xref: /freebsd/sys/fs/nfsclient/nfs_clvnops.c (revision d3d381b2b194b4d24853e92eecef55f262688d1a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * vnode op calls for Sun NFS version 2, 3 and 4
42  */
43 
44 #include "opt_inet.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/systm.h>
49 #include <sys/resourcevar.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/jail.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/socket.h>
59 #include <sys/vnode.h>
60 #include <sys/dirent.h>
61 #include <sys/fcntl.h>
62 #include <sys/lockf.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/signalvar.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_object.h>
70 
71 #include <fs/nfs/nfsport.h>
72 #include <fs/nfsclient/nfsnode.h>
73 #include <fs/nfsclient/nfsmount.h>
74 #include <fs/nfsclient/nfs.h>
75 #include <fs/nfsclient/nfs_kdtrace.h>
76 
77 #include <net/if.h>
78 #include <netinet/in.h>
79 #include <netinet/in_var.h>
80 
81 #include <nfs/nfs_lock.h>
82 
83 #ifdef KDTRACE_HOOKS
84 #include <sys/dtrace_bsd.h>
85 
86 dtrace_nfsclient_accesscache_flush_probe_func_t
87 		dtrace_nfscl_accesscache_flush_done_probe;
88 uint32_t	nfscl_accesscache_flush_done_id;
89 
90 dtrace_nfsclient_accesscache_get_probe_func_t
91 		dtrace_nfscl_accesscache_get_hit_probe,
92 		dtrace_nfscl_accesscache_get_miss_probe;
93 uint32_t	nfscl_accesscache_get_hit_id;
94 uint32_t	nfscl_accesscache_get_miss_id;
95 
96 dtrace_nfsclient_accesscache_load_probe_func_t
97 		dtrace_nfscl_accesscache_load_done_probe;
98 uint32_t	nfscl_accesscache_load_done_id;
99 #endif /* !KDTRACE_HOOKS */
100 
101 /* Defs */
102 #define	TRUE	1
103 #define	FALSE	0
104 
105 extern struct nfsstatsv1 nfsstatsv1;
106 extern int nfsrv_useacl;
107 extern int nfscl_debuglevel;
108 MALLOC_DECLARE(M_NEWNFSREQ);
109 
110 static vop_read_t	nfsfifo_read;
111 static vop_write_t	nfsfifo_write;
112 static vop_close_t	nfsfifo_close;
113 static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
114 		    struct thread *);
115 static vop_lookup_t	nfs_lookup;
116 static vop_create_t	nfs_create;
117 static vop_mknod_t	nfs_mknod;
118 static vop_open_t	nfs_open;
119 static vop_pathconf_t	nfs_pathconf;
120 static vop_close_t	nfs_close;
121 static vop_access_t	nfs_access;
122 static vop_getattr_t	nfs_getattr;
123 static vop_setattr_t	nfs_setattr;
124 static vop_read_t	nfs_read;
125 static vop_fsync_t	nfs_fsync;
126 static vop_remove_t	nfs_remove;
127 static vop_link_t	nfs_link;
128 static vop_rename_t	nfs_rename;
129 static vop_mkdir_t	nfs_mkdir;
130 static vop_rmdir_t	nfs_rmdir;
131 static vop_symlink_t	nfs_symlink;
132 static vop_readdir_t	nfs_readdir;
133 static vop_strategy_t	nfs_strategy;
134 static	int	nfs_lookitup(struct vnode *, char *, int,
135 		    struct ucred *, struct thread *, struct nfsnode **);
136 static	int	nfs_sillyrename(struct vnode *, struct vnode *,
137 		    struct componentname *);
138 static vop_access_t	nfsspec_access;
139 static vop_readlink_t	nfs_readlink;
140 static vop_print_t	nfs_print;
141 static vop_advlock_t	nfs_advlock;
142 static vop_advlockasync_t nfs_advlockasync;
143 static vop_getacl_t nfs_getacl;
144 static vop_setacl_t nfs_setacl;
145 static vop_set_text_t nfs_set_text;
146 
147 /*
148  * Global vfs data structures for nfs
149  */
150 struct vop_vector newnfs_vnodeops = {
151 	.vop_default =		&default_vnodeops,
152 	.vop_access =		nfs_access,
153 	.vop_advlock =		nfs_advlock,
154 	.vop_advlockasync =	nfs_advlockasync,
155 	.vop_close =		nfs_close,
156 	.vop_create =		nfs_create,
157 	.vop_fsync =		nfs_fsync,
158 	.vop_getattr =		nfs_getattr,
159 	.vop_getpages =		ncl_getpages,
160 	.vop_putpages =		ncl_putpages,
161 	.vop_inactive =		ncl_inactive,
162 	.vop_link =		nfs_link,
163 	.vop_lookup =		nfs_lookup,
164 	.vop_mkdir =		nfs_mkdir,
165 	.vop_mknod =		nfs_mknod,
166 	.vop_open =		nfs_open,
167 	.vop_pathconf =		nfs_pathconf,
168 	.vop_print =		nfs_print,
169 	.vop_read =		nfs_read,
170 	.vop_readdir =		nfs_readdir,
171 	.vop_readlink =		nfs_readlink,
172 	.vop_reclaim =		ncl_reclaim,
173 	.vop_remove =		nfs_remove,
174 	.vop_rename =		nfs_rename,
175 	.vop_rmdir =		nfs_rmdir,
176 	.vop_setattr =		nfs_setattr,
177 	.vop_strategy =		nfs_strategy,
178 	.vop_symlink =		nfs_symlink,
179 	.vop_write =		ncl_write,
180 	.vop_getacl =		nfs_getacl,
181 	.vop_setacl =		nfs_setacl,
182 	.vop_set_text =		nfs_set_text,
183 };
184 
185 struct vop_vector newnfs_fifoops = {
186 	.vop_default =		&fifo_specops,
187 	.vop_access =		nfsspec_access,
188 	.vop_close =		nfsfifo_close,
189 	.vop_fsync =		nfs_fsync,
190 	.vop_getattr =		nfs_getattr,
191 	.vop_inactive =		ncl_inactive,
192 	.vop_pathconf =		nfs_pathconf,
193 	.vop_print =		nfs_print,
194 	.vop_read =		nfsfifo_read,
195 	.vop_reclaim =		ncl_reclaim,
196 	.vop_setattr =		nfs_setattr,
197 	.vop_write =		nfsfifo_write,
198 };
199 
200 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
201     struct componentname *cnp, struct vattr *vap);
202 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
203     int namelen, struct ucred *cred, struct thread *td);
204 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
205     char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
206     char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
207 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
208     struct componentname *scnp, struct sillyrename *sp);
209 
210 /*
211  * Global variables
212  */
213 SYSCTL_DECL(_vfs_nfs);
214 
215 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
217 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
218 
219 static int	nfs_prime_access_cache = 0;
220 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
221 	   &nfs_prime_access_cache, 0,
222 	   "Prime NFS ACCESS cache when fetching attributes");
223 
224 static int	newnfs_commit_on_close = 0;
225 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
226     &newnfs_commit_on_close, 0, "write+commit on close, else only write");
227 
228 static int	nfs_clean_pages_on_close = 1;
229 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
230 	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
231 
232 int newnfs_directio_enable = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
234 	   &newnfs_directio_enable, 0, "Enable NFS directio");
235 
236 int nfs_keep_dirty_on_error;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
238     &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
239 
240 /*
241  * This sysctl allows other processes to mmap a file that has been opened
242  * O_DIRECT by a process.  In general, having processes mmap the file while
243  * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
244  * this by default to prevent DoS attacks - to prevent a malicious user from
245  * opening up files O_DIRECT preventing other users from mmap'ing these
246  * files.  "Protected" environments where stricter consistency guarantees are
247  * required can disable this knob.  The process that opened the file O_DIRECT
248  * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
249  * meaningful.
250  */
251 int newnfs_directio_allow_mmap = 1;
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
253 	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
254 
255 #define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
256 			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
257 			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
258 
259 /*
260  * SMP Locking Note :
261  * The list of locks after the description of the lock is the ordering
262  * of other locks acquired with the lock held.
263  * np->n_mtx : Protects the fields in the nfsnode.
264        VM Object Lock
265        VI_MTX (acquired indirectly)
266  * nmp->nm_mtx : Protects the fields in the nfsmount.
267        rep->r_mtx
268  * ncl_iod_mutex : Global lock, protects shared nfsiod state.
269  * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
270        nmp->nm_mtx
271        rep->r_mtx
272  * rep->r_mtx : Protects the fields in an nfsreq.
273  */
274 
275 static int
276 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
277     struct ucred *cred, u_int32_t *retmode)
278 {
279 	int error = 0, attrflag, i, lrupos;
280 	u_int32_t rmode;
281 	struct nfsnode *np = VTONFS(vp);
282 	struct nfsvattr nfsva;
283 
284 	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
285 	    &rmode, NULL);
286 	if (attrflag)
287 		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
288 	if (!error) {
289 		lrupos = 0;
290 		mtx_lock(&np->n_mtx);
291 		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
292 			if (np->n_accesscache[i].uid == cred->cr_uid) {
293 				np->n_accesscache[i].mode = rmode;
294 				np->n_accesscache[i].stamp = time_second;
295 				break;
296 			}
297 			if (i > 0 && np->n_accesscache[i].stamp <
298 			    np->n_accesscache[lrupos].stamp)
299 				lrupos = i;
300 		}
301 		if (i == NFS_ACCESSCACHESIZE) {
302 			np->n_accesscache[lrupos].uid = cred->cr_uid;
303 			np->n_accesscache[lrupos].mode = rmode;
304 			np->n_accesscache[lrupos].stamp = time_second;
305 		}
306 		mtx_unlock(&np->n_mtx);
307 		if (retmode != NULL)
308 			*retmode = rmode;
309 		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
310 	} else if (NFS_ISV4(vp)) {
311 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
312 	}
313 #ifdef KDTRACE_HOOKS
314 	if (error != 0)
315 		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
316 		    error);
317 #endif
318 	return (error);
319 }
320 
321 /*
322  * nfs access vnode op.
323  * For nfs version 2, just return ok. File accesses may fail later.
324  * For nfs version 3, use the access rpc to check accessibility. If file modes
325  * are changed on the server, accesses might still fail later.
326  */
327 static int
328 nfs_access(struct vop_access_args *ap)
329 {
330 	struct vnode *vp = ap->a_vp;
331 	int error = 0, i, gotahit;
332 	u_int32_t mode, wmode, rmode;
333 	int v34 = NFS_ISV34(vp);
334 	struct nfsnode *np = VTONFS(vp);
335 
336 	/*
337 	 * Disallow write attempts on filesystems mounted read-only;
338 	 * unless the file is a socket, fifo, or a block or character
339 	 * device resident on the filesystem.
340 	 */
341 	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
342 	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
343 	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
344 		switch (vp->v_type) {
345 		case VREG:
346 		case VDIR:
347 		case VLNK:
348 			return (EROFS);
349 		default:
350 			break;
351 		}
352 	}
353 	/*
354 	 * For nfs v3 or v4, check to see if we have done this recently, and if
355 	 * so return our cached result instead of making an ACCESS call.
356 	 * If not, do an access rpc, otherwise you are stuck emulating
357 	 * ufs_access() locally using the vattr. This may not be correct,
358 	 * since the server may apply other access criteria such as
359 	 * client uid-->server uid mapping that we do not know about.
360 	 */
361 	if (v34) {
362 		if (ap->a_accmode & VREAD)
363 			mode = NFSACCESS_READ;
364 		else
365 			mode = 0;
366 		if (vp->v_type != VDIR) {
367 			if (ap->a_accmode & VWRITE)
368 				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
369 			if (ap->a_accmode & VAPPEND)
370 				mode |= NFSACCESS_EXTEND;
371 			if (ap->a_accmode & VEXEC)
372 				mode |= NFSACCESS_EXECUTE;
373 			if (ap->a_accmode & VDELETE)
374 				mode |= NFSACCESS_DELETE;
375 		} else {
376 			if (ap->a_accmode & VWRITE)
377 				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
378 			if (ap->a_accmode & VAPPEND)
379 				mode |= NFSACCESS_EXTEND;
380 			if (ap->a_accmode & VEXEC)
381 				mode |= NFSACCESS_LOOKUP;
382 			if (ap->a_accmode & VDELETE)
383 				mode |= NFSACCESS_DELETE;
384 			if (ap->a_accmode & VDELETE_CHILD)
385 				mode |= NFSACCESS_MODIFY;
386 		}
387 		/* XXX safety belt, only make blanket request if caching */
388 		if (nfsaccess_cache_timeout > 0) {
389 			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
390 				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
391 				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
392 		} else {
393 			wmode = mode;
394 		}
395 
396 		/*
397 		 * Does our cached result allow us to give a definite yes to
398 		 * this request?
399 		 */
400 		gotahit = 0;
401 		mtx_lock(&np->n_mtx);
402 		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
403 			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
404 			    if (time_second < (np->n_accesscache[i].stamp
405 				+ nfsaccess_cache_timeout) &&
406 				(np->n_accesscache[i].mode & mode) == mode) {
407 				NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
408 				gotahit = 1;
409 			    }
410 			    break;
411 			}
412 		}
413 		mtx_unlock(&np->n_mtx);
414 #ifdef KDTRACE_HOOKS
415 		if (gotahit != 0)
416 			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
417 			    ap->a_cred->cr_uid, mode);
418 		else
419 			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
420 			    ap->a_cred->cr_uid, mode);
421 #endif
422 		if (gotahit == 0) {
423 			/*
424 			 * Either a no, or a don't know.  Go to the wire.
425 			 */
426 			NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
427 		        error = nfs34_access_otw(vp, wmode, ap->a_td,
428 			    ap->a_cred, &rmode);
429 			if (!error &&
430 			    (rmode & mode) != mode)
431 				error = EACCES;
432 		}
433 		return (error);
434 	} else {
435 		if ((error = nfsspec_access(ap)) != 0) {
436 			return (error);
437 		}
438 		/*
439 		 * Attempt to prevent a mapped root from accessing a file
440 		 * which it shouldn't.  We try to read a byte from the file
441 		 * if the user is root and the file is not zero length.
442 		 * After calling nfsspec_access, we should have the correct
443 		 * file size cached.
