1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * vnode op calls for Sun NFS version 2, 3 and 4 40 */ 41 42 #include "opt_kdtrace.h" 43 #include "opt_inet.h" 44 45 #include <sys/param.h> 46 #include <sys/kernel.h> 47 #include <sys/systm.h> 48 #include <sys/resourcevar.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/bio.h> 52 #include <sys/buf.h> 53 #include <sys/jail.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/namei.h> 57 #include <sys/socket.h> 58 #include <sys/vnode.h> 59 #include <sys/dirent.h> 60 #include <sys/fcntl.h> 61 #include <sys/lockf.h> 62 #include <sys/stat.h> 63 #include <sys/sysctl.h> 64 #include <sys/signalvar.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_extern.h> 68 #include <vm/vm_object.h> 69 70 #include <fs/nfs/nfsport.h> 71 #include <fs/nfsclient/nfsnode.h> 72 #include <fs/nfsclient/nfsmount.h> 73 #include <fs/nfsclient/nfs.h> 74 #include <fs/nfsclient/nfs_kdtrace.h> 75 76 #include <net/if.h> 77 #include <netinet/in.h> 78 #include <netinet/in_var.h> 79 80 #include <nfs/nfs_lock.h> 81 82 #ifdef KDTRACE_HOOKS 83 #include <sys/dtrace_bsd.h> 84 85 dtrace_nfsclient_accesscache_flush_probe_func_t 86 dtrace_nfscl_accesscache_flush_done_probe; 87 uint32_t nfscl_accesscache_flush_done_id; 88 89 dtrace_nfsclient_accesscache_get_probe_func_t 90 dtrace_nfscl_accesscache_get_hit_probe, 91 dtrace_nfscl_accesscache_get_miss_probe; 92 uint32_t nfscl_accesscache_get_hit_id; 93 uint32_t nfscl_accesscache_get_miss_id; 94 95 dtrace_nfsclient_accesscache_load_probe_func_t 96 dtrace_nfscl_accesscache_load_done_probe; 97 uint32_t nfscl_accesscache_load_done_id; 98 #endif /* !KDTRACE_HOOKS */ 99 100 /* Defs */ 101 #define TRUE 1 102 #define FALSE 0 103 104 extern struct nfsstats newnfsstats; 105 extern int nfsrv_useacl; 106 MALLOC_DECLARE(M_NEWNFSREQ); 107 108 /* 109 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 110 * calls are not in getblk() and brelse() so that they would not be necessary 111 * here. 112 */ 113 #ifndef B_VMIO 114 #define vfs_busy_pages(bp, f) 115 #endif 116 117 static vop_read_t nfsfifo_read; 118 static vop_write_t nfsfifo_write; 119 static vop_close_t nfsfifo_close; 120 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 121 struct thread *); 122 static vop_lookup_t nfs_lookup; 123 static vop_create_t nfs_create; 124 static vop_mknod_t nfs_mknod; 125 static vop_open_t nfs_open; 126 static vop_pathconf_t nfs_pathconf; 127 static vop_close_t nfs_close; 128 static vop_access_t nfs_access; 129 static vop_getattr_t nfs_getattr; 130 static vop_setattr_t nfs_setattr; 131 static vop_read_t nfs_read; 132 static vop_fsync_t nfs_fsync; 133 static vop_remove_t nfs_remove; 134 static vop_link_t nfs_link; 135 static vop_rename_t nfs_rename; 136 static vop_mkdir_t nfs_mkdir; 137 static vop_rmdir_t nfs_rmdir; 138 static vop_symlink_t nfs_symlink; 139 static vop_readdir_t nfs_readdir; 140 static vop_strategy_t nfs_strategy; 141 static vop_lock1_t nfs_lock1; 142 static int nfs_lookitup(struct vnode *, char *, int, 143 struct ucred *, struct thread *, struct nfsnode **); 144 static int nfs_sillyrename(struct vnode *, struct vnode *, 145 struct componentname *); 146 static vop_access_t nfsspec_access; 147 static vop_readlink_t nfs_readlink; 148 static vop_print_t nfs_print; 149 static vop_advlock_t nfs_advlock; 150 static vop_advlockasync_t nfs_advlockasync; 151 static vop_getacl_t nfs_getacl; 152 static vop_setacl_t nfs_setacl; 153 154 /* 155 * Global vfs data structures for nfs 156 */ 157 struct vop_vector newnfs_vnodeops = { 158 .vop_default = &default_vnodeops, 159 .vop_access = nfs_access, 160 .vop_advlock = nfs_advlock, 161 .vop_advlockasync = nfs_advlockasync, 162 .vop_close = nfs_close, 163 .vop_create = nfs_create, 164 .vop_fsync = nfs_fsync, 165 .vop_getattr = nfs_getattr, 166 .vop_getpages = ncl_getpages, 167 .vop_putpages = ncl_putpages, 168 .vop_inactive = ncl_inactive, 169 .vop_link = nfs_link, 170 .vop_lock1 = nfs_lock1, 171 .vop_lookup = nfs_lookup, 172 .vop_mkdir = nfs_mkdir, 173 .vop_mknod = nfs_mknod, 174 .vop_open = nfs_open, 175 .vop_pathconf = nfs_pathconf, 176 .vop_print = nfs_print, 177 .vop_read = nfs_read, 178 .vop_readdir = nfs_readdir, 179 .vop_readlink = nfs_readlink, 180 .vop_reclaim = ncl_reclaim, 181 .vop_remove = nfs_remove, 182 .vop_rename = nfs_rename, 183 .vop_rmdir = nfs_rmdir, 184 .vop_setattr = nfs_setattr, 185 .vop_strategy = nfs_strategy, 186 .vop_symlink = nfs_symlink, 187 .vop_write = ncl_write, 188 .vop_getacl = nfs_getacl, 189 .vop_setacl = nfs_setacl, 190 }; 191 192 struct vop_vector newnfs_fifoops = { 193 .vop_default = &fifo_specops, 194 .vop_access = nfsspec_access, 195 .vop_close = nfsfifo_close, 196 .vop_fsync = nfs_fsync, 197 .vop_getattr = nfs_getattr, 198 .vop_inactive = ncl_inactive, 199 .vop_print = nfs_print, 200 .vop_read = nfsfifo_read, 201 .vop_reclaim = ncl_reclaim, 202 .vop_setattr = nfs_setattr, 203 .vop_write = nfsfifo_write, 204 }; 205 206 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 207 struct componentname *cnp, struct vattr *vap); 208 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 209 int namelen, struct ucred *cred, struct thread *td); 210 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 211 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 212 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 213 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 214 struct componentname *scnp, struct sillyrename *sp); 215 216 /* 217 * Global variables 218 */ 219 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) 220 221 SYSCTL_DECL(_vfs_nfs); 222 223 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 224 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 225 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 226 227 static int nfs_prime_access_cache = 0; 228 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 229 &nfs_prime_access_cache, 0, 230 "Prime NFS ACCESS cache when fetching attributes"); 231 232 static int newnfs_commit_on_close = 0; 233 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 234 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 235 236 static int nfs_clean_pages_on_close = 1; 237 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 238 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 239 240 int newnfs_directio_enable = 0; 241 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 242 &newnfs_directio_enable, 0, "Enable NFS directio"); 243 244 int nfs_keep_dirty_on_error; 245 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, 246 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); 247 248 /* 249 * This sysctl allows other processes to mmap a file that has been opened 250 * O_DIRECT by a process. In general, having processes mmap the file while 251 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 252 * this by default to prevent DoS attacks - to prevent a malicious user from 253 * opening up files O_DIRECT preventing other users from mmap'ing these 254 * files. "Protected" environments where stricter consistency guarantees are 255 * required can disable this knob. The process that opened the file O_DIRECT 256 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 257 * meaningful. 258 */ 259 int newnfs_directio_allow_mmap = 1; 260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 261 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 262 263 #if 0 264 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 265 &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 266 267 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 268 &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 269 #endif 270 271 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 272 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 273 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 274 275 /* 276 * SMP Locking Note : 277 * The list of locks after the description of the lock is the ordering 278 * of other locks acquired with the lock held. 279 * np->n_mtx : Protects the fields in the nfsnode. 280 VM Object Lock 281 VI_MTX (acquired indirectly) 282 * nmp->nm_mtx : Protects the fields in the nfsmount. 283 rep->r_mtx 284 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 285 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 286 nmp->nm_mtx 287 rep->r_mtx 288 * rep->r_mtx : Protects the fields in an nfsreq. 