1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * vnode op calls for Sun NFS version 2, 3 and 4 40 */ 41 42 #include "opt_inet.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/systm.h> 47 #include <sys/resourcevar.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/jail.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/namei.h> 56 #include <sys/socket.h> 57 #include <sys/vnode.h> 58 #include <sys/dirent.h> 59 #include <sys/fcntl.h> 60 #include <sys/lockf.h> 61 #include <sys/stat.h> 62 #include <sys/sysctl.h> 63 #include <sys/signalvar.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 #include <vm/vm_object.h> 68 69 #include <fs/nfs/nfsport.h> 70 #include <fs/nfsclient/nfsnode.h> 71 #include <fs/nfsclient/nfsmount.h> 72 #include <fs/nfsclient/nfs.h> 73 #include <fs/nfsclient/nfs_kdtrace.h> 74 75 #include <net/if.h> 76 #include <netinet/in.h> 77 #include <netinet/in_var.h> 78 79 #include <nfs/nfs_lock.h> 80 81 #ifdef KDTRACE_HOOKS 82 #include <sys/dtrace_bsd.h> 83 84 dtrace_nfsclient_accesscache_flush_probe_func_t 85 dtrace_nfscl_accesscache_flush_done_probe; 86 uint32_t nfscl_accesscache_flush_done_id; 87 88 dtrace_nfsclient_accesscache_get_probe_func_t 89 dtrace_nfscl_accesscache_get_hit_probe, 90 dtrace_nfscl_accesscache_get_miss_probe; 91 uint32_t nfscl_accesscache_get_hit_id; 92 uint32_t nfscl_accesscache_get_miss_id; 93 94 dtrace_nfsclient_accesscache_load_probe_func_t 95 dtrace_nfscl_accesscache_load_done_probe; 96 uint32_t nfscl_accesscache_load_done_id; 97 #endif /* !KDTRACE_HOOKS */ 98 99 /* Defs */ 100 #define TRUE 1 101 #define FALSE 0 102 103 extern struct nfsstats newnfsstats; 104 extern int nfsrv_useacl; 105 extern int nfscl_debuglevel; 106 MALLOC_DECLARE(M_NEWNFSREQ); 107 108 /* 109 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 110 * calls are not in getblk() and brelse() so that they would not be necessary 111 * here. 112 */ 113 #ifndef B_VMIO 114 #define vfs_busy_pages(bp, f) 115 #endif 116 117 static vop_read_t nfsfifo_read; 118 static vop_write_t nfsfifo_write; 119 static vop_close_t nfsfifo_close; 120 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 121 struct thread *); 122 static vop_lookup_t nfs_lookup; 123 static vop_create_t nfs_create; 124 static vop_mknod_t nfs_mknod; 125 static vop_open_t nfs_open; 126 static vop_pathconf_t nfs_pathconf; 127 static vop_close_t nfs_close; 128 static vop_access_t nfs_access; 129 static vop_getattr_t nfs_getattr; 130 static vop_setattr_t nfs_setattr; 131 static vop_read_t nfs_read; 132 static vop_fsync_t nfs_fsync; 133 static vop_remove_t nfs_remove; 134 static vop_link_t nfs_link; 135 static vop_rename_t nfs_rename; 136 static vop_mkdir_t nfs_mkdir; 137 static vop_rmdir_t nfs_rmdir; 138 static vop_symlink_t nfs_symlink; 139 static vop_readdir_t nfs_readdir; 140 static vop_strategy_t nfs_strategy; 141 static vop_lock1_t nfs_lock1; 142 static int nfs_lookitup(struct vnode *, char *, int, 143 struct ucred *, struct thread *, struct nfsnode **); 144 static int nfs_sillyrename(struct vnode *, struct vnode *, 145 struct componentname *); 146 static vop_access_t nfsspec_access; 147 static vop_readlink_t nfs_readlink; 148 static vop_print_t nfs_print; 149 static vop_advlock_t nfs_advlock; 150 static vop_advlockasync_t nfs_advlockasync; 151 static vop_getacl_t nfs_getacl; 152 static vop_setacl_t nfs_setacl; 153 154 /* 155 * Global vfs data structures for nfs 156 */ 157 struct vop_vector newnfs_vnodeops = { 158 .vop_default = &default_vnodeops, 159 .vop_access = nfs_access, 160 .vop_advlock = nfs_advlock, 161 .vop_advlockasync = nfs_advlockasync, 162 .vop_close = nfs_close, 163 .vop_create = nfs_create, 164 .vop_fsync = nfs_fsync, 165 .vop_getattr = nfs_getattr, 166 .vop_getpages = ncl_getpages, 167 .vop_putpages = ncl_putpages, 168 .vop_inactive = ncl_inactive, 169 .vop_link = nfs_link, 170 .vop_lock1 = nfs_lock1, 171 .vop_lookup = nfs_lookup, 172 .vop_mkdir = nfs_mkdir, 173 .vop_mknod = nfs_mknod, 174 .vop_open = nfs_open, 175 .vop_pathconf = nfs_pathconf, 176 .vop_print = nfs_print, 177 .vop_read = nfs_read, 178 .vop_readdir = nfs_readdir, 179 .vop_readlink = nfs_readlink, 180 .vop_reclaim = ncl_reclaim, 181 .vop_remove = nfs_remove, 182 .vop_rename = nfs_rename, 183 .vop_rmdir = nfs_rmdir, 184 .vop_setattr = nfs_setattr, 185 .vop_strategy = nfs_strategy, 186 .vop_symlink = nfs_symlink, 187 .vop_write = ncl_write, 188 .vop_getacl = nfs_getacl, 189 .vop_setacl = nfs_setacl, 190 }; 191 192 struct vop_vector newnfs_fifoops = { 193 .vop_default = &fifo_specops, 194 .vop_access = nfsspec_access, 195 .vop_close = nfsfifo_close, 196 .vop_fsync = nfs_fsync, 197 .vop_getattr = nfs_getattr, 198 .vop_inactive = ncl_inactive, 199 .vop_print = nfs_print, 200 .vop_read = nfsfifo_read, 201 .vop_reclaim = ncl_reclaim, 202 .vop_setattr = nfs_setattr, 203 .vop_write = nfsfifo_write, 204 }; 205 206 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 207 struct componentname *cnp, struct vattr *vap); 208 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 209 int namelen, struct ucred *cred, struct thread *td); 210 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 211 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 212 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 213 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 214 struct componentname *scnp, struct sillyrename *sp); 215 216 /* 217 * Global variables 218 */ 219 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) 220 221 SYSCTL_DECL(_vfs_nfs); 222 223 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 224 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 225 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 226 227 static int nfs_prime_access_cache = 0; 228 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 229 &nfs_prime_access_cache, 0, 230 "Prime NFS ACCESS cache when fetching attributes"); 231 232 static int newnfs_commit_on_close = 0; 233 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 234 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 235 236 static int nfs_clean_pages_on_close = 1; 237 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 238 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 239 240 int newnfs_directio_enable = 0; 241 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 242 &newnfs_directio_enable, 0, "Enable NFS directio"); 243 244 int nfs_keep_dirty_on_error; 245 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, 246 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); 247 248 /* 249 * This sysctl allows other processes to mmap a file that has been opened 250 * O_DIRECT by a process. In general, having processes mmap the file while 251 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 252 * this by default to prevent DoS attacks - to prevent a malicious user from 253 * opening up files O_DIRECT preventing other users from mmap'ing these 254 * files. "Protected" environments where stricter consistency guarantees are 255 * required can disable this knob. The process that opened the file O_DIRECT 256 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 257 * meaningful. 258 */ 259 int newnfs_directio_allow_mmap = 1; 260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 261 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 262 263 #if 0 264 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 265 &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 266 267 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 268 &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 269 #endif 270 271 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 272 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 273 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 274 275 /* 276 * SMP Locking Note : 277 * The list of locks after the description of the lock is the ordering 278 * of other locks acquired with the lock held. 279 * np->n_mtx : Protects the fields in the nfsnode. 280 VM Object Lock 281 VI_MTX (acquired indirectly) 282 * nmp->nm_mtx : Protects the fields in the nfsmount. 283 rep->r_mtx 284 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 285 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 286 nmp->nm_mtx 287 rep->r_mtx 288 * rep->r_mtx : Protects the fields in an nfsreq. 289 */ 290 291 static int 292 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 293 struct ucred *cred, u_int32_t *retmode) 294 { 295 int error = 0, attrflag, i, lrupos; 296 u_int32_t rmode; 297 struct nfsnode *np = VTONFS(vp); 298 struct nfsvattr nfsva; 299 300 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 301 &rmode, NULL); 302 if (attrflag) 303 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 304 if (!error) { 305 lrupos = 0; 306 mtx_lock(&np->n_mtx); 307 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 308 if (np->n_accesscache[i].uid == cred->cr_uid) { 309 np->n_accesscache[i].mode = rmode; 310 np->n_accesscache[i].stamp = time_second; 311 break; 312 } 313 if (i > 0 && np->n_accesscache[i].stamp < 314 np->n_accesscache[lrupos].stamp) 315 lrupos = i; 316 } 317 if (i == NFS_ACCESSCACHESIZE) { 318 np->n_accesscache[lrupos].uid = cred->cr_uid; 319 np->n_accesscache[lrupos].mode = rmode; 320 np->n_accesscache[lrupos].stamp = time_second; 321 } 322 mtx_unlock(&np->n_mtx); 323 if (retmode != NULL) 324 *retmode = rmode; 325 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 326 } else if (NFS_ISV4(vp)) { 327 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 328 } 329 #ifdef KDTRACE_HOOKS 330 if (error != 0) 331 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 332 error); 333 #endif 334 return (error); 335 } 336 337 /* 338 * nfs access vnode op. 339 * For nfs version 2, just return ok. File accesses may fail later. 340 * For nfs version 3, use the access rpc to check accessibility. If file modes 341 * are changed on the server, accesses might still fail later. 342 */ 343 static int 344 nfs_access(struct vop_access_args *ap) 345 { 346 struct vnode *vp = ap->a_vp; 347 int error = 0, i, gotahit; 348 u_int32_t mode, wmode, rmode; 349 int v34 = NFS_ISV34(vp); 350 struct nfsnode *np = VTONFS(vp); 351 352 /* 353 * Disallow write attempts on filesystems mounted read-only; 354 * unless the file is a socket, fifo, or a block or character 355 * device resident on the filesystem. 356 */ 357 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 358 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 359 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 360 switch (vp->v_type) { 361 case VREG: 362 case VDIR: 363 case VLNK: 364 return (EROFS); 365 default: 366 break; 367 } 368 } 369 /* 370 * For nfs v3 or v4, check to see if we have done this recently, and if 371 * so return our cached result instead of making an ACCESS call. 372 * If not, do an access rpc, otherwise you are stuck emulating 373 * ufs_access() locally using the vattr. This may not be correct, 374 * since the server may apply other access criteria such as 375 * client uid-->server uid mapping that we do not know about. 376 */ 377 if (v34) { 378 if (ap->a_accmode & VREAD) 379 mode = NFSACCESS_READ; 380 else 381 mode = 0; 382 if (vp->v_type != VDIR) { 383 if (ap->a_accmode & VWRITE) 384 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 385 if (ap->a_accmode & VAPPEND) 386 mode |= NFSACCESS_EXTEND; 387 if (ap->a_accmode & VEXEC) 388 mode |= NFSACCESS_EXECUTE; 389 if (ap->a_accmode & VDELETE) 390 mode |= NFSACCESS_DELETE; 391 } else { 392 if (ap->a_accmode & VWRITE) 393 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 394 if (ap->a_accmode & VAPPEND) 395 mode |= NFSACCESS_EXTEND; 396 if (ap->a_accmode & VEXEC) 397 mode |= NFSACCESS_LOOKUP; 398 if (ap->a_accmode & VDELETE) 399 mode |= NFSACCESS_DELETE; 400 if (ap->a_accmode & VDELETE_CHILD) 401 mode |= NFSACCESS_MODIFY; 402 } 403 /* XXX safety belt, only make blanket request if caching */ 404 if (nfsaccess_cache_timeout > 0) { 405 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 406 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 407 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 408 } else { 409 wmode = mode; 410 } 411 412 /* 413 * Does our cached result allow us to give a definite yes to 414 * this request? 