1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * John Heidemann of the UCLA Ficus project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Ancestors: 35 * ...and... 36 */ 37 38 /* 39 * Null Layer 40 * 41 * (See mount_nullfs(8) for more information.) 42 * 43 * The null layer duplicates a portion of the filesystem 44 * name space under a new name. In this respect, it is 45 * similar to the loopback filesystem. It differs from 46 * the loopback fs in two respects: it is implemented using 47 * a stackable layers techniques, and its "null-node"s stack above 48 * all lower-layer vnodes, not just over directory vnodes. 49 * 50 * The null layer has two purposes. First, it serves as a demonstration 51 * of layering by proving a layer which does nothing. (It actually 52 * does everything the loopback filesystem does, which is slightly 53 * more than nothing.) Second, the null layer can serve as a prototype 54 * layer. Since it provides all necessary layer framework, 55 * new filesystem layers can be created very easily be starting 56 * with a null layer. 57 * 58 * The remainder of this man page examines the null layer as a basis 59 * for constructing new layers. 60 * 61 * 62 * INSTANTIATING NEW NULL LAYERS 63 * 64 * New null layers are created with mount_nullfs(8). 65 * Mount_nullfs(8) takes two arguments, the pathname 66 * of the lower vfs (target-pn) and the pathname where the null 67 * layer will appear in the namespace (alias-pn). After 68 * the null layer is put into place, the contents 69 * of target-pn subtree will be aliased under alias-pn. 70 * 71 * 72 * OPERATION OF A NULL LAYER 73 * 74 * The null layer is the minimum filesystem layer, 75 * simply bypassing all possible operations to the lower layer 76 * for processing there. The majority of its activity centers 77 * on the bypass routine, through which nearly all vnode operations 78 * pass. 79 * 80 * The bypass routine accepts arbitrary vnode operations for 81 * handling by the lower layer. It begins by examining vnode 82 * operation arguments and replacing any null-nodes by their 83 * lower-layer equivlants. It then invokes the operation 84 * on the lower layer. Finally, it replaces the null-nodes 85 * in the arguments and, if a vnode is return by the operation, 86 * stacks a null-node on top of the returned vnode. 87 * 88 * Although bypass handles most operations, vop_getattr, vop_lock, 89 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 90 * bypassed. Vop_getattr must change the fsid being returned. 91 * Vop_lock and vop_unlock must handle any locking for the 92 * current vnode as well as pass the lock request down. 93 * Vop_inactive and vop_reclaim are not bypassed so that 94 * they can handle freeing null-layer specific data. Vop_print 95 * is not bypassed to avoid excessive debugging information. 96 * Also, certain vnode operations change the locking state within 97 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 98 * and symlink). Ideally these operations should not change the 99 * lock state, but should be changed to let the caller of the 100 * function unlock them. Otherwise all intermediate vnode layers 101 * (such as union, umapfs, etc) must catch these functions to do 102 * the necessary locking at their layer. 103 * 104 * 105 * INSTANTIATING VNODE STACKS 106 * 107 * Mounting associates the null layer with a lower layer, 108 * effect stacking two VFSes. Vnode stacks are instead 109 * created on demand as files are accessed. 110 * 111 * The initial mount creates a single vnode stack for the 112 * root of the new null layer. All other vnode stacks 113 * are created as a result of vnode operations on 114 * this or other null vnode stacks. 115 * 116 * New vnode stacks come into existence as a result of 117 * an operation which returns a vnode. 118 * The bypass routine stacks a null-node above the new 119 * vnode before returning it to the caller. 120 * 121 * For example, imagine mounting a null layer with 122 * "mount_nullfs /usr/include /dev/layer/null". 123 * Changing directory to /dev/layer/null will assign 124 * the root null-node (which was created when the null layer was mounted). 125 * Now consider opening "sys". A vop_lookup would be 126 * done on the root null-node. This operation would bypass through 127 * to the lower layer which would return a vnode representing 128 * the UFS "sys". Null_bypass then builds a null-node 129 * aliasing the UFS "sys" and returns this to the caller. 