289 */ 290 291 static int 292 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 293 struct ucred *cred, u_int32_t *retmode) 294 { 295 int error = 0, attrflag, i, lrupos; 296 u_int32_t rmode; 297 struct nfsnode *np = VTONFS(vp); 298 struct nfsvattr nfsva; 299 300 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 301 &rmode, NULL); 302 if (attrflag) 303 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 304 if (!error) { 305 lrupos = 0; 306 mtx_lock(&np->n_mtx); 307 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 308 if (np->n_accesscache[i].uid == cred->cr_uid) { 309 np->n_accesscache[i].mode = rmode; 310 np->n_accesscache[i].stamp = time_second; 311 break; 312 } 313 if (i > 0 && np->n_accesscache[i].stamp < 314 np->n_accesscache[lrupos].stamp) 315 lrupos = i; 316 } 317 if (i == NFS_ACCESSCACHESIZE) { 318 np->n_accesscache[lrupos].uid = cred->cr_uid; 319 np->n_accesscache[lrupos].mode = rmode; 320 np->n_accesscache[lrupos].stamp = time_second; 321 } 322 mtx_unlock(&np->n_mtx); 323 if (retmode != NULL) 324 *retmode = rmode; 325 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 326 } else if (NFS_ISV4(vp)) { 327 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 328 } 329 #ifdef KDTRACE_HOOKS 330 if (error != 0) 331 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 332 error); 333 #endif 334 return (error); 335 } 336 337 /* 338 * nfs access vnode op. 339 * For nfs version 2, just return ok. File accesses may fail later. 340 * For nfs version 3, use the access rpc to check accessibility. If file modes 341 * are changed on the server, accesses might still fail later. 342 */ 343 static int 344 nfs_access(struct vop_access_args *ap) 345 { 346 struct vnode *vp = ap->a_vp; 347 int error = 0, i, gotahit; 348 u_int32_t mode, wmode, rmode; 349 int v34 = NFS_ISV34(vp); 350 struct nfsnode *np = VTONFS(vp); 351 352 /* 353 * Disallow write attempts on filesystems mounted read-only; 354 * unless the file is a socket, fifo, or a block or character 355 * device resident on the filesystem. 356 */ 357 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 358 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 359 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 360 switch (vp->v_type) { 361 case VREG: 362 case VDIR: 363 case VLNK: 364 return (EROFS); 365 default: 366 break; 367 } 368 } 369 /* 370 * For nfs v3 or v4, check to see if we have done this recently, and if 371 * so return our cached result instead of making an ACCESS call. 372 * If not, do an access rpc, otherwise you are stuck emulating 373 * ufs_access() locally using the vattr. This may not be correct, 374 * since the server may apply other access criteria such as 375 * client uid-->server uid mapping that we do not know about. 376 */ 377 if (v34) { 378 if (ap->a_accmode & VREAD) 379 mode = NFSACCESS_READ; 380 else 381 mode = 0; 382 if (vp->v_type != VDIR) { 383 if (ap->a_accmode & VWRITE) 384 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 385 if (ap->a_accmode & VAPPEND) 386 mode |= NFSACCESS_EXTEND; 387 if (ap->a_accmode & VEXEC) 388 mode |= NFSACCESS_EXECUTE; 389 if (ap->a_accmode & VDELETE) 390 mode |= NFSACCESS_DELETE; 391 } else { 392 if (ap->a_accmode & VWRITE) 393 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 394 if (ap->a_accmode & VAPPEND) 395 mode |= NFSACCESS_EXTEND; 396 if (ap->a_accmode & VEXEC) 397 mode |= NFSACCESS_LOOKUP; 398 if (ap->a_accmode & VDELETE) 399 mode |= NFSACCESS_DELETE; 400 if (ap->a_accmode & VDELETE_CHILD) 401 mode |= NFSACCESS_MODIFY; 402 } 403 /* XXX safety belt, only make blanket request if caching */ 404 if (nfsaccess_cache_timeout > 0) { 405 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 406 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 407 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 408 } else { 409 wmode = mode; 410 } 411 412 /* 413 * Does our cached result allow us to give a definite yes to 414 * this request? 415 */ 416 gotahit = 0; 417 mtx_lock(&np->n_mtx); 418 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 419 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 420 if (time_second < (np->n_accesscache[i].stamp 421 + nfsaccess_cache_timeout) && 422 (np->n_accesscache[i].mode & mode) == mode) { 423 NFSINCRGLOBAL(newnfsstats.accesscache_hits); 424 gotahit = 1; 425 } 426 break; 427 } 428 } 429 mtx_unlock(&np->n_mtx); 430 #ifdef KDTRACE_HOOKS 431 if (gotahit != 0) 432 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 433 ap->a_cred->cr_uid, mode); 434 else 435 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 436 ap->a_cred->cr_uid, mode); 437 #endif 438 if (gotahit == 0) { 439 /* 440 * Either a no, or a don't know. Go to the wire. 441 */ 442 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 443 error = nfs34_access_otw(vp, wmode, ap->a_td, 444 ap->a_cred, &rmode); 445 if (!error && 446 (rmode & mode) != mode) 447 error = EACCES; 448 } 449 return (error); 450 } else { 451 if ((error = nfsspec_access(ap)) != 0) { 452 return (error); 453 } 454 /* 455 * Attempt to prevent a mapped root from accessing a file 456 * which it shouldn't. We try to read a byte from the file 457 * if the user is root and the file is not zero length. 458 * After calling nfsspec_access, we should have the correct 459 * file size cached. 460 */ 461 mtx_lock(&np->n_mtx); 462 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 463 && VTONFS(vp)->n_size > 0) { 464 struct iovec aiov; 465 struct uio auio; 466 char buf[1]; 467 468 mtx_unlock(&np->n_mtx); 469 aiov.iov_base = buf; 470 aiov.iov_len = 1; 471 auio.uio_iov = &aiov; 472 auio.uio_iovcnt = 1; 473 auio.uio_offset = 0; 474 auio.uio_resid = 1; 475 auio.uio_segflg = UIO_SYSSPACE; 476 auio.uio_rw = UIO_READ; 477 auio.uio_td = ap->a_td; 478 479 if (vp->v_type == VREG) 480 error = ncl_readrpc(vp, &auio, ap->a_cred); 481 else if (vp->v_type == VDIR) { 482 char* bp; 483 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 484 aiov.iov_base = bp; 485 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 486 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 487 ap->a_td); 488 free(bp, M_TEMP); 489 } else if (vp->v_type == VLNK) 490 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 491 else 492 error = EACCES; 493 } else 494 mtx_unlock(&np->n_mtx); 495 return (error); 496 } 497 } 498 499 500 /* 501 * nfs open vnode op 502 * Check to see if the type is ok 503 * and that deletion is not in progress. 504 * For paged in text files, you will need to flush the page cache 505 * if consistency is lost. 506 */ 507 /* ARGSUSED */ 508 static int 509 nfs_open(struct vop_open_args *ap) 510 { 511 struct vnode *vp = ap->a_vp; 512 struct nfsnode *np = VTONFS(vp); 513 struct vattr vattr; 514 int error; 515 int fmode = ap->a_mode; 516 struct ucred *cred; 517 518 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 519 return (EOPNOTSUPP); 520 521 /* 522 * For NFSv4, we need to do the Open Op before cache validation, 523 * so that we conform to RFC3530 Sec. 9.3.1. 524 */ 525 if (NFS_ISV4(vp)) { 526 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 527 if (error) { 528 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 529 (gid_t)0); 530 return (error); 531 } 532 } 533 534 /* 535 * Now, if this Open will be doing reading, re-validate/flush the 536 * cache, so that Close/Open coherency is maintained. 537 */ 538 mtx_lock(&np->n_mtx); 539 if (np->n_flag & NMODIFIED) { 540 mtx_unlock(&np->n_mtx); 541 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 542 if (error == EINTR || error == EIO) { 543 if (NFS_ISV4(vp)) 544 (void) nfsrpc_close(vp, 0, ap->a_td); 545 return (error); 546 } 547 mtx_lock(&np->n_mtx); 548 np->n_attrstamp = 0; 549 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 550 if (vp->v_type == VDIR) 551 np->n_direofoffset = 0; 552 mtx_unlock(&np->n_mtx); 553 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 554 if (error) { 555 if (NFS_ISV4(vp)) 556 (void) nfsrpc_close(vp, 0, ap->a_td); 557 return (error); 558 } 559 mtx_lock(&np->n_mtx); 560 np->n_mtime = vattr.va_mtime; 561 if (NFS_ISV4(vp)) 562 np->n_change = vattr.va_filerev; 563 } else { 564 mtx_unlock(&np->n_mtx); 565 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 566 if (error) { 567 if (NFS_ISV4(vp)) 568 (void) nfsrpc_close(vp, 0, ap->a_td); 569 return (error); 570 } 571 mtx_lock(&np->n_mtx); 572 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 573 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 574 if (vp->v_type == VDIR) 575 np->n_direofoffset = 0; 576 mtx_unlock(&np->n_mtx); 577 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 578 if (error == EINTR || error == EIO) { 579 if (NFS_ISV4(vp)) 580 (void) nfsrpc_close(vp, 0, ap->a_td); 581 return (error); 582 } 583 mtx_lock(&np->n_mtx); 584 np->n_mtime = vattr.va_mtime; 585 if (NFS_ISV4(vp)) 586 np->n_change = vattr.va_filerev; 587 } 588 } 589 590 /* 591 * If the object has >= 1 O_DIRECT active opens, we disable caching. 