415 */ 416 gotahit = 0; 417 mtx_lock(&np->n_mtx); 418 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 419 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 420 if (time_second < (np->n_accesscache[i].stamp 421 + nfsaccess_cache_timeout) && 422 (np->n_accesscache[i].mode & mode) == mode) { 423 NFSINCRGLOBAL(newnfsstats.accesscache_hits); 424 gotahit = 1; 425 } 426 break; 427 } 428 } 429 mtx_unlock(&np->n_mtx); 430 #ifdef KDTRACE_HOOKS 431 if (gotahit != 0) 432 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 433 ap->a_cred->cr_uid, mode); 434 else 435 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 436 ap->a_cred->cr_uid, mode); 437 #endif 438 if (gotahit == 0) { 439 /* 440 * Either a no, or a don't know. Go to the wire. 441 */ 442 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 443 error = nfs34_access_otw(vp, wmode, ap->a_td, 444 ap->a_cred, &rmode); 445 if (!error && 446 (rmode & mode) != mode) 447 error = EACCES; 448 } 449 return (error); 450 } else { 451 if ((error = nfsspec_access(ap)) != 0) { 452 return (error); 453 } 454 /* 455 * Attempt to prevent a mapped root from accessing a file 456 * which it shouldn't. We try to read a byte from the file 457 * if the user is root and the file is not zero length. 458 * After calling nfsspec_access, we should have the correct 459 * file size cached. 460 */ 461 mtx_lock(&np->n_mtx); 462 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 463 && VTONFS(vp)->n_size > 0) { 464 struct iovec aiov; 465 struct uio auio; 466 char buf[1]; 467 468 mtx_unlock(&np->n_mtx); 469 aiov.iov_base = buf; 470 aiov.iov_len = 1; 471 auio.uio_iov = &aiov; 472 auio.uio_iovcnt = 1; 473 auio.uio_offset = 0; 474 auio.uio_resid = 1; 475 auio.uio_segflg = UIO_SYSSPACE; 476 auio.uio_rw = UIO_READ; 477 auio.uio_td = ap->a_td; 478 479 if (vp->v_type == VREG) 480 error = ncl_readrpc(vp, &auio, ap->a_cred); 481 else if (vp->v_type == VDIR) { 482 char* bp; 483 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 484 aiov.iov_base = bp; 485 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 486 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 487 ap->a_td); 488 free(bp, M_TEMP); 489 } else if (vp->v_type == VLNK) 490 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 491 else 492 error = EACCES; 493 } else 494 mtx_unlock(&np->n_mtx); 495 return (error); 496 } 497 } 498 499 500 /* 501 * nfs open vnode op 502 * Check to see if the type is ok 503 * and that deletion is not in progress. 504 * For paged in text files, you will need to flush the page cache 505 * if consistency is lost. 506 */ 507 /* ARGSUSED */ 508 static int 509 nfs_open(struct vop_open_args *ap) 510 { 511 struct vnode *vp = ap->a_vp; 512 struct nfsnode *np = VTONFS(vp); 513 struct vattr vattr; 514 int error; 515 int fmode = ap->a_mode; 516 struct ucred *cred; 517 518 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 519 return (EOPNOTSUPP); 520 521 /* 522 * For NFSv4, we need to do the Open Op before cache validation, 523 * so that we conform to RFC3530 Sec. 9.3.1. 524 */ 525 if (NFS_ISV4(vp)) { 526 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 527 if (error) { 528 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 529 (gid_t)0); 530 return (error); 531 } 532 } 533 534 /* 535 * Now, if this Open will be doing reading, re-validate/flush the 536 * cache, so that Close/Open coherency is maintained. 537 */ 538 mtx_lock(&np->n_mtx); 539 if (np->n_flag & NMODIFIED) { 540 mtx_unlock(&np->n_mtx); 541 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 542 if (error == EINTR || error == EIO) { 543 if (NFS_ISV4(vp)) 544 (void) nfsrpc_close(vp, 0, ap->a_td); 545 return (error); 546 } 547 mtx_lock(&np->n_mtx); 548 np->n_attrstamp = 0; 549 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 550 if (vp->v_type == VDIR) 551 np->n_direofoffset = 0; 552 mtx_unlock(&np->n_mtx); 553 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 554 if (error) { 555 if (NFS_ISV4(vp)) 556 (void) nfsrpc_close(vp, 0, ap->a_td); 557 return (error); 558 } 559 mtx_lock(&np->n_mtx); 560 np->n_mtime = vattr.va_mtime; 561 if (NFS_ISV4(vp)) 562 np->n_change = vattr.va_filerev; 563 } else { 564 mtx_unlock(&np->n_mtx); 565 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 566 if (error) { 567 if (NFS_ISV4(vp)) 568 (void) nfsrpc_close(vp, 0, ap->a_td); 569 return (error); 570 } 571 mtx_lock(&np->n_mtx); 572 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 573 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 574 if (vp->v_type == VDIR) 575 np->n_direofoffset = 0; 576 mtx_unlock(&np->n_mtx); 577 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 578 if (error == EINTR || error == EIO) { 579 if (NFS_ISV4(vp)) 580 (void) nfsrpc_close(vp, 0, ap->a_td); 581 return (error); 582 } 583 mtx_lock(&np->n_mtx); 584 np->n_mtime = vattr.va_mtime; 585 if (NFS_ISV4(vp)) 586 np->n_change = vattr.va_filerev; 587 } 588 } 589 590 /* 591 * If the object has >= 1 O_DIRECT active opens, we disable caching. 592 */ 593 if (newnfs_directio_enable && (fmode & O_DIRECT) && 594 (vp->v_type == VREG)) { 595 if (np->n_directio_opens == 0) { 596 mtx_unlock(&np->n_mtx); 597 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 598 if (error) { 599 if (NFS_ISV4(vp)) 600 (void) nfsrpc_close(vp, 0, ap->a_td); 601 return (error); 602 } 603 mtx_lock(&np->n_mtx); 604 np->n_flag |= NNONCACHE; 605 } 606 np->n_directio_opens++; 607 } 608 609 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ 610 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) 611 np->n_flag |= NWRITEOPENED; 612 613 /* 614 * If this is an open for writing, capture a reference to the 615 * credentials, so they can be used by ncl_putpages(). Using 616 * these write credentials is preferable to the credentials of 617 * whatever thread happens to be doing the VOP_PUTPAGES() since 618 * the write RPCs are less likely to fail with EACCES. 619 */ 620 if ((fmode & FWRITE) != 0) { 621 cred = np->n_writecred; 622 np->n_writecred = crhold(ap->a_cred); 623 } else 624 cred = NULL; 625 mtx_unlock(&np->n_mtx); 626 627 if (cred != NULL) 628 crfree(cred); 629 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 630 return (0); 631 } 632 633 /* 634 * nfs close vnode op 635 * What an NFS client should do upon close after writing is a debatable issue. 636 * Most NFS clients push delayed writes to the server upon close, basically for 637 * two reasons: 638 * 1 - So that any write errors may be reported back to the client process 639 * doing the close system call. By far the two most likely errors are 640 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 641 * 2 - To put a worst case upper bound on cache inconsistency between 642 * multiple clients for the file. 643 * There is also a consistency problem for Version 2 of the protocol w.r.t. 644 * not being able to tell if other clients are writing a file concurrently, 645 * since there is no way of knowing if the changed modify time in the reply 646 * is only due to the write for this client. 647 * (NFS Version 3 provides weak cache consistency data in the reply that 648 * should be sufficient to detect and handle this case.) 649 * 650 * The current code does the following: 651 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 652 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 653 * or commit them (this satisfies 1 and 2 except for the 654 * case where the server crashes after this close but 655 * before the commit RPC, which is felt to be "good 656 * enough". Changing the last argument to ncl_flush() to 657 * a 1 would force a commit operation, if it is felt a 658 * commit is necessary now. 659 * for NFS Version 4 - flush the dirty buffers and commit them, if 660 * nfscl_mustflush() says this is necessary. 661 * It is necessary if there is no write delegation held, 662 * in order to satisfy open/close coherency. 663 * If the file isn't cached on local stable storage, 664 * it may be necessary in order to detect "out of space" 665 * errors from the server, if the write delegation 666 * issued by the server doesn't allow the file to grow. 667 */ 668 /* ARGSUSED */ 669 static int 670 nfs_close(struct vop_close_args *ap) 671 { 672 struct vnode *vp = ap->a_vp; 673 struct nfsnode *np = VTONFS(vp); 674 struct nfsvattr nfsva; 675 struct ucred *cred; 676 int error = 0, ret, localcred = 0; 677 int fmode = ap->a_fflag; 678 679 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) 680 return (0); 681 /* 682 * During shutdown, a_cred isn't valid, so just use root. 683 */ 684 if (ap->a_cred == NOCRED) { 685 cred = newnfs_getcred(); 686 localcred = 1; 687 } else { 688 cred = ap->a_cred; 689 } 690 if (vp->v_type == VREG) { 691 /* 692 * Examine and clean dirty pages, regardless of NMODIFIED. 693 * This closes a major hole in close-to-open consistency. 694 * We want to push out all dirty pages (and buffers) on 695 * close, regardless of whether they were dirtied by 696 * mmap'ed writes or via write(). 697 */ 698 if (nfs_clean_pages_on_close && vp->v_object) { 699 VM_OBJECT_WLOCK(vp->v_object); 700 vm_object_page_clean(vp->v_object, 0, 0, 0); 701 VM_OBJECT_WUNLOCK(vp->v_object); 702 } 703 mtx_lock(&np->n_mtx); 704 if (np->n_flag & NMODIFIED) { 705 mtx_unlock(&np->n_mtx); 706 if (NFS_ISV3(vp)) { 707 /* 708 * Under NFSv3 we have dirty buffers to dispose of. We 709 * must flush them to the NFS server. We have the option 710 * of waiting all the way through the commit rpc or just 711 * waiting for the initial write. The default is to only 712 * wait through the initial write so the data is in the 713 * server's cache, which is roughly similar to the state 714 * a standard disk subsystem leaves the file in on close(). 715 * 716 * We cannot clear the NMODIFIED bit in np->n_flag due to 717 * potential races with other processes, and certainly 718 * cannot clear it if we don't commit. 719 * These races occur when there is no longer the old 720 * traditional vnode locking implemented for Vnode Ops. 721 */ 722 int cm = newnfs_commit_on_close ? 1 : 0; 723 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); 724 /* np->n_flag &= ~NMODIFIED; */ 725 } else if (NFS_ISV4(vp)) { 726 if (nfscl_mustflush(vp) != 0) { 727 int cm = newnfs_commit_on_close ? 1 : 0; 728 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, 729 cm, 0); 730 /* 731 * as above w.r.t races when clearing 732 * NMODIFIED. 733 * np->n_flag &= ~NMODIFIED; 734 */ 735 } 736 } else 737 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 738 mtx_lock(&np->n_mtx); 739 } 740 /* 741 * Invalidate the attribute cache in all cases. 742 * An open is going to fetch fresh attrs any way, other procs 743 * on this node that have file open will be forced to do an 744 * otw attr fetch, but this is safe. 745 * --> A user found that their RPC count dropped by 20% when 746 * this was commented out and I can't see any requirement 747 * for it, so I've disabled it when negative lookups are 748 * enabled. (What does this have to do with negative lookup 749 * caching? Well nothing, except it was reported by the 750 * same user that needed negative lookup caching and I wanted 751 * there to be a way to disable it to see if it 752 * is the cause of some caching/coherency issue that might 753 * crop up.) 754 */ 755 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 756 np->n_attrstamp = 0; 757 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 758 } 759 if (np->n_flag & NWRITEERR) { 760 np->n_flag &= ~NWRITEERR; 761 error = np->n_error; 762 } 763 mtx_unlock(&np->n_mtx); 764 } 765 766 if (NFS_ISV4(vp)) { 767 /* 768 * Get attributes so "change" is up to date. 769 */ 770 if (error == 0 && nfscl_mustflush(vp) != 0 && 771 vp->v_type == VREG && 772 (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) { 773 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 774 NULL); 775 if (!ret) { 776 np->n_change = nfsva.na_filerev; 777 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 778 NULL, 0, 0); 779 } 780 } 781 782 /* 783 * and do the close. 784 */ 785 ret = nfsrpc_close(vp, 0, ap->a_td); 786 if (!error && ret) 787 error = ret; 788 if (error) 789 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 790 (gid_t)0); 791 } 792 if (newnfs_directio_enable) 793 KASSERT((np->n_directio_asyncwr == 0), 794 ("nfs_close: dirty unflushed (%d) directio buffers\n", 795 np->n_directio_asyncwr)); 796 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 797 mtx_lock(&np->n_mtx); 798 KASSERT((np->n_directio_opens > 0), 799 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 800 np->n_directio_opens--; 801 if (np->n_directio_opens == 0) 802 np->n_flag &= ~NNONCACHE; 803 mtx_unlock(&np->n_mtx); 804 } 805 if (localcred) 806 NFSFREECRED(cred); 807 return (error); 808 } 809 810 /* 811 * nfs getattr call from vfs. 812 */ 813 static int 814 nfs_getattr(struct vop_getattr_args *ap) 815 { 816 struct vnode *vp = ap->a_vp; 817 struct thread *td = curthread; /* XXX */ 818 struct nfsnode *np = VTONFS(vp); 819 int error = 0; 820 struct nfsvattr nfsva; 821 struct vattr *vap = ap->a_vap; 822 struct vattr vattr; 823 824 /* 825 * Update local times for special files. 826 */ 827 mtx_lock(&np->n_mtx); 828 if (np->n_flag & (NACC | NUPD)) 829 np->n_flag |= NCHG; 830 mtx_unlock(&np->n_mtx); 831 /* 832 * First look in the cache. 