130 * Later operations on the null-node "sys" will repeat this 131 * process when constructing other vnode stacks. 132 * 133 * 134 * CREATING OTHER FILE SYSTEM LAYERS 135 * 136 * One of the easiest ways to construct new filesystem layers is to make 137 * a copy of the null layer, rename all files and variables, and 138 * then begin modifing the copy. Sed can be used to easily rename 139 * all variables. 140 * 141 * The umap layer is an example of a layer descended from the 142 * null layer. 143 * 144 * 145 * INVOKING OPERATIONS ON LOWER LAYERS 146 * 147 * There are two techniques to invoke operations on a lower layer 148 * when the operation cannot be completely bypassed. Each method 149 * is appropriate in different situations. In both cases, 150 * it is the responsibility of the aliasing layer to make 151 * the operation arguments "correct" for the lower layer 152 * by mapping a vnode arguments to the lower layer. 153 * 154 * The first approach is to call the aliasing layer's bypass routine. 155 * This method is most suitable when you wish to invoke the operation 156 * currently being handled on the lower layer. It has the advantage 157 * that the bypass routine already must do argument mapping. 158 * An example of this is null_getattrs in the null layer. 159 * 160 * A second approach is to directly invoke vnode operations on 161 * the lower layer with the VOP_OPERATIONNAME interface. 162 * The advantage of this method is that it is easy to invoke 163 * arbitrary operations on the lower layer. The disadvantage 164 * is that vnode arguments must be manualy mapped. 165 * 166 */ 167 168 #include <sys/param.h> 169 #include <sys/systm.h> 170 #include <sys/conf.h> 171 #include <sys/kernel.h> 172 #include <sys/lock.h> 173 #include <sys/malloc.h> 174 #include <sys/mount.h> 175 #include <sys/mutex.h> 176 #include <sys/namei.h> 177 #include <sys/proc.h> 178 #include <sys/smr.h> 179 #include <sys/sysctl.h> 180 #include <sys/vnode.h> 181 #include <sys/stat.h> 182 183 #include <fs/nullfs/null.h> 184 185 #include <vm/vm.h> 186 #include <vm/vm_extern.h> 187 #include <vm/vm_object.h> 188 #include <vm/vnode_pager.h> 189 190 VFS_SMR_DECLARE; 191 192 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 193 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 194 &null_bug_bypass, 0, ""); 195 196 /* 197 * Synchronize inotify flags with the lower vnode: 198 * - If the upper vnode has the flag set and the lower does not, then the lower 199 * vnode is unwatched and the upper vnode does not need to go through 200 * VOP_INOTIFY. 201 * - If the lower vnode is watched, then the upper vnode should go through 202 * VOP_INOTIFY, so copy the flag up. 203 */ 204 static void 205 null_copy_inotify(struct vnode *vp, struct vnode *lvp, short flag) 206 { 207 if ((vn_irflag_read(vp) & flag) != 0) { 208 if (__predict_false((vn_irflag_read(lvp) & flag) == 0)) 209 vn_irflag_unset(vp, flag); 210 } else if ((vn_irflag_read(lvp) & flag) != 0) { 211 if (__predict_false((vn_irflag_read(vp) & flag) == 0)) 212 vn_irflag_set(vp, flag); 213 } 214 } 215 216 /* 217 * This is the 10-Apr-92 bypass routine. 218 * This version has been optimized for speed, throwing away some 219 * safety checks. It should still always work, but it's not as 220 * robust to programmer errors. 221 * 222 * In general, we map all vnodes going down and unmap them on the way back. 223 * As an exception to this, vnodes can be marked "unmapped" by setting 224 * the Nth bit in operation's vdesc_flags. 225 * 226 * Also, some BSD vnode operations have the side effect of vrele'ing 227 * their arguments. With stacking, the reference counts are held 228 * by the upper node, not the lower one, so we must handle these 229 * side-effects here. This is not of concern in Sun-derived systems 230 * since there are no such side-effects. 231 * 232 * This makes the following assumptions: 233 * - only one returned vpp 234 * - no INOUT vpp's (Sun's vop_open has one of these) 235 * - the vnode operation vector of the first vnode should be used 236 * to determine what implementation of the op should be invoked 237 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 238 * problems on rmdir'ing mount points and renaming?) 