444 		 */
445 		mtx_lock(&np->n_mtx);
446 		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
447 		    && VTONFS(vp)->n_size > 0) {
448 			struct iovec aiov;
449 			struct uio auio;
450 			char buf[1];
451 
452 			mtx_unlock(&np->n_mtx);
453 			aiov.iov_base = buf;
454 			aiov.iov_len = 1;
455 			auio.uio_iov = &aiov;
456 			auio.uio_iovcnt = 1;
457 			auio.uio_offset = 0;
458 			auio.uio_resid = 1;
459 			auio.uio_segflg = UIO_SYSSPACE;
460 			auio.uio_rw = UIO_READ;
461 			auio.uio_td = ap->a_td;
462 
463 			if (vp->v_type == VREG)
464 				error = ncl_readrpc(vp, &auio, ap->a_cred);
465 			else if (vp->v_type == VDIR) {
466 				char* bp;
467 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
468 				aiov.iov_base = bp;
469 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
470 				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
471 				    ap->a_td);
472 				free(bp, M_TEMP);
473 			} else if (vp->v_type == VLNK)
474 				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
475 			else
476 				error = EACCES;
477 		} else
478 			mtx_unlock(&np->n_mtx);
479 		return (error);
480 	}
481 }
482 
483 
484 /*
485  * nfs open vnode op
486  * Check to see if the type is ok
487  * and that deletion is not in progress.
488  * For paged in text files, you will need to flush the page cache
489  * if consistency is lost.
490  */
491 /* ARGSUSED */
492 static int
493 nfs_open(struct vop_open_args *ap)
494 {
495 	struct vnode *vp = ap->a_vp;
496 	struct nfsnode *np = VTONFS(vp);
497 	struct vattr vattr;
498 	int error;
499 	int fmode = ap->a_mode;
500 	struct ucred *cred;
501 
502 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
503 		return (EOPNOTSUPP);
504 
505 	/*
506 	 * For NFSv4, we need to do the Open Op before cache validation,
507 	 * so that we conform to RFC3530 Sec. 9.3.1.
508 	 */
509 	if (NFS_ISV4(vp)) {
510 		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
511 		if (error) {
512 			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
513 			    (gid_t)0);
514 			return (error);
515 		}
516 	}
517 
518 	/*
519 	 * Now, if this Open will be doing reading, re-validate/flush the
520 	 * cache, so that Close/Open coherency is maintained.
521 	 */
522 	mtx_lock(&np->n_mtx);
523 	if (np->n_flag & NMODIFIED) {
524 		mtx_unlock(&np->n_mtx);
525 		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
526 		if (error == EINTR || error == EIO) {
527 			if (NFS_ISV4(vp))
528 				(void) nfsrpc_close(vp, 0, ap->a_td);
529 			return (error);
530 		}
531 		mtx_lock(&np->n_mtx);
532 		np->n_attrstamp = 0;
533 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
534 		if (vp->v_type == VDIR)
535 			np->n_direofoffset = 0;
536 		mtx_unlock(&np->n_mtx);
537 		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
538 		if (error) {
539 			if (NFS_ISV4(vp))
540 				(void) nfsrpc_close(vp, 0, ap->a_td);
541 			return (error);
542 		}
543 		mtx_lock(&np->n_mtx);
544 		np->n_mtime = vattr.va_mtime;
545 		if (NFS_ISV4(vp))
546 			np->n_change = vattr.va_filerev;
547 	} else {
548 		mtx_unlock(&np->n_mtx);
549 		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
550 		if (error) {
551 			if (NFS_ISV4(vp))
552 				(void) nfsrpc_close(vp, 0, ap->a_td);
553 			return (error);
554 		}
555 		mtx_lock(&np->n_mtx);
556 		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
557 		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
558 			if (vp->v_type == VDIR)
559 				np->n_direofoffset = 0;
560 			mtx_unlock(&np->n_mtx);
561 			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
562 			if (error == EINTR || error == EIO) {
563 				if (NFS_ISV4(vp))
564 					(void) nfsrpc_close(vp, 0, ap->a_td);
565 				return (error);
566 			}
567 			mtx_lock(&np->n_mtx);
568 			np->n_mtime = vattr.va_mtime;
569 			if (NFS_ISV4(vp))
570 				np->n_change = vattr.va_filerev;
571 		}
572 	}
573 
574 	/*
575 	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
576 	 */
577 	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
578 	    (vp->v_type == VREG)) {
579 		if (np->n_directio_opens == 0) {
580 			mtx_unlock(&np->n_mtx);
581 			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
582 			if (error) {
583 				if (NFS_ISV4(vp))
584 					(void) nfsrpc_close(vp, 0, ap->a_td);
585 				return (error);
586 			}
587 			mtx_lock(&np->n_mtx);
588 			np->n_flag |= NNONCACHE;
589 		}
590 		np->n_directio_opens++;
591 	}
592 
593 	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
594 	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
595 		np->n_flag |= NWRITEOPENED;
596 
597 	/*
598 	 * If this is an open for writing, capture a reference to the
599 	 * credentials, so they can be used by ncl_putpages(). Using
600 	 * these write credentials is preferable to the credentials of
601 	 * whatever thread happens to be doing the VOP_PUTPAGES() since
602 	 * the write RPCs are less likely to fail with EACCES.
603 	 */
604 	if ((fmode & FWRITE) != 0) {
605 		cred = np->n_writecred;
606 		np->n_writecred = crhold(ap->a_cred);
607 	} else
608 		cred = NULL;
609 	mtx_unlock(&np->n_mtx);
610 
611 	if (cred != NULL)
612 		crfree(cred);
613 	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
614 	return (0);
615 }
616 
617 /*
618  * nfs close vnode op
619  * What an NFS client should do upon close after writing is a debatable issue.
620  * Most NFS clients push delayed writes to the server upon close, basically for
621  * two reasons:
622  * 1 - So that any write errors may be reported back to the client process
623  *     doing the close system call. By far the two most likely errors are
624  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
625  * 2 - To put a worst case upper bound on cache inconsistency between
626  *     multiple clients for the file.
627  * There is also a consistency problem for Version 2 of the protocol w.r.t.
628  * not being able to tell if other clients are writing a file concurrently,
629  * since there is no way of knowing if the changed modify time in the reply
630  * is only due to the write for this client.
631  * (NFS Version 3 provides weak cache consistency data in the reply that
632  *  should be sufficient to detect and handle this case.)
633  *
634  * The current code does the following:
635  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
636  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
637  *                     or commit them (this satisfies 1 and 2 except for the
638  *                     case where the server crashes after this close but
639  *                     before the commit RPC, which is felt to be "good
640  *                     enough". Changing the last argument to ncl_flush() to
641  *                     a 1 would force a commit operation, if it is felt a
642  *                     commit is necessary now.
643  * for NFS Version 4 - flush the dirty buffers and commit them, if
644  *		       nfscl_mustflush() says this is necessary.
645  *                     It is necessary if there is no write delegation held,
646  *                     in order to satisfy open/close coherency.
647  *                     If the file isn't cached on local stable storage,
648  *                     it may be necessary in order to detect "out of space"
649  *                     errors from the server, if the write delegation
650  *                     issued by the server doesn't allow the file to grow.
651  */
652 /* ARGSUSED */
653 static int
654 nfs_close(struct vop_close_args *ap)
655 {
656 	struct vnode *vp = ap->a_vp;
657 	struct nfsnode *np = VTONFS(vp);
658 	struct nfsvattr nfsva;
659 	struct ucred *cred;
660 	int error = 0, ret, localcred = 0;
661 	int fmode = ap->a_fflag;
662 
663 	if (NFSCL_FORCEDISM(vp->v_mount))
664 		return (0);
665 	/*
666 	 * During shutdown, a_cred isn't valid, so just use root.
667 	 */
668 	if (ap->a_cred == NOCRED) {
669 		cred = newnfs_getcred();
670 		localcred = 1;
671 	} else {
672 		cred = ap->a_cred;
673 	}
674 	if (vp->v_type == VREG) {
675 	    /*
676 	     * Examine and clean dirty pages, regardless of NMODIFIED.
677 	     * This closes a major hole in close-to-open consistency.
678 	     * We want to push out all dirty pages (and buffers) on
679 	     * close, regardless of whether they were dirtied by
680 	     * mmap'ed writes or via write().
681 	     */
682 	    if (nfs_clean_pages_on_close && vp->v_object) {
683 		VM_OBJECT_WLOCK(vp->v_object);
684 		vm_object_page_clean(vp->v_object, 0, 0, 0);
685 		VM_OBJECT_WUNLOCK(vp->v_object);
686 	    }
687 	    mtx_lock(&np->n_mtx);
688 	    if (np->n_flag & NMODIFIED) {
689 		mtx_unlock(&np->n_mtx);
690 		if (NFS_ISV3(vp)) {
691 		    /*
692 		     * Under NFSv3 we have dirty buffers to dispose of.  We
693 		     * must flush them to the NFS server.  We have the option
694 		     * of waiting all the way through the commit rpc or just
695 		     * waiting for the initial write.  The default is to only
696 		     * wait through the initial write so the data is in the
697 		     * server's cache, which is roughly similar to the state
698 		     * a standard disk subsystem leaves the file in on close().
699 		     *
700 		     * We cannot clear the NMODIFIED bit in np->n_flag due to
701 		     * potential races with other processes, and certainly
702 		     * cannot clear it if we don't commit.
703 		     * These races occur when there is no longer the old
704 		     * traditional vnode locking implemented for Vnode Ops.
705 		     */
706 		    int cm = newnfs_commit_on_close ? 1 : 0;
707 		    error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0);
708 		    /* np->n_flag &= ~NMODIFIED; */
709 		} else if (NFS_ISV4(vp)) {
710 			if (nfscl_mustflush(vp) != 0) {
711 				int cm = newnfs_commit_on_close ? 1 : 0;
712 				error = ncl_flush(vp, MNT_WAIT, ap->a_td,
713 				    cm, 0);
714 				/*
715 				 * as above w.r.t races when clearing
716 				 * NMODIFIED.
717 				 * np->n_flag &= ~NMODIFIED;
718 				 */
719 			}
720 		} else {
721 			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
722 		}
723 		mtx_lock(&np->n_mtx);
724 	    }
725  	    /*
726  	     * Invalidate the attribute cache in all cases.
727  	     * An open is going to fetch fresh attrs any way, other procs
728  	     * on this node that have file open will be forced to do an
729  	     * otw attr fetch, but this is safe.
730 	     * --> A user found that their RPC count dropped by 20% when
731 	     *     this was commented out and I can't see any requirement
732 	     *     for it, so I've disabled it when negative lookups are
733 	     *     enabled. (What does this have to do with negative lookup
734 	     *     caching? Well nothing, except it was reported by the
735 	     *     same user that needed negative lookup caching and I wanted
736 	     *     there to be a way to disable it to see if it
737 	     *     is the cause of some caching/coherency issue that might
738 	     *     crop up.)
739  	     */
740 	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
741 		    np->n_attrstamp = 0;
742 		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
743 	    }
744 	    if (np->n_flag & NWRITEERR) {
745 		np->n_flag &= ~NWRITEERR;
746 		error = np->n_error;
747 	    }
748 	    mtx_unlock(&np->n_mtx);
749 	}
750 
751 	if (NFS_ISV4(vp)) {
752 		/*
753 		 * Get attributes so "change" is up to date.
754 		 */
755 		if (error == 0 && nfscl_mustflush(vp) != 0 &&
756 		    vp->v_type == VREG &&
757 		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
758 			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
759 			    NULL);
760 			if (!ret) {
761 				np->n_change = nfsva.na_filerev;
762 				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
763 				    NULL, 0, 0);
764 			}
765 		}
766 
767 		/*
768 		 * and do the close.
769 		 */
770 		ret = nfsrpc_close(vp, 0, ap->a_td);
771 		if (!error && ret)
772 			error = ret;
773 		if (error)
774 			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
775 			    (gid_t)0);
776 	}
777 	if (newnfs_directio_enable)
778 		KASSERT((np->n_directio_asyncwr == 0),
779 			("nfs_close: dirty unflushed (%d) directio buffers\n",
780 			 np->n_directio_asyncwr));
781 	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
782 		mtx_lock(&np->n_mtx);
783 		KASSERT((np->n_directio_opens > 0),
784 			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
785 		np->n_directio_opens--;
786 		if (np->n_directio_opens == 0)
787 			np->n_flag &= ~NNONCACHE;
788 		mtx_unlock(&np->n_mtx);
789 	}
790 	if (localcred)
791 		NFSFREECRED(cred);
792 	return (error);
793 }
794 
795 /*
796  * nfs getattr call from vfs.
797  */
798 static int
799 nfs_getattr(struct vop_getattr_args *ap)
800 {
801 	struct vnode *vp = ap->a_vp;
802 	struct thread *td = curthread;	/* XXX */
803 	struct nfsnode *np = VTONFS(vp);
804 	int error = 0;
805 	struct nfsvattr nfsva;
806 	struct vattr *vap = ap->a_vap;
807 	struct vattr vattr;
808 
809 	/*
810 	 * Update local times for special files.
811 	 */
812 	mtx_lock(&np->n_mtx);
813 	if (np->n_flag & (NACC | NUPD))
814 		np->n_flag |= NCHG;
815 	mtx_unlock(&np->n_mtx);
816 	/*
817 	 * First look in the cache.
818 	 */
819 	if (ncl_getattrcache(vp, &vattr) == 0) {
820 		vap->va_type = vattr.va_type;
821 		vap->va_mode = vattr.va_mode;
822 		vap->va_nlink = vattr.va_nlink;
823 		vap->va_uid = vattr.va_uid;
824 		vap->va_gid = vattr.va_gid;
825 		vap->va_fsid = vattr.va_fsid;
826 		vap->va_fileid = vattr.va_fileid;
827 		vap->va_size = vattr.va_size;
828 		vap->va_blocksize = vattr.va_blocksize;
829 		vap->va_atime = vattr.va_atime;
830 		vap->va_mtime = vattr.va_mtime;
831 		vap->va_ctime = vattr.va_ctime;
832 		vap->va_gen = vattr.va_gen;
833 		vap->va_flags = vattr.va_flags;
834 		vap->va_rdev = vattr.va_rdev;
835 		vap->va_bytes = vattr.va_bytes;
836 		vap->va_filerev = vattr.va_filerev;
837 		/*
838 		 * Get the local modify time for the case of a write
839 		 * delegation.
840 		 */
841 		nfscl_deleggetmodtime(vp, &vap->va_mtime);
842 		return (0);
843 	}
844 
845 	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
846 	    nfsaccess_cache_timeout > 0) {
847 		NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
848 		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
849 		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
850 			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
851 			return (0);
852 		}
853 	}
854 	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
855 	if (!error)
856 		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
857 	if (!error) {
858 		/*
859 		 * Get the local modify time for the case of a write
860 		 * delegation.
861 		 */
862 		nfscl_deleggetmodtime(vp, &vap->va_mtime);
863 	} else if (NFS_ISV4(vp)) {
864 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
865 	}
866 	return (error);
867 }
868 
869 /*
870  * nfs setattr call.