833 */ 834 if (ncl_getattrcache(vp, &vattr) == 0) { 835 vap->va_type = vattr.va_type; 836 vap->va_mode = vattr.va_mode; 837 vap->va_nlink = vattr.va_nlink; 838 vap->va_uid = vattr.va_uid; 839 vap->va_gid = vattr.va_gid; 840 vap->va_fsid = vattr.va_fsid; 841 vap->va_fileid = vattr.va_fileid; 842 vap->va_size = vattr.va_size; 843 vap->va_blocksize = vattr.va_blocksize; 844 vap->va_atime = vattr.va_atime; 845 vap->va_mtime = vattr.va_mtime; 846 vap->va_ctime = vattr.va_ctime; 847 vap->va_gen = vattr.va_gen; 848 vap->va_flags = vattr.va_flags; 849 vap->va_rdev = vattr.va_rdev; 850 vap->va_bytes = vattr.va_bytes; 851 vap->va_filerev = vattr.va_filerev; 852 /* 853 * Get the local modify time for the case of a write 854 * delegation. 855 */ 856 nfscl_deleggetmodtime(vp, &vap->va_mtime); 857 return (0); 858 } 859 860 if (NFS_ISV34(vp) && nfs_prime_access_cache && 861 nfsaccess_cache_timeout > 0) { 862 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 863 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 864 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 865 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 866 return (0); 867 } 868 } 869 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 870 if (!error) 871 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 872 if (!error) { 873 /* 874 * Get the local modify time for the case of a write 875 * delegation. 876 */ 877 nfscl_deleggetmodtime(vp, &vap->va_mtime); 878 } else if (NFS_ISV4(vp)) { 879 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 880 } 881 return (error); 882 } 883 884 /* 885 * nfs setattr call. 886 */ 887 static int 888 nfs_setattr(struct vop_setattr_args *ap) 889 { 890 struct vnode *vp = ap->a_vp; 891 struct nfsnode *np = VTONFS(vp); 892 struct thread *td = curthread; /* XXX */ 893 struct vattr *vap = ap->a_vap; 894 int error = 0; 895 u_quad_t tsize; 896 897 #ifndef nolint 898 tsize = (u_quad_t)0; 899 #endif 900 901 /* 902 * Setting of flags and marking of atimes are not supported. 903 */ 904 if (vap->va_flags != VNOVAL) 905 return (EOPNOTSUPP); 906 907 /* 908 * Disallow write attempts if the filesystem is mounted read-only. 909 */ 910 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 911 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 912 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 913 (vp->v_mount->mnt_flag & MNT_RDONLY)) 914 return (EROFS); 915 if (vap->va_size != VNOVAL) { 916 switch (vp->v_type) { 917 case VDIR: 918 return (EISDIR); 919 case VCHR: 920 case VBLK: 921 case VSOCK: 922 case VFIFO: 923 if (vap->va_mtime.tv_sec == VNOVAL && 924 vap->va_atime.tv_sec == VNOVAL && 925 vap->va_mode == (mode_t)VNOVAL && 926 vap->va_uid == (uid_t)VNOVAL && 927 vap->va_gid == (gid_t)VNOVAL) 928 return (0); 929 vap->va_size = VNOVAL; 930 break; 931 default: 932 /* 933 * Disallow write attempts if the filesystem is 934 * mounted read-only. 935 */ 936 if (vp->v_mount->mnt_flag & MNT_RDONLY) 937 return (EROFS); 938 /* 939 * We run vnode_pager_setsize() early (why?), 940 * we must set np->n_size now to avoid vinvalbuf 941 * V_SAVE races that might setsize a lower 942 * value. 943 */ 944 mtx_lock(&np->n_mtx); 945 tsize = np->n_size; 946 mtx_unlock(&np->n_mtx); 947 error = ncl_meta_setsize(vp, ap->a_cred, td, 948 vap->va_size); 949 mtx_lock(&np->n_mtx); 950 if (np->n_flag & NMODIFIED) { 951 tsize = np->n_size; 952 mtx_unlock(&np->n_mtx); 953 if (vap->va_size == 0) 954 error = ncl_vinvalbuf(vp, 0, td, 1); 955 else 956 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 957 if (error) { 958 vnode_pager_setsize(vp, tsize); 959 return (error); 960 } 961 /* 962 * Call nfscl_delegmodtime() to set the modify time 963 * locally, as required. 964 */ 965 nfscl_delegmodtime(vp); 966 } else 967 mtx_unlock(&np->n_mtx); 968 /* 969 * np->n_size has already been set to vap->va_size 970 * in ncl_meta_setsize(). We must set it again since 971 * nfs_loadattrcache() could be called through 972 * ncl_meta_setsize() and could modify np->n_size. 973 */ 974 mtx_lock(&np->n_mtx); 975 np->n_vattr.na_size = np->n_size = vap->va_size; 976 mtx_unlock(&np->n_mtx); 977 }; 978 } else { 979 mtx_lock(&np->n_mtx); 980 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 981 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 982 mtx_unlock(&np->n_mtx); 983 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && 984 (error == EINTR || error == EIO)) 985 return (error); 986 } else 987 mtx_unlock(&np->n_mtx); 988 } 989 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 990 if (error && vap->va_size != VNOVAL) { 991 mtx_lock(&np->n_mtx); 992 np->n_size = np->n_vattr.na_size = tsize; 993 vnode_pager_setsize(vp, tsize); 994 mtx_unlock(&np->n_mtx); 995 } 996 return (error); 997 } 998 999 /* 1000 * Do an nfs setattr rpc. 1001 */ 1002 static int 1003 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 1004 struct thread *td) 1005 { 1006 struct nfsnode *np = VTONFS(vp); 1007 int error, ret, attrflag, i; 1008 struct nfsvattr nfsva; 1009 1010 if (NFS_ISV34(vp)) { 1011 mtx_lock(&np->n_mtx); 1012 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 1013 np->n_accesscache[i].stamp = 0; 1014 np->n_flag |= NDELEGMOD; 1015 mtx_unlock(&np->n_mtx); 1016 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 1017 } 1018 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 1019 NULL); 1020 if (attrflag) { 1021 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1022 if (ret && !error) 1023 error = ret; 1024 } 1025 if (error && NFS_ISV4(vp)) 1026 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1027 return (error); 1028 } 1029 1030 /* 1031 * nfs lookup call, one step at a time... 1032 * First look in cache 1033 * If not found, unlock the directory nfsnode and do the rpc 1034 */ 1035 static int 1036 nfs_lookup(struct vop_lookup_args *ap) 1037 { 1038 struct componentname *cnp = ap->a_cnp; 1039 struct vnode *dvp = ap->a_dvp; 1040 struct vnode **vpp = ap->a_vpp; 1041 struct mount *mp = dvp->v_mount; 1042 int flags = cnp->cn_flags; 1043 struct vnode *newvp; 1044 struct nfsmount *nmp; 1045 struct nfsnode *np, *newnp; 1046 int error = 0, attrflag, dattrflag, ltype, ncticks; 1047 struct thread *td = cnp->cn_thread; 1048 struct nfsfh *nfhp; 1049 struct nfsvattr dnfsva, nfsva; 1050 struct vattr vattr; 1051 struct timespec nctime; 1052 1053 *vpp = NULLVP; 1054 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1055 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1056 return (EROFS); 1057 if (dvp->v_type != VDIR) 1058 return (ENOTDIR); 1059 nmp = VFSTONFS(mp); 1060 np = VTONFS(dvp); 1061 1062 /* For NFSv4, wait until any remove is done. */ 1063 mtx_lock(&np->n_mtx); 1064 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1065 np->n_flag |= NREMOVEWANT; 1066 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1067 } 1068 mtx_unlock(&np->n_mtx); 1069 1070 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1071 return (error); 1072 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); 1073 if (error > 0 && error != ENOENT) 1074 return (error); 1075 if (error == -1) { 1076 /* 1077 * Lookups of "." are special and always return the 1078 * current directory. cache_lookup() already handles 1079 * associated locking bookkeeping, etc. 1080 */ 1081 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 1082 /* XXX: Is this really correct? */ 1083 if (cnp->cn_nameiop != LOOKUP && 1084 (flags & ISLASTCN)) 1085 cnp->cn_flags |= SAVENAME; 1086 return (0); 1087 } 1088 1089 /* 1090 * We only accept a positive hit in the cache if the 1091 * change time of the file matches our cached copy. 1092 * Otherwise, we discard the cache entry and fallback 1093 * to doing a lookup RPC. We also only trust cache 1094 * entries for less than nm_nametimeo seconds. 1095 * 1096 * To better handle stale file handles and attributes, 1097 * clear the attribute cache of this node if it is a 1098 * leaf component, part of an open() call, and not 1099 * locally modified before fetching the attributes. 1100 * This should allow stale file handles to be detected 1101 * here where we can fall back to a LOOKUP RPC to 1102 * recover rather than having nfs_open() detect the 1103 * stale file handle and failing open(2) with ESTALE. 1104 */ 1105 newvp = *vpp; 1106 newnp = VTONFS(newvp); 1107 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1108 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1109 !(newnp->n_flag & NMODIFIED)) { 1110 mtx_lock(&newnp->n_mtx); 1111 newnp->n_attrstamp = 0; 1112 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1113 mtx_unlock(&newnp->n_mtx); 1114 } 1115 if (nfscl_nodeleg(newvp, 0) == 0 || 1116 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && 1117 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1118 timespeccmp(&vattr.va_ctime, &nctime, ==))) { 1119 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1120 if (cnp->cn_nameiop != LOOKUP && 1121 (flags & ISLASTCN)) 1122 cnp->cn_flags |= SAVENAME; 1123 return (0); 1124 } 1125 cache_purge(newvp); 1126 if (dvp != newvp) 1127 vput(newvp); 1128 else 1129 vrele(newvp); 1130 *vpp = NULLVP; 1131 } else if (error == ENOENT) { 1132 if (dvp->v_iflag & VI_DOOMED) 1133 return (ENOENT); 1134 /* 1135 * We only accept a negative hit in the cache if the 1136 * modification time of the parent directory matches 1137 * the cached copy in the name cache entry. 1138 * Otherwise, we discard all of the negative cache 1139 * entries for this directory. We also only trust 1140 * negative cache entries for up to nm_negnametimeo 1141 * seconds. 1142 */ 1143 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && 1144 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1145 timespeccmp(&vattr.va_mtime, &nctime, ==)) { 1146 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1147 return (ENOENT); 1148 } 1149 cache_purge_negative(dvp); 1150 } 1151 1152 error = 0; 1153 newvp = NULLVP; 1154 NFSINCRGLOBAL(newnfsstats.lookupcache_misses); 1155 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1156 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1157 NULL); 1158 if (dattrflag) 1159 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1160 if (error) { 1161 if (newvp != NULLVP) { 1162 vput(newvp); 1163 *vpp = NULLVP; 1164 } 1165 1166 if (error != ENOENT) { 1167 if (NFS_ISV4(dvp)) 1168 error = nfscl_maperr(td, error, (uid_t)0, 1169 (gid_t)0); 1170 return (error); 1171 } 1172 1173 /* The requested file was not found. */ 1174 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1175 (flags & ISLASTCN)) { 1176 /* 1177 * XXX: UFS does a full VOP_ACCESS(dvp, 1178 * VWRITE) here instead of just checking 1179 * MNT_RDONLY. 1180 */ 1181 if (mp->mnt_flag & MNT_RDONLY) 1182 return (EROFS); 1183 cnp->cn_flags |= SAVENAME; 1184 return (EJUSTRETURN); 1185 } 1186 1187 if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) { 1188 /* 1189 * Cache the modification time of the parent 1190 * directory from the post-op attributes in 1191 * the name cache entry. The negative cache 1192 * entry will be ignored once the directory 1193 * has changed. Don't bother adding the entry 1194 * if the directory has already changed. 1195 */ 1196 mtx_lock(&np->n_mtx); 1197 if (timespeccmp(&np->n_vattr.na_mtime, 1198 &dnfsva.na_mtime, ==)) { 1199 mtx_unlock(&np->n_mtx); 1200 cache_enter_time(dvp, NULL, cnp, 1201 &dnfsva.na_mtime, NULL); 1202 } else 1203 mtx_unlock(&np->n_mtx); 1204 } 1205 return (ENOENT); 1206 } 1207 1208 /* 1209 * Handle RENAME case... 1210 */ 1211 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1212 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1213 FREE((caddr_t)nfhp, M_NFSFH); 1214 return (EISDIR); 1215 } 1216 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1217 LK_EXCLUSIVE); 1218 if (error) 1219 return (error); 1220 newvp = NFSTOV(np); 1221 if (attrflag) 1222 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1223 0, 1); 1224 *vpp = newvp; 1225 cnp->cn_flags |= SAVENAME; 1226 return (0); 1227 } 1228 1229 if (flags & ISDOTDOT) { 1230 ltype = NFSVOPISLOCKED(dvp); 1231 error = vfs_busy(mp, MBF_NOWAIT); 1232 if (error != 0) { 1233 vfs_ref(mp); 1234 NFSVOPUNLOCK(dvp, 0); 1235 error = vfs_busy(mp, 0); 1236 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1237 vfs_rel(mp); 1238 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1239 vfs_unbusy(mp); 1240 error = ENOENT; 1241 } 1242 if (error != 0) 1243 return (error); 1244 } 1245 NFSVOPUNLOCK(dvp, 0); 1246 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1247 cnp->cn_lkflags); 1248 if (error == 0) 1249 newvp = NFSTOV(np); 1250 vfs_unbusy(mp); 1251 if (newvp != dvp) 1252 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1253 if (dvp->v_iflag & VI_DOOMED) { 1254 if (error == 0) { 1255 if (newvp == dvp) 1256 vrele(newvp); 1257 else 1258 vput(newvp); 1259 } 1260 error = ENOENT; 1261 } 1262 if (error != 0) 1263 return (error); 1264 if (attrflag) 1265 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1266 0, 1); 1267 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1268 FREE((caddr_t)nfhp, M_NFSFH); 1269 VREF(dvp); 1270 newvp = dvp; 1271 if (attrflag) 1272 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1273 0, 1); 1274 } else { 1275 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1276 cnp->cn_lkflags); 1277 if (error) 1278 return (error); 1279 newvp = NFSTOV(np); 1280 if (attrflag) 1281 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1282 0, 1); 1283 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1284 !