1 /*- 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * John Heidemann of the UCLA Ficus project. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 33 * 34 * Ancestors: 35 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 36 * ...and... 37 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 38 * 39 * $FreeBSD$ 40 */ 41 42 /* 43 * Null Layer 44 * 45 * (See mount_nullfs(8) for more information.) 46 * 47 * The null layer duplicates a portion of the filesystem 48 * name space under a new name. In this respect, it is 49 * similar to the loopback filesystem. It differs from 50 * the loopback fs in two respects: it is implemented using 51 * a stackable layers techniques, and its "null-node"s stack above 52 * all lower-layer vnodes, not just over directory vnodes. 53 * 54 * The null layer has two purposes. First, it serves as a demonstration 55 * of layering by proving a layer which does nothing. (It actually 56 * does everything the loopback filesystem does, which is slightly 57 * more than nothing.) Second, the null layer can serve as a prototype 58 * layer. Since it provides all necessary layer framework, 59 * new filesystem layers can be created very easily be starting 60 * with a null layer. 61 * 62 * The remainder of this man page examines the null layer as a basis 63 * for constructing new layers. 64 * 65 * 66 * INSTANTIATING NEW NULL LAYERS 67 * 68 * New null layers are created with mount_nullfs(8). 69 * Mount_nullfs(8) takes two arguments, the pathname 70 * of the lower vfs (target-pn) and the pathname where the null 71 * layer will appear in the namespace (alias-pn). After 72 * the null layer is put into place, the contents 73 * of target-pn subtree will be aliased under alias-pn. 74 * 75 * 76 * OPERATION OF A NULL LAYER 77 * 78 * The null layer is the minimum filesystem layer, 79 * simply bypassing all possible operations to the lower layer 80 * for processing there. The majority of its activity centers 81 * on the bypass routine, through which nearly all vnode operations 82 * pass. 83 * 84 * The bypass routine accepts arbitrary vnode operations for 85 * handling by the lower layer. It begins by examing vnode 86 * operation arguments and replacing any null-nodes by their 87 * lower-layer equivlants. It then invokes the operation 88 * on the lower layer. Finally, it replaces the null-nodes 89 * in the arguments and, if a vnode is return by the operation, 90 * stacks a null-node on top of the returned vnode. 91 * 92 * Although bypass handles most operations, vop_getattr, vop_lock, 93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 94 * bypassed. Vop_getattr must change the fsid being returned. 95 * Vop_lock and vop_unlock must handle any locking for the 96 * current vnode as well as pass the lock request down. 97 * Vop_inactive and vop_reclaim are not bypassed so that 98 * they can handle freeing null-layer specific data. Vop_print 99 * is not bypassed to avoid excessive debugging information. 100 * Also, certain vnode operations change the locking state within 101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 102 * and symlink). Ideally these operations should not change the 103 * lock state, but should be changed to let the caller of the 104 * function unlock them. Otherwise all intermediate vnode layers 105 * (such as union, umapfs, etc) must catch these functions to do 106 * the necessary locking at their layer. 107 * 108 * 109 * INSTANTIATING VNODE STACKS 110 * 111 * Mounting associates the null layer with a lower layer, 112 * effect stacking two VFSes. Vnode stacks are instead 113 * created on demand as files are accessed. 114 * 115 * The initial mount creates a single vnode stack for the 116 * root of the new null layer. All other vnode stacks 117 * are created as a result of vnode operations on 118 * this or other null vnode stacks. 