592 */ 593 if (newnfs_directio_enable && (fmode & O_DIRECT) && 594 (vp->v_type == VREG)) { 595 if (np->n_directio_opens == 0) { 596 mtx_unlock(&np->n_mtx); 597 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 598 if (error) { 599 if (NFS_ISV4(vp)) 600 (void) nfsrpc_close(vp, 0, ap->a_td); 601 return (error); 602 } 603 mtx_lock(&np->n_mtx); 604 np->n_flag |= NNONCACHE; 605 } 606 np->n_directio_opens++; 607 } 608 609 /* 610 * If this is an open for writing, capture a reference to the 611 * credentials, so they can be used by ncl_putpages(). Using 612 * these write credentials is preferable to the credentials of 613 * whatever thread happens to be doing the VOP_PUTPAGES() since 614 * the write RPCs are less likely to fail with EACCES. 615 */ 616 if ((fmode & FWRITE) != 0) { 617 cred = np->n_writecred; 618 np->n_writecred = crhold(ap->a_cred); 619 } else 620 cred = NULL; 621 mtx_unlock(&np->n_mtx); 622 if (cred != NULL) 623 crfree(cred); 624 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 625 return (0); 626 } 627 628 /* 629 * nfs close vnode op 630 * What an NFS client should do upon close after writing is a debatable issue. 631 * Most NFS clients push delayed writes to the server upon close, basically for 632 * two reasons: 633 * 1 - So that any write errors may be reported back to the client process 634 * doing the close system call. By far the two most likely errors are 635 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 636 * 2 - To put a worst case upper bound on cache inconsistency between 637 * multiple clients for the file. 638 * There is also a consistency problem for Version 2 of the protocol w.r.t. 639 * not being able to tell if other clients are writing a file concurrently, 640 * since there is no way of knowing if the changed modify time in the reply 641 * is only due to the write for this client. 642 * (NFS Version 3 provides weak cache consistency data in the reply that 643 * should be sufficient to detect and handle this case.) 644 * 645 * The current code does the following: 646 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 647 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 648 * or commit them (this satisfies 1 and 2 except for the 649 * case where the server crashes after this close but 650 * before the commit RPC, which is felt to be "good 651 * enough". Changing the last argument to ncl_flush() to 652 * a 1 would force a commit operation, if it is felt a 653 * commit is necessary now. 654 * for NFS Version 4 - flush the dirty buffers and commit them, if 655 * nfscl_mustflush() says this is necessary. 656 * It is necessary if there is no write delegation held, 657 * in order to satisfy open/close coherency. 658 * If the file isn't cached on local stable storage, 659 * it may be necessary in order to detect "out of space" 660 * errors from the server, if the write delegation 661 * issued by the server doesn't allow the file to grow. 662 */ 663 /* ARGSUSED */ 664 static int 665 nfs_close(struct vop_close_args *ap) 666 { 667 struct vnode *vp = ap->a_vp; 668 struct nfsnode *np = VTONFS(vp); 669 struct nfsvattr nfsva; 670 struct ucred *cred; 671 int error = 0, ret, localcred = 0; 672 int fmode = ap->a_fflag; 673 674 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) 675 return (0); 676 /* 677 * During shutdown, a_cred isn't valid, so just use root. 678 */ 679 if (ap->a_cred == NOCRED) { 680 cred = newnfs_getcred(); 681 localcred = 1; 682 } else { 683 cred = ap->a_cred; 684 } 685 if (vp->v_type == VREG) { 686 /* 687 * Examine and clean dirty pages, regardless of NMODIFIED. 688 * This closes a major hole in close-to-open consistency. 689 * We want to push out all dirty pages (and buffers) on 690 * close, regardless of whether they were dirtied by 691 * mmap'ed writes or via write(). 692 */ 693 if (nfs_clean_pages_on_close && vp->v_object) { 694 VM_OBJECT_LOCK(vp->v_object); 695 vm_object_page_clean(vp->v_object, 0, 0, 0); 696 VM_OBJECT_UNLOCK(vp->v_object); 697 } 698 mtx_lock(&np->n_mtx); 699 if (np->n_flag & NMODIFIED) { 700 mtx_unlock(&np->n_mtx); 701 if (NFS_ISV3(vp)) { 702 /* 703 * Under NFSv3 we have dirty buffers to dispose of. We 704 * must flush them to the NFS server. We have the option 705 * of waiting all the way through the commit rpc or just 706 * waiting for the initial write. The default is to only 707 * wait through the initial write so the data is in the 708 * server's cache, which is roughly similar to the state 709 * a standard disk subsystem leaves the file in on close(). 710 * 711 * We cannot clear the NMODIFIED bit in np->n_flag due to 712 * potential races with other processes, and certainly 713 * cannot clear it if we don't commit. 714 * These races occur when there is no longer the old 715 * traditional vnode locking implemented for Vnode Ops. 716 */ 717 int cm = newnfs_commit_on_close ? 1 : 0; 718 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); 719 /* np->n_flag &= ~NMODIFIED; */ 720 } else if (NFS_ISV4(vp)) { 721 if (nfscl_mustflush(vp) != 0) { 722 int cm = newnfs_commit_on_close ? 1 : 0; 723 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, 724 cm, 0); 725 /* 726 * as above w.r.t races when clearing 727 * NMODIFIED. 728 * np->n_flag &= ~NMODIFIED; 729 */ 730 } 731 } else 732 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 733 mtx_lock(&np->n_mtx); 734 } 735 /* 736 * Invalidate the attribute cache in all cases. 737 * An open is going to fetch fresh attrs any way, other procs 738 * on this node that have file open will be forced to do an 739 * otw attr fetch, but this is safe. 740 * --> A user found that their RPC count dropped by 20% when 741 * this was commented out and I can't see any requirement 742 * for it, so I've disabled it when negative lookups are 743 * enabled. (What does this have to do with negative lookup 744 * caching? Well nothing, except it was reported by the 745 * same user that needed negative lookup caching and I wanted 746 * there to be a way to disable it to see if it 747 * is the cause of some caching/coherency issue that might 748 * crop up.) 749 */ 750 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 751 np->n_attrstamp = 0; 752 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 753 } 754 if (np->n_flag & NWRITEERR) { 755 np->n_flag &= ~NWRITEERR; 756 error = np->n_error; 757 } 758 mtx_unlock(&np->n_mtx); 759 } 760 761 if (NFS_ISV4(vp)) { 762 /* 763 * Get attributes so "change" is up to date. 764 */ 765 if (error == 0 && nfscl_mustflush(vp) != 0) { 766 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 767 NULL); 768 if (!ret) { 769 np->n_change = nfsva.na_filerev; 770 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 771 NULL, 0, 0); 772 } 773 } 774 775 /* 776 * and do the close. 777 */ 778 ret = nfsrpc_close(vp, 0, ap->a_td); 779 if (!error && ret) 780 error = ret; 781 if (error) 782 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 783 (gid_t)0); 784 } 785 if (newnfs_directio_enable) 786 KASSERT((np->n_directio_asyncwr == 0), 787 ("nfs_close: dirty unflushed (%d) directio buffers\n", 788 np->n_directio_asyncwr)); 789 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 790 mtx_lock(&np->n_mtx); 791 KASSERT((np->n_directio_opens > 0), 792 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 793 np->n_directio_opens--; 794 if (np->n_directio_opens == 0) 795 np->n_flag &= ~NNONCACHE; 796 mtx_unlock(&np->n_mtx); 797 } 798 if (localcred) 799 NFSFREECRED(cred); 800 return (error); 801 } 802 803 /* 804 * nfs getattr call from vfs. 805 */ 806 static int 807 nfs_getattr(struct vop_getattr_args *ap) 808 { 809 struct vnode *vp = ap->a_vp; 810 struct thread *td = curthread; /* XXX */ 811 struct nfsnode *np = VTONFS(vp); 812 int error = 0; 813 struct nfsvattr nfsva; 814 struct vattr *vap = ap->a_vap; 815 struct vattr vattr; 816 817 /* 818 * Update local times for special files. 819 */ 820 mtx_lock(&np->n_mtx); 821 if (np->n_flag & (NACC | NUPD)) 822 np->n_flag |= NCHG; 823 mtx_unlock(&np->n_mtx); 824 /* 825 * First look in the cache. 