(np->n_flag & NMODIFIED)) { 1285 /* 1286 * Flush the attribute cache when opening a 1287 * leaf node to ensure that fresh attributes 1288 * are fetched in nfs_open() since we did not 1289 * fetch attributes from the LOOKUP reply. 1290 */ 1291 mtx_lock(&np->n_mtx); 1292 np->n_attrstamp = 0; 1293 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1294 mtx_unlock(&np->n_mtx); 1295 } 1296 } 1297 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1298 cnp->cn_flags |= SAVENAME; 1299 if ((cnp->cn_flags & MAKEENTRY) && 1300 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && 1301 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) 1302 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1303 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); 1304 *vpp = newvp; 1305 return (0); 1306 } 1307 1308 /* 1309 * nfs read call. 1310 * Just call ncl_bioread() to do the work. 1311 */ 1312 static int 1313 nfs_read(struct vop_read_args *ap) 1314 { 1315 struct vnode *vp = ap->a_vp; 1316 1317 switch (vp->v_type) { 1318 case VREG: 1319 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1320 case VDIR: 1321 return (EISDIR); 1322 default: 1323 return (EOPNOTSUPP); 1324 } 1325 } 1326 1327 /* 1328 * nfs readlink call 1329 */ 1330 static int 1331 nfs_readlink(struct vop_readlink_args *ap) 1332 { 1333 struct vnode *vp = ap->a_vp; 1334 1335 if (vp->v_type != VLNK) 1336 return (EINVAL); 1337 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1338 } 1339 1340 /* 1341 * Do a readlink rpc. 1342 * Called by ncl_doio() from below the buffer cache. 1343 */ 1344 int 1345 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1346 { 1347 int error, ret, attrflag; 1348 struct nfsvattr nfsva; 1349 1350 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1351 &attrflag, NULL); 1352 if (attrflag) { 1353 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1354 if (ret && !error) 1355 error = ret; 1356 } 1357 if (error && NFS_ISV4(vp)) 1358 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1359 return (error); 1360 } 1361 1362 /* 1363 * nfs read rpc call 1364 * Ditto above 1365 */ 1366 int 1367 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1368 { 1369 int error, ret, attrflag; 1370 struct nfsvattr nfsva; 1371 struct nfsmount *nmp; 1372 1373 nmp = VFSTONFS(vnode_mount(vp)); 1374 error = EIO; 1375 attrflag = 0; 1376 if (NFSHASPNFS(nmp)) 1377 error = nfscl_doiods(vp, uiop, NULL, NULL, 1378 NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td); 1379 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); 1380 if (error != 0) 1381 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, 1382 &attrflag, NULL); 1383 if (attrflag) { 1384 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1385 if (ret && !error) 1386 error = ret; 1387 } 1388 if (error && NFS_ISV4(vp)) 1389 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1390 return (error); 1391 } 1392 1393 /* 1394 * nfs write call 1395 */ 1396 int 1397 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1398 int *iomode, int *must_commit, int called_from_strategy) 1399 { 1400 struct nfsvattr nfsva; 1401 int error, attrflag, ret; 1402 struct nfsmount *nmp; 1403 1404 nmp = VFSTONFS(vnode_mount(vp)); 1405 error = EIO; 1406 attrflag = 0; 1407 if (NFSHASPNFS(nmp)) 1408 error = nfscl_doiods(vp, uiop, iomode, must_commit, 1409 NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td); 1410 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); 1411 if (error != 0) 1412 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1413 uiop->uio_td, &nfsva, &attrflag, NULL, 1414 called_from_strategy); 1415 if (attrflag) { 1416 if (VTONFS(vp)->n_flag & ND_NFSV4) 1417 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1418 1); 1419 else 1420 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1421 1); 1422 if (ret && !error) 1423 error = ret; 1424 } 1425 if (DOINGASYNC(vp)) 1426 *iomode = NFSWRITE_FILESYNC; 1427 if (error && NFS_ISV4(vp)) 1428 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1429 return (error); 1430 } 1431 1432 /* 1433 * nfs mknod rpc 1434 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1435 * mode set to specify the file type and the size field for rdev. 1436 */ 1437 static int 1438 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1439 struct vattr *vap) 1440 { 1441 struct nfsvattr nfsva, dnfsva; 1442 struct vnode *newvp = NULL; 1443 struct nfsnode *np = NULL, *dnp; 1444 struct nfsfh *nfhp; 1445 struct vattr vattr; 1446 int error = 0, attrflag, dattrflag; 1447 u_int32_t rdev; 1448 1449 if (vap->va_type == VCHR || vap->va_type == VBLK) 1450 rdev = vap->va_rdev; 1451 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1452 rdev = 0xffffffff; 1453 else 1454 return (EOPNOTSUPP); 1455 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1456 return (error); 1457 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1458 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1459 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1460 if (!error) { 1461 if (!nfhp) 1462 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1463 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1464 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1465 NULL); 1466 if (nfhp) 1467 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1468 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1469 } 1470 if (dattrflag) 1471 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1472 if (!error) { 1473 newvp = NFSTOV(np); 1474 if (attrflag != 0) { 1475 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1476 0, 1); 1477 if (error != 0) 1478 vput(newvp); 1479 } 1480 } 1481 if (!error) { 1482 *vpp = newvp; 1483 } else if (NFS_ISV4(dvp)) { 1484 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1485 vap->va_gid); 1486 } 1487 dnp = VTONFS(dvp); 1488 mtx_lock(&dnp->n_mtx); 1489 dnp->n_flag |= NMODIFIED; 1490 if (!dattrflag) { 1491 dnp->n_attrstamp = 0; 1492 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1493 } 1494 mtx_unlock(&dnp->n_mtx); 1495 return (error); 1496 } 1497 1498 /* 1499 * nfs mknod vop 1500 * just call nfs_mknodrpc() to do the work. 1501 */ 1502 /* ARGSUSED */ 1503 static int 1504 nfs_mknod(struct vop_mknod_args *ap) 1505 { 1506 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1507 } 1508 1509 static struct mtx nfs_cverf_mtx; 1510 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1511 MTX_DEF); 1512 1513 static nfsquad_t 1514 nfs_get_cverf(void) 1515 { 1516 static nfsquad_t cverf; 1517 nfsquad_t ret; 1518 static int cverf_initialized = 0; 1519 1520 mtx_lock(&nfs_cverf_mtx); 1521 if (cverf_initialized == 0) { 1522 cverf.lval[0] = arc4random(); 1523 cverf.lval[1] = arc4random(); 1524 cverf_initialized = 1; 1525 } else 1526 cverf.qval++; 1527 ret = cverf; 1528 mtx_unlock(&nfs_cverf_mtx); 1529 1530 return (ret); 1531 } 1532 1533 /* 1534 * nfs file create call 1535 */ 1536 static int 1537 nfs_create(struct vop_create_args *ap) 1538 { 1539 struct vnode *dvp = ap->a_dvp; 1540 struct vattr *vap = ap->a_vap; 1541 struct componentname *cnp = ap->a_cnp; 1542 struct nfsnode *np = NULL, *dnp; 1543 struct vnode *newvp = NULL; 1544 struct nfsmount *nmp; 1545 struct nfsvattr dnfsva, nfsva; 1546 struct nfsfh *nfhp; 1547 nfsquad_t cverf; 1548 int error = 0, attrflag, dattrflag, fmode = 0; 1549 struct vattr vattr; 1550 1551 /* 1552 * Oops, not for me.. 1553 */ 1554 if (vap->va_type == VSOCK) 1555 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1556 1557 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1558 return (error); 1559 if (vap->va_vaflags & VA_EXCLUSIVE) 1560 fmode |= O_EXCL; 1561 dnp = VTONFS(dvp); 1562 nmp = VFSTONFS(vnode_mount(dvp)); 1563 again: 1564 /* For NFSv4, wait until any remove is done. */ 1565 mtx_lock(&dnp->n_mtx); 1566 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1567 dnp->n_flag |= NREMOVEWANT; 1568 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1569 } 1570 mtx_unlock(&dnp->n_mtx); 1571 1572 cverf = nfs_get_cverf(); 1573 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1574 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1575 &nfhp, &attrflag, &dattrflag, NULL); 1576 if (!error) { 1577 if (nfhp == NULL) 1578 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1579 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1580 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1581 NULL); 1582 if (nfhp != NULL) 1583 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1584 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1585 } 1586 if (dattrflag) 1587 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1588 if (!error) { 1589 newvp = NFSTOV(np); 1590 if (attrflag == 0) 1591 error = nfsrpc_getattr(newvp, cnp->cn_cred, 1592 cnp->cn_thread, &nfsva, NULL); 1593 if (error == 0) 1594 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1595 0, 1); 1596 } 1597 if (error) { 1598 if (newvp != NULL) { 1599 vput(newvp); 1600 newvp = NULL; 1601 } 1602 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1603 error == NFSERR_NOTSUPP) { 1604 fmode &= ~O_EXCL; 1605 goto again; 1606 } 1607 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1608 if (nfscl_checksattr(vap, &nfsva)) { 1609 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1610 cnp->cn_thread, &nfsva, &attrflag, NULL); 1611 if (error && (vap->va_uid != (uid_t)VNOVAL || 1612 vap->va_gid != (gid_t)VNOVAL)) { 1613 /* try again without setting uid/gid */ 1614 vap->va_uid = (uid_t)VNOVAL; 1615 vap->va_gid = (uid_t)VNOVAL; 1616 error = nfsrpc_setattr(newvp, vap, NULL, 1617 cnp->cn_cred, cnp->cn_thread, &nfsva, 1618 &attrflag, NULL); 1619 } 1620 if (attrflag) 1621 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1622 NULL, 0, 1); 1623 if (error != 0) 1624 vput(newvp); 1625 } 1626 } 1627 if (!error) { 1628 if ((cnp->cn_flags & MAKEENTRY) && attrflag) 1629 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1630 NULL); 1631 *ap->a_vpp = newvp; 1632 } else if (NFS_ISV4(dvp)) { 1633 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1634 vap->va_gid); 1635 } 1636 mtx_lock(&dnp->n_mtx); 1637 dnp->n_flag |= NMODIFIED; 1638 if (!dattrflag) { 1639 dnp->n_attrstamp = 0; 1640 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1641 } 1642 mtx_unlock(&dnp->n_mtx); 1643 return (error); 1644 } 1645 1646 /* 1647 * nfs file remove call 1648 * To try and make nfs semantics closer to ufs semantics, a file that has 1649 * other processes using the vnode is renamed instead of removed and then 1650 * removed later on the last close. 1651 * - If v_usecount > 1 1652 * If a rename is not already in the works 1653 * call nfs_sillyrename() to set it up 1654 * else 1655 * do the remove rpc 1656 */ 1657 static int 1658 nfs_remove(struct vop_remove_args *ap) 1659 { 1660 struct vnode *vp = ap->a_vp; 1661 struct vnode *dvp = ap->a_dvp; 1662 struct componentname *cnp = ap->a_cnp; 1663 struct nfsnode *np = VTONFS(vp); 1664 int error = 0; 1665 struct vattr vattr; 1666 1667 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1668 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1669 if (vp->v_type == VDIR) 1670 error = EPERM; 1671 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1672 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1673 vattr.va_nlink > 1)) { 1674 /* 1675 * Purge the name cache so that the chance of a lookup for 1676 * the name succeeding while the remove is in progress is 1677 * minimized. Without node locking it can still happen, such 1678 * that an I/O op returns ESTALE, but since you get this if 1679 * another host removes the file.. 1680 */ 1681 cache_purge(vp); 1682 /* 1683 * throw away biocache buffers, mainly to avoid 1684 * unnecessary delayed writes later. 1685 */ 1686 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1687 /* Do the rpc */ 1688 if (error != EINTR && error != EIO) 1689 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1690 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1691 /* 1692 * Kludge City: If the first reply to the remove rpc is lost.. 1693 * the reply to the retransmitted request will be ENOENT 1694 * since the file was in fact removed 1695 * Therefore, we cheat and return success. 