119 * 120 * New vnode stacks come into existance as a result of 121 * an operation which returns a vnode. 122 * The bypass routine stacks a null-node above the new 123 * vnode before returning it to the caller. 124 * 125 * For example, imagine mounting a null layer with 126 * "mount_nullfs /usr/include /dev/layer/null". 127 * Changing directory to /dev/layer/null will assign 128 * the root null-node (which was created when the null layer was mounted). 129 * Now consider opening "sys". A vop_lookup would be 130 * done on the root null-node. This operation would bypass through 131 * to the lower layer which would return a vnode representing 132 * the UFS "sys". Null_bypass then builds a null-node 133 * aliasing the UFS "sys" and returns this to the caller. 134 * Later operations on the null-node "sys" will repeat this 135 * process when constructing other vnode stacks. 136 * 137 * 138 * CREATING OTHER FILE SYSTEM LAYERS 139 * 140 * One of the easiest ways to construct new filesystem layers is to make 141 * a copy of the null layer, rename all files and variables, and 142 * then begin modifing the copy. Sed can be used to easily rename 143 * all variables. 144 * 145 * The umap layer is an example of a layer descended from the 146 * null layer. 147 * 148 * 149 * INVOKING OPERATIONS ON LOWER LAYERS 150 * 151 * There are two techniques to invoke operations on a lower layer 152 * when the operation cannot be completely bypassed. Each method 153 * is appropriate in different situations. In both cases, 154 * it is the responsibility of the aliasing layer to make 155 * the operation arguments "correct" for the lower layer 156 * by mapping a vnode arguments to the lower layer. 157 * 158 * The first approach is to call the aliasing layer's bypass routine. 159 * This method is most suitable when you wish to invoke the operation 160 * currently being handled on the lower layer. It has the advantage 161 * that the bypass routine already must do argument mapping. 162 * An example of this is null_getattrs in the null layer. 163 * 164 * A second approach is to directly invoke vnode operations on 165 * the lower layer with the VOP_OPERATIONNAME interface. 166 * The advantage of this method is that it is easy to invoke 167 * arbitrary operations on the lower layer. The disadvantage 168 * is that vnode arguments must be manualy mapped. 169 * 170 */ 171 172 #include <sys/param.h> 173 #include <sys/systm.h> 174 #include <sys/conf.h> 175 #include <sys/kernel.h> 176 #include <sys/lock.h> 177 #include <sys/malloc.h> 178 #include <sys/mount.h> 179 #include <sys/mutex.h> 180 #include <sys/namei.h> 181 #include <sys/sysctl.h> 182 #include <sys/vnode.h> 183 184 #include <fs/nullfs/null.h> 185 186 #include <vm/vm.h> 187 #include <vm/vm_extern.h> 188 #include <vm/vm_object.h> 189 #include <vm/vnode_pager.h> 190 191 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 192 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 193 &null_bug_bypass, 0, ""); 194 195 /* 196 * This is the 10-Apr-92 bypass routine. 197 * This version has been optimized for speed, throwing away some 198 * safety checks. It should still always work, but it's not as 199 * robust to programmer errors. 200 * 201 * In general, we map all vnodes going down and unmap them on the way back. 202 * As an exception to this, vnodes can be marked "unmapped" by setting 203 * the Nth bit in operation's vdesc_flags. 204 * 205 * Also, some BSD vnode operations have the side effect of vrele'ing 206 * their arguments. With stacking, the reference counts are held 207 * by the upper node, not the lower one, so we must handle these 208 * side-effects here. This is not of concern in Sun-derived systems 209 * since there are no such side-effects. 