826 */ 827 if (ncl_getattrcache(vp, &vattr) == 0) { 828 vap->va_type = vattr.va_type; 829 vap->va_mode = vattr.va_mode; 830 vap->va_nlink = vattr.va_nlink; 831 vap->va_uid = vattr.va_uid; 832 vap->va_gid = vattr.va_gid; 833 vap->va_fsid = vattr.va_fsid; 834 vap->va_fileid = vattr.va_fileid; 835 vap->va_size = vattr.va_size; 836 vap->va_blocksize = vattr.va_blocksize; 837 vap->va_atime = vattr.va_atime; 838 vap->va_mtime = vattr.va_mtime; 839 vap->va_ctime = vattr.va_ctime; 840 vap->va_gen = vattr.va_gen; 841 vap->va_flags = vattr.va_flags; 842 vap->va_rdev = vattr.va_rdev; 843 vap->va_bytes = vattr.va_bytes; 844 vap->va_filerev = vattr.va_filerev; 845 /* 846 * Get the local modify time for the case of a write 847 * delegation. 848 */ 849 nfscl_deleggetmodtime(vp, &vap->va_mtime); 850 return (0); 851 } 852 853 if (NFS_ISV34(vp) && nfs_prime_access_cache && 854 nfsaccess_cache_timeout > 0) { 855 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 856 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 857 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 858 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 859 return (0); 860 } 861 } 862 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 863 if (!error) 864 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 865 if (!error) { 866 /* 867 * Get the local modify time for the case of a write 868 * delegation. 869 */ 870 nfscl_deleggetmodtime(vp, &vap->va_mtime); 871 } else if (NFS_ISV4(vp)) { 872 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 873 } 874 return (error); 875 } 876 877 /* 878 * nfs setattr call. 879 */ 880 static int 881 nfs_setattr(struct vop_setattr_args *ap) 882 { 883 struct vnode *vp = ap->a_vp; 884 struct nfsnode *np = VTONFS(vp); 885 struct thread *td = curthread; /* XXX */ 886 struct vattr *vap = ap->a_vap; 887 int error = 0; 888 u_quad_t tsize; 889 890 #ifndef nolint 891 tsize = (u_quad_t)0; 892 #endif 893 894 /* 895 * Setting of flags and marking of atimes are not supported. 896 */ 897 if (vap->va_flags != VNOVAL) 898 return (EOPNOTSUPP); 899 900 /* 901 * Disallow write attempts if the filesystem is mounted read-only. 902 */ 903 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 904 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 905 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 906 (vp->v_mount->mnt_flag & MNT_RDONLY)) 907 return (EROFS); 908 if (vap->va_size != VNOVAL) { 909 switch (vp->v_type) { 910 case VDIR: 911 return (EISDIR); 912 case VCHR: 913 case VBLK: 914 case VSOCK: 915 case VFIFO: 916 if (vap->va_mtime.tv_sec == VNOVAL && 917 vap->va_atime.tv_sec == VNOVAL && 918 vap->va_mode == (mode_t)VNOVAL && 919 vap->va_uid == (uid_t)VNOVAL && 920 vap->va_gid == (gid_t)VNOVAL) 921 return (0); 922 vap->va_size = VNOVAL; 923 break; 924 default: 925 /* 926 * Disallow write attempts if the filesystem is 927 * mounted read-only. 928 */ 929 if (vp->v_mount->mnt_flag & MNT_RDONLY) 930 return (EROFS); 931 /* 932 * We run vnode_pager_setsize() early (why?), 933 * we must set np->n_size now to avoid vinvalbuf 934 * V_SAVE races that might setsize a lower 935 * value. 936 */ 937 mtx_lock(&np->n_mtx); 938 tsize = np->n_size; 939 mtx_unlock(&np->n_mtx); 940 error = ncl_meta_setsize(vp, ap->a_cred, td, 941 vap->va_size); 942 mtx_lock(&np->n_mtx); 943 if (np->n_flag & NMODIFIED) { 944 tsize = np->n_size; 945 mtx_unlock(&np->n_mtx); 946 if (vap->va_size == 0) 947 error = ncl_vinvalbuf(vp, 0, td, 1); 948 else 949 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 950 if (error) { 951 vnode_pager_setsize(vp, tsize); 952 return (error); 953 } 954 /* 955 * Call nfscl_delegmodtime() to set the modify time 956 * locally, as required. 957 */ 958 nfscl_delegmodtime(vp); 959 } else 960 mtx_unlock(&np->n_mtx); 961 /* 962 * np->n_size has already been set to vap->va_size 963 * in ncl_meta_setsize(). We must set it again since 964 * nfs_loadattrcache() could be called through 965 * ncl_meta_setsize() and could modify np->n_size. 966 */ 967 mtx_lock(&np->n_mtx); 968 np->n_vattr.na_size = np->n_size = vap->va_size; 969 mtx_unlock(&np->n_mtx); 970 }; 971 } else { 972 mtx_lock(&np->n_mtx); 973 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 974 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 975 mtx_unlock(&np->n_mtx); 976 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && 977 (error == EINTR || error == EIO)) 978 return (error); 979 } else 980 mtx_unlock(&np->n_mtx); 981 } 982 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 983 if (error && vap->va_size != VNOVAL) { 984 mtx_lock(&np->n_mtx); 985 np->n_size = np->n_vattr.na_size = tsize; 986 vnode_pager_setsize(vp, tsize); 987 mtx_unlock(&np->n_mtx); 988 } 989 return (error); 990 } 991 992 /* 993 * Do an nfs setattr rpc. 994 */ 995 static int 996 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 997 struct thread *td) 998 { 999 struct nfsnode *np = VTONFS(vp); 1000 int error, ret, attrflag, i; 1001 struct nfsvattr nfsva; 1002 1003 if (NFS_ISV34(vp)) { 1004 mtx_lock(&np->n_mtx); 1005 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 1006 np->n_accesscache[i].stamp = 0; 1007 np->n_flag |= NDELEGMOD; 1008 mtx_unlock(&np->n_mtx); 1009 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 1010 } 1011 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 1012 NULL); 1013 if (attrflag) { 1014 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1015 if (ret && !error) 1016 error = ret; 1017 } 1018 if (error && NFS_ISV4(vp)) 1019 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1020 return (error); 1021 } 1022 1023 /* 1024 * nfs lookup call, one step at a time... 1025 * First look in cache 1026 * If not found, unlock the directory nfsnode and do the rpc 1027 */ 1028 static int 1029 nfs_lookup(struct vop_lookup_args *ap) 1030 { 1031 struct componentname *cnp = ap->a_cnp; 1032 struct vnode *dvp = ap->a_dvp; 1033 struct vnode **vpp = ap->a_vpp; 1034 struct mount *mp = dvp->v_mount; 1035 int flags = cnp->cn_flags; 1036 struct vnode *newvp; 1037 struct nfsmount *nmp; 1038 struct nfsnode *np, *newnp; 1039 int error = 0, attrflag, dattrflag, ltype, ncticks; 1040 struct thread *td = cnp->cn_thread; 1041 struct nfsfh *nfhp; 1042 struct nfsvattr dnfsva, nfsva; 1043 struct vattr vattr; 1044 struct timespec nctime; 1045 1046 *vpp = NULLVP; 1047 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1048 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1049 return (EROFS); 1050 if (dvp->v_type != VDIR) 1051 return (ENOTDIR); 1052 nmp = VFSTONFS(mp); 1053 np = VTONFS(dvp); 1054 1055 /* For NFSv4, wait until any remove is done. */ 1056 mtx_lock(&np->n_mtx); 1057 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1058 np->n_flag |= NREMOVEWANT; 1059 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1060 } 1061 mtx_unlock(&np->n_mtx); 1062 1063 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1064 return (error); 1065 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); 1066 if (error > 0 && error != ENOENT) 1067 return (error); 1068 if (error == -1) { 1069 /* 1070 * Lookups of "." are special and always return the 1071 * current directory. cache_lookup() already handles 1072 * associated locking bookkeeping, etc. 1073 */ 1074 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 1075 /* XXX: Is this really correct? */ 1076 if (cnp->cn_nameiop != LOOKUP && 1077 (flags & ISLASTCN)) 1078 cnp->cn_flags |= SAVENAME; 1079 return (0); 1080 } 1081 1082 /* 1083 * We only accept a positive hit in the cache if the 1084 * change time of the file matches our cached copy. 1085 * Otherwise, we discard the cache entry and fallback 1086 * to doing a lookup RPC. We also only trust cache 1087 * entries for less than nm_nametimeo seconds. 1088 * 1089 * To better handle stale file handles and attributes, 1090 * clear the attribute cache of this node if it is a 1091 * leaf component, part of an open() call, and not 1092 * locally modified before fetching the attributes. 1093 * This should allow stale file handles to be detected 1094 * here where we can fall back to a LOOKUP RPC to 1095 * recover rather than having nfs_open() detect the 1096 * stale file handle and failing open(2) with ESTALE. 1097 */ 1098 newvp = *vpp; 1099 newnp = VTONFS(newvp); 1100 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1101 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1102 !