239 */ 240 int 241 null_bypass(struct vop_generic_args *ap) 242 { 243 struct vnode **this_vp_p; 244 struct vnode *old_vps[VDESC_MAX_VPS]; 245 struct vnode **vps_p[VDESC_MAX_VPS]; 246 struct vnode ***vppp; 247 struct vnode *lvp; 248 struct vnodeop_desc *descp = ap->a_desc; 249 int error, i, reles; 250 251 if (null_bug_bypass) 252 printf ("null_bypass: %s\n", descp->vdesc_name); 253 254 #ifdef DIAGNOSTIC 255 /* 256 * We require at least one vp. 257 */ 258 if (descp->vdesc_vp_offsets == NULL || 259 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 260 panic ("null_bypass: no vp's in map"); 261 #endif 262 263 /* 264 * Map the vnodes going in. 265 * Later, we'll invoke the operation based on 266 * the first mapped vnode's operation vector. 267 */ 268 reles = descp->vdesc_flags; 269 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 270 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 271 break; /* bail out at end of list */ 272 vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **, 273 descp->vdesc_vp_offsets[i], ap); 274 275 /* 276 * We're not guaranteed that any but the first vnode 277 * are of our type. Check for and don't map any 278 * that aren't. (We must always map first vp or vclean fails.) 279 */ 280 if (i != 0 && (*this_vp_p == NULL || 281 (*this_vp_p)->v_op != &null_vnodeops)) { 282 old_vps[i] = NULL; 283 } else { 284 old_vps[i] = *this_vp_p; 285 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 286 287 /* 288 * The upper vnode reference to the lower 289 * vnode is the only reference that keeps our 290 * pointer to the lower vnode alive. If lower 291 * vnode is relocked during the VOP call, 292 * upper vnode might become unlocked and 293 * reclaimed, which invalidates our reference. 294 * Add a transient hold around VOP call. 295 */ 296 vhold(*this_vp_p); 297 298 /* 299 * XXX - Several operations have the side effect 300 * of vrele'ing their vp's. We must account for 301 * that. (This should go away in the future.) 302 */ 303 if (reles & VDESC_VP0_WILLRELE) 304 vref(*this_vp_p); 305 } 306 } 307 308 /* 309 * Call the operation on the lower layer 310 * with the modified argument structure. 311 */ 312 if (vps_p[0] != NULL && *vps_p[0] != NULL) { 313 error = ap->a_desc->vdesc_call(ap); 314 } else { 315 printf("null_bypass: no map for %s\n", descp->vdesc_name); 316 error = EINVAL; 317 } 318 319 /* 320 * Maintain the illusion of call-by-value 321 * by restoring vnodes in the argument structure 322 * to their original value. 323 */ 324 reles = descp->vdesc_flags; 325 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 326 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 327 break; /* bail out at end of list */ 328 if (old_vps[i] != NULL) { 329 lvp = *(vps_p[i]); 330 331 /* 332 * Get rid of the transient hold on lvp. Copy inotify 333 * flags up in case something is watching the lower 334 * layer. 335 * 336 * If lowervp was unlocked during VOP 337 * operation, nullfs upper vnode could have 338 * been reclaimed, which changes its v_vnlock 339 * back to private v_lock. In this case we 340 * must move lock ownership from lower to 341 * upper (reclaimed) vnode. 342 */ 343 if (lvp != NULL) { 344 null_copy_inotify(old_vps[i], lvp, 345 VIRF_INOTIFY); 346 null_copy_inotify(old_vps[i], lvp, 347 VIRF_INOTIFY_PARENT); 348 if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE && 349 old_vps[i]->v_vnlock != lvp->v_vnlock) { 350 VOP_UNLOCK(lvp); 351 VOP_LOCK(old_vps[i], LK_EXCLUSIVE | 352 LK_RETRY); 353 } 354 vdrop(lvp); 355 } 356 357 *(vps_p[i]) = old_vps[i]; 358 #if 0 359 if (reles & VDESC_VP0_WILLUNLOCK) 360 VOP_UNLOCK(*(vps_p[i]), 0); 361 #endif 362 if (reles & VDESC_VP0_WILLRELE) 363 vrele(*(vps_p[i])); 364 } 365 } 366 367 /* 368 * Map the possible out-going vpp 369 * (Assumes that the lower layer always returns 370 * a VREF'ed vpp unless it gets an error.) 371 */ 372 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) { 373 /* 374 * XXX - even though some ops have vpp returned vp's, 375 * several ops actually vrele this before returning. 376 * We must avoid these ops. 377 * (This should go away when these ops are regularized.) 