871  */
872 static int
873 nfs_setattr(struct vop_setattr_args *ap)
874 {
875 	struct vnode *vp = ap->a_vp;
876 	struct nfsnode *np = VTONFS(vp);
877 	struct thread *td = curthread;	/* XXX */
878 	struct vattr *vap = ap->a_vap;
879 	int error = 0;
880 	u_quad_t tsize;
881 
882 #ifndef nolint
883 	tsize = (u_quad_t)0;
884 #endif
885 
886 	/*
887 	 * Setting of flags and marking of atimes are not supported.
888 	 */
889 	if (vap->va_flags != VNOVAL)
890 		return (EOPNOTSUPP);
891 
892 	/*
893 	 * Disallow write attempts if the filesystem is mounted read-only.
894 	 */
895   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
896 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
897 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
898 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
899 		return (EROFS);
900 	if (vap->va_size != VNOVAL) {
901  		switch (vp->v_type) {
902  		case VDIR:
903  			return (EISDIR);
904  		case VCHR:
905  		case VBLK:
906  		case VSOCK:
907  		case VFIFO:
908 			if (vap->va_mtime.tv_sec == VNOVAL &&
909 			    vap->va_atime.tv_sec == VNOVAL &&
910 			    vap->va_mode == (mode_t)VNOVAL &&
911 			    vap->va_uid == (uid_t)VNOVAL &&
912 			    vap->va_gid == (gid_t)VNOVAL)
913 				return (0);
914  			vap->va_size = VNOVAL;
915  			break;
916  		default:
917 			/*
918 			 * Disallow write attempts if the filesystem is
919 			 * mounted read-only.
920 			 */
921 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
922 				return (EROFS);
923 			/*
924 			 *  We run vnode_pager_setsize() early (why?),
925 			 * we must set np->n_size now to avoid vinvalbuf
926 			 * V_SAVE races that might setsize a lower
927 			 * value.
928 			 */
929 			mtx_lock(&np->n_mtx);
930 			tsize = np->n_size;
931 			mtx_unlock(&np->n_mtx);
932 			error = ncl_meta_setsize(vp, ap->a_cred, td,
933 			    vap->va_size);
934 			mtx_lock(&np->n_mtx);
935  			if (np->n_flag & NMODIFIED) {
936 			    tsize = np->n_size;
937 			    mtx_unlock(&np->n_mtx);
938 			    error = ncl_vinvalbuf(vp, vap->va_size == 0 ?
939 			        0 : V_SAVE, td, 1);
940 			    if (error != 0) {
941 				    vnode_pager_setsize(vp, tsize);
942 				    return (error);
943 			    }
944 			    /*
945 			     * Call nfscl_delegmodtime() to set the modify time
946 			     * locally, as required.
947 			     */
948 			    nfscl_delegmodtime(vp);
949  			} else
950 			    mtx_unlock(&np->n_mtx);
951 			/*
952 			 * np->n_size has already been set to vap->va_size
953 			 * in ncl_meta_setsize(). We must set it again since
954 			 * nfs_loadattrcache() could be called through
955 			 * ncl_meta_setsize() and could modify np->n_size.
956 			 */
957 			mtx_lock(&np->n_mtx);
958  			np->n_vattr.na_size = np->n_size = vap->va_size;
959 			mtx_unlock(&np->n_mtx);
960   		}
961   	} else {
962 		mtx_lock(&np->n_mtx);
963 		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
964 		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
965 			mtx_unlock(&np->n_mtx);
966 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
967 			if (error == EINTR || error == EIO)
968 				return (error);
969 		} else
970 			mtx_unlock(&np->n_mtx);
971 	}
972 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
973 	if (error && vap->va_size != VNOVAL) {
974 		mtx_lock(&np->n_mtx);
975 		np->n_size = np->n_vattr.na_size = tsize;
976 		vnode_pager_setsize(vp, tsize);
977 		mtx_unlock(&np->n_mtx);
978 	}
979 	return (error);
980 }
981 
982 /*
983  * Do an nfs setattr rpc.
984  */
985 static int
986 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
987     struct thread *td)
988 {
989 	struct nfsnode *np = VTONFS(vp);
990 	int error, ret, attrflag, i;
991 	struct nfsvattr nfsva;
992 
993 	if (NFS_ISV34(vp)) {
994 		mtx_lock(&np->n_mtx);
995 		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
996 			np->n_accesscache[i].stamp = 0;
997 		np->n_flag |= NDELEGMOD;
998 		mtx_unlock(&np->n_mtx);
999 		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1000 	}
1001 	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1002 	    NULL);
1003 	if (attrflag) {
1004 		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1005 		if (ret && !error)
1006 			error = ret;
1007 	}
1008 	if (error && NFS_ISV4(vp))
1009 		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1010 	return (error);
1011 }
1012 
1013 /*
1014  * nfs lookup call, one step at a time...
1015  * First look in cache
1016  * If not found, unlock the directory nfsnode and do the rpc
1017  */
1018 static int
1019 nfs_lookup(struct vop_lookup_args *ap)
1020 {
1021 	struct componentname *cnp = ap->a_cnp;
1022 	struct vnode *dvp = ap->a_dvp;
1023 	struct vnode **vpp = ap->a_vpp;
1024 	struct mount *mp = dvp->v_mount;
1025 	int flags = cnp->cn_flags;
1026 	struct vnode *newvp;
1027 	struct nfsmount *nmp;
1028 	struct nfsnode *np, *newnp;
1029 	int error = 0, attrflag, dattrflag, ltype, ncticks;
1030 	struct thread *td = cnp->cn_thread;
1031 	struct nfsfh *nfhp;
1032 	struct nfsvattr dnfsva, nfsva;
1033 	struct vattr vattr;
1034 	struct timespec nctime;
1035 
1036 	*vpp = NULLVP;
1037 	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1038 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1039 		return (EROFS);
1040 	if (dvp->v_type != VDIR)
1041 		return (ENOTDIR);
1042 	nmp = VFSTONFS(mp);
1043 	np = VTONFS(dvp);
1044 
1045 	/* For NFSv4, wait until any remove is done. */
1046 	mtx_lock(&np->n_mtx);
1047 	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1048 		np->n_flag |= NREMOVEWANT;
1049 		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1050 	}
1051 	mtx_unlock(&np->n_mtx);
1052 
1053 	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1054 		return (error);
1055 	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1056 	if (error > 0 && error != ENOENT)
1057 		return (error);
1058 	if (error == -1) {
1059 		/*
1060 		 * Lookups of "." are special and always return the
1061 		 * current directory.  cache_lookup() already handles
1062 		 * associated locking bookkeeping, etc.
1063 		 */
1064 		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1065 			/* XXX: Is this really correct? */
1066 			if (cnp->cn_nameiop != LOOKUP &&
1067 			    (flags & ISLASTCN))
1068 				cnp->cn_flags |= SAVENAME;
1069 			return (0);
1070 		}
1071 
1072 		/*
1073 		 * We only accept a positive hit in the cache if the
1074 		 * change time of the file matches our cached copy.
1075 		 * Otherwise, we discard the cache entry and fallback
1076 		 * to doing a lookup RPC.  We also only trust cache
1077 		 * entries for less than nm_nametimeo seconds.
1078 		 *
1079 		 * To better handle stale file handles and attributes,
1080 		 * clear the attribute cache of this node if it is a
1081 		 * leaf component, part of an open() call, and not
1082 		 * locally modified before fetching the attributes.
1083 		 * This should allow stale file handles to be detected
1084 		 * here where we can fall back to a LOOKUP RPC to
1085 		 * recover rather than having nfs_open() detect the
1086 		 * stale file handle and failing open(2) with ESTALE.
1087 		 */
1088 		newvp = *vpp;
1089 		newnp = VTONFS(newvp);
1090 		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1091 		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1092 		    !(newnp->n_flag & NMODIFIED)) {
1093 			mtx_lock(&newnp->n_mtx);
1094 			newnp->n_attrstamp = 0;
1095 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1096 			mtx_unlock(&newnp->n_mtx);
1097 		}
1098 		if (nfscl_nodeleg(newvp, 0) == 0 ||
1099 		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1100 		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1101 		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1102 			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1103 			if (cnp->cn_nameiop != LOOKUP &&
1104 			    (flags & ISLASTCN))
1105 				cnp->cn_flags |= SAVENAME;
1106 			return (0);
1107 		}
1108 		cache_purge(newvp);
1109 		if (dvp != newvp)
1110 			vput(newvp);
1111 		else
1112 			vrele(newvp);
1113 		*vpp = NULLVP;
1114 	} else if (error == ENOENT) {
1115 		if (dvp->v_iflag & VI_DOOMED)
1116 			return (ENOENT);
1117 		/*
1118 		 * We only accept a negative hit in the cache if the
1119 		 * modification time of the parent directory matches
1120 		 * the cached copy in the name cache entry.
1121 		 * Otherwise, we discard all of the negative cache
1122 		 * entries for this directory.  We also only trust
1123 		 * negative cache entries for up to nm_negnametimeo
1124 		 * seconds.
1125 		 */
1126 		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1127 		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1128 		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1129 			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1130 			return (ENOENT);
1131 		}
1132 		cache_purge_negative(dvp);
1133 	}
1134 
1135 	error = 0;
1136 	newvp = NULLVP;
1137 	NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
1138 	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1139 	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1140 	    NULL);
1141 	if (dattrflag)
1142 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1143 	if (error) {
1144 		if (newvp != NULLVP) {
1145 			vput(newvp);
1146 			*vpp = NULLVP;
1147 		}
1148 
1149 		if (error != ENOENT) {
1150 			if (NFS_ISV4(dvp))
1151 				error = nfscl_maperr(td, error, (uid_t)0,
1152 				    (gid_t)0);
1153 			return (error);
1154 		}
1155 
1156 		/* The requested file was not found. */
1157 		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1158 		    (flags & ISLASTCN)) {
1159 			/*
1160 			 * XXX: UFS does a full VOP_ACCESS(dvp,
1161 			 * VWRITE) here instead of just checking
1162 			 * MNT_RDONLY.
1163 			 */
1164 			if (mp->mnt_flag & MNT_RDONLY)
1165 				return (EROFS);
1166 			cnp->cn_flags |= SAVENAME;
1167 			return (EJUSTRETURN);
1168 		}
1169 
1170 		if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1171 			/*
1172 			 * Cache the modification time of the parent
1173 			 * directory from the post-op attributes in
1174 			 * the name cache entry.  The negative cache
1175 			 * entry will be ignored once the directory
1176 			 * has changed.  Don't bother adding the entry
1177 			 * if the directory has already changed.
1178 			 */
1179 			mtx_lock(&np->n_mtx);
1180 			if (timespeccmp(&np->n_vattr.na_mtime,
1181 			    &dnfsva.na_mtime, ==)) {
1182 				mtx_unlock(&np->n_mtx);
1183 				cache_enter_time(dvp, NULL, cnp,
1184 				    &dnfsva.na_mtime, NULL);
1185 			} else
1186 				mtx_unlock(&np->n_mtx);
1187 		}
1188 		return (ENOENT);
1189 	}
1190 
1191 	/*
1192 	 * Handle RENAME case...
1193 	 */
1194 	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1195 		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1196 			free(nfhp, M_NFSFH);
1197 			return (EISDIR);
1198 		}
1199 		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1200 		    LK_EXCLUSIVE);
1201 		if (error)
1202 			return (error);
1203 		newvp = NFSTOV(np);
1204 		if (attrflag)
1205 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1206 			    0, 1);
1207 		*vpp = newvp;
1208 		cnp->cn_flags |= SAVENAME;
1209 		return (0);
1210 	}
1211 
1212 	if (flags & ISDOTDOT) {
1213 		ltype = NFSVOPISLOCKED(dvp);
1214 		error = vfs_busy(mp, MBF_NOWAIT);
1215 		if (error != 0) {
1216 			vfs_ref(mp);
1217 			NFSVOPUNLOCK(dvp, 0);
1218 			error = vfs_busy(mp, 0);
1219 			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1220 			vfs_rel(mp);
1221 			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1222 				vfs_unbusy(mp);
1223 				error = ENOENT;
1224 			}
1225 			if (error != 0)
1226 				return (error);
1227 		}
1228 		NFSVOPUNLOCK(dvp, 0);
1229 		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1230 		    cnp->cn_lkflags);
1231 		if (error == 0)
1232 			newvp = NFSTOV(np);
1233 		vfs_unbusy(mp);
1234 		if (newvp != dvp)
1235 			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1236 		if (dvp->v_iflag & VI_DOOMED) {
1237 			if (error == 0) {
1238 				if (newvp == dvp)
1239 					vrele(newvp);
1240 				else
1241 					vput(newvp);
1242 			}
1243 			error = ENOENT;
1244 		}
1245 		if (error != 0)
1246 			return (error);
1247 		if (attrflag)
1248 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1249 			    0, 1);
1250 	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1251 		free(nfhp, M_NFSFH);
1252 		VREF(dvp);
1253 		newvp = dvp;
1254 		if (attrflag)
1255 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1256 			    0, 1);
1257 	} else {
1258 		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1259 		    cnp->cn_lkflags);
1260 		if (error)
1261 			return (error);
1262 		newvp = NFSTOV(np);
1263 		if (attrflag)
1264 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1265 			    0, 1);
1266 		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1267 		    !(np->n_flag & NMODIFIED)) {
1268 			/*
1269 			 * Flush the attribute cache when opening a
1270 			 * leaf node to ensure that fresh attributes
1271 			 * are fetched in nfs_open() since we did not
1272 			 * fetch attributes from the LOOKUP reply.
1273 			 */
1274 			mtx_lock(&np->n_mtx);
1275 			np->n_attrstamp = 0;
1276 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1277 			mtx_unlock(&np->n_mtx);
1278 		}
1279 	}
1280 	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1281 		cnp->cn_flags |= SAVENAME;
1282 	if ((cnp->cn_flags & MAKEENTRY) &&
1283 	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1284 	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1285 		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1286 		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1287 	*vpp = newvp;
1288 	return (0);
1289 }
1290 
1291 /*
1292  * nfs read call.
1293  * Just call ncl_bioread() to do the work.
1294  */
1295 static int
1296 nfs_read(struct vop_read_args *ap)
1297 {
1298 	struct vnode *vp = ap->a_vp;
1299 
1300 	switch (vp->v_type) {
1301 	case VREG:
1302 		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1303 	case VDIR:
1304 		return (EISDIR);
1305 	default:
1306 		return (EOPNOTSUPP);
1307 	}
1308 }
1309 
1310 /*
1311  * nfs readlink call
1312  */
1313 static int
1314 nfs_readlink(struct vop_readlink_args *ap)
1315 {
1316 	struct vnode *vp = ap->a_vp;
1317 
1318 	if (vp->v_type != VLNK)
1319 		return (EINVAL);
1320 	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1321 }
1322 
1323 /*
1324  * Do a readlink rpc.