210 * 211 * This makes the following assumptions: 212 * - only one returned vpp 213 * - no INOUT vpp's (Sun's vop_open has one of these) 214 * - the vnode operation vector of the first vnode should be used 215 * to determine what implementation of the op should be invoked 216 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 217 * problems on rmdir'ing mount points and renaming?) 218 */ 219 int 220 null_bypass(struct vop_generic_args *ap) 221 { 222 struct vnode **this_vp_p; 223 int error; 224 struct vnode *old_vps[VDESC_MAX_VPS]; 225 struct vnode **vps_p[VDESC_MAX_VPS]; 226 struct vnode ***vppp; 227 struct vnodeop_desc *descp = ap->a_desc; 228 int reles, i; 229 230 if (null_bug_bypass) 231 printf ("null_bypass: %s\n", descp->vdesc_name); 232 233 #ifdef DIAGNOSTIC 234 /* 235 * We require at least one vp. 236 */ 237 if (descp->vdesc_vp_offsets == NULL || 238 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 239 panic ("null_bypass: no vp's in map"); 240 #endif 241 242 /* 243 * Map the vnodes going in. 244 * Later, we'll invoke the operation based on 245 * the first mapped vnode's operation vector. 246 */ 247 reles = descp->vdesc_flags; 248 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 249 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 250 break; /* bail out at end of list */ 251 vps_p[i] = this_vp_p = 252 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); 253 /* 254 * We're not guaranteed that any but the first vnode 255 * are of our type. Check for and don't map any 256 * that aren't. (We must always map first vp or vclean fails.) 257 */ 258 if (i && (*this_vp_p == NULLVP || 259 (*this_vp_p)->v_op != &null_vnodeops)) { 260 old_vps[i] = NULLVP; 261 } else { 262 old_vps[i] = *this_vp_p; 263 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 264 /* 265 * XXX - Several operations have the side effect 266 * of vrele'ing their vp's. We must account for 267 * that. (This should go away in the future.) 268 */ 269 if (reles & VDESC_VP0_WILLRELE) 270 VREF(*this_vp_p); 271 } 272 273 } 274 275 /* 276 * Call the operation on the lower layer 277 * with the modified argument structure. 278 */ 279 if (vps_p[0] && *vps_p[0]) 280 error = VCALL(ap); 281 else { 282 printf("null_bypass: no map for %s\n", descp->vdesc_name); 283 error = EINVAL; 284 } 285 286 /* 287 * Maintain the illusion of call-by-value 288 * by restoring vnodes in the argument structure 289 * to their original value. 290 */ 291 reles = descp->vdesc_flags; 292 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 293 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 294 break; /* bail out at end of list */ 295 if (old_vps[i]) { 296 *(vps_p[i]) = old_vps[i]; 297 #if 0 298 if (reles & VDESC_VP0_WILLUNLOCK) 299 VOP_UNLOCK(*(vps_p[i]), 0); 300 #endif 301 if (reles & VDESC_VP0_WILLRELE) 302 vrele(*(vps_p[i])); 303 } 304 } 305 306 /* 307 * Map the possible out-going vpp 308 * (Assumes that the lower layer always returns 309 * a VREF'ed vpp unless it gets an error.) 310 */ 311 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 312 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 313 !error) { 314 /* 315 * XXX - even though some ops have vpp returned vp's, 316 * several ops actually vrele this before returning. 317 * We must avoid these ops. 318 * (This should go away when these ops are regularized.) 319 */ 320 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 321 goto out; 322 vppp = VOPARG_OFFSETTO(struct vnode***, 323 descp->vdesc_vpp_offset,ap); 324 if (*vppp) 325 error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp); 326 } 327 328 out: 329 return (error); 330 } 331 332 static int 333 null_add_writecount(struct vop_add_writecount_args *ap) 334 { 335 struct vnode *lvp, *vp; 336 int error; 337 338 vp = ap->a_vp; 339 lvp = NULLVPTOLOWERVP(vp); 340 KASSERT(vp->v_writecount + ap->a_inc >= 0, ("wrong writecount inc")); 341 if (vp->v_writecount > 0 && vp->v_writecount + ap->a_inc == 0) 342 error = VOP_ADD_WRITECOUNT(lvp, -1); 343 else if (vp->v_writecount == 0 && vp->v_writecount + ap->a_inc > 0) 344 error = VOP_ADD_WRITECOUNT(lvp, 1); 345 else 346 error = 0; 347 if (error == 0) 348 vp->v_writecount += ap->a_inc; 349 return (error); 350 } 351 352 /* 353 * We have to carry on the locking protocol on the null layer vnodes 354 * as we progress through the tree. We also have to enforce read-only 355 * if this layer is mounted read-only. 356 */ 357 static int 358 null_lookup(struct vop_lookup_args *ap) 359 { 360 struct componentname *cnp = ap->a_cnp; 361 struct vnode *dvp = ap->a_dvp; 362 int flags = cnp->cn_flags; 363 struct vnode *vp, *ldvp, *lvp; 364 struct mount *mp; 365 int error; 366 367 mp = dvp->v_mount; 368 if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 && 369 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 370 return (EROFS); 371 /* 372 * Although it is possible to call null_bypass(), we'll do 373 * a direct call to reduce overhead 374 */ 375 ldvp = NULLVPTOLOWERVP(dvp); 376 vp = lvp = NULL; 377 KASSERT((ldvp->v_vflag & VV_ROOT) == 0 || 378 ((dvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) == 0), 379 ("ldvp %p fl %#x dvp %p fl %#x flags %#x", ldvp, ldvp->v_vflag, 380 dvp, dvp->v_vflag, flags)); 381 382 /* 383 * Hold ldvp. The reference on it, owned by dvp, is lost in 384 * case of dvp reclamation, and we need ldvp to move our lock 385 * from ldvp to dvp. 386 */ 387 vhold(ldvp); 388 389 error = VOP_LOOKUP(ldvp, &lvp, cnp); 390 391 /* 392 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows 393 * dvp to be reclaimed due to shared v_vnlock. Check for the 394 * doomed state and return error. 395 */ 396 if ((error == 0 || error == EJUSTRETURN) && 397 (dvp->v_iflag & VI_DOOMED) != 0) { 398 error = ENOENT; 399 if (lvp != NULL) 400 vput(lvp); 401 402 /* 403 * If vgone() did reclaimed dvp before curthread 404 * relocked ldvp, the locks of dvp and ldpv are no 405 * longer shared. In this case, relock of ldvp in 406 * lower fs VOP_LOOKUP() does not restore the locking 407 * state of dvp. Compensate for this by unlocking 408 * ldvp and locking dvp, which is also correct if the 409 * locks are still shared. 410 */ 411 VOP_UNLOCK(ldvp, 0); 412 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 413 } 414 vdrop(ldvp); 415 416 if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 && 417 (mp->mnt_flag & MNT_RDONLY) != 0 && 418 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 419 error = EROFS; 420 421 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 422 if (ldvp == lvp) { 423 *ap->a_vpp = dvp; 424 VREF(dvp); 425 vrele(lvp); 426 } else { 427 error = null_nodeget(mp, lvp, &vp); 428 if (error == 0) 429 *ap->a_vpp = vp; 430 } 431 } 432 return (error); 433 } 434 435 static int 436 null_open(struct vop_open_args *ap) 437 { 438 int retval; 439 struct vnode *vp, *ldvp; 440 441 vp = ap->a_vp; 442 ldvp = NULLVPTOLOWERVP(vp); 443 retval = null_bypass(&ap->a_gen); 444 if (retval == 0) 445 vp->v_object = ldvp->v_object; 446 return (retval); 447 } 448 449 /* 450 * Setattr call. Disallow write attempts if the layer is mounted read-only. 451 */ 452 static int 453 null_setattr(struct vop_setattr_args *ap) 454 { 455 struct vnode *vp = ap->a_vp; 456 struct vattr *vap = ap->a_vap; 457 458 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 459 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 460 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 461 (vp->v_mount->mnt_flag & MNT_RDONLY)) 462 return (EROFS); 463 if (vap->va_size != VNOVAL) { 464 switch (vp->v_type) { 465 case VDIR: 466 return (EISDIR); 467 case VCHR: 468 case VBLK: 469 case VSOCK: 470 case VFIFO: 471 if (vap->va_flags != VNOVAL) 472 return (EOPNOTSUPP); 473 return (0); 474 case VREG: 475 case VLNK: 476 default: 477 /* 478 * Disallow write attempts if the filesystem is 479 * mounted read-only. 480 */ 481 if (vp->v_mount->mnt_flag & MNT_RDONLY) 