1696 */ 1697 if (error == ENOENT) 1698 error = 0; 1699 } else if (!np->n_sillyrename) 1700 error = nfs_sillyrename(dvp, vp, cnp); 1701 mtx_lock(&np->n_mtx); 1702 np->n_attrstamp = 0; 1703 mtx_unlock(&np->n_mtx); 1704 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1705 return (error); 1706 } 1707 1708 /* 1709 * nfs file remove rpc called from nfs_inactive 1710 */ 1711 int 1712 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1713 { 1714 /* 1715 * Make sure that the directory vnode is still valid. 1716 * XXX we should lock sp->s_dvp here. 1717 */ 1718 if (sp->s_dvp->v_type == VBAD) 1719 return (0); 1720 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1721 sp->s_cred, NULL)); 1722 } 1723 1724 /* 1725 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1726 */ 1727 static int 1728 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1729 int namelen, struct ucred *cred, struct thread *td) 1730 { 1731 struct nfsvattr dnfsva; 1732 struct nfsnode *dnp = VTONFS(dvp); 1733 int error = 0, dattrflag; 1734 1735 mtx_lock(&dnp->n_mtx); 1736 dnp->n_flag |= NREMOVEINPROG; 1737 mtx_unlock(&dnp->n_mtx); 1738 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1739 &dattrflag, NULL); 1740 mtx_lock(&dnp->n_mtx); 1741 if ((dnp->n_flag & NREMOVEWANT)) { 1742 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1743 mtx_unlock(&dnp->n_mtx); 1744 wakeup((caddr_t)dnp); 1745 } else { 1746 dnp->n_flag &= ~NREMOVEINPROG; 1747 mtx_unlock(&dnp->n_mtx); 1748 } 1749 if (dattrflag) 1750 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1751 mtx_lock(&dnp->n_mtx); 1752 dnp->n_flag |= NMODIFIED; 1753 if (!dattrflag) { 1754 dnp->n_attrstamp = 0; 1755 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1756 } 1757 mtx_unlock(&dnp->n_mtx); 1758 if (error && NFS_ISV4(dvp)) 1759 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1760 return (error); 1761 } 1762 1763 /* 1764 * nfs file rename call 1765 */ 1766 static int 1767 nfs_rename(struct vop_rename_args *ap) 1768 { 1769 struct vnode *fvp = ap->a_fvp; 1770 struct vnode *tvp = ap->a_tvp; 1771 struct vnode *fdvp = ap->a_fdvp; 1772 struct vnode *tdvp = ap->a_tdvp; 1773 struct componentname *tcnp = ap->a_tcnp; 1774 struct componentname *fcnp = ap->a_fcnp; 1775 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1776 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1777 struct nfsv4node *newv4 = NULL; 1778 int error; 1779 1780 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1781 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1782 /* Check for cross-device rename */ 1783 if ((fvp->v_mount != tdvp->v_mount) || 1784 (tvp && (fvp->v_mount != tvp->v_mount))) { 1785 error = EXDEV; 1786 goto out; 1787 } 1788 1789 if (fvp == tvp) { 1790 ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); 1791 error = 0; 1792 goto out; 1793 } 1794 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1795 goto out; 1796 1797 /* 1798 * We have to flush B_DELWRI data prior to renaming 1799 * the file. If we don't, the delayed-write buffers 1800 * can be flushed out later after the file has gone stale 1801 * under NFSV3. NFSV2 does not have this problem because 1802 * ( as far as I can tell ) it flushes dirty buffers more 1803 * often. 1804 * 1805 * Skip the rename operation if the fsync fails, this can happen 1806 * due to the server's volume being full, when we pushed out data 1807 * that was written back to our cache earlier. Not checking for 1808 * this condition can result in potential (silent) data loss. 1809 */ 1810 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1811 NFSVOPUNLOCK(fvp, 0); 1812 if (!error && tvp) 1813 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1814 if (error) 1815 goto out; 1816 1817 /* 1818 * If the tvp exists and is in use, sillyrename it before doing the 1819 * rename of the new file over it. 1820 * XXX Can't sillyrename a directory. 1821 */ 1822 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1823 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1824 vput(tvp); 1825 tvp = NULL; 1826 } 1827 1828 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1829 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1830 tcnp->cn_thread); 1831 1832 if (error == 0 && NFS_ISV4(tdvp)) { 1833 /* 1834 * For NFSv4, check to see if it is the same name and 1835 * replace the name, if it is different. 1836 */ 1837 MALLOC(newv4, struct nfsv4node *, 1838 sizeof (struct nfsv4node) + 1839 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1840 M_NFSV4NODE, M_WAITOK); 1841 mtx_lock(&tdnp->n_mtx); 1842 mtx_lock(&fnp->n_mtx); 1843 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1844 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1845 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1846 tcnp->cn_namelen) || 1847 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1848 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1849 tdnp->n_fhp->nfh_len))) { 1850 #ifdef notdef 1851 { char nnn[100]; int nnnl; 1852 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1853 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1854 nnn[nnnl] = '\0'; 1855 printf("ren replace=%s\n",nnn); 1856 } 1857 #endif 1858 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); 1859 fnp->n_v4 = newv4; 1860 newv4 = NULL; 1861 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1862 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1863 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1864 tdnp->n_fhp->nfh_len); 1865 NFSBCOPY(tcnp->cn_nameptr, 1866 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1867 } 1868 mtx_unlock(&tdnp->n_mtx); 1869 mtx_unlock(&fnp->n_mtx); 1870 if (newv4 != NULL) 1871 FREE((caddr_t)newv4, M_NFSV4NODE); 1872 } 1873 1874 if (fvp->v_type == VDIR) { 1875 if (tvp != NULL && tvp->v_type == VDIR) 1876 cache_purge(tdvp); 1877 cache_purge(fdvp); 1878 } 1879 1880 out: 1881 if (tdvp == tvp) 1882 vrele(tdvp); 1883 else 1884 vput(tdvp); 1885 if (tvp) 1886 vput(tvp); 1887 vrele(fdvp); 1888 vrele(fvp); 1889 /* 1890 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1891 */ 1892 if (error == ENOENT) 1893 error = 0; 1894 return (error); 1895 } 1896 1897 /* 1898 * nfs file rename rpc called from nfs_remove() above 1899 */ 1900 static int 1901 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1902 struct sillyrename *sp) 1903 { 1904 1905 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1906 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1907 scnp->cn_thread)); 1908 } 1909 1910 /* 1911 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1912 */ 1913 static int 1914 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1915 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1916 int tnamelen, struct ucred *cred, struct thread *td) 1917 { 1918 struct nfsvattr fnfsva, tnfsva; 1919 struct nfsnode *fdnp = VTONFS(fdvp); 1920 struct nfsnode *tdnp = VTONFS(tdvp); 1921 int error = 0, fattrflag, tattrflag; 1922 1923 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1924 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1925 &tattrflag, NULL, NULL); 1926 mtx_lock(&fdnp->n_mtx); 1927 fdnp->n_flag |= NMODIFIED; 1928 if (fattrflag != 0) { 1929 mtx_unlock(&fdnp->n_mtx); 1930 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1931 } else { 1932 fdnp->n_attrstamp = 0; 1933 mtx_unlock(&fdnp->n_mtx); 1934 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1935 } 1936 mtx_lock(&tdnp->n_mtx); 1937 tdnp->n_flag |= NMODIFIED; 1938 if (tattrflag != 0) { 1939 mtx_unlock(&tdnp->n_mtx); 1940 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1941 } else { 1942 tdnp->n_attrstamp = 0; 1943 mtx_unlock(&tdnp->n_mtx); 1944 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1945 } 1946 if (error && NFS_ISV4(fdvp)) 1947 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1948 return (error); 1949 } 1950 1951 /* 1952 * nfs hard link create call 1953 */ 1954 static int 1955 nfs_link(struct vop_link_args *ap) 1956 { 1957 struct vnode *vp = ap->a_vp; 1958 struct vnode *tdvp = ap->a_tdvp; 1959 struct componentname *cnp = ap->a_cnp; 1960 struct nfsnode *np, *tdnp; 1961 struct nfsvattr nfsva, dnfsva; 1962 int error = 0, attrflag, dattrflag; 1963 1964 /* 1965 * Push all writes to the server, so that the attribute cache 1966 * doesn't get "out of sync" with the server. 1967 * XXX There should be a better way! 1968 */ 1969 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1970 1971 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1972 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1973 &dattrflag, NULL); 1974 tdnp = VTONFS(tdvp); 1975 mtx_lock(&tdnp->n_mtx); 1976 tdnp->n_flag |= NMODIFIED; 1977 if (dattrflag != 0) { 1978 mtx_unlock(&tdnp->n_mtx); 1979 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 1980 } else { 1981 tdnp->n_attrstamp = 0; 1982 mtx_unlock(&tdnp->n_mtx); 1983 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1984 } 1985 if (attrflag) 1986 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1987 else { 1988 np = VTONFS(vp); 1989 mtx_lock(&np->n_mtx); 1990 np->n_attrstamp = 0; 1991 mtx_unlock(&np->n_mtx); 1992 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1993 } 1994 /* 1995 * If negative lookup caching is enabled, I might as well 1996 * add an entry for this node. Not necessary for correctness, 1997 * but if negative caching is enabled, then the system 1998 * must care about lookup caching hit rate, so... 1999 */ 2000 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 2001 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2002 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); 2003 } 2004 if (error && NFS_ISV4(vp)) 2005 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2006 (gid_t)0); 2007 return (error); 2008 } 2009 2010 /* 2011 * nfs symbolic link create call 2012 */ 2013 static int 2014 nfs_symlink(struct vop_symlink_args *ap) 2015 { 2016 struct vnode *dvp = ap->a_dvp; 2017 struct vattr *vap = ap->a_vap; 2018 struct componentname *cnp = ap->a_cnp; 2019 struct nfsvattr nfsva, dnfsva; 2020 struct nfsfh *nfhp; 2021 struct nfsnode *np = NULL, *dnp; 2022 struct vnode *newvp = NULL; 2023 int error = 0, attrflag, dattrflag, ret; 2024 2025 vap->va_type = VLNK; 2026 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2027 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2028 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2029 if (nfhp) { 2030 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2031 &np, NULL, LK_EXCLUSIVE); 2032 if (!ret) 2033 newvp = NFSTOV(np); 2034 else if (!error) 2035 error = ret; 2036 } 2037 if (newvp != NULL) { 2038 if (attrflag) 2039 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2040 0, 1); 2041 } else if (!error) { 2042 /* 2043 * If we do not have an error and we could not extract the 2044 * newvp from the response due to the request being NFSv2, we 2045 * have to do a lookup in order to obtain a newvp to return. 2046 */ 2047 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2048 cnp->cn_cred, cnp->cn_thread, &np); 2049 if (!error) 2050 newvp = NFSTOV(np); 2051 } 2052 if (error) { 2053 if (newvp) 2054 vput(newvp); 2055 if (NFS_ISV4(dvp)) 2056 error = nfscl_maperr(cnp->cn_thread, error, 2057 vap->va_uid, vap->va_gid); 2058 } else { 2059 *ap->a_vpp = newvp; 2060 } 2061 2062 dnp = VTONFS(dvp); 2063 mtx_lock(&dnp->n_mtx); 2064 dnp->n_flag |= NMODIFIED; 2065 if (dattrflag != 0) { 2066 mtx_unlock(&dnp->n_mtx); 2067 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2068 } else { 2069 dnp->n_attrstamp = 0; 2070 mtx_unlock(&dnp->n_mtx); 2071 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2072 } 2073 /* 2074 * If negative lookup caching is enabled, I might as well 2075 * add an entry for this node. Not necessary for correctness, 2076 * but if negative caching is enabled, then the system 2077 * must care about lookup caching hit rate, so... 2078 */ 2079 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2080 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2081 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); 2082 } 2083 return (error); 2084 } 2085 2086 /* 2087 * nfs make dir call 2088 */ 2089 static int 2090 nfs_mkdir(struct vop_mkdir_args *ap) 2091 { 2092 struct vnode *dvp = ap->a_dvp; 2093 struct vattr *vap = ap->a_vap; 2094 struct componentname *cnp = ap->a_cnp; 2095 struct nfsnode *np = NULL, *dnp; 2096 struct vnode *newvp = NULL; 2097 struct vattr vattr; 2098 struct nfsfh *nfhp; 2099 struct nfsvattr nfsva, dnfsva; 2100 int error = 0, attrflag, dattrflag, ret; 2101 2102 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2103 return (error); 2104 vap->va_type = VDIR; 2105 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2106 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2107 &attrflag, &dattrflag, NULL); 2108 dnp = VTONFS(dvp); 2109 mtx_lock(&dnp->n_mtx); 2110 dnp->n_flag |= NMODIFIED; 2111 if (dattrflag != 0) { 2112 