378 */ 379 vppp = VOPARG_OFFSETTO(struct vnode ***, 380 descp->vdesc_vpp_offset, ap); 381 if (*vppp != NULL) 382 error = null_nodeget(old_vps[0]->v_mount, **vppp, 383 *vppp); 384 } 385 386 return (error); 387 } 388 389 static int 390 null_add_writecount(struct vop_add_writecount_args *ap) 391 { 392 struct vnode *lvp, *vp; 393 int error; 394 395 vp = ap->a_vp; 396 lvp = NULLVPTOLOWERVP(vp); 397 VI_LOCK(vp); 398 /* text refs are bypassed to lowervp */ 399 VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount")); 400 VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp, 401 ("wrong writecount inc %d", ap->a_inc)); 402 error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc); 403 if (error == 0) 404 vp->v_writecount += ap->a_inc; 405 VI_UNLOCK(vp); 406 return (error); 407 } 408 409 /* 410 * We have to carry on the locking protocol on the null layer vnodes 411 * as we progress through the tree. We also have to enforce read-only 412 * if this layer is mounted read-only. 413 */ 414 static int 415 null_lookup(struct vop_lookup_args *ap) 416 { 417 struct componentname *cnp = ap->a_cnp; 418 struct vnode *dvp = ap->a_dvp; 419 uint64_t flags = cnp->cn_flags; 420 struct vnode *vp, *ldvp, *lvp; 421 struct mount *mp; 422 int error; 423 424 mp = dvp->v_mount; 425 if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 && 426 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 427 return (EROFS); 428 /* 429 * Although it is possible to call null_bypass(), we'll do 430 * a direct call to reduce overhead 431 */ 432 ldvp = NULLVPTOLOWERVP(dvp); 433 vp = lvp = NULL; 434 435 /* 436 * Renames in the lower mounts might create an inconsistent 437 * configuration where lower vnode is moved out of the directory tree 438 * remounted by our null mount. 439 * 440 * Do not try to handle it fancy, just avoid VOP_LOOKUP() with DOTDOT 441 * name which cannot be handled by the VOP. 442 */ 443 if ((flags & ISDOTDOT) != 0) { 444 struct nameidata *ndp; 445 446 if ((ldvp->v_vflag & VV_ROOT) != 0) { 447 KASSERT((dvp->v_vflag & VV_ROOT) == 0, 448 ("ldvp %p fl %#x dvp %p fl %#x flags %#jx", 449 ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, 450 (uintmax_t)flags)); 451 return (ENOENT); 452 } 453 ndp = vfs_lookup_nameidata(cnp); 454 if (ndp != NULL && vfs_lookup_isroot(ndp, ldvp)) 455 return (ENOENT); 456 } 457 458 /* 459 * Hold ldvp. The reference on it, owned by dvp, is lost in 460 * case of dvp reclamation, and we need ldvp to move our lock 461 * from ldvp to dvp. 462 */ 463 vhold(ldvp); 464 465 error = VOP_LOOKUP(ldvp, &lvp, cnp); 466 467 /* 468 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows 469 * dvp to be reclaimed due to shared v_vnlock. Check for the 470 * doomed state and return error. 471 */ 472 if (VN_IS_DOOMED(dvp)) { 473 if (error == 0 || error == EJUSTRETURN) { 474 if (lvp != NULL) 475 vput(lvp); 476 error = ENOENT; 477 } 478 479 /* 480 * If vgone() did reclaimed dvp before curthread 481 * relocked ldvp, the locks of dvp and ldpv are no 482 * longer shared. In this case, relock of ldvp in 483 * lower fs VOP_LOOKUP() does not restore the locking 484 * state of dvp. Compensate for this by unlocking 485 * ldvp and locking dvp, which is also correct if the 486 * locks are still shared. 487 */ 488 VOP_UNLOCK(ldvp); 489 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 490 } 491 vdrop(ldvp); 492 493 if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 && 494 (mp->mnt_flag & MNT_RDONLY) != 0 && 495 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 496 error = EROFS; 497 498 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 499 if (ldvp == lvp) { 500 *ap->a_vpp = dvp; 501 vref(dvp); 502 vrele(lvp); 503 } else { 504 error = null_nodeget(mp, lvp, &vp); 505 if (error == 0) 506 *ap->a_vpp = vp; 507 } 508 } 509 return (error); 510 } 511 512 static int 513 null_open(struct vop_open_args *ap) 514 { 515 int retval; 516 struct vnode *vp, *ldvp; 517 518 vp = ap->a_vp; 519 ldvp = NULLVPTOLOWERVP(vp); 520 retval = null_bypass(&ap->a_gen); 521 if (retval == 0) { 522 vp->v_object = ldvp->v_object; 523 if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) { 524 MPASS(vp->v_object != NULL); 525 if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) { 526 vn_irflag_set_cond(vp, VIRF_PGREAD); 527 } 528 } 529 } 530 return (retval); 531 } 532 533 /* 534 * Setattr call. Disallow write attempts if the layer is mounted read-only. 535 */ 536 static int 537 null_setattr(struct vop_setattr_args *ap) 538 { 539 struct vnode *vp = ap->a_vp; 540 struct vattr *vap = ap->a_vap; 541 542 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 