(newnp->n_flag & NMODIFIED)) { 1103 mtx_lock(&newnp->n_mtx); 1104 newnp->n_attrstamp = 0; 1105 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1106 mtx_unlock(&newnp->n_mtx); 1107 } 1108 if (nfscl_nodeleg(newvp, 0) == 0 || 1109 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && 1110 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1111 timespeccmp(&vattr.va_ctime, &nctime, ==))) { 1112 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1113 if (cnp->cn_nameiop != LOOKUP && 1114 (flags & ISLASTCN)) 1115 cnp->cn_flags |= SAVENAME; 1116 return (0); 1117 } 1118 cache_purge(newvp); 1119 if (dvp != newvp) 1120 vput(newvp); 1121 else 1122 vrele(newvp); 1123 *vpp = NULLVP; 1124 } else if (error == ENOENT) { 1125 if (dvp->v_iflag & VI_DOOMED) 1126 return (ENOENT); 1127 /* 1128 * We only accept a negative hit in the cache if the 1129 * modification time of the parent directory matches 1130 * the cached copy in the name cache entry. 1131 * Otherwise, we discard all of the negative cache 1132 * entries for this directory. We also only trust 1133 * negative cache entries for up to nm_negnametimeo 1134 * seconds. 1135 */ 1136 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && 1137 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1138 timespeccmp(&vattr.va_mtime, &nctime, ==)) { 1139 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1140 return (ENOENT); 1141 } 1142 cache_purge_negative(dvp); 1143 } 1144 1145 error = 0; 1146 newvp = NULLVP; 1147 NFSINCRGLOBAL(newnfsstats.lookupcache_misses); 1148 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1149 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1150 NULL); 1151 if (dattrflag) 1152 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1153 if (error) { 1154 if (newvp != NULLVP) { 1155 vput(newvp); 1156 *vpp = NULLVP; 1157 } 1158 1159 if (error != ENOENT) { 1160 if (NFS_ISV4(dvp)) 1161 error = nfscl_maperr(td, error, (uid_t)0, 1162 (gid_t)0); 1163 return (error); 1164 } 1165 1166 /* The requested file was not found. */ 1167 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1168 (flags & ISLASTCN)) { 1169 /* 1170 * XXX: UFS does a full VOP_ACCESS(dvp, 1171 * VWRITE) here instead of just checking 1172 * MNT_RDONLY. 1173 */ 1174 if (mp->mnt_flag & MNT_RDONLY) 1175 return (EROFS); 1176 cnp->cn_flags |= SAVENAME; 1177 return (EJUSTRETURN); 1178 } 1179 1180 if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE && 1181 dattrflag) { 1182 /* 1183 * Cache the modification time of the parent 1184 * directory from the post-op attributes in 1185 * the name cache entry. The negative cache 1186 * entry will be ignored once the directory 1187 * has changed. Don't bother adding the entry 1188 * if the directory has already changed. 1189 */ 1190 mtx_lock(&np->n_mtx); 1191 if (timespeccmp(&np->n_vattr.na_mtime, 1192 &dnfsva.na_mtime, ==)) { 1193 mtx_unlock(&np->n_mtx); 1194 cache_enter_time(dvp, NULL, cnp, 1195 &dnfsva.na_mtime, NULL); 1196 } else 1197 mtx_unlock(&np->n_mtx); 1198 } 1199 return (ENOENT); 1200 } 1201 1202 /* 1203 * Handle RENAME case... 1204 */ 1205 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1206 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1207 FREE((caddr_t)nfhp, M_NFSFH); 1208 return (EISDIR); 1209 } 1210 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1211 LK_EXCLUSIVE); 1212 if (error) 1213 return (error); 1214 newvp = NFSTOV(np); 1215 if (attrflag) 1216 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1217 0, 1); 1218 *vpp = newvp; 1219 cnp->cn_flags |= SAVENAME; 1220 return (0); 1221 } 1222 1223 if (flags & ISDOTDOT) { 1224 ltype = NFSVOPISLOCKED(dvp); 1225 error = vfs_busy(mp, MBF_NOWAIT); 1226 if (error != 0) { 1227 vfs_ref(mp); 1228 NFSVOPUNLOCK(dvp, 0); 1229 error = vfs_busy(mp, 0); 1230 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1231 vfs_rel(mp); 1232 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1233 vfs_unbusy(mp); 1234 error = ENOENT; 1235 } 1236 if (error != 0) 1237 return (error); 1238 } 1239 NFSVOPUNLOCK(dvp, 0); 1240 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1241 cnp->cn_lkflags); 1242 if (error == 0) 1243 newvp = NFSTOV(np); 1244 vfs_unbusy(mp); 1245 if (newvp != dvp) 1246 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1247 if (dvp->v_iflag & VI_DOOMED) { 1248 if (error == 0) { 1249 if (newvp == dvp) 1250 vrele(newvp); 1251 else 1252 vput(newvp); 1253 } 1254 error = ENOENT; 1255 } 1256 if (error != 0) 1257 return (error); 1258 if (attrflag) 1259 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1260 0, 1); 1261 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1262 FREE((caddr_t)nfhp, M_NFSFH); 1263 VREF(dvp); 1264 newvp = dvp; 1265 if (attrflag) 1266 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1267 0, 1); 1268 } else { 1269 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1270 cnp->cn_lkflags); 1271 if (error) 1272 return (error); 1273 newvp = NFSTOV(np); 1274 if (attrflag) 1275 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1276 0, 1); 1277 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1278 !(np->n_flag & NMODIFIED)) { 1279 /* 1280 * Flush the attribute cache when opening a 1281 * leaf node to ensure that fresh attributes 1282 * are fetched in nfs_open() since we did not 1283 * fetch attributes from the LOOKUP reply. 1284 */ 1285 mtx_lock(&np->n_mtx); 1286 np->n_attrstamp = 0; 1287 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1288 mtx_unlock(&np->n_mtx); 1289 } 1290 } 1291 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1292 cnp->cn_flags |= SAVENAME; 1293 if ((cnp->cn_flags & MAKEENTRY) && 1294 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && 1295 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) 1296 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1297 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); 1298 *vpp = newvp; 1299 return (0); 1300 } 1301 1302 /* 1303 * nfs read call. 1304 * Just call ncl_bioread() to do the work. 1305 */ 1306 static int 1307 nfs_read(struct vop_read_args *ap) 1308 { 1309 struct vnode *vp = ap->a_vp; 1310 1311 switch (vp->v_type) { 1312 case VREG: 1313 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1314 case VDIR: 1315 return (EISDIR); 1316 default: 1317 return (EOPNOTSUPP); 1318 } 1319 } 1320 1321 /* 1322 * nfs readlink call 1323 */ 1324 static int 1325 nfs_readlink(struct vop_readlink_args *ap) 1326 { 1327 struct vnode *vp = ap->a_vp; 1328 1329 if (vp->v_type != VLNK) 1330 return (EINVAL); 1331 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1332 } 1333 1334 /* 1335 * Do a readlink rpc. 1336 * Called by ncl_doio() from below the buffer cache. 1337 */ 1338 int 1339 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1340 { 1341 int error, ret, attrflag; 1342 struct nfsvattr nfsva; 1343 1344 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1345 &attrflag, NULL); 1346 if (attrflag) { 1347 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1348 if (ret && !error) 1349 error = ret; 1350 } 1351 if (error && NFS_ISV4(vp)) 1352 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1353 return (error); 1354 } 1355 1356 /* 1357 * nfs read rpc call 1358 * Ditto above 1359 */ 1360 int 1361 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1362 { 1363 int error, ret, attrflag; 1364 struct nfsvattr nfsva; 1365 1366 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, 1367 NULL); 1368 if (attrflag) { 1369 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1370 if (ret && !error) 1371 error = ret; 1372 } 1373 if (error && NFS_ISV4(vp)) 1374 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1375 return (error); 1376 } 1377 1378 /* 1379 * nfs write call 1380 */ 1381 int 1382 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1383 int *iomode, int *must_commit, int called_from_strategy) 1384 { 1385 struct nfsvattr nfsva; 1386 int error = 0, attrflag, ret; 1387 1388 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1389 uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy); 1390 if (attrflag) { 1391 if (VTONFS(vp)->n_flag & ND_NFSV4) 1392 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1393 1); 1394 else 1395 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1396 1); 1397 if (ret && !error) 1398 error = ret; 1399 } 1400 if (DOINGASYNC(vp)) 1401 *iomode = NFSWRITE_FILESYNC; 1402 if (error && NFS_ISV4(vp)) 1403 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1404 return (error); 1405 } 1406 1407 /* 1408 * nfs mknod rpc 1409 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1410 * mode set to specify the file type and the size field for rdev. 1411 */ 1412 static int 1413 