1325  * Called by ncl_doio() from below the buffer cache.
1326  */
1327 int
1328 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1329 {
1330 	int error, ret, attrflag;
1331 	struct nfsvattr nfsva;
1332 
1333 	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1334 	    &attrflag, NULL);
1335 	if (attrflag) {
1336 		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1337 		if (ret && !error)
1338 			error = ret;
1339 	}
1340 	if (error && NFS_ISV4(vp))
1341 		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1342 	return (error);
1343 }
1344 
1345 /*
1346  * nfs read rpc call
1347  * Ditto above
1348  */
1349 int
1350 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1351 {
1352 	int error, ret, attrflag;
1353 	struct nfsvattr nfsva;
1354 	struct nfsmount *nmp;
1355 
1356 	nmp = VFSTONFS(vnode_mount(vp));
1357 	error = EIO;
1358 	attrflag = 0;
1359 	if (NFSHASPNFS(nmp))
1360 		error = nfscl_doiods(vp, uiop, NULL, NULL,
1361 		    NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td);
1362 	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1363 	if (error != 0)
1364 		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1365 		    &attrflag, NULL);
1366 	if (attrflag) {
1367 		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1368 		if (ret && !error)
1369 			error = ret;
1370 	}
1371 	if (error && NFS_ISV4(vp))
1372 		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1373 	return (error);
1374 }
1375 
1376 /*
1377  * nfs write call
1378  */
1379 int
1380 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1381     int *iomode, int *must_commit, int called_from_strategy)
1382 {
1383 	struct nfsvattr nfsva;
1384 	int error, attrflag, ret;
1385 	struct nfsmount *nmp;
1386 
1387 	nmp = VFSTONFS(vnode_mount(vp));
1388 	error = EIO;
1389 	attrflag = 0;
1390 	if (NFSHASPNFS(nmp))
1391 		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1392 		    NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td);
1393 	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1394 	if (error != 0)
1395 		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1396 		    uiop->uio_td, &nfsva, &attrflag, NULL,
1397 		    called_from_strategy);
1398 	if (attrflag) {
1399 		if (VTONFS(vp)->n_flag & ND_NFSV4)
1400 			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1401 			    1);
1402 		else
1403 			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1404 			    1);
1405 		if (ret && !error)
1406 			error = ret;
1407 	}
1408 	if (DOINGASYNC(vp))
1409 		*iomode = NFSWRITE_FILESYNC;
1410 	if (error && NFS_ISV4(vp))
1411 		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1412 	return (error);
1413 }
1414 
1415 /*
1416  * nfs mknod rpc
1417  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1418  * mode set to specify the file type and the size field for rdev.
1419  */
1420 static int
1421 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1422     struct vattr *vap)
1423 {
1424 	struct nfsvattr nfsva, dnfsva;
1425 	struct vnode *newvp = NULL;
1426 	struct nfsnode *np = NULL, *dnp;
1427 	struct nfsfh *nfhp;
1428 	struct vattr vattr;
1429 	int error = 0, attrflag, dattrflag;
1430 	u_int32_t rdev;
1431 
1432 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1433 		rdev = vap->va_rdev;
1434 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1435 		rdev = 0xffffffff;
1436 	else
1437 		return (EOPNOTSUPP);
1438 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1439 		return (error);
1440 	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1441 	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1442 	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1443 	if (!error) {
1444 		if (!nfhp)
1445 			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1446 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1447 			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1448 			    NULL);
1449 		if (nfhp)
1450 			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1451 			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1452 	}
1453 	if (dattrflag)
1454 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1455 	if (!error) {
1456 		newvp = NFSTOV(np);
1457 		if (attrflag != 0) {
1458 			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1459 			    0, 1);
1460 			if (error != 0)
1461 				vput(newvp);
1462 		}
1463 	}
1464 	if (!error) {
1465 		*vpp = newvp;
1466 	} else if (NFS_ISV4(dvp)) {
1467 		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1468 		    vap->va_gid);
1469 	}
1470 	dnp = VTONFS(dvp);
1471 	mtx_lock(&dnp->n_mtx);
1472 	dnp->n_flag |= NMODIFIED;
1473 	if (!dattrflag) {
1474 		dnp->n_attrstamp = 0;
1475 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1476 	}
1477 	mtx_unlock(&dnp->n_mtx);
1478 	return (error);
1479 }
1480 
1481 /*
1482  * nfs mknod vop
1483  * just call nfs_mknodrpc() to do the work.
1484  */
1485 /* ARGSUSED */
1486 static int
1487 nfs_mknod(struct vop_mknod_args *ap)
1488 {
1489 	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1490 }
1491 
1492 static struct mtx nfs_cverf_mtx;
1493 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1494     MTX_DEF);
1495 
1496 static nfsquad_t
1497 nfs_get_cverf(void)
1498 {
1499 	static nfsquad_t cverf;
1500 	nfsquad_t ret;
1501 	static int cverf_initialized = 0;
1502 
1503 	mtx_lock(&nfs_cverf_mtx);
1504 	if (cverf_initialized == 0) {
1505 		cverf.lval[0] = arc4random();
1506 		cverf.lval[1] = arc4random();
1507 		cverf_initialized = 1;
1508 	} else
1509 		cverf.qval++;
1510 	ret = cverf;
1511 	mtx_unlock(&nfs_cverf_mtx);
1512 
1513 	return (ret);
1514 }
1515 
1516 /*
1517  * nfs file create call
1518  */
1519 static int
1520 nfs_create(struct vop_create_args *ap)
1521 {
1522 	struct vnode *dvp = ap->a_dvp;
1523 	struct vattr *vap = ap->a_vap;
1524 	struct componentname *cnp = ap->a_cnp;
1525 	struct nfsnode *np = NULL, *dnp;
1526 	struct vnode *newvp = NULL;
1527 	struct nfsmount *nmp;
1528 	struct nfsvattr dnfsva, nfsva;
1529 	struct nfsfh *nfhp;
1530 	nfsquad_t cverf;
1531 	int error = 0, attrflag, dattrflag, fmode = 0;
1532 	struct vattr vattr;
1533 
1534 	/*
1535 	 * Oops, not for me..
1536 	 */
1537 	if (vap->va_type == VSOCK)
1538 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1539 
1540 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1541 		return (error);
1542 	if (vap->va_vaflags & VA_EXCLUSIVE)
1543 		fmode |= O_EXCL;
1544 	dnp = VTONFS(dvp);
1545 	nmp = VFSTONFS(vnode_mount(dvp));
1546 again:
1547 	/* For NFSv4, wait until any remove is done. */
1548 	mtx_lock(&dnp->n_mtx);
1549 	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1550 		dnp->n_flag |= NREMOVEWANT;
1551 		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1552 	}
1553 	mtx_unlock(&dnp->n_mtx);
1554 
1555 	cverf = nfs_get_cverf();
1556 	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1557 	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1558 	    &nfhp, &attrflag, &dattrflag, NULL);
1559 	if (!error) {
1560 		if (nfhp == NULL)
1561 			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1562 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1563 			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1564 			    NULL);
1565 		if (nfhp != NULL)
1566 			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1567 			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1568 	}
1569 	if (dattrflag)
1570 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1571 	if (!error) {
1572 		newvp = NFSTOV(np);
1573 		if (attrflag == 0)
1574 			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1575 			    cnp->cn_thread, &nfsva, NULL);
1576 		if (error == 0)
1577 			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1578 			    0, 1);
1579 	}
1580 	if (error) {
1581 		if (newvp != NULL) {
1582 			vput(newvp);
1583 			newvp = NULL;
1584 		}
1585 		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1586 		    error == NFSERR_NOTSUPP) {
1587 			fmode &= ~O_EXCL;
1588 			goto again;
1589 		}
1590 	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1591 		if (nfscl_checksattr(vap, &nfsva)) {
1592 			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1593 			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1594 			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1595 			    vap->va_gid != (gid_t)VNOVAL)) {
1596 				/* try again without setting uid/gid */
1597 				vap->va_uid = (uid_t)VNOVAL;
1598 				vap->va_gid = (uid_t)VNOVAL;
1599 				error = nfsrpc_setattr(newvp, vap, NULL,
1600 				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1601 				    &attrflag, NULL);
1602 			}
1603 			if (attrflag)
1604 				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1605 				    NULL, 0, 1);
1606 			if (error != 0)
1607 				vput(newvp);
1608 		}
1609 	}
1610 	if (!error) {
1611 		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1612 			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1613 			    NULL);
1614 		*ap->a_vpp = newvp;
1615 	} else if (NFS_ISV4(dvp)) {
1616 		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1617 		    vap->va_gid);
1618 	}
1619 	mtx_lock(&dnp->n_mtx);
1620 	dnp->n_flag |= NMODIFIED;
1621 	if (!dattrflag) {
1622 		dnp->n_attrstamp = 0;
1623 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1624 	}
1625 	mtx_unlock(&dnp->n_mtx);
1626 	return (error);
1627 }
1628 
1629 /*
1630  * nfs file remove call
1631  * To try and make nfs semantics closer to ufs semantics, a file that has
1632  * other processes using the vnode is renamed instead of removed and then
1633  * removed later on the last close.
1634  * - If v_usecount > 1
1635  *	  If a rename is not already in the works
1636  *	     call nfs_sillyrename() to set it up
1637  *     else
1638  *	  do the remove rpc
1639  */
1640 static int
1641 nfs_remove(struct vop_remove_args *ap)
1642 {
1643 	struct vnode *vp = ap->a_vp;
1644 	struct vnode *dvp = ap->a_dvp;
1645 	struct componentname *cnp = ap->a_cnp;
1646 	struct nfsnode *np = VTONFS(vp);
1647 	int error = 0;
1648 	struct vattr vattr;
1649 
1650 	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1651 	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1652 	if (vp->v_type == VDIR)
1653 		error = EPERM;
1654 	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1655 	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1656 	    vattr.va_nlink > 1)) {
1657 		/*
1658 		 * Purge the name cache so that the chance of a lookup for
1659 		 * the name succeeding while the remove is in progress is
1660 		 * minimized. Without node locking it can still happen, such
1661 		 * that an I/O op returns ESTALE, but since you get this if
1662 		 * another host removes the file..
1663 		 */
1664 		cache_purge(vp);
1665 		/*
1666 		 * throw away biocache buffers, mainly to avoid
1667 		 * unnecessary delayed writes later.
1668 		 */
1669 		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1670 		if (error != EINTR && error != EIO)
1671 			/* Do the rpc */
1672 			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1673 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1674 		/*
1675 		 * Kludge City: If the first reply to the remove rpc is lost..
1676 		 *   the reply to the retransmitted request will be ENOENT
1677 		 *   since the file was in fact removed
1678 		 *   Therefore, we cheat and return success.
1679 		 */
1680 		if (error == ENOENT)
1681 			error = 0;
1682 	} else if (!np->n_sillyrename)
1683 		error = nfs_sillyrename(dvp, vp, cnp);
1684 	mtx_lock(&np->n_mtx);
1685 	np->n_attrstamp = 0;
1686 	mtx_unlock(&np->n_mtx);
1687 	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1688 	return (error);
1689 }
1690 
1691 /*
1692  * nfs file remove rpc called from nfs_inactive
1693  */
1694 int
1695 ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1696 {
1697 	/*
1698 	 * Make sure that the directory vnode is still valid.
1699 	 * XXX we should lock sp->s_dvp here.
1700 	 */
1701 	if (sp->s_dvp->v_type == VBAD)
1702 		return (0);
1703 	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1704 	    sp->s_cred, NULL));
1705 }
1706 
1707 /*
1708  * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1709  */
1710 static int
1711 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1712     int namelen, struct ucred *cred, struct thread *td)
1713 {
1714 	struct nfsvattr dnfsva;
1715 	struct nfsnode *dnp = VTONFS(dvp);
1716 	int error = 0, dattrflag;
1717 
1718 	mtx_lock(&dnp->n_mtx);
1719 	dnp->n_flag |= NREMOVEINPROG;
1720 	mtx_unlock(&dnp->n_mtx);
1721 	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1722 	    &dattrflag, NULL);
1723 	mtx_lock(&dnp->n_mtx);
1724 	if ((dnp->n_flag & NREMOVEWANT)) {
1725 		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1726 		mtx_unlock(&dnp->n_mtx);
1727 		wakeup((caddr_t)dnp);
1728 	} else {
1729 		dnp->n_flag &= ~NREMOVEINPROG;
1730 		mtx_unlock(&dnp->n_mtx);
1731 	}
1732 	if (dattrflag)
1733 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1734 	mtx_lock(&dnp->n_mtx);
1735 	dnp->n_flag |= NMODIFIED;
1736 	if (!dattrflag) {
1737 		dnp->n_attrstamp = 0;
1738 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1739 	}
1740 	mtx_unlock(&dnp->n_mtx);
1741 	if (error && NFS_ISV4(dvp))
1742 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1743 	return (error);
1744 }
1745 
1746 /*
1747  * nfs file rename call
1748  */
1749 static int
1750 nfs_rename(struct vop_rename_args *ap)
1751 {
1752 	struct vnode *fvp = ap->a_fvp;
1753 	struct vnode *tvp = ap->a_tvp;
1754 	struct vnode *fdvp = ap->a_fdvp;
1755 	struct vnode *tdvp = ap->a_tdvp;
1756 	struct componentname *tcnp = ap->a_tcnp;
1757 	struct componentname *fcnp = ap->a_fcnp;
1758 	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1759 	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1760 	struct nfsv4node *newv4 = NULL;
1761 	int error;
1762 
1763 	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1764 	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1765 	/* Check for cross-device rename */
1766 	if ((fvp->v_mount != tdvp->v_mount) ||
1767 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1768 		error = EXDEV;
1769 		goto out;
1770 	}
1771 
1772 	if (fvp == tvp) {
1773 		printf("nfs_rename: fvp == tvp (can't happen)\n");
1774 		error = 0;
1775 		goto out;
1776 	}
1777 	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1778 		goto out;
1779 
1780 	/*
1781 	 * We have to flush B_DELWRI data prior to renaming
1782 	 * the file.  If we don't, the delayed-write buffers
1783 	 * can be flushed out later after the file has gone stale
1784 	 * under NFSV3.  NFSV2 does not have this problem because
1785 	 * ( as far as I can tell ) it flushes dirty buffers more
1786 	 * often.
1787 	 *
1788 	 * Skip the rename operation if the fsync fails, this can happen
1789 	 * due to the server's volume being full, when we pushed out data
1790 	 * that was written back to our cache earlier. Not checking for
1791 	 * this condition can result in potential (silent) data loss.
