnp->cn_flags;
349 	struct vop_lock_args lockargs;
350 	struct vop_unlock_args unlockargs;
351 	struct vnode *dvp, *vp;
352 	int error;
353 
354 	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
355 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
356 		return (EROFS);
357 	error = null_bypass((struct vop_generic_args *)ap);
358 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
359 	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
360 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
361 		error = EROFS;
362 	/*
363 	 * We must do the same locking and unlocking at this layer as
364 	 * is done in the layers below us. We could figure this out
365 	 * based on the error return and the LASTCN, LOCKPARENT, and
366 	 * LOCKLEAF flags. However, it is more expidient to just find
367 	 * out the state of the lower level vnodes and set ours to the
368 	 * same state.
369 	 */
370 	dvp = ap->a_dvp;
371 	vp = *ap->a_vpp;
372 	if (dvp == vp)
373 		return (error);
374 	if (!VOP_ISLOCKED(dvp, NULL)) {
375 		unlockargs.a_vp = dvp;
376 		unlockargs.a_flags = 0;
377 		unlockargs.a_p = p;
378 		vop_nounlock(&unlockargs);
379 	}
380 	if (vp != NULLVP && VOP_ISLOCKED(vp, NULL)) {
381 		lockargs.a_vp = vp;
382 		lockargs.a_flags = LK_SHARED;
383 		lockargs.a_p = p;
384 		vop_nolock(&lockargs);
385 	}
386 	return (error);
387 }
388 
389 /*
390  * Setattr call. Disallow write attempts if the layer is mounted read-only.
391  */
392 int
393 null_setattr(ap)
394 	struct vop_setattr_args /* {
395 		struct vnodeop_desc *a_desc;
396 		struct vnode *a_vp;
397 		struct vattr *a_vap;
398 		struct ucred *a_cred;
399 		struct proc *a_p;
400 	} */ *ap;
401 {
402 	struct vnode *vp = ap->a_vp;
403 	struct vattr *vap = ap->a_vap;
404 
405   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
406 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
407 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
408 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
409 		return (EROFS);
410 	if (vap->va_size != VNOVAL) {
411  		switch (vp->v_type) {
412  		case VDIR:
413  			return (EISDIR);
414  		case VCHR:
415  		case VBLK:
416  		case VSOCK:
417  		case VFIFO:
418 			if (vap->va_flags != VNOVAL)
419 				return (EOPNOTSUPP);
420 			return (0);
421 		case VREG:
422 		case VLNK:
423  		default:
424 			/*
425 			 * Disallow write attempts if the filesystem is
426 			 * mounted read-only.
427 			 */
428 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
429 				return (EROFS);
430 		}
431 	}
432 	return (null_bypass((struct vop_generic_args *)ap));
433 }
434 
435 /*
436  *  We handle getattr only to change the fsid.
437  */
438 static int
439 null_getattr(ap)
440 	struct vop_getattr_args /* {
441 		struct vnode *a_vp;
442 		struct vattr *a_vap;
443 		struct ucred *a_cred;
444 		struct proc *a_p;
445 	} */ *ap;
446 {
447 	int error;
448 
449 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
450 		return (error);
451 	return (0);
452 }
453 
454 static int
455 null_access(ap)
456 	struct vop_access_args /* {
457 		struct vnode *a_vp;
458 		int  a_mode;
459 		struct ucred *a_cred;
460 		struct proc *a_p;
461 	} */ *ap;
462 {
463 	struct vnode *vp = ap->a_vp;
464 	mode_t mode = ap->a_mode;
465 
466 	/*
467 	 * Disallow write attempts on read-only layers;
468 	 * unless the file is a socket, fifo, or a block or
469 	 * character device resident on the file system.
470 	 */
471 	if (mode & VWRITE) {
472 		switch (vp->v_type) {
473 		case VDIR:
474 		case VLNK:
475 		case VREG:
476 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
477 				return (EROFS);
478 			break;
479 		default:
480 			break;
481 		}
482 	}
483 	return (null_bypass((struct vop_generic_args *)ap));
484 }
485 
486 /*
487  * We need to process our own vnode lock and then clear the
488  * interlock flag as it applies only to our vnode, not the
489  * vnodes below us on the stack.