543 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 544 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 545 (vp->v_mount->mnt_flag & MNT_RDONLY)) 546 return (EROFS); 547 if (vap->va_size != VNOVAL) { 548 switch (vp->v_type) { 549 case VDIR: 550 return (EISDIR); 551 case VCHR: 552 case VBLK: 553 case VSOCK: 554 case VFIFO: 555 if (vap->va_flags != VNOVAL) 556 return (EOPNOTSUPP); 557 return (0); 558 case VREG: 559 case VLNK: 560 default: 561 /* 562 * Disallow write attempts if the filesystem is 563 * mounted read-only. 564 */ 565 if (vp->v_mount->mnt_flag & MNT_RDONLY) 566 return (EROFS); 567 } 568 } 569 570 return (null_bypass(&ap->a_gen)); 571 } 572 573 /* 574 * We handle stat and getattr only to change the fsid. 575 */ 576 static int 577 null_stat(struct vop_stat_args *ap) 578 { 579 int error; 580 581 if ((error = null_bypass(&ap->a_gen)) != 0) 582 return (error); 583 584 ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 585 return (0); 586 } 587 588 static int 589 null_getattr(struct vop_getattr_args *ap) 590 { 591 int error; 592 593 if ((error = null_bypass(&ap->a_gen)) != 0) 594 return (error); 595 596 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 597 return (0); 598 } 599 600 /* 601 * Handle to disallow write access if mounted read-only. 602 */ 603 static int 604 null_access(struct vop_access_args *ap) 605 { 606 struct vnode *vp = ap->a_vp; 607 accmode_t accmode = ap->a_accmode; 608 609 /* 610 * Disallow write attempts on read-only layers; 611 * unless the file is a socket, fifo, or a block or 612 * character device resident on the filesystem. 613 */ 614 if (accmode & VWRITE) { 615 switch (vp->v_type) { 616 case VDIR: 617 case VLNK: 618 case VREG: 619 if (vp->v_mount->mnt_flag & MNT_RDONLY) 620 return (EROFS); 621 break; 622 default: 623 break; 624 } 625 } 626 return (null_bypass(&ap->a_gen)); 627 } 628 629 static int 630 null_accessx(struct vop_accessx_args *ap) 631 { 632 struct vnode *vp = ap->a_vp; 633 accmode_t accmode = ap->a_accmode; 634 635 /* 636 * Disallow write attempts on read-only layers; 637 * unless the file is a socket, fifo, or a block or 638 * character device resident on the filesystem. 639 */ 640 if (accmode & VWRITE) { 641 switch (vp->v_type) { 642 case VDIR: 643 case VLNK: 644 case VREG: 645 if (vp->v_mount->mnt_flag & MNT_RDONLY) 646 return (EROFS); 647 break; 648 default: 649 break; 650 } 651 } 652 return (null_bypass(&ap->a_gen)); 653 } 654 655 /* 656 * Increasing refcount of lower vnode is needed at least for the case 657 * when lower FS is NFS to do sillyrename if the file is in use. 658 * Unfortunately v_usecount is incremented in many places in 659 * the kernel and, as such, there may be races that result in 660 * the NFS client doing an extraneous silly rename, but that seems 661 * preferable to not doing a silly rename when it is needed. 662 */ 663 static int 664 null_remove(struct vop_remove_args *ap) 665 { 666 int retval, vreleit; 667 struct vnode *lvp, *vp; 668 669 vp = ap->a_vp; 670 if (vrefcnt(vp) > 1) { 671 lvp = NULLVPTOLOWERVP(vp); 672 vref(lvp); 673 vreleit = 1; 674 } else 675 vreleit = 0; 676 VTONULL(vp)->null_flags |= NULLV_DROP; 677 retval = null_bypass(&ap->a_gen); 678 if (vreleit != 0) 679 vrele(lvp); 680 return (retval); 681 } 682 683 /* 684 * We handle this to eliminate null FS to lower FS 685 * file moving. Don't know why we don't allow this, 686 * possibly we should. 687 */ 688 static int 689 null_rename(struct vop_rename_args *ap) 690 { 691 struct vnode *fdvp, *fvp, *tdvp, *tvp; 692 struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp; 693 struct null_node *fdnn, *fnn, *tdnn, *tnn; 694 int error; 695 696 tdvp = ap->a_tdvp; 697 fvp = ap->a_fvp; 698 fdvp = ap->a_fdvp; 699 tvp = ap->a_tvp; 700 lfdvp = NULL; 701 702 /* Check for cross-device rename. */ 703 if ((fvp->v_mount != tdvp->v_mount) || 704 (tvp != NULL && fvp->v_mount != tvp->v_mount)) { 705 error = EXDEV; 706 goto upper_err; 707 } 708 709 VI_LOCK(fdvp); 710 fdnn = VTONULL(fdvp); 711 if (fdnn == NULL) { /* fdvp is not locked, can be doomed */ 712 VI_UNLOCK(fdvp); 713 error = ENOENT; 714 goto upper_err; 715 } 716 lfdvp = fdnn->null_lowervp; 717 vref(lfdvp); 718 VI_UNLOCK(fdvp); 719 720 VI_LOCK(fvp); 721 fnn = VTONULL(fvp); 722 if (fnn == NULL) { 723 VI_UNLOCK(fvp); 724 error = ENOENT; 725 goto upper_err; 726 } 727 lfvp = fnn->null_lowervp; 728 vref(lfvp); 729 VI_UNLOCK(fvp); 730 731 tdnn = VTONULL(tdvp); 732 ltdvp = tdnn->null_lowervp; 733 vref(ltdvp); 734 735 if (tvp != NULL) { 736 tnn = VTONULL(tvp); 737 ltvp = tnn->null_lowervp; 738 vref(ltvp); 739 tnn->null_flags |= NULLV_DROP; 740 } else { 741 ltvp = NULL; 742 } 743 744 error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp); 745 vrele(fdvp); 746 vrele(fvp); 747 vrele(tdvp); 748 if (tvp != NULL) 749 vrele(tvp); 750 return (error); 751 752 upper_err: 753 if (tdvp == tvp) 754 vrele(tdvp); 755 else 756 vput(tdvp); 757 if (tvp) 758 vput(tvp); 759 if (lfdvp != NULL) 760 vrele(lfdvp); 761 vrele(fdvp); 762 vrele(fvp); 763 return (error); 764 } 765 766 static int 767 null_rmdir(struct vop_rmdir_args *ap) 768 { 769 770 VTONULL(ap->a_vp)->null_flags |= NULLV_DROP; 771 return (null_bypass(&ap->a_gen)); 772 } 773 774 /* 775 * We need to process our own vnode lock and then clear the interlock flag as 776 * it applies only to our vnode, not the vnodes below us on the stack. 777 * 778 * We have to hold the vnode here to solve a potential reclaim race. If we're 779 * forcibly vgone'd while we still have refs, a thread could be sleeping inside 780 * the lowervp's vop_lock routine. When we vgone we will drop our last ref to 781 * the lowervp, which would allow it to be reclaimed. The lowervp could then 782 * be recycled, in which case it is not legal to be sleeping in its VOP. We 783 * prevent it from being recycled by holding the vnode here. 784 */ 785 static struct vnode * 786 null_lock_prep_with_smr(struct vop_lock1_args *ap) 787 { 788 struct null_node *nn; 789 struct vnode *lvp; 790 791 vfs_smr_enter(); 792 793 lvp = NULL; 794 795 nn = VTONULL_SMR(ap->a_vp); 796 if (__predict_true(nn != NULL)) { 797 lvp = nn->null_lowervp; 798 if (lvp != NULL && !vhold_smr(lvp)) 799 lvp = NULL; 800 } 801 802 vfs_smr_exit(); 803 return (lvp); 804 } 805 806 static struct vnode * 807 null_lock_prep_with_interlock(struct vop_lock1_args *ap) 808 { 809 struct null_node *nn; 810 struct vnode *lvp; 811 812 ASSERT_VI_LOCKED(ap->a_vp, __func__); 813 814 ap->a_flags &= ~LK_INTERLOCK; 815 816 lvp = NULL; 817 818 nn = VTONULL(ap->a_vp); 819 if (__predict_true(nn != NULL)) { 820 lvp = nn->null_lowervp; 821 if (lvp != NULL) 822 vholdnz(lvp); 823 } 824 VI_UNLOCK(ap->a_vp); 825 return (lvp); 826 } 827 828 static int 829 null_lock(struct vop_lock1_args *ap) 830 { 831 struct vnode *lvp; 832 int error, flags; 833 834 if (__predict_true((ap->a_flags & LK_INTERLOCK) == 0)) { 835 lvp = null_lock_prep_with_smr(ap); 836 if (__predict_false(lvp == NULL)) { 837 VI_LOCK(ap->a_vp); 838 lvp = null_lock_prep_with_interlock(ap); 839 } 840 } else { 841 lvp = null_lock_prep_with_interlock(ap); 842 } 843 844 ASSERT_VI_UNLOCKED(ap->a_vp, __func__); 845 846 if (__predict_false(lvp == NULL)) 847 return (vop_stdlock(ap)); 848 849 VNPASS(lvp->v_holdcnt > 0, lvp); 850 error = VOP_LOCK(lvp, ap->a_flags); 851 /* 852 * We might have slept to get the lock and someone might have 853 * clean our vnode already, switching vnode lock from one in 854 * lowervp to v_lock in our own vnode structure. Handle this 855 * case by reacquiring correct lock in requested mode. 856 */ 857 if (VTONULL(ap->a_vp) == NULL && error == 0) { 858 flags = ap->a_flags; 859 ap->a_flags &= ~LK_TYPE_MASK; 860 switch (flags & LK_TYPE_MASK) { 861 case LK_SHARED: 862 ap->a_flags |= LK_SHARED; 863 break; 864 case LK_UPGRADE: 865 case LK_EXCLUSIVE: 866 ap->a_flags |= LK_EXCLUSIVE; 867 break; 868 default: 869 panic("Unsupported lock request %d\n", 870 flags); 871 } 872 VOP_UNLOCK(lvp); 873 error = vop_stdlock(ap); 874 } 875 vdrop(lvp); 876 return (error); 877 } 878 879 static int 880 null_unlock(struct vop_unlock_args *ap) 881 { 882 struct vnode *vp = ap->a_vp; 883 struct null_node *nn; 884 struct vnode *lvp; 885 int error; 886 887 /* 888 * Contrary to null_lock, we don't need to hold the vnode around 889 * unlock. 890 * 891 * We hold the lock, which means we can't be racing against vgone. 