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1414 struct vattr *vap) 1415 { 1416 struct nfsvattr nfsva, dnfsva; 1417 struct vnode *newvp = NULL; 1418 struct nfsnode *np = NULL, *dnp; 1419 struct nfsfh *nfhp; 1420 struct vattr vattr; 1421 int error = 0, attrflag, dattrflag; 1422 u_int32_t rdev; 1423 1424 if (vap->va_type == VCHR || vap->va_type == VBLK) 1425 rdev = vap->va_rdev; 1426 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1427 rdev = 0xffffffff; 1428 else 1429 return (EOPNOTSUPP); 1430 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1431 return (error); 1432 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1433 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1434 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1435 if (!error) { 1436 if (!nfhp) 1437 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1438 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1439 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1440 NULL); 1441 if (nfhp) 1442 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1443 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1444 } 1445 if (dattrflag) 1446 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1447 if (!error) { 1448 newvp = NFSTOV(np); 1449 if (attrflag != 0) { 1450 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1451 0, 1); 1452 if (error != 0) 1453 vput(newvp); 1454 } 1455 } 1456 if (!error) { 1457 *vpp = newvp; 1458 } else if (NFS_ISV4(dvp)) { 1459 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1460 vap->va_gid); 1461 } 1462 dnp = VTONFS(dvp); 1463 mtx_lock(&dnp->n_mtx); 1464 dnp->n_flag |= NMODIFIED; 1465 if (!dattrflag) { 1466 dnp->n_attrstamp = 0; 1467 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1468 } 1469 mtx_unlock(&dnp->n_mtx); 1470 return (error); 1471 } 1472 1473 /* 1474 * nfs mknod vop 1475 * just call nfs_mknodrpc() to do the work. 1476 */ 1477 /* ARGSUSED */ 1478 static int 1479 nfs_mknod(struct vop_mknod_args *ap) 1480 { 1481 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1482 } 1483 1484 static struct mtx nfs_cverf_mtx; 1485 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1486 MTX_DEF); 1487 1488 static nfsquad_t 1489 nfs_get_cverf(void) 1490 { 1491 static nfsquad_t cverf; 1492 nfsquad_t ret; 1493 static int cverf_initialized = 0; 1494 1495 mtx_lock(&nfs_cverf_mtx); 1496 if (cverf_initialized == 0) { 1497 cverf.lval[0] = arc4random(); 1498 cverf.lval[1] = arc4random(); 1499 cverf_initialized = 1; 1500 } else 1501 cverf.qval++; 1502 ret = cverf; 1503 mtx_unlock(&nfs_cverf_mtx); 1504 1505 return (ret); 1506 } 1507 1508 /* 1509 * nfs file create call 1510 */ 1511 static int 1512 nfs_create(struct vop_create_args *ap) 1513 { 1514 struct vnode *dvp = ap->a_dvp; 1515 struct vattr *vap = ap->a_vap; 1516 struct componentname *cnp = ap->a_cnp; 1517 struct nfsnode *np = NULL, *dnp; 1518 struct vnode *newvp = NULL; 1519 struct nfsmount *nmp; 1520 struct nfsvattr dnfsva, nfsva; 1521 struct nfsfh *nfhp; 1522 nfsquad_t cverf; 1523 int error = 0, attrflag, dattrflag, fmode = 0; 1524 struct vattr vattr; 1525 1526 /* 1527 * Oops, not for me.. 1528 */ 1529 if (vap->va_type == VSOCK) 1530 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1531 1532 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1533 return (error); 1534 if (vap->va_vaflags & VA_EXCLUSIVE) 1535 fmode |= O_EXCL; 1536 dnp = VTONFS(dvp); 1537 nmp = VFSTONFS(vnode_mount(dvp)); 1538 again: 1539 /* For NFSv4, wait until any remove is done. */ 1540 mtx_lock(&dnp->n_mtx); 1541 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1542 dnp->n_flag |= NREMOVEWANT; 1543 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1544 } 1545 mtx_unlock(&dnp->n_mtx); 1546 1547 cverf = nfs_get_cverf(); 1548 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1549 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1550 &nfhp, &attrflag, &dattrflag, NULL); 1551 if (!error) { 1552 if (nfhp == NULL) 1553 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1554 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1555 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1556 NULL); 1557 if (nfhp != NULL) 1558 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1559 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1560 } 1561 if (dattrflag) 1562 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1563 if (!error) { 1564 newvp = NFSTOV(np); 1565 if (attrflag == 0) 1566 error = nfsrpc_getattr(newvp, cnp->cn_cred, 1567 cnp->cn_thread, &nfsva, NULL); 1568 if (error == 0) 1569 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1570 0, 1); 1571 } 1572 if (error) { 1573 if (newvp != NULL) { 1574 vput(newvp); 1575 newvp = NULL; 1576 } 1577 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1578 error == NFSERR_NOTSUPP) { 1579 fmode &= ~O_EXCL; 1580 goto again; 1581 } 1582 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1583 if (nfscl_checksattr(vap, &nfsva)) { 1584 /* 1585 * We are normally called with only a partially 1586 * initialized VAP. Since the NFSv3 spec says that 1587 * the server may use the file attributes to 1588 * store the verifier, the spec requires us to do a 1589 * SETATTR RPC. FreeBSD servers store the verifier in 1590 * atime, but we can't really assume that all servers 1591 * will so we ensure that our SETATTR sets both atime 1592 * and mtime. 1593 */ 1594 if (vap->va_mtime.tv_sec == VNOVAL) 1595 vfs_timestamp(&vap->va_mtime); 1596 if (vap->va_atime.tv_sec == VNOVAL) 1597 vap->va_atime = vap->va_mtime; 1598 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1599 cnp->cn_thread, &nfsva, &attrflag, NULL); 1600 if (error && (vap->va_uid != (uid_t)VNOVAL || 1601 vap->va_gid != (gid_t)VNOVAL)) { 1602 /* try again without setting uid/gid */ 1603 vap->va_uid = (uid_t)VNOVAL; 1604 vap->va_gid = (uid_t)VNOVAL; 1605 error = nfsrpc_setattr(newvp, vap, NULL, 1606 cnp->cn_cred, cnp->cn_thread, &nfsva, 1607 &attrflag, NULL); 1608 } 1609 if (attrflag) 1610 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1611 NULL, 0, 1); 1612 if (error != 0) 1613 vput(newvp); 1614 } 1615 } 1616 if (!error) { 1617 if ((cnp->cn_flags & MAKEENTRY) && attrflag) 1618 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1619 NULL); 1620 *ap->a_vpp = newvp; 1621 } else if (NFS_ISV4(dvp)) { 1622 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1623 vap->va_gid); 1624 } 1625 mtx_lock(&dnp->n_mtx); 1626 dnp->n_flag |= NMODIFIED; 1627 if (!dattrflag) { 1628 dnp->n_attrstamp = 0; 1629 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1630 } 1631 mtx_unlock(&dnp->n_mtx); 1632 return (error); 1633 } 1634 1635 /* 1636 * nfs file remove call 1637 * To try and make nfs semantics closer to ufs semantics, a file that has 1638 * other processes using the vnode is renamed instead of removed and then 1639 * removed later on the last close. 1640 * - If v_usecount > 1 1641 * If a rename is not already in the works 1642 * call nfs_sillyrename() to set it up 1643 * else 1644 * do the remove rpc 1645 */ 1646 static int 1647 nfs_remove(struct vop_remove_args *ap) 1648 { 1649 struct vnode *vp = ap->a_vp; 1650 struct vnode *dvp = ap->a_dvp; 1651 struct componentname *cnp = ap->a_cnp; 1652 struct nfsnode *np = VTONFS(vp); 1653 int error = 0; 1654 struct vattr vattr; 1655 1656 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1657 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1658 if (vp->v_type == VDIR) 1659 error = EPERM; 1660 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1661 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1662 vattr.va_nlink > 1)) { 1663 /* 1664 * Purge the name cache so that the chance of a lookup for 1665 * the name succeeding while the remove is in progress is 1666 * minimized. Without node locking it can still happen, such 1667 * that an I/O op returns ESTALE, but since you get this if 1668 * another host removes the file.. 1669 */ 1670 cache_purge(vp); 1671 /* 1672 * throw away biocache buffers, mainly to avoid 1673 * unnecessary delayed writes later. 1674 */ 1675 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1676 /* Do the rpc */ 1677 if (error != EINTR && error != EIO) 1678 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1679 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1680 /* 1681 * Kludge City: If the first reply to the remove rpc is lost.. 1682 * the reply to the retransmitted request will be ENOENT 1683 * since the file was in fact removed 1684 * Therefore, we cheat and return success. 