482 return (EROFS); 483 } 484 } 485 486 return (null_bypass((struct vop_generic_args *)ap)); 487 } 488 489 /* 490 * We handle getattr only to change the fsid. 491 */ 492 static int 493 null_getattr(struct vop_getattr_args *ap) 494 { 495 int error; 496 497 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 498 return (error); 499 500 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 501 return (0); 502 } 503 504 /* 505 * Handle to disallow write access if mounted read-only. 506 */ 507 static int 508 null_access(struct vop_access_args *ap) 509 { 510 struct vnode *vp = ap->a_vp; 511 accmode_t accmode = ap->a_accmode; 512 513 /* 514 * Disallow write attempts on read-only layers; 515 * unless the file is a socket, fifo, or a block or 516 * character device resident on the filesystem. 517 */ 518 if (accmode & VWRITE) { 519 switch (vp->v_type) { 520 case VDIR: 521 case VLNK: 522 case VREG: 523 if (vp->v_mount->mnt_flag & MNT_RDONLY) 524 return (EROFS); 525 break; 526 default: 527 break; 528 } 529 } 530 return (null_bypass((struct vop_generic_args *)ap)); 531 } 532 533 static int 534 null_accessx(struct vop_accessx_args *ap) 535 { 536 struct vnode *vp = ap->a_vp; 537 accmode_t accmode = ap->a_accmode; 538 539 /* 540 * Disallow write attempts on read-only layers; 541 * unless the file is a socket, fifo, or a block or 542 * character device resident on the filesystem. 543 */ 544 if (accmode & VWRITE) { 545 switch (vp->v_type) { 546 case VDIR: 547 case VLNK: 548 case VREG: 549 if (vp->v_mount->mnt_flag & MNT_RDONLY) 550 return (EROFS); 551 break; 552 default: 553 break; 554 } 555 } 556 return (null_bypass((struct vop_generic_args *)ap)); 557 } 558 559 /* 560 * Increasing refcount of lower vnode is needed at least for the case 561 * when lower FS is NFS to do sillyrename if the file is in use. 562 * Unfortunately v_usecount is incremented in many places in 563 * the kernel and, as such, there may be races that result in 564 * the NFS client doing an extraneous silly rename, but that seems 565 * preferable to not doing a silly rename when it is needed. 566 */ 567 static int 568 null_remove(struct vop_remove_args *ap) 569 { 570 int retval, vreleit; 571 struct vnode *lvp, *vp; 572 573 vp = ap->a_vp; 574 if (vrefcnt(vp) > 1) { 575 lvp = NULLVPTOLOWERVP(vp); 576 VREF(lvp); 577 vreleit = 1; 578 } else 579 vreleit = 0; 580 VTONULL(vp)->null_flags |= NULLV_DROP; 581 retval = null_bypass(&ap->a_gen); 582 if (vreleit != 0) 583 vrele(lvp); 584 return (retval); 585 } 586 587 /* 588 * We handle this to eliminate null FS to lower FS 589 * file moving. Don't know why we don't allow this, 590 * possibly we should. 591 */ 592 static int 593 null_rename(struct vop_rename_args *ap) 594 { 595 struct vnode *tdvp = ap->a_tdvp; 596 struct vnode *fvp = ap->a_fvp; 597 struct vnode *fdvp = ap->a_fdvp; 598 struct vnode *tvp = ap->a_tvp; 599 struct null_node *tnn; 600 601 /* Check for cross-device rename. */ 602 if ((fvp->v_mount != tdvp->v_mount) || 603 (tvp && (fvp->v_mount != tvp->v_mount))) { 604 if (tdvp == tvp) 605 vrele(tdvp); 606 else 607 vput(tdvp); 608 if (tvp) 609 vput(tvp); 610 vrele(fdvp); 611 vrele(fvp); 612 return (EXDEV); 613 } 614 615 if (tvp != NULL) { 616 tnn = VTONULL(tvp); 617 tnn->null_flags |= NULLV_DROP; 618 } 619 return (null_bypass((struct vop_generic_args *)ap)); 620 } 621 622 static int 623 null_rmdir(struct vop_rmdir_args *ap) 624 { 625 626 VTONULL(ap->a_vp)->null_flags |= NULLV_DROP; 627 return (null_bypass(&ap->a_gen)); 628 } 629 630 /* 631 * We need to process our own vnode lock and then clear the 632 * interlock flag as it applies only to our vnode, not the 633 * vnodes below us on the stack. 