mtx_unlock(&dnp->n_mtx); 2113 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2114 } else { 2115 dnp->n_attrstamp = 0; 2116 mtx_unlock(&dnp->n_mtx); 2117 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2118 } 2119 if (nfhp) { 2120 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2121 &np, NULL, LK_EXCLUSIVE); 2122 if (!ret) { 2123 newvp = NFSTOV(np); 2124 if (attrflag) 2125 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2126 NULL, 0, 1); 2127 } else if (!error) 2128 error = ret; 2129 } 2130 if (!error && newvp == NULL) { 2131 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2132 cnp->cn_cred, cnp->cn_thread, &np); 2133 if (!error) { 2134 newvp = NFSTOV(np); 2135 if (newvp->v_type != VDIR) 2136 error = EEXIST; 2137 } 2138 } 2139 if (error) { 2140 if (newvp) 2141 vput(newvp); 2142 if (NFS_ISV4(dvp)) 2143 error = nfscl_maperr(cnp->cn_thread, error, 2144 vap->va_uid, vap->va_gid); 2145 } else { 2146 /* 2147 * If negative lookup caching is enabled, I might as well 2148 * add an entry for this node. Not necessary for correctness, 2149 * but if negative caching is enabled, then the system 2150 * must care about lookup caching hit rate, so... 2151 */ 2152 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2153 (cnp->cn_flags & MAKEENTRY) && 2154 attrflag != 0 && dattrflag != 0) 2155 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 2156 &dnfsva.na_ctime); 2157 *ap->a_vpp = newvp; 2158 } 2159 return (error); 2160 } 2161 2162 /* 2163 * nfs remove directory call 2164 */ 2165 static int 2166 nfs_rmdir(struct vop_rmdir_args *ap) 2167 { 2168 struct vnode *vp = ap->a_vp; 2169 struct vnode *dvp = ap->a_dvp; 2170 struct componentname *cnp = ap->a_cnp; 2171 struct nfsnode *dnp; 2172 struct nfsvattr dnfsva; 2173 int error, dattrflag; 2174 2175 if (dvp == vp) 2176 return (EINVAL); 2177 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2178 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2179 dnp = VTONFS(dvp); 2180 mtx_lock(&dnp->n_mtx); 2181 dnp->n_flag |= NMODIFIED; 2182 if (dattrflag != 0) { 2183 mtx_unlock(&dnp->n_mtx); 2184 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2185 } else { 2186 dnp->n_attrstamp = 0; 2187 mtx_unlock(&dnp->n_mtx); 2188 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2189 } 2190 2191 cache_purge(dvp); 2192 cache_purge(vp); 2193 if (error && NFS_ISV4(dvp)) 2194 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2195 (gid_t)0); 2196 /* 2197 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2198 */ 2199 if (error == ENOENT) 2200 error = 0; 2201 return (error); 2202 } 2203 2204 /* 2205 * nfs readdir call 2206 */ 2207 static int 2208 nfs_readdir(struct vop_readdir_args *ap) 2209 { 2210 struct vnode *vp = ap->a_vp; 2211 struct nfsnode *np = VTONFS(vp); 2212 struct uio *uio = ap->a_uio; 2213 ssize_t tresid; 2214 int error = 0; 2215 struct vattr vattr; 2216 2217 if (ap->a_eofflag != NULL) 2218 *ap->a_eofflag = 0; 2219 if (vp->v_type != VDIR) 2220 return(EPERM); 2221 2222 /* 2223 * First, check for hit on the EOF offset cache 2224 */ 2225 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2226 (np->n_flag & NMODIFIED) == 0) { 2227 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2228 mtx_lock(&np->n_mtx); 2229 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2230 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2231 mtx_unlock(&np->n_mtx); 2232 NFSINCRGLOBAL(newnfsstats.direofcache_hits); 2233 if (ap->a_eofflag != NULL) 2234 *ap->a_eofflag = 1; 2235 return (0); 2236 } else 2237 mtx_unlock(&np->n_mtx); 2238 } 2239 } 2240 2241 /* 2242 * Call ncl_bioread() to do the real work. 2243 */ 2244 tresid = uio->uio_resid; 2245 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2246 2247 if (!error && uio->uio_resid == tresid) { 2248 NFSINCRGLOBAL(newnfsstats.direofcache_misses); 2249 if (ap->a_eofflag != NULL) 2250 *ap->a_eofflag = 1; 2251 } 2252 return (error); 2253 } 2254 2255 /* 2256 * Readdir rpc call. 2257 * Called from below the buffer cache by ncl_doio(). 2258 */ 2259 int 2260 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2261 struct thread *td) 2262 { 2263 struct nfsvattr nfsva; 2264 nfsuint64 *cookiep, cookie; 2265 struct nfsnode *dnp = VTONFS(vp); 2266 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2267 int error = 0, eof, attrflag; 2268 2269 KASSERT(uiop->uio_iovcnt == 1 && 2270 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2271 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2272 ("nfs readdirrpc bad uio")); 2273 2274 /* 2275 * If there is no cookie, assume directory was stale. 2276 */ 2277 ncl_dircookie_lock(dnp); 2278 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2279 if (cookiep) { 2280 cookie = *cookiep; 2281 ncl_dircookie_unlock(dnp); 2282 } else { 2283 ncl_dircookie_unlock(dnp); 2284 return (NFSERR_BAD_COOKIE); 2285 } 2286 2287 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2288 (void)ncl_fsinfo(nmp, vp, cred, td); 2289 2290 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2291 &attrflag, &eof, NULL); 2292 if (attrflag) 2293 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2294 2295 if (!error) { 2296 /* 2297 * We are now either at the end of the directory or have filled 2298 * the block. 2299 */ 2300 if (eof) 2301 dnp->n_direofoffset = uiop->uio_offset; 2302 else { 2303 if (uiop->uio_resid > 0) 2304 ncl_printf("EEK! readdirrpc resid > 0\n"); 2305 ncl_dircookie_lock(dnp); 2306 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2307 *cookiep = cookie; 2308 ncl_dircookie_unlock(dnp); 2309 } 2310 } else if (NFS_ISV4(vp)) { 2311 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2312 } 2313 return (error); 2314 } 2315 2316 /* 2317 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2318 */ 2319 int 2320 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2321 struct thread *td) 2322 { 2323 struct nfsvattr nfsva; 2324 nfsuint64 *cookiep, cookie; 2325 struct nfsnode *dnp = VTONFS(vp); 2326 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2327 int error = 0, attrflag, eof; 2328 2329 KASSERT(uiop->uio_iovcnt == 1 && 2330 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2331 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2332 ("nfs readdirplusrpc bad uio")); 2333 2334 /* 2335 * If there is no cookie, assume directory was stale. 2336 */ 2337 ncl_dircookie_lock(dnp); 2338 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2339 if (cookiep) { 2340 cookie = *cookiep; 2341 ncl_dircookie_unlock(dnp); 2342 } else { 2343 ncl_dircookie_unlock(dnp); 2344 return (NFSERR_BAD_COOKIE); 2345 } 2346 2347 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2348 (void)ncl_fsinfo(nmp, vp, cred, td); 2349 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2350 &attrflag, &eof, NULL); 2351 if (attrflag) 2352 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2353 2354 if (!error) { 2355 /* 2356 * We are now either at end of the directory or have filled the 2357 * the block. 2358 */ 2359 if (eof) 2360 dnp->n_direofoffset = uiop->uio_offset; 2361 else { 2362 if (uiop->uio_resid > 0) 2363 ncl_printf("EEK! readdirplusrpc resid > 0\n"); 2364 ncl_dircookie_lock(dnp); 2365 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2366 *cookiep = cookie; 2367 ncl_dircookie_unlock(dnp); 2368 } 2369 } else if (NFS_ISV4(vp)) { 2370 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2371 } 2372 return (error); 2373 } 2374 2375 /* 2376 * Silly rename. To make the NFS filesystem that is stateless look a little 2377 * more like the "ufs" a remove of an active vnode is translated to a rename 2378 * to a funny looking filename that is removed by nfs_inactive on the 2379 * nfsnode. There is the potential for another process on a different client 2380 * to create the same funny name between the nfs_lookitup() fails and the 2381 * nfs_rename() completes, but... 2382 */ 2383 static int 2384 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2385 { 2386 struct sillyrename *sp; 2387 struct nfsnode *np; 2388 int error; 2389 short pid; 2390 unsigned int lticks; 2391 2392 cache_purge(dvp); 2393 np = VTONFS(vp); 2394 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2395 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2396 M_NEWNFSREQ, M_WAITOK); 2397 sp->s_cred = crhold(cnp->cn_cred); 2398 sp->s_dvp = dvp; 2399 VREF(dvp); 2400 2401 /* 2402 * Fudge together a funny name. 2403 * Changing the format of the funny name to accomodate more 2404 * sillynames per directory. 2405 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2406 * CPU ticks since boot. 2407 */ 2408 pid = cnp->cn_thread->td_proc->p_pid; 2409 lticks = (unsigned int)ticks; 2410 for ( ; ; ) { 2411 sp->s_namlen = sprintf(sp->s_name, 2412 ".nfs.%08x.%04x4.4", lticks, 2413 pid); 2414 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2415 cnp->cn_thread, NULL)) 2416 break; 2417 lticks++; 2418 } 2419 error = nfs_renameit(dvp, vp, cnp, sp); 2420 if (error) 2421 goto bad; 2422 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2423 cnp->cn_thread, &np); 2424 np->n_sillyrename = sp; 2425 return (0); 2426 bad: 2427 vrele(sp->s_dvp); 2428 crfree(sp->s_cred); 2429 free((caddr_t)sp, M_NEWNFSREQ); 2430 return (error); 2431 } 2432 2433 /* 2434 * Look up a file name and optionally either update the file handle or 2435 * allocate an nfsnode, depending on the value of npp. 2436 * npp == NULL --> just do the lookup 2437 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2438 * handled too 2439 * *npp != NULL --> update the file handle in the vnode 2440 */ 2441 static int 2442 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2443 struct thread *td, struct nfsnode **npp) 2444 { 2445 struct vnode *newvp = NULL, *vp; 2446 struct nfsnode *np, *dnp = VTONFS(dvp); 2447 struct nfsfh *nfhp, *onfhp; 2448 struct nfsvattr nfsva, dnfsva; 2449 struct componentname cn; 2450 int error = 0, attrflag, dattrflag; 2451 u_int hash; 2452 2453 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2454 &nfhp, &attrflag, &dattrflag, NULL); 2455 if (dattrflag) 2456 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2457 if (npp && !error) { 2458 if (*npp != NULL) { 2459 np = *npp; 2460 vp = NFSTOV(np); 2461 /* 2462 * For NFSv4, check to see if it is the same name and 2463 * replace the name, if it is different. 2464 */ 2465 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2466 (np->n_v4->n4_namelen != len || 2467 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2468 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2469 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2470 dnp->n_fhp->nfh_len))) { 2471 #ifdef notdef 2472 { char nnn[100]; int nnnl; 2473 nnnl = (len < 100) ? len : 99; 2474 bcopy(name, nnn, nnnl); 2475 nnn[nnnl] = '\0'; 2476 printf("replace=%s\n",nnn); 2477 } 2478 #endif 2479 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 2480 MALLOC(np->n_v4, struct nfsv4node *, 2481 sizeof (struct nfsv4node) + 2482 dnp->n_fhp->nfh_len + len - 1, 2483 M_NFSV4NODE, M_WAITOK); 2484 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2485 np->n_v4->n4_namelen = len; 2486 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2487 dnp->n_fhp->nfh_len); 2488 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2489 } 2490 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2491 FNV1_32_INIT); 2492 onfhp = np->n_fhp; 2493 /* 2494 * Rehash node for new file handle. 2495 */ 2496 vfs_hash_rehash(vp, hash); 2497 np->n_fhp = nfhp; 2498 if (onfhp != NULL) 2499 FREE((caddr_t)onfhp, M_NFSFH); 2500 newvp = NFSTOV(np); 2501 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2502 FREE((caddr_t)nfhp, M_NFSFH); 2503 VREF(dvp); 2504 newvp = dvp; 2505 } else { 2506 cn.cn_nameptr = name; 2507 cn.cn_namelen = len; 2508 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2509 &np, NULL, LK_EXCLUSIVE); 2510 if (error) 2511 return (error); 2512 newvp = NFSTOV(np); 2513 } 2514 if (!attrflag && *npp == NULL) { 2515 if (newvp == dvp) 2516 vrele(newvp); 2517 else 2518 vput(newvp); 2519 return (ENOENT); 2520 } 2521 if (attrflag) 2522 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2523 0, 1); 2524 } 2525 if (npp && *npp == NULL) { 2526 if (error) { 2527 if (newvp) { 2528 if (newvp == dvp) 2529 vrele(newvp); 2530 else 2531 vput(newvp); 2532 } 2533 } else 2534 *npp = np; 2535 } 2536 if (error && NFS_ISV4(dvp)) 2537 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2538 return (error); 2539 } 2540 2541 /* 2542 * Nfs Version 3 and 4 commit rpc 2543 */ 2544 int 2545 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2546 struct thread *td) 2547 { 2548 struct nfsvattr nfsva; 2549 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2550 int error, attrflag; 2551 2552 mtx_lock(&nmp->nm_mtx); 2553 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2554 mtx_unlock(&nmp->nm_mtx); 2555 return (0); 2556 } 2557 mtx_unlock(&nmp->nm_mtx); 2558 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, 2559 &attrflag, NULL); 2560 if (attrflag != 0) 2561 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2562 0, 1); 2563 if (error != 0 && NFS_ISV4(vp)) 2564 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2565 return (error); 2566 } 2567 2568 /* 2569 * Strategy routine. 