892 * 893 * At the same time VOP_UNLOCK promises to not touch anything after 894 * it finishes unlock, just like we don't. 895 * 896 * vop_stdunlock for a doomed vnode matches doomed locking in null_lock. 897 */ 898 nn = VTONULL(vp); 899 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 900 error = VOP_UNLOCK(lvp); 901 } else { 902 error = vop_stdunlock(ap); 903 } 904 905 return (error); 906 } 907 908 /* 909 * Do not allow the VOP_INACTIVE to be passed to the lower layer, 910 * since the reference count on the lower vnode is not related to 911 * ours. 912 */ 913 static int 914 null_want_recycle(struct vnode *vp) 915 { 916 struct vnode *lvp; 917 struct null_node *xp; 918 struct mount *mp; 919 struct null_mount *xmp; 920 921 xp = VTONULL(vp); 922 lvp = NULLVPTOLOWERVP(vp); 923 mp = vp->v_mount; 924 xmp = MOUNTTONULLMOUNT(mp); 925 if ((xmp->nullm_flags & NULLM_CACHE) == 0 || 926 (xp->null_flags & NULLV_DROP) != 0 || 927 (lvp->v_vflag & VV_NOSYNC) != 0) { 928 /* 929 * If this is the last reference and caching of the 930 * nullfs vnodes is not enabled, or the lower vnode is 931 * deleted, then free up the vnode so as not to tie up 932 * the lower vnodes. 933 */ 934 return (1); 935 } 936 return (0); 937 } 938 939 static int 940 null_inactive(struct vop_inactive_args *ap) 941 { 942 struct vnode *vp; 943 944 vp = ap->a_vp; 945 if (null_want_recycle(vp)) { 946 vp->v_object = NULL; 947 vrecycle(vp); 948 } 949 return (0); 950 } 951 952 static int 953 null_need_inactive(struct vop_need_inactive_args *ap) 954 { 955 956 return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp)); 957 } 958 959 /* 960 * Now, the nullfs vnode and, due to the sharing lock, the lower 961 * vnode, are exclusively locked, and we shall destroy the null vnode. 962 */ 963 static int 964 null_reclaim(struct vop_reclaim_args *ap) 965 { 966 struct vnode *vp; 967 struct null_node *xp; 968 struct vnode *lowervp; 969 970 vp = ap->a_vp; 971 xp = VTONULL(vp); 972 lowervp = xp->null_lowervp; 973 974 KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock, 975 ("Reclaiming incomplete null vnode %p", vp)); 976 977 null_hashrem(xp); 978 /* 979 * Use the interlock to protect the clearing of v_data to 980 * prevent faults in null_lock(). 981 */ 982 lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL); 983 VI_LOCK(vp); 984 vp->v_data = NULL; 985 vp->v_object = NULL; 986 vp->v_vnlock = &vp->v_lock; 987 988 /* 989 * If we were opened for write, we leased the write reference 990 * to the lower vnode. If this is a reclamation due to the 991 * forced unmount, undo the reference now. 992 */ 993 if (vp->v_writecount > 0) 994 VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount); 995 else if (vp->v_writecount < 0) 996 vp->v_writecount = 0; 997 998 VI_UNLOCK(vp); 999 1000 if ((xp->null_flags & NULLV_NOUNLOCK) != 0) 1001 vunref(lowervp); 1002 else 1003 vput(lowervp); 1004 uma_zfree_smr(null_node_zone, xp); 1005 1006 return (0); 1007 } 1008 1009 static int 1010 null_print(struct vop_print_args *ap) 1011 { 1012 struct vnode *vp = ap->a_vp; 1013 1014 printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp); 1015 return (0); 1016 } 1017 1018 /* ARGSUSED */ 1019 static int 1020 null_getwritemount(struct vop_getwritemount_args *ap) 1021 { 1022 struct null_node *xp; 1023 struct vnode *lowervp; 1024 struct vnode *vp; 1025 1026 vp = ap->a_vp; 1027 VI_LOCK(vp); 1028 xp = VTONULL(vp); 1029 if (xp && (lowervp = xp->null_lowervp)) { 1030 vholdnz(lowervp); 1031 VI_UNLOCK(vp); 1032 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp); 1033 vdrop(lowervp); 1034 } else { 1035 VI_UNLOCK(vp); 1036 *(ap->a_mpp) = NULL; 1037 } 1038 return (0); 1039 } 1040 1041 static int 1042 null_vptofh(struct vop_vptofh_args *ap) 1043 { 1044 struct vnode *lvp; 1045 1046 lvp = NULLVPTOLOWERVP(ap->a_vp); 1047 return VOP_VPTOFH(lvp, ap->a_fhp); 1048 } 1049 1050 static int 1051 null_vptocnp(struct vop_vptocnp_args *ap) 1052 { 1053 struct vnode *vp = ap->a_vp; 1054 struct vnode **dvp = ap->a_vpp; 1055 struct vnode *lvp, *ldvp; 1056 struct mount *mp; 1057 int error, locked; 1058 1059 locked = VOP_ISLOCKED(vp); 1060 lvp = NULLVPTOLOWERVP(vp); 1061 mp = vp->v_mount; 1062 error = vfs_busy(mp, MBF_NOWAIT); 1063 if (error != 0) 1064 return (error); 1065 vhold(lvp); 1066 VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */ 1067 ldvp = lvp; 1068 vref(lvp); 1069 error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen); 1070 vdrop(lvp); 1071 if (error != 0) { 1072 vn_lock(vp, locked | LK_RETRY); 1073 vfs_unbusy(mp); 1074 return (ENOENT); 1075 } 1076 1077 error = vn_lock(ldvp, LK_SHARED); 1078 if (error != 0) { 1079 vrele(ldvp); 1080 vn_lock(vp, locked | LK_RETRY); 1081 vfs_unbusy(mp); 1082 return (ENOENT); 1083 } 1084 error = null_nodeget(mp, ldvp, dvp); 1085 if (error == 0) { 1086 #ifdef DIAGNOSTIC 1087 NULLVPTOLOWERVP(*dvp); 1088 #endif 1089 VOP_UNLOCK(*dvp); /* keep reference on *dvp */ 1090 } 1091 vn_lock(vp, locked | LK_RETRY); 1092 vfs_unbusy(mp); 1093 return (error); 1094 } 1095 1096 static int 1097 null_read_pgcache(struct vop_read_pgcache_args *ap) 1098 { 1099 struct vnode *lvp, *vp; 1100 struct null_node *xp; 1101 int error; 1102 1103 vp = ap->a_vp; 1104 VI_LOCK(vp); 1105 xp = VTONULL(vp); 1106 if (xp == NULL) { 1107 VI_UNLOCK(vp); 1108 return (EJUSTRETURN); 1109 } 1110 lvp = xp->null_lowervp; 1111 vref(lvp); 1112 VI_UNLOCK(vp); 1113 error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred); 1114 vrele(lvp); 1115 return (error); 1116 } 1117 1118 static int 1119 null_advlock(struct vop_advlock_args *ap) 1120 { 1121 struct vnode *lvp, *vp; 1122 struct null_node *xp; 1123 int error; 1124 1125 vp = ap->a_vp; 1126 VI_LOCK(vp); 1127 xp = VTONULL(vp); 1128 if (xp == NULL) { 1129 VI_UNLOCK(vp); 1130 return (EBADF); 1131 } 1132 lvp = xp->null_lowervp; 1133 vref(lvp); 1134 VI_UNLOCK(vp); 1135 error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags); 1136 vrele(lvp); 1137 return (error); 1138 } 1139 1140 /* 1141 * Avoid standard bypass, since lower dvp and vp could be no longer 1142 * valid after vput(). 1143 */ 1144 static int 1145 null_vput_pair(struct vop_vput_pair_args *ap) 1146 { 1147 struct mount *mp; 1148 struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp; 1149 int error, res; 1150 1151 dvp = ap->a_dvp; 1152 ldvp = NULLVPTOLOWERVP(dvp); 1153 vref(ldvp); 1154 1155 vpp = ap->a_vpp; 1156 vp = NULL; 1157 lvp = NULL; 1158 mp = NULL; 1159 if (vpp != NULL) 1160 vp = *vpp; 1161 if (vp != NULL) { 1162 lvp = NULLVPTOLOWERVP(vp); 1163 vref(lvp); 1164 if (!ap->a_unlock_vp) { 1165 vhold(vp); 1166 vhold(lvp); 1167 mp = vp->v_mount; 1168 vfs_ref(mp); 1169 } 1170 } 1171 1172 res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true); 1173 if (vp != NULL && ap->a_unlock_vp) 1174 vrele(vp); 1175 vrele(dvp); 1176 1177 if (vp == NULL || ap->a_unlock_vp) 1178 return (res); 1179 1180 /* lvp has been unlocked and vp might be reclaimed */ 1181 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 1182 if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) { 1183 vput(vp); 1184 vget(lvp, LK_EXCLUSIVE | LK_RETRY); 1185 if (VN_IS_DOOMED(lvp)) { 1186 vput(lvp); 1187 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1188 } else { 1189 error = null_nodeget(mp, lvp, &vp1); 1190 if (error == 0) { 1191 *vpp = vp1; 1192 } else { 1193 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1194 } 1195 } 1196 vfs_unbusy(mp); 1197 } 1198 vdrop(lvp); 1199 vdrop(vp); 1200 vfs_rel(mp); 1201 1202 return (res); 1203 } 1204 1205 static int 1206 null_getlowvnode(struct vop_getlowvnode_args *ap) 1207 { 1208 struct vnode *vp, *vpl; 1209 1210 vp = ap->a_vp; 1211 if (vn_lock(vp, LK_SHARED) != 0) 1212 return (EBADF); 1213 1214 vpl = NULLVPTOLOWERVP(vp); 1215 vhold(vpl); 1216 VOP_UNLOCK(vp); 1217 VOP_GETLOWVNODE(vpl, ap->a_vplp, ap->a_flags); 1218 vdrop(vpl); 1219 return (0); 1220 } 1221 1222 /* 1223 * Global vfs data structures 1224 */ 1225 struct vop_vector null_vnodeops = { 1226 .vop_bypass = null_bypass, 1227 .vop_access = null_access, 1228 .vop_accessx = null_accessx, 1229 .vop_advlock = null_advlock, 1230 .vop_advlockpurge = vop_stdadvlockpurge, 1231 .vop_bmap = VOP_EOPNOTSUPP, 1232 .vop_stat = null_stat, 1233 .vop_getattr = null_getattr, 1234 .vop_getlowvnode = null_getlowvnode, 1235 .vop_getwritemount = null_getwritemount, 1236 .vop_inactive = null_inactive, 1237 .vop_need_inactive = null_need_inactive, 1238 .vop_islocked = vop_stdislocked, 1239 .vop_lock1 = null_lock, 1240 .vop_lookup = null_lookup, 1241 .vop_open = null_open, 1242 .vop_print = null_print, 1243 .vop_read_pgcache = null_read_pgcache, 1244 .vop_reclaim = null_reclaim, 1245 .vop_remove = null_remove, 1246 .vop_rename = null_rename, 1247 .vop_rmdir = null_rmdir, 1248 .vop_setattr = null_setattr, 1249 .vop_strategy = VOP_EOPNOTSUPP, 1250 .vop_unlock = null_unlock, 1251 .vop_vptocnp = null_vptocnp, 1252 .vop_vptofh = null_vptofh, 1253 .vop_add_writecount = null_add_writecount, 1254 .vop_vput_pair = null_vput_pair, 1255 .vop_copy_file_range = VOP_PANIC, 1256 }; 1257 VFS_VOP_VECTOR_REGISTER(null_vnodeops); 1258