1685 */ 1686 if (error == ENOENT) 1687 error = 0; 1688 } else if (!np->n_sillyrename) 1689 error = nfs_sillyrename(dvp, vp, cnp); 1690 mtx_lock(&np->n_mtx); 1691 np->n_attrstamp = 0; 1692 mtx_unlock(&np->n_mtx); 1693 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1694 return (error); 1695 } 1696 1697 /* 1698 * nfs file remove rpc called from nfs_inactive 1699 */ 1700 int 1701 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1702 { 1703 /* 1704 * Make sure that the directory vnode is still valid. 1705 * XXX we should lock sp->s_dvp here. 1706 */ 1707 if (sp->s_dvp->v_type == VBAD) 1708 return (0); 1709 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1710 sp->s_cred, NULL)); 1711 } 1712 1713 /* 1714 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1715 */ 1716 static int 1717 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1718 int namelen, struct ucred *cred, struct thread *td) 1719 { 1720 struct nfsvattr dnfsva; 1721 struct nfsnode *dnp = VTONFS(dvp); 1722 int error = 0, dattrflag; 1723 1724 mtx_lock(&dnp->n_mtx); 1725 dnp->n_flag |= NREMOVEINPROG; 1726 mtx_unlock(&dnp->n_mtx); 1727 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1728 &dattrflag, NULL); 1729 mtx_lock(&dnp->n_mtx); 1730 if ((dnp->n_flag & NREMOVEWANT)) { 1731 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1732 mtx_unlock(&dnp->n_mtx); 1733 wakeup((caddr_t)dnp); 1734 } else { 1735 dnp->n_flag &= ~NREMOVEINPROG; 1736 mtx_unlock(&dnp->n_mtx); 1737 } 1738 if (dattrflag) 1739 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1740 mtx_lock(&dnp->n_mtx); 1741 dnp->n_flag |= NMODIFIED; 1742 if (!dattrflag) { 1743 dnp->n_attrstamp = 0; 1744 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1745 } 1746 mtx_unlock(&dnp->n_mtx); 1747 if (error && NFS_ISV4(dvp)) 1748 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1749 return (error); 1750 } 1751 1752 /* 1753 * nfs file rename call 1754 */ 1755 static int 1756 nfs_rename(struct vop_rename_args *ap) 1757 { 1758 struct vnode *fvp = ap->a_fvp; 1759 struct vnode *tvp = ap->a_tvp; 1760 struct vnode *fdvp = ap->a_fdvp; 1761 struct vnode *tdvp = ap->a_tdvp; 1762 struct componentname *tcnp = ap->a_tcnp; 1763 struct componentname *fcnp = ap->a_fcnp; 1764 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1765 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1766 struct nfsv4node *newv4 = NULL; 1767 int error; 1768 1769 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1770 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1771 /* Check for cross-device rename */ 1772 if ((fvp->v_mount != tdvp->v_mount) || 1773 (tvp && (fvp->v_mount != tvp->v_mount))) { 1774 error = EXDEV; 1775 goto out; 1776 } 1777 1778 if (fvp == tvp) { 1779 ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); 1780 error = 0; 1781 goto out; 1782 } 1783 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1784 goto out; 1785 1786 /* 1787 * We have to flush B_DELWRI data prior to renaming 1788 * the file. If we don't, the delayed-write buffers 1789 * can be flushed out later after the file has gone stale 1790 * under NFSV3. NFSV2 does not have this problem because 1791 * ( as far as I can tell ) it flushes dirty buffers more 1792 * often. 1793 * 1794 * Skip the rename operation if the fsync fails, this can happen 1795 * due to the server's volume being full, when we pushed out data 1796 * that was written back to our cache earlier. Not checking for 1797 * this condition can result in potential (silent) data loss. 1798 */ 1799 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1800 NFSVOPUNLOCK(fvp, 0); 1801 if (!error && tvp) 1802 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1803 if (error) 1804 goto out; 1805 1806 /* 1807 * If the tvp exists and is in use, sillyrename it before doing the 1808 * rename of the new file over it. 1809 * XXX Can't sillyrename a directory. 1810 */ 1811 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1812 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1813 vput(tvp); 1814 tvp = NULL; 1815 } 1816 1817 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1818 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1819 tcnp->cn_thread); 1820 1821 if (error == 0 && NFS_ISV4(tdvp)) { 1822 /* 1823 * For NFSv4, check to see if it is the same name and 1824 * replace the name, if it is different. 1825 */ 1826 MALLOC(newv4, struct nfsv4node *, 1827 sizeof (struct nfsv4node) + 1828 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1829 M_NFSV4NODE, M_WAITOK); 1830 mtx_lock(&tdnp->n_mtx); 1831 mtx_lock(&fnp->n_mtx); 1832 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1833 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1834 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1835 tcnp->cn_namelen) || 1836 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1837 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1838 tdnp->n_fhp->nfh_len))) { 1839 #ifdef notdef 1840 { char nnn[100]; int nnnl; 1841 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1842 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1843 nnn[nnnl] = '\0'; 1844 printf("ren replace=%s\n",nnn); 1845 } 1846 #endif 1847 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); 1848 fnp->n_v4 = newv4; 1849 newv4 = NULL; 1850 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1851 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1852 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1853 tdnp->n_fhp->nfh_len); 1854 NFSBCOPY(tcnp->cn_nameptr, 1855 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1856 } 1857 mtx_unlock(&tdnp->n_mtx); 1858 mtx_unlock(&fnp->n_mtx); 1859 if (newv4 != NULL) 1860 FREE((caddr_t)newv4, M_NFSV4NODE); 1861 } 1862 1863 if (fvp->v_type == VDIR) { 1864 if (tvp != NULL && tvp->v_type == VDIR) 1865 cache_purge(tdvp); 1866 cache_purge(fdvp); 1867 } 1868 1869 out: 1870 if (tdvp == tvp) 1871 vrele(tdvp); 1872 else 1873 vput(tdvp); 1874 if (tvp) 1875 vput(tvp); 1876 vrele(fdvp); 1877 vrele(fvp); 1878 /* 1879 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1880 */ 1881 if (error == ENOENT) 1882 error = 0; 1883 return (error); 1884 } 1885 1886 /* 1887 * nfs file rename rpc called from nfs_remove() above 1888 */ 1889 static int 1890 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1891 struct sillyrename *sp) 1892 { 1893 1894 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1895 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1896 scnp->cn_thread)); 1897 } 1898 1899 /* 1900 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1901 */ 1902 static int 1903 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1904 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1905 int tnamelen, struct ucred *cred, struct thread *td) 1906 { 1907 struct nfsvattr fnfsva, tnfsva; 1908 struct nfsnode *fdnp = VTONFS(fdvp); 1909 struct nfsnode *tdnp = VTONFS(tdvp); 1910 int error = 0, fattrflag, tattrflag; 1911 1912 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1913 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1914 &tattrflag, NULL, NULL); 1915 mtx_lock(&fdnp->n_mtx); 1916 fdnp->n_flag |= NMODIFIED; 1917 if (fattrflag != 0) { 1918 mtx_unlock(&fdnp->n_mtx); 1919 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1920 } else { 1921 fdnp->n_attrstamp = 0; 1922 mtx_unlock(&fdnp->n_mtx); 1923 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1924 } 1925 mtx_lock(&tdnp->n_mtx); 1926 tdnp->n_flag |= NMODIFIED; 1927 if (tattrflag != 0) { 1928 mtx_unlock(&tdnp->n_mtx); 1929 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1930 } else { 1931 tdnp->n_attrstamp = 0; 1932 mtx_unlock(&tdnp->n_mtx); 1933 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1934 } 1935 if (error && NFS_ISV4(fdvp)) 1936 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1937 return (error); 1938 } 1939 1940 /* 1941 * nfs hard link create call 1942 */ 1943 static int 1944 nfs_link(struct vop_link_args *ap) 1945 { 1946 struct vnode *vp = ap->a_vp; 1947 struct vnode *tdvp = ap->a_tdvp; 1948 struct componentname *cnp = ap->a_cnp; 1949 struct nfsnode *np, *tdnp; 1950 struct nfsvattr nfsva, dnfsva; 1951 int error = 0, attrflag, dattrflag; 1952 1953 if (vp->v_mount != tdvp->v_mount) { 1954 return (EXDEV); 1955 } 1956 1957 /* 1958 * Push all writes to the server, so that the attribute cache 1959 * doesn't get "out of sync" with the server. 