2570 * For async requests when nfsiod(s) are running, queue the request by 2571 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2572 * request. 2573 */ 2574 static int 2575 nfs_strategy(struct vop_strategy_args *ap) 2576 { 2577 struct buf *bp = ap->a_bp; 2578 struct ucred *cr; 2579 2580 KASSERT(!(bp->b_flags & B_DONE), 2581 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2582 BUF_ASSERT_HELD(bp); 2583 2584 if (bp->b_iocmd == BIO_READ) 2585 cr = bp->b_rcred; 2586 else 2587 cr = bp->b_wcred; 2588 2589 /* 2590 * If the op is asynchronous and an i/o daemon is waiting 2591 * queue the request, wake it up and wait for completion 2592 * otherwise just do it ourselves. 2593 */ 2594 if ((bp->b_flags & B_ASYNC) == 0 || 2595 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) 2596 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); 2597 return (0); 2598 } 2599 2600 /* 2601 * fsync vnode op. Just call ncl_flush() with commit == 1. 2602 */ 2603 /* ARGSUSED */ 2604 static int 2605 nfs_fsync(struct vop_fsync_args *ap) 2606 { 2607 2608 if (ap->a_vp->v_type != VREG) { 2609 /* 2610 * For NFS, metadata is changed synchronously on the server, 2611 * so there is nothing to flush. Also, ncl_flush() clears 2612 * the NMODIFIED flag and that shouldn't be done here for 2613 * directories. 2614 */ 2615 return (0); 2616 } 2617 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); 2618 } 2619 2620 /* 2621 * Flush all the blocks associated with a vnode. 2622 * Walk through the buffer pool and push any dirty pages 2623 * associated with the vnode. 2624 * If the called_from_renewthread argument is TRUE, it has been called 2625 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2626 * waiting for a buffer write to complete. 2627 */ 2628 int 2629 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, 2630 int commit, int called_from_renewthread) 2631 { 2632 struct nfsnode *np = VTONFS(vp); 2633 struct buf *bp; 2634 int i; 2635 struct buf *nbp; 2636 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2637 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2638 int passone = 1, trycnt = 0; 2639 u_quad_t off, endoff, toff; 2640 struct ucred* wcred = NULL; 2641 struct buf **bvec = NULL; 2642 struct bufobj *bo; 2643 #ifndef NFS_COMMITBVECSIZ 2644 #define NFS_COMMITBVECSIZ 20 2645 #endif 2646 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2647 int bvecsize = 0, bveccount; 2648 2649 if (called_from_renewthread != 0) 2650 slptimeo = hz; 2651 if (nmp->nm_flag & NFSMNT_INT) 2652 slpflag = PCATCH; 2653 if (!commit) 2654 passone = 0; 2655 bo = &vp->v_bufobj; 2656 /* 2657 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2658 * server, but has not been committed to stable storage on the server 2659 * yet. On the first pass, the byte range is worked out and the commit 2660 * rpc is done. On the second pass, ncl_writebp() is called to do the 2661 * job. 2662 */ 2663 again: 2664 off = (u_quad_t)-1; 2665 endoff = 0; 2666 bvecpos = 0; 2667 if (NFS_ISV34(vp) && commit) { 2668 if (bvec != NULL && bvec != bvec_on_stack) 2669 free(bvec, M_TEMP); 2670 /* 2671 * Count up how many buffers waiting for a commit. 2672 */ 2673 bveccount = 0; 2674 BO_LOCK(bo); 2675 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2676 if (!BUF_ISLOCKED(bp) && 2677 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2678 == (B_DELWRI | B_NEEDCOMMIT)) 2679 bveccount++; 2680 } 2681 /* 2682 * Allocate space to remember the list of bufs to commit. It is 2683 * important to use M_NOWAIT here to avoid a race with nfs_write. 2684 * If we can't get memory (for whatever reason), we will end up 2685 * committing the buffers one-by-one in the loop below. 2686 */ 2687 if (bveccount > NFS_COMMITBVECSIZ) { 2688 /* 2689 * Release the vnode interlock to avoid a lock 2690 * order reversal. 2691 */ 2692 BO_UNLOCK(bo); 2693 bvec = (struct buf **) 2694 malloc(bveccount * sizeof(struct buf *), 2695 M_TEMP, M_NOWAIT); 2696 BO_LOCK(bo); 2697 if (bvec == NULL) { 2698 bvec = bvec_on_stack; 2699 bvecsize = NFS_COMMITBVECSIZ; 2700 } else 2701 bvecsize = bveccount; 2702 } else { 2703 bvec = bvec_on_stack; 2704 bvecsize = NFS_COMMITBVECSIZ; 2705 } 2706 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2707 if (bvecpos >= bvecsize) 2708 break; 2709 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2710 nbp = TAILQ_NEXT(bp, b_bobufs); 2711 continue; 2712 } 2713 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2714 (B_DELWRI | B_NEEDCOMMIT)) { 2715 BUF_UNLOCK(bp); 2716 nbp = TAILQ_NEXT(bp, b_bobufs); 2717 continue; 2718 } 2719 BO_UNLOCK(bo); 2720 bremfree(bp); 2721 /* 2722 * Work out if all buffers are using the same cred 2723 * so we can deal with them all with one commit. 2724 * 2725 * NOTE: we are not clearing B_DONE here, so we have 2726 * to do it later on in this routine if we intend to 2727 * initiate I/O on the bp. 2728 * 2729 * Note: to avoid loopback deadlocks, we do not 2730 * assign b_runningbufspace. 2731 */ 2732 if (wcred == NULL) 2733 wcred = bp->b_wcred; 2734 else if (wcred != bp->b_wcred) 2735 wcred = NOCRED; 2736 vfs_busy_pages(bp, 1); 2737 2738 BO_LOCK(bo); 2739 /* 2740 * bp is protected by being locked, but nbp is not 2741 * and vfs_busy_pages() may sleep. We have to 2742 * recalculate nbp. 2743 */ 2744 nbp = TAILQ_NEXT(bp, b_bobufs); 2745 2746 /* 2747 * A list of these buffers is kept so that the 2748 * second loop knows which buffers have actually 2749 * been committed. This is necessary, since there 2750 * may be a race between the commit rpc and new 2751 * uncommitted writes on the file. 2752 */ 2753 bvec[bvecpos++] = bp; 2754 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2755 bp->b_dirtyoff; 2756 if (toff < off) 2757 off = toff; 2758 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2759 if (toff > endoff) 2760 endoff = toff; 2761 } 2762 BO_UNLOCK(bo); 2763 } 2764 if (bvecpos > 0) { 2765 /* 2766 * Commit data on the server, as required. 2767 * If all bufs are using the same wcred, then use that with 2768 * one call for all of them, otherwise commit each one 2769 * separately. 2770 */ 2771 if (wcred != NOCRED) 2772 retv = ncl_commit(vp, off, (int)(endoff - off), 2773 wcred, td); 2774 else { 2775 retv = 0; 2776 for (i = 0; i < bvecpos; i++) { 2777 off_t off, size; 2778 bp = bvec[i]; 2779 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2780 bp->b_dirtyoff; 2781 size = (u_quad_t)(bp->b_dirtyend 2782 - bp->b_dirtyoff); 2783 retv = ncl_commit(vp, off, (int)size, 2784 bp->b_wcred, td); 2785 if (retv) break; 2786 } 2787 } 2788 2789 if (retv == NFSERR_STALEWRITEVERF) 2790 ncl_clearcommit(vp->v_mount); 2791 2792 /* 2793 * Now, either mark the blocks I/O done or mark the 2794 * blocks dirty, depending on whether the commit 2795 * succeeded. 2796 */ 2797 for (i = 0; i < bvecpos; i++) { 2798 bp = bvec[i]; 2799 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2800 if (retv) { 2801 /* 2802 * Error, leave B_DELWRI intact 2803 */ 2804 vfs_unbusy_pages(bp); 2805 brelse(bp); 2806 } else { 2807 /* 2808 * Success, remove B_DELWRI ( bundirty() ). 2809 * 2810 * b_dirtyoff/b_dirtyend seem to be NFS 2811 * specific. We should probably move that 2812 * into bundirty(). XXX 2813 */ 2814 bufobj_wref(bo); 2815 bp->b_flags |= B_ASYNC; 2816 bundirty(bp); 2817 bp->b_flags &= ~B_DONE; 2818 bp->b_ioflags &= ~BIO_ERROR; 2819 bp->b_dirtyoff = bp->b_dirtyend = 0; 2820 bufdone(bp); 2821 } 2822 } 2823 } 2824 2825 /* 2826 * Start/do any write(s) that are required. 2827 */ 2828 loop: 2829 BO_LOCK(bo); 2830 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2831 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2832 if (waitfor != MNT_WAIT || passone) 2833 continue; 2834 2835 error = BUF_TIMELOCK(bp, 2836 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2837 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); 2838 if (error == 0) { 2839 BUF_UNLOCK(bp); 2840 goto loop; 2841 } 2842 if (error == ENOLCK) { 2843 error = 0; 2844 goto loop; 2845 } 2846 if (called_from_renewthread != 0) { 2847 /* 2848 * Return EIO so the flush will be retried 2849 * later. 2850 */ 2851 error = EIO; 2852 goto done; 2853 } 2854 if (newnfs_sigintr(nmp, td)) { 2855 error = EINTR; 2856 goto done; 2857 } 2858 if (slpflag == PCATCH) { 2859 slpflag = 0; 2860 slptimeo = 2 * hz; 2861 } 2862 goto loop; 2863 } 2864 if ((bp->b_flags & B_DELWRI) == 0) 2865 panic("nfs_fsync: not dirty"); 2866 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2867 BUF_UNLOCK(bp); 2868 continue; 2869 } 2870 BO_UNLOCK(bo); 2871 bremfree(bp); 2872 if (passone || !commit) 2873 bp->b_flags |= B_ASYNC; 2874 else 2875 bp->b_flags |= B_ASYNC; 2876 bwrite(bp); 2877 if (newnfs_sigintr(nmp, td)) { 2878 error = EINTR; 2879 goto done; 2880 } 2881 goto loop; 2882 } 2883 if (passone) { 2884 passone = 0; 2885 BO_UNLOCK(bo); 2886 goto again; 2887 } 2888 if (waitfor == MNT_WAIT) { 2889 while (bo->bo_numoutput) { 2890 error = bufobj_wwait(bo, slpflag, slptimeo); 2891 if (error) { 2892 BO_UNLOCK(bo); 2893 if (called_from_renewthread != 0) { 2894 /* 2895 * Return EIO so that the flush will be 2896 * retried later. 2897 */ 2898 error = EIO; 2899 goto done; 2900 } 2901 error = newnfs_sigintr(nmp, td); 2902 if (error) 2903 goto done; 2904 if (slpflag == PCATCH) { 2905 slpflag = 0; 2906 slptimeo = 2 * hz; 2907 } 2908 BO_LOCK(bo); 2909 } 2910 } 2911 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2912 BO_UNLOCK(bo); 2913 goto loop; 2914 } 2915 /* 2916 * Wait for all the async IO requests to drain 2917 */ 2918 BO_UNLOCK(bo); 2919 mtx_lock(&np->n_mtx); 2920 while (np->n_directio_asyncwr > 0) { 2921 np->n_flag |= NFSYNCWAIT; 2922 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2923 &np->n_mtx, slpflag | (PRIBIO + 1), 2924 "nfsfsync", 0); 2925 if (error) { 2926 if (newnfs_sigintr(nmp, td)) { 2927 mtx_unlock(&np->n_mtx); 2928 error = EINTR; 2929 goto done; 2930 } 2931 } 2932 } 2933 mtx_unlock(&np->n_mtx); 2934 } else 2935 BO_UNLOCK(bo); 2936 if (NFSHASPNFS(nmp)) { 2937 nfscl_layoutcommit(vp, td); 2938 /* 2939 * Invalidate the attribute cache, since writes to a DS 2940 * won't update the size attribute. 2941 */ 2942 mtx_lock(&np->n_mtx); 2943 np->n_attrstamp = 0; 2944 } else 2945 mtx_lock(&np->n_mtx); 2946 if (np->n_flag & NWRITEERR) { 2947 error = np->n_error; 2948 np->n_flag &= ~NWRITEERR; 2949 } 2950 if (commit && bo->bo_dirty.bv_cnt == 0 && 2951 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2952 np->n_flag &= ~NMODIFIED; 2953 mtx_unlock(&np->n_mtx); 2954 done: 2955 if (bvec != NULL && bvec != bvec_on_stack) 2956 free(bvec, M_TEMP); 2957 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 2958 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 2959 np->n_directio_asyncwr != 0) && trycnt++ < 5) { 2960 /* try, try again... */ 2961 passone = 1; 2962 wcred = NULL; 2963 bvec = NULL; 2964 bvecsize = 0; 2965 printf("try%d\n", trycnt); 2966 goto again; 2967 } 2968 return (error); 2969 } 2970 2971 /* 2972 * NFS advisory byte-level locks. 2973 */ 2974 static int 2975 nfs_advlock(struct vop_advlock_args *ap) 2976 { 2977 struct vnode *vp = ap->a_vp; 2978 struct ucred *cred; 2979 struct nfsnode *np = VTONFS(ap->a_vp); 2980 struct proc *p = (struct proc *)ap->a_id; 2981 struct thread *td = curthread; /* XXX */ 2982 struct vattr va; 2983 int ret, error = EOPNOTSUPP; 2984 u_quad_t size; 2985 2986 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 2987 if (vp->v_type != VREG) 2988 return (EINVAL); 2989 if ((ap->a_flags & F_POSIX) != 0) 2990 cred = p->p_ucred; 2991 else 2992 cred = td->td_ucred; 2993 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 2994 if (vp->v_iflag & VI_DOOMED) { 2995 NFSVOPUNLOCK(vp, 0); 2996 return (EBADF); 2997 } 2998 2999 /* 3000 * If this is unlocking a write locked region, flush and 3001 * commit them before unlocking. This is required by 3002 * RFC3530 Sec. 9.3.2. 3003 */ 3004 if (ap->a_op == F_UNLCK && 3005 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 3006 ap->a_flags)) 3007 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); 3008 3009 /* 3010 * Loop around doing the lock op, while a blocking lock 3011 * must wait for the lock op to succeed. 