1792 	 */
1793 	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1794 	NFSVOPUNLOCK(fvp, 0);
1795 	if (!error && tvp)
1796 		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1797 	if (error)
1798 		goto out;
1799 
1800 	/*
1801 	 * If the tvp exists and is in use, sillyrename it before doing the
1802 	 * rename of the new file over it.
1803 	 * XXX Can't sillyrename a directory.
1804 	 */
1805 	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1806 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1807 		vput(tvp);
1808 		tvp = NULL;
1809 	}
1810 
1811 	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1812 	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1813 	    tcnp->cn_thread);
1814 
1815 	if (error == 0 && NFS_ISV4(tdvp)) {
1816 		/*
1817 		 * For NFSv4, check to see if it is the same name and
1818 		 * replace the name, if it is different.
1819 		 */
1820 		newv4 = malloc(
1821 		    sizeof (struct nfsv4node) +
1822 		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1823 		    M_NFSV4NODE, M_WAITOK);
1824 		mtx_lock(&tdnp->n_mtx);
1825 		mtx_lock(&fnp->n_mtx);
1826 		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1827 		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1828 		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1829 		      tcnp->cn_namelen) ||
1830 		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1831 		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1832 			tdnp->n_fhp->nfh_len))) {
1833 #ifdef notdef
1834 { char nnn[100]; int nnnl;
1835 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1836 bcopy(tcnp->cn_nameptr, nnn, nnnl);
1837 nnn[nnnl] = '\0';
1838 printf("ren replace=%s\n",nnn);
1839 }
1840 #endif
1841 			free(fnp->n_v4, M_NFSV4NODE);
1842 			fnp->n_v4 = newv4;
1843 			newv4 = NULL;
1844 			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1845 			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1846 			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1847 			    tdnp->n_fhp->nfh_len);
1848 			NFSBCOPY(tcnp->cn_nameptr,
1849 			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1850 		}
1851 		mtx_unlock(&tdnp->n_mtx);
1852 		mtx_unlock(&fnp->n_mtx);
1853 		if (newv4 != NULL)
1854 			free(newv4, M_NFSV4NODE);
1855 	}
1856 
1857 	if (fvp->v_type == VDIR) {
1858 		if (tvp != NULL && tvp->v_type == VDIR)
1859 			cache_purge(tdvp);
1860 		cache_purge(fdvp);
1861 	}
1862 
1863 out:
1864 	if (tdvp == tvp)
1865 		vrele(tdvp);
1866 	else
1867 		vput(tdvp);
1868 	if (tvp)
1869 		vput(tvp);
1870 	vrele(fdvp);
1871 	vrele(fvp);
1872 	/*
1873 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1874 	 */
1875 	if (error == ENOENT)
1876 		error = 0;
1877 	return (error);
1878 }
1879 
1880 /*
1881  * nfs file rename rpc called from nfs_remove() above
1882  */
1883 static int
1884 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1885     struct sillyrename *sp)
1886 {
1887 
1888 	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1889 	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1890 	    scnp->cn_thread));
1891 }
1892 
1893 /*
1894  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1895  */
1896 static int
1897 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1898     int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1899     int tnamelen, struct ucred *cred, struct thread *td)
1900 {
1901 	struct nfsvattr fnfsva, tnfsva;
1902 	struct nfsnode *fdnp = VTONFS(fdvp);
1903 	struct nfsnode *tdnp = VTONFS(tdvp);
1904 	int error = 0, fattrflag, tattrflag;
1905 
1906 	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1907 	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1908 	    &tattrflag, NULL, NULL);
1909 	mtx_lock(&fdnp->n_mtx);
1910 	fdnp->n_flag |= NMODIFIED;
1911 	if (fattrflag != 0) {
1912 		mtx_unlock(&fdnp->n_mtx);
1913 		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1914 	} else {
1915 		fdnp->n_attrstamp = 0;
1916 		mtx_unlock(&fdnp->n_mtx);
1917 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1918 	}
1919 	mtx_lock(&tdnp->n_mtx);
1920 	tdnp->n_flag |= NMODIFIED;
1921 	if (tattrflag != 0) {
1922 		mtx_unlock(&tdnp->n_mtx);
1923 		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1924 	} else {
1925 		tdnp->n_attrstamp = 0;
1926 		mtx_unlock(&tdnp->n_mtx);
1927 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1928 	}
1929 	if (error && NFS_ISV4(fdvp))
1930 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1931 	return (error);
1932 }
1933 
1934 /*
1935  * nfs hard link create call
1936  */
1937 static int
1938 nfs_link(struct vop_link_args *ap)
1939 {
1940 	struct vnode *vp = ap->a_vp;
1941 	struct vnode *tdvp = ap->a_tdvp;
1942 	struct componentname *cnp = ap->a_cnp;
1943 	struct nfsnode *np, *tdnp;
1944 	struct nfsvattr nfsva, dnfsva;
1945 	int error = 0, attrflag, dattrflag;
1946 
1947 	/*
1948 	 * Push all writes to the server, so that the attribute cache
1949 	 * doesn't get "out of sync" with the server.
1950 	 * XXX There should be a better way!
1951 	 */
1952 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1953 
1954 	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1955 	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1956 	    &dattrflag, NULL);
1957 	tdnp = VTONFS(tdvp);
1958 	mtx_lock(&tdnp->n_mtx);
1959 	tdnp->n_flag |= NMODIFIED;
1960 	if (dattrflag != 0) {
1961 		mtx_unlock(&tdnp->n_mtx);
1962 		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1963 	} else {
1964 		tdnp->n_attrstamp = 0;
1965 		mtx_unlock(&tdnp->n_mtx);
1966 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1967 	}
1968 	if (attrflag)
1969 		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1970 	else {
1971 		np = VTONFS(vp);
1972 		mtx_lock(&np->n_mtx);
1973 		np->n_attrstamp = 0;
1974 		mtx_unlock(&np->n_mtx);
1975 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1976 	}
1977 	/*
1978 	 * If negative lookup caching is enabled, I might as well
1979 	 * add an entry for this node. Not necessary for correctness,
1980 	 * but if negative caching is enabled, then the system
1981 	 * must care about lookup caching hit rate, so...
1982 	 */
1983 	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1984 	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
1985 		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
1986 	}
1987 	if (error && NFS_ISV4(vp))
1988 		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1989 		    (gid_t)0);
1990 	return (error);
1991 }
1992 
1993 /*
1994  * nfs symbolic link create call
1995  */
1996 static int
1997 nfs_symlink(struct vop_symlink_args *ap)
1998 {
1999 	struct vnode *dvp = ap->a_dvp;
2000 	struct vattr *vap = ap->a_vap;
2001 	struct componentname *cnp = ap->a_cnp;
2002 	struct nfsvattr nfsva, dnfsva;
2003 	struct nfsfh *nfhp;
2004 	struct nfsnode *np = NULL, *dnp;
2005 	struct vnode *newvp = NULL;
2006 	int error = 0, attrflag, dattrflag, ret;
2007 
2008 	vap->va_type = VLNK;
2009 	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2010 	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2011 	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2012 	if (nfhp) {
2013 		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2014 		    &np, NULL, LK_EXCLUSIVE);
2015 		if (!ret)
2016 			newvp = NFSTOV(np);
2017 		else if (!error)
2018 			error = ret;
2019 	}
2020 	if (newvp != NULL) {
2021 		if (attrflag)
2022 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2023 			    0, 1);
2024 	} else if (!error) {
2025 		/*
2026 		 * If we do not have an error and we could not extract the
2027 		 * newvp from the response due to the request being NFSv2, we
2028 		 * have to do a lookup in order to obtain a newvp to return.
2029 		 */
2030 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2031 		    cnp->cn_cred, cnp->cn_thread, &np);
2032 		if (!error)
2033 			newvp = NFSTOV(np);
2034 	}
2035 	if (error) {
2036 		if (newvp)
2037 			vput(newvp);
2038 		if (NFS_ISV4(dvp))
2039 			error = nfscl_maperr(cnp->cn_thread, error,
2040 			    vap->va_uid, vap->va_gid);
2041 	} else {
2042 		*ap->a_vpp = newvp;
2043 	}
2044 
2045 	dnp = VTONFS(dvp);
2046 	mtx_lock(&dnp->n_mtx);
2047 	dnp->n_flag |= NMODIFIED;
2048 	if (dattrflag != 0) {
2049 		mtx_unlock(&dnp->n_mtx);
2050 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2051 	} else {
2052 		dnp->n_attrstamp = 0;
2053 		mtx_unlock(&dnp->n_mtx);
2054 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2055 	}
2056 	/*
2057 	 * If negative lookup caching is enabled, I might as well
2058 	 * add an entry for this node. Not necessary for correctness,
2059 	 * but if negative caching is enabled, then the system
2060 	 * must care about lookup caching hit rate, so...
2061 	 */
2062 	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2063 	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2064 		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2065 	}
2066 	return (error);
2067 }
2068 
2069 /*
2070  * nfs make dir call
2071  */
2072 static int
2073 nfs_mkdir(struct vop_mkdir_args *ap)
2074 {
2075 	struct vnode *dvp = ap->a_dvp;
2076 	struct vattr *vap = ap->a_vap;
2077 	struct componentname *cnp = ap->a_cnp;
2078 	struct nfsnode *np = NULL, *dnp;
2079 	struct vnode *newvp = NULL;
2080 	struct vattr vattr;
2081 	struct nfsfh *nfhp;
2082 	struct nfsvattr nfsva, dnfsva;
2083 	int error = 0, attrflag, dattrflag, ret;
2084 
2085 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2086 		return (error);
2087 	vap->va_type = VDIR;
2088 	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2089 	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2090 	    &attrflag, &dattrflag, NULL);
2091 	dnp = VTONFS(dvp);
2092 	mtx_lock(&dnp->n_mtx);
2093 	dnp->n_flag |= NMODIFIED;
2094 	if (dattrflag != 0) {
2095 		mtx_unlock(&dnp->n_mtx);
2096 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2097 	} else {
2098 		dnp->n_attrstamp = 0;
2099 		mtx_unlock(&dnp->n_mtx);
2100 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2101 	}
2102 	if (nfhp) {
2103 		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2104 		    &np, NULL, LK_EXCLUSIVE);
2105 		if (!ret) {
2106 			newvp = NFSTOV(np);
2107 			if (attrflag)
2108 			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2109 				NULL, 0, 1);
2110 		} else if (!error)
2111 			error = ret;
2112 	}
2113 	if (!error && newvp == NULL) {
2114 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2115 		    cnp->cn_cred, cnp->cn_thread, &np);
2116 		if (!error) {
2117 			newvp = NFSTOV(np);
2118 			if (newvp->v_type != VDIR)
2119 				error = EEXIST;
2120 		}
2121 	}
2122 	if (error) {
2123 		if (newvp)
2124 			vput(newvp);
2125 		if (NFS_ISV4(dvp))
2126 			error = nfscl_maperr(cnp->cn_thread, error,
2127 			    vap->va_uid, vap->va_gid);
2128 	} else {
2129 		/*
2130 		 * If negative lookup caching is enabled, I might as well
2131 		 * add an entry for this node. Not necessary for correctness,
2132 		 * but if negative caching is enabled, then the system
2133 		 * must care about lookup caching hit rate, so...
2134 		 */
2135 		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2136 		    (cnp->cn_flags & MAKEENTRY) &&
2137 		    attrflag != 0 && dattrflag != 0)
2138 			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2139 			    &dnfsva.na_ctime);
2140 		*ap->a_vpp = newvp;
2141 	}
2142 	return (error);
2143 }
2144 
2145 /*
2146  * nfs remove directory call
2147  */
2148 static int
2149 nfs_rmdir(struct vop_rmdir_args *ap)
2150 {
2151 	struct vnode *vp = ap->a_vp;
2152 	struct vnode *dvp = ap->a_dvp;
2153 	struct componentname *cnp = ap->a_cnp;
2154 	struct nfsnode *dnp;
2155 	struct nfsvattr dnfsva;
2156 	int error, dattrflag;
2157 
2158 	if (dvp == vp)
2159 		return (EINVAL);
2160 	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2161 	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2162 	dnp = VTONFS(dvp);
2163 	mtx_lock(&dnp->n_mtx);
2164 	dnp->n_flag |= NMODIFIED;
2165 	if (dattrflag != 0) {
2166 		mtx_unlock(&dnp->n_mtx);
2167 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2168 	} else {
2169 		dnp->n_attrstamp = 0;
2170 		mtx_unlock(&dnp->n_mtx);
2171 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2172 	}
2173 
2174 	cache_purge(dvp);
2175 	cache_purge(vp);
2176 	if (error && NFS_ISV4(dvp))
2177 		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2178 		    (gid_t)0);
2179 	/*
2180 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2181 	 */
2182 	if (error == ENOENT)
2183 		error = 0;
2184 	return (error);
2185 }
2186 
2187 /*
2188  * nfs readdir call
2189  */
2190 static int
2191 nfs_readdir(struct vop_readdir_args *ap)
2192 {
2193 	struct vnode *vp = ap->a_vp;
2194 	struct nfsnode *np = VTONFS(vp);
2195 	struct uio *uio = ap->a_uio;
2196 	ssize_t tresid, left;
2197 	int error = 0;
2198 	struct vattr vattr;
2199 
2200 	if (ap->a_eofflag != NULL)
2201 		*ap->a_eofflag = 0;
2202 	if (vp->v_type != VDIR)
2203 		return(EPERM);
2204 
2205 	/*
2206 	 * First, check for hit on the EOF offset cache
2207 	 */
2208 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2209 	    (np->n_flag & NMODIFIED) == 0) {
2210 		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2211 			mtx_lock(&np->n_mtx);
2212 			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2213 			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2214 				mtx_unlock(&np->n_mtx);
2215 				NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
2216 				if (ap->a_eofflag != NULL)
2217 					*ap->a_eofflag = 1;
2218 				return (0);
2219 			} else
2220 				mtx_unlock(&np->n_mtx);
2221 		}
2222 	}
2223 
2224 	/*
2225 	 * NFS always guarantees that directory entries don't straddle
2226 	 * DIRBLKSIZ boundaries.  As such, we need to limit the size
2227 	 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2228 	 * directory entry.
2229 	 */
2230 	left = uio->uio_resid % DIRBLKSIZ;
2231 	if (left == uio->uio_resid)
2232 		return (EINVAL);
2233 	uio->uio_resid -= left;
2234 
2235 	/*
2236 	 * Call ncl_bioread() to do the real work.