634 */ 635 static int 636 null_lock(struct vop_lock1_args *ap) 637 { 638 struct vnode *vp = ap->a_vp; 639 int flags = ap->a_flags; 640 struct null_node *nn; 641 struct vnode *lvp; 642 int error; 643 644 645 if ((flags & LK_INTERLOCK) == 0) { 646 VI_LOCK(vp); 647 ap->a_flags = flags |= LK_INTERLOCK; 648 } 649 nn = VTONULL(vp); 650 /* 651 * If we're still active we must ask the lower layer to 652 * lock as ffs has special lock considerations in it's 653 * vop lock. 654 */ 655 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 656 VI_LOCK_FLAGS(lvp, MTX_DUPOK); 657 VI_UNLOCK(vp); 658 /* 659 * We have to hold the vnode here to solve a potential 660 * reclaim race. If we're forcibly vgone'd while we 661 * still have refs, a thread could be sleeping inside 662 * the lowervp's vop_lock routine. When we vgone we will 663 * drop our last ref to the lowervp, which would allow it 664 * to be reclaimed. The lowervp could then be recycled, 665 * in which case it is not legal to be sleeping in it's VOP. 666 * We prevent it from being recycled by holding the vnode 667 * here. 668 */ 669 vholdl(lvp); 670 error = VOP_LOCK(lvp, flags); 671 672 /* 673 * We might have slept to get the lock and someone might have 674 * clean our vnode already, switching vnode lock from one in 675 * lowervp to v_lock in our own vnode structure. Handle this 676 * case by reacquiring correct lock in requested mode. 677 */ 678 if (VTONULL(vp) == NULL && error == 0) { 679 ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK); 680 switch (flags & LK_TYPE_MASK) { 681 case LK_SHARED: 682 ap->a_flags |= LK_SHARED; 683 break; 684 case LK_UPGRADE: 685 case LK_EXCLUSIVE: 686 ap->a_flags |= LK_EXCLUSIVE; 687 break; 688 default: 689 panic("Unsupported lock request %d\n", 690 ap->a_flags); 691 } 692 VOP_UNLOCK(lvp, 0); 693 error = vop_stdlock(ap); 694 } 695 vdrop(lvp); 696 } else 697 error = vop_stdlock(ap); 698 699 return (error); 700 } 701 702 /* 703 * We need to process our own vnode unlock and then clear the 704 * interlock flag as it applies only to our vnode, not the 705 * vnodes below us on the stack. 706 */ 707 static int 708 null_unlock(struct vop_unlock_args *ap) 709 { 710 struct vnode *vp = ap->a_vp; 711 int flags = ap->a_flags; 712 int mtxlkflag = 0; 713 struct null_node *nn; 714 struct vnode *lvp; 715 int error; 716 717 if ((flags & LK_INTERLOCK) != 0) 718 mtxlkflag = 1; 719 else if (mtx_owned(VI_MTX(vp)) == 0) { 720 VI_LOCK(vp); 721 mtxlkflag = 2; 722 } 723 nn = VTONULL(vp); 724 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 725 VI_LOCK_FLAGS(lvp, MTX_DUPOK); 726 flags |= LK_INTERLOCK; 727 vholdl(lvp); 728 VI_UNLOCK(vp); 729 error = VOP_UNLOCK(lvp, flags); 730 vdrop(lvp); 731 if (mtxlkflag == 0) 732 VI_LOCK(vp); 733 } else { 734 if (mtxlkflag == 2) 735 VI_UNLOCK(vp); 736 error = vop_stdunlock(ap); 737 } 738 739 return (error); 740 } 741 742 /* 743 * Do not allow the VOP_INACTIVE to be passed to the lower layer, 744 * since the reference count on the lower vnode is not related to 745 * ours. 746 */ 747 static int 748 null_inactive(struct vop_inactive_args *ap __unused) 749 { 750 struct vnode *vp, *lvp; 751 struct null_node *xp; 752 struct mount *mp; 753 struct null_mount *xmp; 754 755 vp = ap->a_vp; 756 xp = VTONULL(vp); 757 lvp = NULLVPTOLOWERVP(vp); 758 mp = vp->v_mount; 759 xmp = MOUNTTONULLMOUNT(mp); 760 if ((xmp->nullm_flags & NULLM_CACHE) == 0 || 761 (xp->null_flags & NULLV_DROP) != 0 || 762 (lvp->v_vflag & VV_NOSYNC) != 0) { 763 /* 764 * If this is the last reference and caching of the 765 * nullfs vnodes is not enabled, or the lower vnode is 766 * deleted, then free up the vnode so as not to tie up 767 * the lower vnodes. 768 */ 769 vp->v_object = NULL; 770 vrecycle(vp); 771 } 772 return (0); 773 } 774 775 /* 776 * Now, the nullfs vnode and, due to the sharing lock, the lower 777 * vnode, are exclusively locked, and we shall destroy the null vnode. 