3012 */ 3013 do { 3014 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 3015 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 3016 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3017 ap->a_op == F_SETLK) { 3018 NFSVOPUNLOCK(vp, 0); 3019 error = nfs_catnap(PZERO | PCATCH, ret, 3020 "ncladvl"); 3021 if (error) 3022 return (EINTR); 3023 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3024 if (vp->v_iflag & VI_DOOMED) { 3025 NFSVOPUNLOCK(vp, 0); 3026 return (EBADF); 3027 } 3028 } 3029 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3030 ap->a_op == F_SETLK); 3031 if (ret == NFSERR_DENIED) { 3032 NFSVOPUNLOCK(vp, 0); 3033 return (EAGAIN); 3034 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3035 NFSVOPUNLOCK(vp, 0); 3036 return (ret); 3037 } else if (ret != 0) { 3038 NFSVOPUNLOCK(vp, 0); 3039 return (EACCES); 3040 } 3041 3042 /* 3043 * Now, if we just got a lock, invalidate data in the buffer 3044 * cache, as required, so that the coherency conforms with 3045 * RFC3530 Sec. 9.3.2. 3046 */ 3047 if (ap->a_op == F_SETLK) { 3048 if ((np->n_flag & NMODIFIED) == 0) { 3049 np->n_attrstamp = 0; 3050 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3051 ret = VOP_GETATTR(vp, &va, cred); 3052 } 3053 if ((np->n_flag & NMODIFIED) || ret || 3054 np->n_change != va.va_filerev) { 3055 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3056 np->n_attrstamp = 0; 3057 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3058 ret = VOP_GETATTR(vp, &va, cred); 3059 if (!ret) { 3060 np->n_mtime = va.va_mtime; 3061 np->n_change = va.va_filerev; 3062 } 3063 } 3064 /* Mark that a file lock has been acquired. */ 3065 mtx_lock(&np->n_mtx); 3066 np->n_flag |= NHASBEENLOCKED; 3067 mtx_unlock(&np->n_mtx); 3068 } 3069 NFSVOPUNLOCK(vp, 0); 3070 return (0); 3071 } else if (!NFS_ISV4(vp)) { 3072 error = NFSVOPLOCK(vp, LK_SHARED); 3073 if (error) 3074 return (error); 3075 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3076 size = VTONFS(vp)->n_size; 3077 NFSVOPUNLOCK(vp, 0); 3078 error = lf_advlock(ap, &(vp->v_lockf), size); 3079 } else { 3080 if (nfs_advlock_p != NULL) 3081 error = nfs_advlock_p(ap); 3082 else { 3083 NFSVOPUNLOCK(vp, 0); 3084 error = ENOLCK; 3085 } 3086 } 3087 if (error == 0 && ap->a_op == F_SETLK) { 3088 /* Mark that a file lock has been acquired. */ 3089 mtx_lock(&np->n_mtx); 3090 np->n_flag |= NHASBEENLOCKED; 3091 mtx_unlock(&np->n_mtx); 3092 } 3093 } 3094 return (error); 3095 } 3096 3097 /* 3098 * NFS advisory byte-level locks. 3099 */ 3100 static int 3101 nfs_advlockasync(struct vop_advlockasync_args *ap) 3102 { 3103 struct vnode *vp = ap->a_vp; 3104 u_quad_t size; 3105 int error; 3106 3107 if (NFS_ISV4(vp)) 3108 return (EOPNOTSUPP); 3109 error = NFSVOPLOCK(vp, LK_SHARED); 3110 if (error) 3111 return (error); 3112 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3113 size = VTONFS(vp)->n_size; 3114 NFSVOPUNLOCK(vp, 0); 3115 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3116 } else { 3117 NFSVOPUNLOCK(vp, 0); 3118 error = EOPNOTSUPP; 3119 } 3120 return (error); 3121 } 3122 3123 /* 3124 * Print out the contents of an nfsnode. 3125 */ 3126 static int 3127 nfs_print(struct vop_print_args *ap) 3128 { 3129 struct vnode *vp = ap->a_vp; 3130 struct nfsnode *np = VTONFS(vp); 3131 3132 ncl_printf("\tfileid %ld fsid 0x%x", 3133 np->n_vattr.na_fileid, np->n_vattr.na_fsid); 3134 if (vp->v_type == VFIFO) 3135 fifo_printinfo(vp); 3136 printf("\n"); 3137 return (0); 3138 } 3139 3140 /* 3141 * This is the "real" nfs::bwrite(struct buf*). 3142 * We set B_CACHE if this is a VMIO buffer. 3143 */ 3144 int 3145 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3146 { 3147 int s; 3148 int oldflags = bp->b_flags; 3149 #if 0 3150 int retv = 1; 3151 off_t off; 3152 #endif 3153 3154 BUF_ASSERT_HELD(bp); 3155 3156 if (bp->b_flags & B_INVAL) { 3157 brelse(bp); 3158 return(0); 3159 } 3160 3161 bp->b_flags |= B_CACHE; 3162 3163 /* 3164 * Undirty the bp. We will redirty it later if the I/O fails. 3165 */ 3166 3167 s = splbio(); 3168 bundirty(bp); 3169 bp->b_flags &= ~B_DONE; 3170 bp->b_ioflags &= ~BIO_ERROR; 3171 bp->b_iocmd = BIO_WRITE; 3172 3173 bufobj_wref(bp->b_bufobj); 3174 curthread->td_ru.ru_oublock++; 3175 splx(s); 3176 3177 /* 3178 * Note: to avoid loopback deadlocks, we do not 3179 * assign b_runningbufspace. 3180 */ 3181 vfs_busy_pages(bp, 1); 3182 3183 BUF_KERNPROC(bp); 3184 bp->b_iooffset = dbtob(bp->b_blkno); 3185 bstrategy(bp); 3186 3187 if( (oldflags & B_ASYNC) == 0) { 3188 int rtval = bufwait(bp); 3189 3190 if (oldflags & B_DELWRI) { 3191 s = splbio(); 3192 reassignbuf(bp); 3193 splx(s); 3194 } 3195 brelse(bp); 3196 return (rtval); 3197 } 3198 3199 return (0); 3200 } 3201 3202 /* 3203 * nfs special file access vnode op. 3204 * Essentially just get vattr and then imitate iaccess() since the device is 3205 * local to the client. 3206 */ 3207 static int 3208 nfsspec_access(struct vop_access_args *ap) 3209 { 3210 struct vattr *vap; 3211 struct ucred *cred = ap->a_cred; 3212 struct vnode *vp = ap->a_vp; 3213 accmode_t accmode = ap->a_accmode; 3214 struct vattr vattr; 3215 int error; 3216 3217 /* 3218 * Disallow write attempts on filesystems mounted read-only; 3219 * unless the file is a socket, fifo, or a block or character 3220 * device resident on the filesystem. 3221 */ 3222 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3223 switch (vp->v_type) { 3224 case VREG: 3225 case VDIR: 3226 case VLNK: 3227 return (EROFS); 3228 default: 3229 break; 3230 } 3231 } 3232 vap = &vattr; 3233 error = VOP_GETATTR(vp, vap, cred); 3234 if (error) 3235 goto out; 3236 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3237 accmode, cred, NULL); 3238 out: 3239 return error; 3240 } 3241 3242 /* 3243 * Read wrapper for fifos. 3244 */ 3245 static int 3246 nfsfifo_read(struct vop_read_args *ap) 3247 { 3248 struct nfsnode *np = VTONFS(ap->a_vp); 3249 int error; 3250 3251 /* 3252 * Set access flag. 3253 */ 3254 mtx_lock(&np->n_mtx); 3255 np->n_flag |= NACC; 3256 vfs_timestamp(&np->n_atim); 3257 mtx_unlock(&np->n_mtx); 3258 error = fifo_specops.vop_read(ap); 3259 return error; 3260 } 3261 3262 /* 3263 * Write wrapper for fifos. 3264 */ 3265 static int 3266 nfsfifo_write(struct vop_write_args *ap) 3267 { 3268 struct nfsnode *np = VTONFS(ap->a_vp); 3269 3270 /* 3271 * Set update flag. 3272 */ 3273 mtx_lock(&np->n_mtx); 3274 np->n_flag |= NUPD; 3275 vfs_timestamp(&np->n_mtim); 3276 mtx_unlock(&np->n_mtx); 3277 return(fifo_specops.vop_write(ap)); 3278 } 3279 3280 /* 3281 * Close wrapper for fifos. 3282 * 3283 * Update the times on the nfsnode then do fifo close. 3284 */ 3285 static int 3286 nfsfifo_close(struct vop_close_args *ap) 3287 { 3288 struct vnode *vp = ap->a_vp; 3289 struct nfsnode *np = VTONFS(vp); 3290 struct vattr vattr; 3291 struct timespec ts; 3292 3293 mtx_lock(&np->n_mtx); 3294 if (np->n_flag & (NACC | NUPD)) { 3295 vfs_timestamp(&ts); 3296 if (np->n_flag & NACC) 3297 np->n_atim = ts; 3298 if (np->n_flag & NUPD) 3299 np->n_mtim = ts; 3300 np->n_flag |= NCHG; 3301 if (vrefcnt(vp) == 1 && 3302 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3303 VATTR_NULL(&vattr); 3304 if (np->n_flag & NACC) 3305 vattr.va_atime = np->n_atim; 3306 if (np->n_flag & NUPD) 3307 vattr.va_mtime = np->n_mtim; 3308 mtx_unlock(&np->n_mtx); 3309 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3310 goto out; 3311 } 3312 } 3313 mtx_unlock(&np->n_mtx); 3314 out: 3315 return (fifo_specops.vop_close(ap)); 3316 } 3317 3318 /* 3319 * Just call ncl_writebp() with the force argument set to 1. 3320 * 3321 * NOTE: B_DONE may or may not be set in a_bp on call. 3322 */ 3323 static int 3324 nfs_bwrite(struct buf *bp) 3325 { 3326 3327 return (ncl_writebp(bp, 1, curthread)); 3328 } 3329 3330 struct buf_ops buf_ops_newnfs = { 3331 .bop_name = "buf_ops_nfs", 3332 .bop_write = nfs_bwrite, 3333 .bop_strategy = bufstrategy, 3334 .bop_sync = bufsync, 3335 .bop_bdflush = bufbdflush, 3336 }; 3337 3338 /* 3339 * Cloned from vop_stdlock(), and then the ugly hack added. 3340 */ 3341 static int 3342 nfs_lock1(struct vop_lock1_args *ap) 3343 { 3344 struct vnode *vp = ap->a_vp; 3345 int error = 0; 3346 3347 /* 3348 * Since vfs_hash_get() calls vget() and it will no longer work 3349 * for FreeBSD8 with flags == 0, I can only think of this horrible 3350 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER 3351 * and then handle it here. All I want for this case is a v_usecount 3352 * on the vnode to use for recovery, while another thread might 3353 * hold a lock on the vnode. I have the other threads blocked, so 3354 * there isn't any race problem. 3355 */ 3356 if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { 3357 if ((ap->a_flags & LK_INTERLOCK) == 0) 3358 panic("ncllock1"); 3359 if ((vp->v_iflag & VI_DOOMED)) 3360 error = ENOENT; 3361 VI_UNLOCK(vp); 3362 return (error); 3363 } 3364 return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 3365 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, 3366 ap->a_line)); 3367 } 3368 3369 static int 3370 nfs_getacl(struct vop_getacl_args *ap) 3371 { 3372 int error; 3373 3374 if (ap->a_type != ACL_TYPE_NFS4) 3375 return (EOPNOTSUPP); 3376 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3377 NULL); 3378 if (error > NFSERR_STALE) { 3379 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3380 error = EPERM; 3381 } 3382 return (error); 3383 } 3384 3385 static int 3386 nfs_setacl(struct vop_setacl_args *ap) 3387 { 3388 int error; 3389 3390 if (ap->a_type != ACL_TYPE_NFS4) 3391 return (EOPNOTSUPP); 3392 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3393 NULL); 3394 if (error > NFSERR_STALE) { 3395 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3396 error = EPERM; 3397 } 3398 return (error); 3399 } 3400 3401 /* 3402 * Return POSIX pathconf information applicable to nfs filesystems. 3403 */ 3404 static int 3405 nfs_pathconf(struct vop_pathconf_args *ap) 3406 { 3407 struct nfsv3_pathconf pc; 3408 struct nfsvattr nfsva; 3409 struct vnode *vp = ap->a_vp; 3410 struct thread *td = curthread; 3411 int attrflag, error; 3412 3413 if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX || 3414 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3415 ap->a_name == _PC_NO_TRUNC)) || 3416 (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) { 3417 /* 3418 * Since only the above 4 a_names are returned by the NFSv3 3419 * Pathconf RPC, there is no point in doing it for others. 3420 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can 3421 * be used for _PC_NFS4_ACL as well. 3422 */ 3423 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3424 &attrflag, NULL); 3425 if (attrflag != 0) 3426 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3427 1); 3428 if (error != 0) 3429 return (error); 3430 } else { 3431 /* 3432 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3433 * just fake them. 3434 */ 3435 pc.pc_linkmax = LINK_MAX; 3436 pc.pc_namemax = NFS_MAXNAMLEN; 3437 pc.pc_notrunc = 1; 3438 pc.pc_chownrestricted = 1; 3439 pc.pc_caseinsensitive = 0; 3440 pc.pc_casepreserving = 1; 3441 error = 0; 3442 } 3443 switch (ap->a_name) { 3444 case _PC_LINK_MAX: 3445 *ap->a_retval = pc.pc_linkmax; 3446 break; 3447 case _PC_NAME_MAX: 3448 *ap->a_retval = pc.pc_namemax; 3449 break; 3450 case _PC_PATH_MAX: 3451 *ap->a_retval = PATH_MAX; 3452 break; 3453 case _PC_PIPE_BUF: 3454 *ap->a_retval = PIPE_BUF; 3455 break; 3456 case _PC_CHOWN_RESTRICTED: 3457 *ap->a_retval = pc.pc_chownrestricted; 3458 break; 3459 case _PC_NO_TRUNC: 3460 *ap->a_retval = pc.pc_notrunc; 3461 break; 3462 case _PC_ACL_EXTENDED: 3463 *ap->a_retval = 0; 3464 break; 3465 case _PC_ACL_NFS4: 3466 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3467 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3468 *ap->a_retval = 1; 3469 else 3470 *ap->a_retval = 0; 3471 break; 3472 case _PC_ACL_PATH_MAX: 3473 if (NFS_ISV4(vp)) 3474 *ap->a_retval = ACL_MAX_ENTRIES; 3475 else 3476 *ap->a_retval = 3; 3477 break; 3478 case _PC_MAC_PRESENT: 3479 *ap->a_retval = 0; 3480 break; 3481 case _PC_ASYNC_IO: 3482 /* _PC_ASYNC_IO should have been handled by upper layers. */ 3483 KASSERT(0, ("_PC_ASYNC_IO should not get here")); 3484 error = EINVAL; 3485 break; 3486 case _PC_PRIO_IO: 3487 *ap->a_retval = 0; 3488 break; 3489 case _PC_SYNC_IO: 3490 *ap->a_retval = 0; 3491 break; 3492 case _PC_ALLOC_SIZE_MIN: 3493 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3494 break; 3495 case _PC_FILESIZEBITS: 3496 if (NFS_ISV34(vp)) 3497 *ap->a_retval = 64; 3498 else 3499 *ap->a_retval = 32; 3500 break; 3501 case _PC_REC_INCR_XFER_SIZE: 3502 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3503 break; 3504 case _PC_REC_MAX_XFER_SIZE: 3505 *ap->a_retval = -1; /* means ``unlimited'' */ 3506 break; 3507 case _PC_REC_MIN_XFER_SIZE: 3508 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3509 break; 3510 case _PC_REC_XFER_ALIGN: 3511 *ap->a_retval = PAGE_SIZE; 3512 break; 3513 case _PC_SYMLINK_MAX: 3514 *ap->a_retval = NFS_MAXPATHLEN; 3515 break; 3516 3517 default: 3518 error = EINVAL; 3519 break; 3520 } 3521 return (error); 3522 } 3523 3524