2237 	 */
2238 	tresid = uio->uio_resid;
2239 	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2240 
2241 	if (!error && uio->uio_resid == tresid) {
2242 		NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
2243 		if (ap->a_eofflag != NULL)
2244 			*ap->a_eofflag = 1;
2245 	}
2246 
2247 	/* Add the partial DIRBLKSIZ (left) back in. */
2248 	uio->uio_resid += left;
2249 	return (error);
2250 }
2251 
2252 /*
2253  * Readdir rpc call.
2254  * Called from below the buffer cache by ncl_doio().
2255  */
2256 int
2257 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2258     struct thread *td)
2259 {
2260 	struct nfsvattr nfsva;
2261 	nfsuint64 *cookiep, cookie;
2262 	struct nfsnode *dnp = VTONFS(vp);
2263 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2264 	int error = 0, eof, attrflag;
2265 
2266 	KASSERT(uiop->uio_iovcnt == 1 &&
2267 	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2268 	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2269 	    ("nfs readdirrpc bad uio"));
2270 
2271 	/*
2272 	 * If there is no cookie, assume directory was stale.
2273 	 */
2274 	ncl_dircookie_lock(dnp);
2275 	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2276 	if (cookiep) {
2277 		cookie = *cookiep;
2278 		ncl_dircookie_unlock(dnp);
2279 	} else {
2280 		ncl_dircookie_unlock(dnp);
2281 		return (NFSERR_BAD_COOKIE);
2282 	}
2283 
2284 	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2285 		(void)ncl_fsinfo(nmp, vp, cred, td);
2286 
2287 	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2288 	    &attrflag, &eof, NULL);
2289 	if (attrflag)
2290 		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2291 
2292 	if (!error) {
2293 		/*
2294 		 * We are now either at the end of the directory or have filled
2295 		 * the block.
2296 		 */
2297 		if (eof)
2298 			dnp->n_direofoffset = uiop->uio_offset;
2299 		else {
2300 			if (uiop->uio_resid > 0)
2301 				printf("EEK! readdirrpc resid > 0\n");
2302 			ncl_dircookie_lock(dnp);
2303 			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2304 			*cookiep = cookie;
2305 			ncl_dircookie_unlock(dnp);
2306 		}
2307 	} else if (NFS_ISV4(vp)) {
2308 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2309 	}
2310 	return (error);
2311 }
2312 
2313 /*
2314  * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2315  */
2316 int
2317 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2318     struct thread *td)
2319 {
2320 	struct nfsvattr nfsva;
2321 	nfsuint64 *cookiep, cookie;
2322 	struct nfsnode *dnp = VTONFS(vp);
2323 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2324 	int error = 0, attrflag, eof;
2325 
2326 	KASSERT(uiop->uio_iovcnt == 1 &&
2327 	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2328 	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2329 	    ("nfs readdirplusrpc bad uio"));
2330 
2331 	/*
2332 	 * If there is no cookie, assume directory was stale.
2333 	 */
2334 	ncl_dircookie_lock(dnp);
2335 	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2336 	if (cookiep) {
2337 		cookie = *cookiep;
2338 		ncl_dircookie_unlock(dnp);
2339 	} else {
2340 		ncl_dircookie_unlock(dnp);
2341 		return (NFSERR_BAD_COOKIE);
2342 	}
2343 
2344 	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2345 		(void)ncl_fsinfo(nmp, vp, cred, td);
2346 	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2347 	    &attrflag, &eof, NULL);
2348 	if (attrflag)
2349 		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2350 
2351 	if (!error) {
2352 		/*
2353 		 * We are now either at end of the directory or have filled the
2354 		 * the block.
2355 		 */
2356 		if (eof)
2357 			dnp->n_direofoffset = uiop->uio_offset;
2358 		else {
2359 			if (uiop->uio_resid > 0)
2360 				printf("EEK! readdirplusrpc resid > 0\n");
2361 			ncl_dircookie_lock(dnp);
2362 			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2363 			*cookiep = cookie;
2364 			ncl_dircookie_unlock(dnp);
2365 		}
2366 	} else if (NFS_ISV4(vp)) {
2367 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2368 	}
2369 	return (error);
2370 }
2371 
2372 /*
2373  * Silly rename. To make the NFS filesystem that is stateless look a little
2374  * more like the "ufs" a remove of an active vnode is translated to a rename
2375  * to a funny looking filename that is removed by nfs_inactive on the
2376  * nfsnode. There is the potential for another process on a different client
2377  * to create the same funny name between the nfs_lookitup() fails and the
2378  * nfs_rename() completes, but...
2379  */
2380 static int
2381 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2382 {
2383 	struct sillyrename *sp;
2384 	struct nfsnode *np;
2385 	int error;
2386 	short pid;
2387 	unsigned int lticks;
2388 
2389 	cache_purge(dvp);
2390 	np = VTONFS(vp);
2391 	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2392 	sp = malloc(sizeof (struct sillyrename),
2393 	    M_NEWNFSREQ, M_WAITOK);
2394 	sp->s_cred = crhold(cnp->cn_cred);
2395 	sp->s_dvp = dvp;
2396 	VREF(dvp);
2397 
2398 	/*
2399 	 * Fudge together a funny name.
2400 	 * Changing the format of the funny name to accommodate more
2401 	 * sillynames per directory.
2402 	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2403 	 * CPU ticks since boot.
2404 	 */
2405 	pid = cnp->cn_thread->td_proc->p_pid;
2406 	lticks = (unsigned int)ticks;
2407 	for ( ; ; ) {
2408 		sp->s_namlen = sprintf(sp->s_name,
2409 				       ".nfs.%08x.%04x4.4", lticks,
2410 				       pid);
2411 		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2412 				 cnp->cn_thread, NULL))
2413 			break;
2414 		lticks++;
2415 	}
2416 	error = nfs_renameit(dvp, vp, cnp, sp);
2417 	if (error)
2418 		goto bad;
2419 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2420 		cnp->cn_thread, &np);
2421 	np->n_sillyrename = sp;
2422 	return (0);
2423 bad:
2424 	vrele(sp->s_dvp);
2425 	crfree(sp->s_cred);
2426 	free(sp, M_NEWNFSREQ);
2427 	return (error);
2428 }
2429 
2430 /*
2431  * Look up a file name and optionally either update the file handle or
2432  * allocate an nfsnode, depending on the value of npp.
2433  * npp == NULL	--> just do the lookup
2434  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2435  *			handled too
2436  * *npp != NULL --> update the file handle in the vnode
2437  */
2438 static int
2439 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2440     struct thread *td, struct nfsnode **npp)
2441 {
2442 	struct vnode *newvp = NULL, *vp;
2443 	struct nfsnode *np, *dnp = VTONFS(dvp);
2444 	struct nfsfh *nfhp, *onfhp;
2445 	struct nfsvattr nfsva, dnfsva;
2446 	struct componentname cn;
2447 	int error = 0, attrflag, dattrflag;
2448 	u_int hash;
2449 
2450 	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2451 	    &nfhp, &attrflag, &dattrflag, NULL);
2452 	if (dattrflag)
2453 		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2454 	if (npp && !error) {
2455 		if (*npp != NULL) {
2456 		    np = *npp;
2457 		    vp = NFSTOV(np);
2458 		    /*
2459 		     * For NFSv4, check to see if it is the same name and
2460 		     * replace the name, if it is different.
2461 		     */
2462 		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2463 			(np->n_v4->n4_namelen != len ||
2464 			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2465 			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2466 			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2467 			 dnp->n_fhp->nfh_len))) {
2468 #ifdef notdef
2469 { char nnn[100]; int nnnl;
2470 nnnl = (len < 100) ? len : 99;
2471 bcopy(name, nnn, nnnl);
2472 nnn[nnnl] = '\0';
2473 printf("replace=%s\n",nnn);
2474 }
2475 #endif
2476 			    free(np->n_v4, M_NFSV4NODE);
2477 			    np->n_v4 = malloc(
2478 				sizeof (struct nfsv4node) +
2479 				dnp->n_fhp->nfh_len + len - 1,
2480 				M_NFSV4NODE, M_WAITOK);
2481 			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2482 			    np->n_v4->n4_namelen = len;
2483 			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2484 				dnp->n_fhp->nfh_len);
2485 			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2486 		    }
2487 		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2488 			FNV1_32_INIT);
2489 		    onfhp = np->n_fhp;
2490 		    /*
2491 		     * Rehash node for new file handle.
2492 		     */
2493 		    vfs_hash_rehash(vp, hash);
2494 		    np->n_fhp = nfhp;
2495 		    if (onfhp != NULL)
2496 			free(onfhp, M_NFSFH);
2497 		    newvp = NFSTOV(np);
2498 		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2499 		    free(nfhp, M_NFSFH);
2500 		    VREF(dvp);
2501 		    newvp = dvp;
2502 		} else {
2503 		    cn.cn_nameptr = name;
2504 		    cn.cn_namelen = len;
2505 		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2506 			&np, NULL, LK_EXCLUSIVE);
2507 		    if (error)
2508 			return (error);
2509 		    newvp = NFSTOV(np);
2510 		}
2511 		if (!attrflag && *npp == NULL) {
2512 			if (newvp == dvp)
2513 				vrele(newvp);
2514 			else
2515 				vput(newvp);
2516 			return (ENOENT);
2517 		}
2518 		if (attrflag)
2519 			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2520 			    0, 1);
2521 	}
2522 	if (npp && *npp == NULL) {
2523 		if (error) {
2524 			if (newvp) {
2525 				if (newvp == dvp)
2526 					vrele(newvp);
2527 				else
2528 					vput(newvp);
2529 			}
2530 		} else
2531 			*npp = np;
2532 	}
2533 	if (error && NFS_ISV4(dvp))
2534 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2535 	return (error);
2536 }
2537 
2538 /*
2539  * Nfs Version 3 and 4 commit rpc
2540  */
2541 int
2542 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2543    struct thread *td)
2544 {
2545 	struct nfsvattr nfsva;
2546 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2547 	struct nfsnode *np;
2548 	struct uio uio;
2549 	int error, attrflag;
2550 
2551 	np = VTONFS(vp);
2552 	error = EIO;
2553 	attrflag = 0;
2554 	if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) {
2555 		uio.uio_offset = offset;
2556 		uio.uio_resid = cnt;
2557 		error = nfscl_doiods(vp, &uio, NULL, NULL,
2558 		    NFSV4OPEN_ACCESSWRITE, 1, cred, td);
2559 		if (error != 0) {
2560 			mtx_lock(&np->n_mtx);
2561 			np->n_flag &= ~NDSCOMMIT;
2562 			mtx_unlock(&np->n_mtx);
2563 		}
2564 	}
2565 	if (error != 0) {
2566 		mtx_lock(&nmp->nm_mtx);
2567 		if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2568 			mtx_unlock(&nmp->nm_mtx);
2569 			return (0);
2570 		}
2571 		mtx_unlock(&nmp->nm_mtx);
2572 		error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2573 		    &attrflag, NULL);
2574 	}
2575 	if (attrflag != 0)
2576 		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2577 		    0, 1);
2578 	if (error != 0 && NFS_ISV4(vp))
2579 		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2580 	return (error);
2581 }
2582 
2583 /*
2584  * Strategy routine.
2585  * For async requests when nfsiod(s) are running, queue the request by
2586  * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2587  * request.
2588  */
2589 static int
2590 nfs_strategy(struct vop_strategy_args *ap)
2591 {
2592 	struct buf *bp;
2593 	struct vnode *vp;
2594 	struct ucred *cr;
2595 
2596 	bp = ap->a_bp;
2597 	vp = ap->a_vp;
2598 	KASSERT(bp->b_vp == vp, ("missing b_getvp"));
2599 	KASSERT(!(bp->b_flags & B_DONE),
2600 	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2601 	BUF_ASSERT_HELD(bp);
2602 
2603 	if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno)
2604 		bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize /
2605 		    DEV_BSIZE);
2606 	if (bp->b_iocmd == BIO_READ)
2607 		cr = bp->b_rcred;
2608 	else
2609 		cr = bp->b_wcred;
2610 
2611 	/*
2612 	 * If the op is asynchronous and an i/o daemon is waiting
2613 	 * queue the request, wake it up and wait for completion
2614 	 * otherwise just do it ourselves.
2615 	 */
2616 	if ((bp->b_flags & B_ASYNC) == 0 ||
2617 	    ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread))
2618 		(void) ncl_doio(vp, bp, cr, curthread, 1);
2619 	return (0);
2620 }
2621 
2622 /*
2623  * fsync vnode op. Just call ncl_flush() with commit == 1.
2624  */
2625 /* ARGSUSED */
2626 static int
2627 nfs_fsync(struct vop_fsync_args *ap)
2628 {
2629 
2630 	if (ap->a_vp->v_type != VREG) {
2631 		/*
2632 		 * For NFS, metadata is changed synchronously on the server,
2633 		 * so there is nothing to flush. Also, ncl_flush() clears
2634 		 * the NMODIFIED flag and that shouldn't be done here for
2635 		 * directories.
2636 		 */
2637 		return (0);
2638 	}
2639 	return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0));
2640 }
2641 
2642 /*
2643  * Flush all the blocks associated with a vnode.
2644  * 	Walk through the buffer pool and push any dirty pages
2645  *	associated with the vnode.
2646  * If the called_from_renewthread argument is TRUE, it has been called
2647  * from the NFSv4 renew thread and, as such, cannot block indefinitely
2648  * waiting for a buffer write to complete.
2649  */
2650 int
2651 ncl_flush(struct vnode *vp, int waitfor, struct thread *td,
2652     int commit, int called_from_renewthread)
2653 {
2654 	struct nfsnode *np = VTONFS(vp);
2655 	struct buf *bp;
2656 	int i;
2657 	struct buf *nbp;
2658 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2659 	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2660 	int passone = 1, trycnt = 0;
2661 	u_quad_t off, endoff, toff;
2662 	struct ucred* wcred = NULL;
2663 	struct buf **bvec = NULL;
2664 	struct bufobj *bo;
2665 #ifndef NFS_COMMITBVECSIZ
2666 #define	NFS_COMMITBVECSIZ	20
2667 #endif
2668 	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2669 	u_int bvecsize = 0, bveccount;
2670 
2671 	if (called_from_renewthread != 0)
2672 		slptimeo = hz;
2673 	if (nmp->nm_flag & NFSMNT_INT)
2674 		slpflag = PCATCH;
2675 	if (!commit)
2676 		passone = 0;
2677 	bo = &vp->v_bufobj;
2678 	/*
2679 	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2680 	 * server, but has not been committed to stable storage on the server
2681 	 * yet. On the first pass, the byte range is worked out and the commit
2682 	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2683 	 * job.