490  */
491 static int
492 null_lock(ap)
493 	struct vop_lock_args /* {
494 		struct vnode *a_vp;
495 		int a_flags;
496 		struct proc *a_p;
497 	} */ *ap;
498 {
499 
500 	vop_nolock(ap);
501 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
502 		return (0);
503 	ap->a_flags &= ~LK_INTERLOCK;
504 	return (null_bypass((struct vop_generic_args *)ap));
505 }
506 
507 /*
508  * We need to process our own vnode unlock and then clear the
509  * interlock flag as it applies only to our vnode, not the
510  * vnodes below us on the stack.
511  */
512 static int
513 null_unlock(ap)
514 	struct vop_unlock_args /* {
515 		struct vnode *a_vp;
516 		int a_flags;
517 		struct proc *a_p;
518 	} */ *ap;
519 {
520 	vop_nounlock(ap);
521 	ap->a_flags &= ~LK_INTERLOCK;
522 	return (null_bypass((struct vop_generic_args *)ap));
523 }
524 
525 static int
526 null_inactive(ap)
527 	struct vop_inactive_args /* {
528 		struct vnode *a_vp;
529 		struct proc *a_p;
530 	} */ *ap;
531 {
532 	struct vnode *vp = ap->a_vp;
533 	struct null_node *xp = VTONULL(vp);
534 	struct vnode *lowervp = xp->null_lowervp;
535 	/*
536 	 * Do nothing (and _don't_ bypass).
537 	 * Wait to vrele lowervp until reclaim,
538 	 * so that until then our null_node is in the
539 	 * cache and reusable.
540 	 * We still have to tell the lower layer the vnode
541 	 * is now inactive though.
542 	 *
543 	 * NEEDSWORK: Someday, consider inactive'ing
544 	 * the lowervp and then trying to reactivate it
545 	 * with capabilities (v_id)
546 	 * like they do in the name lookup cache code.
547 	 * That's too much work for now.
548 	 */
549 	VOP_INACTIVE(lowervp, ap->a_p);
550 	VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
551 	return (0);
552 }
553 
554 static int
555 null_reclaim(ap)
556 	struct vop_reclaim_args /* {
557 		struct vnode *a_vp;
558 		struct proc *a_p;
559 	} */ *ap;
560 {
561 	struct vnode *vp = ap->a_vp;
562 	struct null_node *xp = VTONULL(vp);
563 	struct vnode *lowervp = xp->null_lowervp;
564 
565 	/*
566 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
567 	 * so we can't call VOPs on ourself.
568 	 */
569 	/* After this assignment, this node will not be re-used. */
570 	xp->null_lowervp = NULLVP;
571 	LIST_REMOVE(xp, null_hash);
572 	FREE(vp->v_data, M_TEMP);
573 	vp->v_data = NULL;
574 	vrele (lowervp);
575 	return (0);
576 }
577 
578 static int
579 null_print(ap)
580 	struct vop_print_args /* {
581 		struct vnode *a_vp;
582 	} */ *ap;
583 {
584 	register struct vnode *vp = ap->a_vp;
585 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
586 	return (0);
587 }
588 
589 /*
590  * Global vfs data structures
591  */
592 vop_t **null_vnodeop_p;
593 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
594 	{ &vop_default_desc,		(vop_t *) null_bypass },
595 	{ &vop_access_desc,		(vop_t *) null_access },
596 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
597 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
598 	{ &vop_lock_desc,		(vop_t *) null_lock },
599 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
600 	{ &vop_print_desc,		(vop_t *) null_print },
601 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
602 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
603 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
604 	{ NULL, NULL }
605 };
606 static struct vnodeopv_desc null_vnodeop_opv_desc =
607 	{ &null_vnodeop_p, null_vnodeop_entries };
608 
609 VNODEOP_SET(null_vnodeop_opv_desc);
610