778 */ 779 static int 780 null_reclaim(struct vop_reclaim_args *ap) 781 { 782 struct vnode *vp; 783 struct null_node *xp; 784 struct vnode *lowervp; 785 786 vp = ap->a_vp; 787 xp = VTONULL(vp); 788 lowervp = xp->null_lowervp; 789 790 KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock, 791 ("Reclaiming incomplete null vnode %p", vp)); 792 793 null_hashrem(xp); 794 /* 795 * Use the interlock to protect the clearing of v_data to 796 * prevent faults in null_lock(). 797 */ 798 lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL); 799 VI_LOCK(vp); 800 vp->v_data = NULL; 801 vp->v_object = NULL; 802 vp->v_vnlock = &vp->v_lock; 803 VI_UNLOCK(vp); 804 805 /* 806 * If we were opened for write, we leased one write reference 807 * to the lower vnode. If this is a reclamation due to the 808 * forced unmount, undo the reference now. 809 */ 810 if (vp->v_writecount > 0) 811 VOP_ADD_WRITECOUNT(lowervp, -1); 812 if ((xp->null_flags & NULLV_NOUNLOCK) != 0) 813 vunref(lowervp); 814 else 815 vput(lowervp); 816 free(xp, M_NULLFSNODE); 817 818 return (0); 819 } 820 821 static int 822 null_print(struct vop_print_args *ap) 823 { 824 struct vnode *vp = ap->a_vp; 825 826 printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp); 827 return (0); 828 } 829 830 /* ARGSUSED */ 831 static int 832 null_getwritemount(struct vop_getwritemount_args *ap) 833 { 834 struct null_node *xp; 835 struct vnode *lowervp; 836 struct vnode *vp; 837 838 vp = ap->a_vp; 839 VI_LOCK(vp); 840 xp = VTONULL(vp); 841 if (xp && (lowervp = xp->null_lowervp)) { 842 VI_LOCK_FLAGS(lowervp, MTX_DUPOK); 843 VI_UNLOCK(vp); 844 vholdl(lowervp); 845 VI_UNLOCK(lowervp); 846 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp); 847 vdrop(lowervp); 848 } else { 849 VI_UNLOCK(vp); 850 *(ap->a_mpp) = NULL; 851 } 852 return (0); 853 } 854 855 static int 856 null_vptofh(struct vop_vptofh_args *ap) 857 { 858 struct vnode *lvp; 859 860 lvp = NULLVPTOLOWERVP(ap->a_vp); 861 return VOP_VPTOFH(lvp, ap->a_fhp); 862 } 863 864 static int 865 null_vptocnp(struct vop_vptocnp_args *ap) 866 { 867 struct vnode *vp = ap->a_vp; 868 struct vnode **dvp = ap->a_vpp; 869 struct vnode *lvp, *ldvp; 870 struct ucred *cred = ap->a_cred; 871 int error, locked; 872 873 if (vp->v_type == VDIR) 874 return (vop_stdvptocnp(ap)); 875 876 locked = VOP_ISLOCKED(vp); 877 lvp = NULLVPTOLOWERVP(vp); 878 vhold(lvp); 879 VOP_UNLOCK(vp, 0); /* vp is held by vn_vptocnp_locked that called us */ 880 ldvp = lvp; 881 vref(lvp); 882 error = vn_vptocnp(&ldvp, cred, ap->a_buf, ap->a_buflen); 883 vdrop(lvp); 884 if (error != 0) { 885 vn_lock(vp, locked | LK_RETRY); 886 return (ENOENT); 887 } 888 889 /* 890 * Exclusive lock is required by insmntque1 call in 891 * null_nodeget() 892 */ 893 error = vn_lock(ldvp, LK_EXCLUSIVE); 894 if (error != 0) { 895 vrele(ldvp); 896 vn_lock(vp, locked | LK_RETRY); 897 return (ENOENT); 898 } 899 vref(ldvp); 900 error = null_nodeget(vp->v_mount, ldvp, dvp); 901 if (error == 0) { 902 #ifdef DIAGNOSTIC 903 NULLVPTOLOWERVP(*dvp); 904 #endif 905 VOP_UNLOCK(*dvp, 0); /* keep reference on *dvp */ 906 } 907 vn_lock(vp, locked | LK_RETRY); 908 return (error); 909 } 910 911 /* 912 * Global vfs data structures 913 */ 914 struct vop_vector null_vnodeops = { 915 .vop_bypass = null_bypass, 916 .vop_access = null_access, 917 .vop_accessx = null_accessx, 918 .vop_advlockpurge = vop_stdadvlockpurge, 919 .vop_bmap = VOP_EOPNOTSUPP, 920 .vop_getattr = null_getattr, 921 .vop_getwritemount = null_getwritemount, 922 .vop_inactive = null_inactive, 923 .vop_islocked = vop_stdislocked, 924 .vop_lock1 = null_lock, 925 .vop_lookup = null_lookup, 926 .vop_open = null_open, 927 .vop_print = null_print, 928 .vop_reclaim = null_reclaim, 929 .vop_remove = null_remove, 930 .vop_rename = null_rename, 931 .vop_rmdir = null_rmdir, 932 .vop_setattr = null_setattr, 933 .vop_strategy = VOP_EOPNOTSUPP, 934 .vop_unlock = null_unlock, 935 .vop_vptocnp = null_vptocnp, 936 .vop_vptofh = null_vptofh, 937 .vop_add_writecount = null_add_writecount, 938 }; 939