2684 	 */
2685 again:
2686 	off = (u_quad_t)-1;
2687 	endoff = 0;
2688 	bvecpos = 0;
2689 	if (NFS_ISV34(vp) && commit) {
2690 		if (bvec != NULL && bvec != bvec_on_stack)
2691 			free(bvec, M_TEMP);
2692 		/*
2693 		 * Count up how many buffers waiting for a commit.
2694 		 */
2695 		bveccount = 0;
2696 		BO_LOCK(bo);
2697 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2698 			if (!BUF_ISLOCKED(bp) &&
2699 			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2700 				== (B_DELWRI | B_NEEDCOMMIT))
2701 				bveccount++;
2702 		}
2703 		/*
2704 		 * Allocate space to remember the list of bufs to commit.  It is
2705 		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2706 		 * If we can't get memory (for whatever reason), we will end up
2707 		 * committing the buffers one-by-one in the loop below.
2708 		 */
2709 		if (bveccount > NFS_COMMITBVECSIZ) {
2710 			/*
2711 			 * Release the vnode interlock to avoid a lock
2712 			 * order reversal.
2713 			 */
2714 			BO_UNLOCK(bo);
2715 			bvec = (struct buf **)
2716 				malloc(bveccount * sizeof(struct buf *),
2717 				       M_TEMP, M_NOWAIT);
2718 			BO_LOCK(bo);
2719 			if (bvec == NULL) {
2720 				bvec = bvec_on_stack;
2721 				bvecsize = NFS_COMMITBVECSIZ;
2722 			} else
2723 				bvecsize = bveccount;
2724 		} else {
2725 			bvec = bvec_on_stack;
2726 			bvecsize = NFS_COMMITBVECSIZ;
2727 		}
2728 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2729 			if (bvecpos >= bvecsize)
2730 				break;
2731 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2732 				nbp = TAILQ_NEXT(bp, b_bobufs);
2733 				continue;
2734 			}
2735 			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2736 			    (B_DELWRI | B_NEEDCOMMIT)) {
2737 				BUF_UNLOCK(bp);
2738 				nbp = TAILQ_NEXT(bp, b_bobufs);
2739 				continue;
2740 			}
2741 			BO_UNLOCK(bo);
2742 			bremfree(bp);
2743 			/*
2744 			 * Work out if all buffers are using the same cred
2745 			 * so we can deal with them all with one commit.
2746 			 *
2747 			 * NOTE: we are not clearing B_DONE here, so we have
2748 			 * to do it later on in this routine if we intend to
2749 			 * initiate I/O on the bp.
2750 			 *
2751 			 * Note: to avoid loopback deadlocks, we do not
2752 			 * assign b_runningbufspace.
2753 			 */
2754 			if (wcred == NULL)
2755 				wcred = bp->b_wcred;
2756 			else if (wcred != bp->b_wcred)
2757 				wcred = NOCRED;
2758 			vfs_busy_pages(bp, 1);
2759 
2760 			BO_LOCK(bo);
2761 			/*
2762 			 * bp is protected by being locked, but nbp is not
2763 			 * and vfs_busy_pages() may sleep.  We have to
2764 			 * recalculate nbp.
2765 			 */
2766 			nbp = TAILQ_NEXT(bp, b_bobufs);
2767 
2768 			/*
2769 			 * A list of these buffers is kept so that the
2770 			 * second loop knows which buffers have actually
2771 			 * been committed. This is necessary, since there
2772 			 * may be a race between the commit rpc and new
2773 			 * uncommitted writes on the file.
2774 			 */
2775 			bvec[bvecpos++] = bp;
2776 			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2777 				bp->b_dirtyoff;
2778 			if (toff < off)
2779 				off = toff;
2780 			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2781 			if (toff > endoff)
2782 				endoff = toff;
2783 		}
2784 		BO_UNLOCK(bo);
2785 	}
2786 	if (bvecpos > 0) {
2787 		/*
2788 		 * Commit data on the server, as required.
2789 		 * If all bufs are using the same wcred, then use that with
2790 		 * one call for all of them, otherwise commit each one
2791 		 * separately.
2792 		 */
2793 		if (wcred != NOCRED)
2794 			retv = ncl_commit(vp, off, (int)(endoff - off),
2795 					  wcred, td);
2796 		else {
2797 			retv = 0;
2798 			for (i = 0; i < bvecpos; i++) {
2799 				off_t off, size;
2800 				bp = bvec[i];
2801 				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2802 					bp->b_dirtyoff;
2803 				size = (u_quad_t)(bp->b_dirtyend
2804 						  - bp->b_dirtyoff);
2805 				retv = ncl_commit(vp, off, (int)size,
2806 						  bp->b_wcred, td);
2807 				if (retv) break;
2808 			}
2809 		}
2810 
2811 		if (retv == NFSERR_STALEWRITEVERF)
2812 			ncl_clearcommit(vp->v_mount);
2813 
2814 		/*
2815 		 * Now, either mark the blocks I/O done or mark the
2816 		 * blocks dirty, depending on whether the commit
2817 		 * succeeded.
2818 		 */
2819 		for (i = 0; i < bvecpos; i++) {
2820 			bp = bvec[i];
2821 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2822 			if (retv) {
2823 				/*
2824 				 * Error, leave B_DELWRI intact
2825 				 */
2826 				vfs_unbusy_pages(bp);
2827 				brelse(bp);
2828 			} else {
2829 				/*
2830 				 * Success, remove B_DELWRI ( bundirty() ).
2831 				 *
2832 				 * b_dirtyoff/b_dirtyend seem to be NFS
2833 				 * specific.  We should probably move that
2834 				 * into bundirty(). XXX
2835 				 */
2836 				bufobj_wref(bo);
2837 				bp->b_flags |= B_ASYNC;
2838 				bundirty(bp);
2839 				bp->b_flags &= ~B_DONE;
2840 				bp->b_ioflags &= ~BIO_ERROR;
2841 				bp->b_dirtyoff = bp->b_dirtyend = 0;
2842 				bufdone(bp);
2843 			}
2844 		}
2845 	}
2846 
2847 	/*
2848 	 * Start/do any write(s) that are required.
2849 	 */
2850 loop:
2851 	BO_LOCK(bo);
2852 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2853 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2854 			if (waitfor != MNT_WAIT || passone)
2855 				continue;
2856 
2857 			error = BUF_TIMELOCK(bp,
2858 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2859 			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2860 			if (error == 0) {
2861 				BUF_UNLOCK(bp);
2862 				goto loop;
2863 			}
2864 			if (error == ENOLCK) {
2865 				error = 0;
2866 				goto loop;
2867 			}
2868 			if (called_from_renewthread != 0) {
2869 				/*
2870 				 * Return EIO so the flush will be retried
2871 				 * later.
2872 				 */
2873 				error = EIO;
2874 				goto done;
2875 			}
2876 			if (newnfs_sigintr(nmp, td)) {
2877 				error = EINTR;
2878 				goto done;
2879 			}
2880 			if (slpflag == PCATCH) {
2881 				slpflag = 0;
2882 				slptimeo = 2 * hz;
2883 			}
2884 			goto loop;
2885 		}
2886 		if ((bp->b_flags & B_DELWRI) == 0)
2887 			panic("nfs_fsync: not dirty");
2888 		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2889 			BUF_UNLOCK(bp);
2890 			continue;
2891 		}
2892 		BO_UNLOCK(bo);
2893 		bremfree(bp);
2894 		if (passone || !commit)
2895 		    bp->b_flags |= B_ASYNC;
2896 		else
2897 		    bp->b_flags |= B_ASYNC;
2898 		bwrite(bp);
2899 		if (newnfs_sigintr(nmp, td)) {
2900 			error = EINTR;
2901 			goto done;
2902 		}
2903 		goto loop;
2904 	}
2905 	if (passone) {
2906 		passone = 0;
2907 		BO_UNLOCK(bo);
2908 		goto again;
2909 	}
2910 	if (waitfor == MNT_WAIT) {
2911 		while (bo->bo_numoutput) {
2912 			error = bufobj_wwait(bo, slpflag, slptimeo);
2913 			if (error) {
2914 			    BO_UNLOCK(bo);
2915 			    if (called_from_renewthread != 0) {
2916 				/*
2917 				 * Return EIO so that the flush will be
2918 				 * retried later.
2919 				 */
2920 				error = EIO;
2921 				goto done;
2922 			    }
2923 			    error = newnfs_sigintr(nmp, td);
2924 			    if (error)
2925 				goto done;
2926 			    if (slpflag == PCATCH) {
2927 				slpflag = 0;
2928 				slptimeo = 2 * hz;
2929 			    }
2930 			    BO_LOCK(bo);
2931 			}
2932 		}
2933 		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2934 			BO_UNLOCK(bo);
2935 			goto loop;
2936 		}
2937 		/*
2938 		 * Wait for all the async IO requests to drain
2939 		 */
2940 		BO_UNLOCK(bo);
2941 		mtx_lock(&np->n_mtx);
2942 		while (np->n_directio_asyncwr > 0) {
2943 			np->n_flag |= NFSYNCWAIT;
2944 			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2945 			    &np->n_mtx, slpflag | (PRIBIO + 1),
2946 			    "nfsfsync", 0);
2947 			if (error) {
2948 				if (newnfs_sigintr(nmp, td)) {
2949 					mtx_unlock(&np->n_mtx);
2950 					error = EINTR;
2951 					goto done;
2952 				}
2953 			}
2954 		}
2955 		mtx_unlock(&np->n_mtx);
2956 	} else
2957 		BO_UNLOCK(bo);
2958 	if (NFSHASPNFS(nmp)) {
2959 		nfscl_layoutcommit(vp, td);
2960 		/*
2961 		 * Invalidate the attribute cache, since writes to a DS
2962 		 * won't update the size attribute.
2963 		 */
2964 		mtx_lock(&np->n_mtx);
2965 		np->n_attrstamp = 0;
2966 	} else
2967 		mtx_lock(&np->n_mtx);
2968 	if (np->n_flag & NWRITEERR) {
2969 		error = np->n_error;
2970 		np->n_flag &= ~NWRITEERR;
2971 	}
2972   	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2973 	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2974   		np->n_flag &= ~NMODIFIED;
2975 	mtx_unlock(&np->n_mtx);
2976 done:
2977 	if (bvec != NULL && bvec != bvec_on_stack)
2978 		free(bvec, M_TEMP);
2979 	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2980 	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2981 	    np->n_directio_asyncwr != 0)) {
2982 		if (trycnt++ < 5) {
2983 			/* try, try again... */
2984 			passone = 1;
2985 			wcred = NULL;
2986 			bvec = NULL;
2987 			bvecsize = 0;
2988 			goto again;
2989 		}
2990 		vn_printf(vp, "ncl_flush failed");
2991 		error = called_from_renewthread != 0 ? EIO : EBUSY;
2992 	}
2993 	return (error);
2994 }
2995 
2996 /*
2997  * NFS advisory byte-level locks.
2998  */
2999 static int
3000 nfs_advlock(struct vop_advlock_args *ap)
3001 {
3002 	struct vnode *vp = ap->a_vp;
3003 	struct ucred *cred;
3004 	struct nfsnode *np = VTONFS(ap->a_vp);
3005 	struct proc *p = (struct proc *)ap->a_id;
3006 	struct thread *td = curthread;	/* XXX */
3007 	struct vattr va;
3008 	int ret, error = EOPNOTSUPP;
3009 	u_quad_t size;
3010 
3011 	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
3012 		if (vp->v_type != VREG)
3013 			return (EINVAL);
3014 		if ((ap->a_flags & F_POSIX) != 0)
3015 			cred = p->p_ucred;
3016 		else
3017 			cred = td->td_ucred;
3018 		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3019 		if (vp->v_iflag & VI_DOOMED) {
3020 			NFSVOPUNLOCK(vp, 0);
3021 			return (EBADF);
3022 		}
3023 
3024 		/*
3025 		 * If this is unlocking a write locked region, flush and
3026 		 * commit them before unlocking. This is required by
3027 		 * RFC3530 Sec. 9.3.2.
3028 		 */
3029 		if (ap->a_op == F_UNLCK &&
3030 		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3031 		    ap->a_flags))
3032 			(void) ncl_flush(vp, MNT_WAIT, td, 1, 0);
3033 
3034 		/*
3035 		 * Loop around doing the lock op, while a blocking lock
3036 		 * must wait for the lock op to succeed.
3037 		 */
3038 		do {
3039 			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3040 			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3041 			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3042 			    ap->a_op == F_SETLK) {
3043 				NFSVOPUNLOCK(vp, 0);
3044 				error = nfs_catnap(PZERO | PCATCH, ret,
3045 				    "ncladvl");
3046 				if (error)
3047 					return (EINTR);
3048 				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3049 				if (vp->v_iflag & VI_DOOMED) {
3050 					NFSVOPUNLOCK(vp, 0);
3051 					return (EBADF);
3052 				}
3053 			}
3054 		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3055 		     ap->a_op == F_SETLK);
3056 		if (ret == NFSERR_DENIED) {
3057 			NFSVOPUNLOCK(vp, 0);
3058 			return (EAGAIN);
3059 		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3060 			NFSVOPUNLOCK(vp, 0);
3061 			return (ret);
3062 		} else if (ret != 0) {
3063 			NFSVOPUNLOCK(vp, 0);
3064 			return (EACCES);
3065 		}
3066 
3067 		/*
3068 		 * Now, if we just got a lock, invalidate data in the buffer
3069 		 * cache, as required, so that the coherency conforms with
3070 		 * RFC3530 Sec. 9.3.2.
3071 		 */
3072 		if (ap->a_op == F_SETLK) {
3073 			if ((np->n_flag & NMODIFIED) == 0) {
3074 				np->n_attrstamp = 0;
3075 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3076 				ret = VOP_GETATTR(vp, &va, cred);
3077 			}
3078 			if ((np->n_flag & NMODIFIED) || ret ||
3079 			    np->n_change != va.va_filerev) {
3080 				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3081 				np->n_attrstamp = 0;
3082 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3083 				ret = VOP_GETATTR(vp, &va, cred);
3084 				if (!ret) {
3085 					np->n_mtime = va.va_mtime;
3086 					np->n_change = va.va_filerev;
3087 				}
3088 			}
3089 			/* Mark that a file lock has been acquired. */
3090 			mtx_lock(&np->n_mtx);
3091 			np->n_flag |= NHASBEENLOCKED;
3092 			mtx_unlock(&np->n_mtx);
3093 		}
3094 		NFSVOPUNLOCK(vp, 0);
3095 		return (0);
3096 	} else if (!NFS_ISV4(vp)) {
3097 		error = NFSVOPLOCK(vp, LK_SHARED);
3098 		if (error)
3099 			return (error);
3100 		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3101 			size = VTONFS(vp)->n_size;
3102 			NFSVOPUNLOCK(vp, 0);
3103 			error = lf_advlock(ap, &(vp->v_lockf), size);
3104 		} else {
3105 			if (nfs_advlock_p != NULL)
3106 				error = nfs_advlock_p(ap);
3107 			else {
3108 				NFSVOPUNLOCK(vp, 0);
3109 				error = ENOLCK;
3110 			}
3111 		}
3112 		if (error == 0 && ap->a_op == F_SETLK) {
3113 			error = NFSVOPLOCK(vp, LK_SHARED);
3114 			if (error == 0) {
3115 				/* Mark that a file lock has been acquired. */
3116 				mtx_lock(&np->n_mtx);
3117 				np->n_flag |= NHASBEENLOCKED;
3118 				mtx_unlock(&np->n_mtx);
3119 				NFSVOPUNLOCK(vp, 0);
3120 			}
3121 		}
3122 	}
3123 	return (error);
3124 }
3125 
3126 /*
3127  * NFS advisory byte-level locks.
3128  */
3129 static int
3130 nfs_advlockasync(struct vop_advlockasync_args *ap)
3131 {
3132 	struct vnode *vp = ap->a_vp;
3133 	u_quad_t size;
3134 	int error;
3135 
3136 	if (NFS_ISV4(vp))
3137 		return (EOPNOTSUPP);
3138 	error = NFSVOPLOCK(vp, LK_SHARED);
3139 	if (error)
3140 		return (error);
3141 	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3142 		size = VTONFS(vp)->n_size;
3143 		NFSVOPUNLOCK(vp, 0);
3144 		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3145 	} else {
3146 		NFSVOPUNLOCK(vp, 0);
3147 		error = EOPNOTSUPP;
3148 	}
3149 	return (error);
3150 }
3151 
3152 /*
3153  * Print out the contents of an nfsnode.
3154  */
3155 static int
3156 nfs_print(struct vop_print_args *ap)
3157 {
3158 	struct vnode *vp = ap->a_vp;
3159 	struct nfsnode *np = VTONFS(vp);
3160 
3161 	printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid,
3162 	    (uintmax_t)np->n_vattr.na_fsid);
3163 	if (vp->v_type == VFIFO)
3164 		fifo_printinfo(vp);
3165 	printf("\n");
3166 	return (0);
3167 }
3168 
3169 /*
3170  * This is the "real" nfs::bwrite(struct buf*).
3171  * We set B_CACHE if this is a VMIO buffer.
3172  */
3173 int
3174 ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3175 {
3176 	int oldflags, rtval;
3177 
3178 	BUF_ASSERT_HELD(bp);
3179 
3180 	if (bp->b_flags & B_INVAL) {
3181 		brelse(bp);
3182 		return (0);
3183 	}
3184 
3185 	oldflags = bp->b_flags;
3186 	bp->b_flags |= B_CACHE;
3187 
3188 	/*
3189 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3190 	 */
3191 	bundirty(bp);
3192 	bp->b_flags &= ~B_DONE;
3193 	bp->b_ioflags &= ~BIO_ERROR;
3194 	bp->b_iocmd = BIO_WRITE;
3195 
3196 	bufobj_wref(bp->b_bufobj);
3197 	curthread->td_ru.ru_oublock++;
3198 
3199 	/*
3200 	 * Note: to avoid loopback deadlocks, we do not
3201 	 * assign b_runningbufspace.
3202 	 */
3203 	vfs_busy_pages(bp, 1);
3204 
3205 	BUF_KERNPROC(bp);
3206 	bp->b_iooffset = dbtob(bp->b_blkno);
3207 	bstrategy(bp);
3208 
3209 	if ((oldflags & B_ASYNC) != 0)
3210 		return (0);
3211 
3212 	rtval = bufwait(bp);
3213 	if (oldflags & B_DELWRI)
3214 		reassignbuf(bp);
3215 	brelse(bp);
3216 	return (rtval);
3217 }
3218 
3219 /*
3220  * nfs special file access vnode op.
3221  * Essentially just get vattr and then imitate iaccess() since the device is
3222  * local to the client.
3223  */
3224 static int
3225 nfsspec_access(struct vop_access_args *ap)
3226 {
3227 	struct vattr *vap;
3228 	struct ucred *cred = ap->a_cred;
3229 	struct vnode *vp = ap->a_vp;
3230 	accmode_t accmode = ap->a_accmode;
3231 	struct vattr vattr;
3232 	int error;
3233 
3234 	/*
3235 	 * Disallow write attempts on filesystems mounted read-only;
3236 	 * unless the file is a socket, fifo, or a block or character
3237 	 * device resident on the filesystem.
3238 	 */
3239 	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3240 		switch (vp->v_type) {
3241 		case VREG:
3242 		case VDIR:
3243 		case VLNK:
3244 			return (EROFS);
3245 		default:
3246 			break;
3247 		}
3248 	}
3249 	vap = &vattr;
3250 	error = VOP_GETATTR(vp, vap, cred);
3251 	if (error)
3252 		goto out;
3253 	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3254 	    accmode, cred, NULL);
3255 out:
3256 	return error;
3257 }
3258 
3259 /*
3260  * Read wrapper for fifos.
3261  */
3262 static int
3263 nfsfifo_read(struct vop_read_args *ap)
3264 {
3265 	struct nfsnode *np = VTONFS(ap->a_vp);
3266 	int error;
3267 
3268 	/*
3269 	 * Set access flag.
3270 	 */
3271 	mtx_lock(&np->n_mtx);
3272 	np->n_flag |= NACC;
3273 	vfs_timestamp(&np->n_atim);
3274 	mtx_unlock(&np->n_mtx);
3275 	error = fifo_specops.vop_read(ap);
3276 	return error;
3277 }
3278 
3279 /*
3280  * Write wrapper for fifos.
3281  */
3282 static int
3283 nfsfifo_write(struct vop_write_args *ap)
3284 {
3285 	struct nfsnode *np = VTONFS(ap->a_vp);
3286 
3287 	/*
3288 	 * Set update flag.
3289 	 */
3290 	mtx_lock(&np->n_mtx);
3291 	np->n_flag |= NUPD;
3292 	vfs_timestamp(&np->n_mtim);
3293 	mtx_unlock(&np->n_mtx);
3294 	return(fifo_specops.vop_write(ap));
3295 }
3296 
3297 /*
3298  * Close wrapper for fifos.
3299  *
3300  * Update the times on the nfsnode then do fifo close.
3301  */
3302 static int
3303 nfsfifo_close(struct vop_close_args *ap)
3304 {
3305 	struct vnode *vp = ap->a_vp;
3306 	struct nfsnode *np = VTONFS(vp);
3307 	struct vattr vattr;
3308 	struct timespec ts;
3309 
3310 	mtx_lock(&np->n_mtx);
3311 	if (np->n_flag & (NACC | NUPD)) {
3312 		vfs_timestamp(&ts);
3313 		if (np->n_flag & NACC)
3314 			np->n_atim = ts;
3315 		if (np->n_flag & NUPD)
3316 			np->n_mtim = ts;
3317 		np->n_flag |= NCHG;
3318 		if (vrefcnt(vp) == 1 &&
3319 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3320 			VATTR_NULL(&vattr);
3321 			if (np->n_flag & NACC)
3322 				vattr.va_atime = np->n_atim;
3323 			if (np->n_flag & NUPD)
3324 				vattr.va_mtime = np->n_mtim;
3325 			mtx_unlock(&np->n_mtx);
3326 			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3327 			goto out;
3328 		}
3329 	}
3330 	mtx_unlock(&np->n_mtx);
3331 out:
3332 	return (fifo_specops.vop_close(ap));
3333 }
3334 
3335 /*
3336  * Just call ncl_writebp() with the force argument set to 1.
3337  *
3338  * NOTE: B_DONE may or may not be set in a_bp on call.
3339  */
3340 static int
3341 nfs_bwrite(struct buf *bp)
3342 {
3343 
3344 	return (ncl_writebp(bp, 1, curthread));
3345 }
3346 
3347 struct buf_ops buf_ops_newnfs = {
3348 	.bop_name	=	"buf_ops_nfs",
3349 	.bop_write	=	nfs_bwrite,
3350 	.bop_strategy	=	bufstrategy,
3351 	.bop_sync	=	bufsync,
3352 	.bop_bdflush	=	bufbdflush,
3353 };
3354 
3355 static int
3356 nfs_getacl(struct vop_getacl_args *ap)
3357 {
3358 	int error;
3359 
3360 	if (ap->a_type != ACL_TYPE_NFS4)
3361 		return (EOPNOTSUPP);
3362 	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3363 	    NULL);
3364 	if (error > NFSERR_STALE) {
3365 		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3366 		error = EPERM;
3367 	}
3368 	return (error);
3369 }
3370 
3371 static int
3372 nfs_setacl(struct vop_setacl_args *ap)
3373 {
3374 	int error;
3375 
3376 	if (ap->a_type != ACL_TYPE_NFS4)
3377 		return (EOPNOTSUPP);
3378 	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3379 	    NULL);
3380 	if (error > NFSERR_STALE) {
3381 		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3382 		error = EPERM;
3383 	}
3384 	return (error);
3385 }
3386 
3387 static int
3388 nfs_set_text(struct vop_set_text_args *ap)
3389 {
3390 	struct vnode *vp = ap->a_vp;
3391 	struct nfsnode *np;
3392 
3393 	/*
3394 	 * If the text file has been mmap'd, flush any dirty pages to the
3395 	 * buffer cache and then...
3396 	 * Make sure all writes are pushed to the NFS server.  If this is not
3397 	 * done, the modify time of the file can change while the text
3398 	 * file is being executed.  This will cause the process that is
3399 	 * executing the text file to be terminated.
3400 	 */
3401 	if (vp->v_object != NULL) {
3402 		VM_OBJECT_WLOCK(vp->v_object);
3403 		vm_object_page_clean(vp->v_object, 0, 0, OBJPC_SYNC);
3404 		VM_OBJECT_WUNLOCK(vp->v_object);
3405 	}
3406 
3407 	/* Now, flush the buffer cache. */
3408 	ncl_flush(vp, MNT_WAIT, curthread, 0, 0);
3409 
3410 	/* And, finally, make sure that n_mtime is up to date. */
3411 	np = VTONFS(vp);
3412 	mtx_lock(&np->n_mtx);
3413 	np->n_mtime = np->n_vattr.na_mtime;
3414 	mtx_unlock(&np->n_mtx);
3415 
3416 	vp->v_vflag |= VV_TEXT;
3417 	return (0);
3418 }
3419 
3420 /*
3421  * Return POSIX pathconf information applicable to nfs filesystems.
3422  */
3423 static int
3424 nfs_pathconf(struct vop_pathconf_args *ap)
3425 {
3426 	struct nfsv3_pathconf pc;
3427 	struct nfsvattr nfsva;
3428 	struct vnode *vp = ap->a_vp;
3429 	struct thread *td = curthread;
3430 	int attrflag, error;
3431 
3432 	if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3433 	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3434 	    ap->a_name == _PC_NO_TRUNC)) ||
3435 	    (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3436 		/*
3437 		 * Since only the above 4 a_names are returned by the NFSv3
3438 		 * Pathconf RPC, there is no point in doing it for others.
3439 		 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3440 		 * be used for _PC_NFS4_ACL as well.
3441 		 */
3442 		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3443 		    &attrflag, NULL);
3444 		if (attrflag != 0)
3445 			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3446 			    1);
3447 		if (error != 0)
3448 			return (error);
3449 	} else {
3450 		/*
3451 		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3452 		 * just fake them.
3453 		 */
3454 		pc.pc_linkmax = NFS_LINK_MAX;
3455 		pc.pc_namemax = NFS_MAXNAMLEN;
3456 		pc.pc_notrunc = 1;
3457 		pc.pc_chownrestricted = 1;
3458 		pc.pc_caseinsensitive = 0;
3459 		pc.pc_casepreserving = 1;
3460 		error = 0;
3461 	}
3462 	switch (ap->a_name) {
3463 	case _PC_LINK_MAX:
3464 #ifdef _LP64
3465 		*ap->a_retval = pc.pc_linkmax;
3466 #else
3467 		*ap->a_retval = MIN(LONG_MAX, pc.pc_linkmax);
3468 #endif
3469 		break;
3470 	case _PC_NAME_MAX:
3471 		*ap->a_retval = pc.pc_namemax;
3472 		break;
3473 	case _PC_PIPE_BUF:
3474 		if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO)
3475 			*ap->a_retval = PIPE_BUF;
3476 		else
3477 			error = EINVAL;
3478 		break;
3479 	case _PC_CHOWN_RESTRICTED:
3480 		*ap->a_retval = pc.pc_chownrestricted;
3481 		break;
3482 	case _PC_NO_TRUNC:
3483 		*ap->a_retval = pc.pc_notrunc;
3484 		break;
3485 	case _PC_ACL_EXTENDED:
3486 		*ap->a_retval = 0;
3487 		break;
3488 	case _PC_ACL_NFS4:
3489 		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3490 		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3491 			*ap->a_retval = 1;
3492 		else
3493 			*ap->a_retval = 0;
3494 		break;
3495 	case _PC_ACL_PATH_MAX:
3496 		if (NFS_ISV4(vp))
3497 			*ap->a_retval = ACL_MAX_ENTRIES;
3498 		else
3499 			*ap->a_retval = 3;
3500 		break;
3501 	case _PC_MAC_PRESENT:
3502 		*ap->a_retval = 0;
3503 		break;
3504 	case _PC_PRIO_IO:
3505 		*ap->a_retval = 0;
3506 		break;
3507 	case _PC_SYNC_IO:
3508 		*ap->a_retval = 0;
3509 		break;
3510 	case _PC_ALLOC_SIZE_MIN:
3511 		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3512 		break;
3513 	case _PC_FILESIZEBITS:
3514 		if (NFS_ISV34(vp))
3515 			*ap->a_retval = 64;
3516 		else
3517 			*ap->a_retval = 32;
3518 		break;
3519 	case _PC_REC_INCR_XFER_SIZE:
3520 		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3521 		break;
3522 	case _PC_REC_MAX_XFER_SIZE:
3523 		*ap->a_retval = -1; /* means ``unlimited'' */
3524 		break;
3525 	case _PC_REC_MIN_XFER_SIZE:
3526 		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3527 		break;
3528 	case _PC_REC_XFER_ALIGN:
3529 		*ap->a_retval = PAGE_SIZE;
3530 		break;
3531 	case _PC_SYMLINK_MAX:
3532 		*ap->a_retval = NFS_MAXPATHLEN;
3533 		break;
3534 
3535 	default:
3536 		error = vop_stdpathconf(ap);
3537 		break;
3538 	}
3539 	return (error);
3540 }
3541 
3542