1960 * XXX There should be a better way! 1961 */ 1962 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1963 1964 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1965 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1966 &dattrflag, NULL); 1967 tdnp = VTONFS(tdvp); 1968 mtx_lock(&tdnp->n_mtx); 1969 tdnp->n_flag |= NMODIFIED; 1970 if (dattrflag != 0) { 1971 mtx_unlock(&tdnp->n_mtx); 1972 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 1973 } else { 1974 tdnp->n_attrstamp = 0; 1975 mtx_unlock(&tdnp->n_mtx); 1976 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1977 } 1978 if (attrflag) 1979 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1980 else { 1981 np = VTONFS(vp); 1982 mtx_lock(&np->n_mtx); 1983 np->n_attrstamp = 0; 1984 mtx_unlock(&np->n_mtx); 1985 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1986 } 1987 /* 1988 * If negative lookup caching is enabled, I might as well 1989 * add an entry for this node. Not necessary for correctness, 1990 * but if negative caching is enabled, then the system 1991 * must care about lookup caching hit rate, so... 1992 */ 1993 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 1994 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 1995 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); 1996 } 1997 if (error && NFS_ISV4(vp)) 1998 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 1999 (gid_t)0); 2000 return (error); 2001 } 2002 2003 /* 2004 * nfs symbolic link create call 2005 */ 2006 static int 2007 nfs_symlink(struct vop_symlink_args *ap) 2008 { 2009 struct vnode *dvp = ap->a_dvp; 2010 struct vattr *vap = ap->a_vap; 2011 struct componentname *cnp = ap->a_cnp; 2012 struct nfsvattr nfsva, dnfsva; 2013 struct nfsfh *nfhp; 2014 struct nfsnode *np = NULL, *dnp; 2015 struct vnode *newvp = NULL; 2016 int error = 0, attrflag, dattrflag, ret; 2017 2018 vap->va_type = VLNK; 2019 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2020 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2021 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2022 if (nfhp) { 2023 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2024 &np, NULL, LK_EXCLUSIVE); 2025 if (!ret) 2026 newvp = NFSTOV(np); 2027 else if (!error) 2028 error = ret; 2029 } 2030 if (newvp != NULL) { 2031 if (attrflag) 2032 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2033 0, 1); 2034 } else if (!error) { 2035 /* 2036 * If we do not have an error and we could not extract the 2037 * newvp from the response due to the request being NFSv2, we 2038 * have to do a lookup in order to obtain a newvp to return. 2039 */ 2040 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2041 cnp->cn_cred, cnp->cn_thread, &np); 2042 if (!error) 2043 newvp = NFSTOV(np); 2044 } 2045 if (error) { 2046 if (newvp) 2047 vput(newvp); 2048 if (NFS_ISV4(dvp)) 2049 error = nfscl_maperr(cnp->cn_thread, error, 2050 vap->va_uid, vap->va_gid); 2051 } else { 2052 *ap->a_vpp = newvp; 2053 } 2054 2055 dnp = VTONFS(dvp); 2056 mtx_lock(&dnp->n_mtx); 2057 dnp->n_flag |= NMODIFIED; 2058 if (dattrflag != 0) { 2059 mtx_unlock(&dnp->n_mtx); 2060 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2061 } else { 2062 dnp->n_attrstamp = 0; 2063 mtx_unlock(&dnp->n_mtx); 2064 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2065 } 2066 /* 2067 * If negative lookup caching is enabled, I might as well 2068 * add an entry for this node. Not necessary for correctness, 2069 * but if negative caching is enabled, then the system 2070 * must care about lookup caching hit rate, so... 2071 */ 2072 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2073 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2074 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); 2075 } 2076 return (error); 2077 } 2078 2079 /* 2080 * nfs make dir call 2081 */ 2082 static int 2083 nfs_mkdir(struct vop_mkdir_args *ap) 2084 { 2085 struct vnode *dvp = ap->a_dvp; 2086 struct vattr *vap = ap->a_vap; 2087 struct componentname *cnp = ap->a_cnp; 2088 struct nfsnode *np = NULL, *dnp; 2089 struct vnode *newvp = NULL; 2090 struct vattr vattr; 2091 struct nfsfh *nfhp; 2092 struct nfsvattr nfsva, dnfsva; 2093 int error = 0, attrflag, dattrflag, ret; 2094 2095 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2096 return (error); 2097 vap->va_type = VDIR; 2098 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2099 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2100 &attrflag, &dattrflag, NULL); 2101 dnp = VTONFS(dvp); 2102 mtx_lock(&dnp->n_mtx); 2103 dnp->n_flag |= NMODIFIED; 2104 if (dattrflag != 0) { 2105 mtx_unlock(&dnp->n_mtx); 2106 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2107 } else { 2108 dnp->n_attrstamp = 0; 2109 mtx_unlock(&dnp->n_mtx); 2110 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2111 } 2112 if (nfhp) { 2113 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2114 &np, NULL, LK_EXCLUSIVE); 2115 if (!ret) { 2116 newvp = NFSTOV(np); 2117 if (attrflag) 2118 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2119 NULL, 0, 1); 2120 } else if (!error) 2121 error = ret; 2122 } 2123 if (!error && newvp == NULL) { 2124 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2125 cnp->cn_cred, cnp->cn_thread, &np); 2126 if (!error) { 2127 newvp = NFSTOV(np); 2128 if (newvp->v_type != VDIR) 2129 error = EEXIST; 2130 } 2131 } 2132 if (error) { 2133 if (newvp) 2134 vput(newvp); 2135 if (NFS_ISV4(dvp)) 2136 error = nfscl_maperr(cnp->cn_thread, error, 2137 vap->va_uid, vap->va_gid); 2138 } else { 2139 /* 2140 * If negative lookup caching is enabled, I might as well 2141 * add an entry for this node. Not necessary for correctness, 2142 * but if negative caching is enabled, then the system 2143 * must care about lookup caching hit rate, so... 2144 */ 2145 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2146 (cnp->cn_flags & MAKEENTRY) && 2147 attrflag != 0 && dattrflag != 0) 2148 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 2149 &dnfsva.na_ctime); 2150 *ap->a_vpp = newvp; 2151 } 2152 return (error); 2153 } 2154 2155 /* 2156 * nfs remove directory call 2157 */ 2158 static int 2159 nfs_rmdir(struct vop_rmdir_args *ap) 2160 { 2161 struct vnode *vp = ap->a_vp; 2162 struct vnode *dvp = ap->a_dvp; 2163 struct componentname *cnp = ap->a_cnp; 2164 struct nfsnode *dnp; 2165 struct nfsvattr dnfsva; 2166 int error, dattrflag; 2167 2168 if (dvp == vp) 2169 return (EINVAL); 2170 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2171 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2172 dnp = VTONFS(dvp); 2173 mtx_lock(&dnp->n_mtx); 2174 dnp->n_flag |= NMODIFIED; 2175 if (dattrflag != 0) { 2176 mtx_unlock(&dnp->n_mtx); 2177 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2178 } else { 2179 dnp->n_attrstamp = 0; 2180 mtx_unlock(&dnp->n_mtx); 2181 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2182 } 2183 2184 cache_purge(dvp); 2185 cache_purge(vp); 2186 if (error && NFS_ISV4(dvp)) 2187 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2188 (gid_t)0); 2189 /* 2190 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2191 */ 2192 if (error == ENOENT) 2193 error = 0; 2194 return (error); 2195 } 2196 2197 /* 2198 * nfs readdir call 2199 */ 2200 static int 2201 nfs_readdir(struct vop_readdir_args *ap) 2202 { 2203 struct vnode *vp = ap->a_vp; 2204 struct nfsnode *np = VTONFS(vp); 2205 struct uio *uio = ap->a_uio; 2206 ssize_t tresid; 2207 int error = 0; 2208 struct vattr vattr; 2209 2210 if (vp->v_type != VDIR) 2211 return(EPERM); 2212 2213 /* 2214 * First, check for hit on the EOF offset cache 2215 */ 2216 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2217 (np->n_flag & NMODIFIED) == 0) { 2218 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2219 mtx_lock(&np->n_mtx); 2220 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2221 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2222 mtx_unlock(&np->n_mtx); 2223 NFSINCRGLOBAL(newnfsstats.direofcache_hits); 2224 return (0); 2225 } else 2226 mtx_unlock(&np->n_mtx); 2227 } 2228 } 2229 2230 /* 2231 * Call ncl_bioread() to do the real work. 2232 */ 2233 tresid = uio->uio_resid; 2234 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2235 2236 if (!error && uio->uio_resid == tresid) 2237 NFSINCRGLOBAL(newnfsstats.direofcache_misses); 2238 return (error); 2239 } 2240 2241 /* 2242 * Readdir rpc call. 2243 * Called from below the buffer cache by ncl_doio(). 2244 */ 2245 int 2246 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2247 struct thread *td) 2248 { 2249 struct nfsvattr nfsva; 2250 nfsuint64 *cookiep, cookie; 2251 struct nfsnode *dnp = VTONFS(vp); 2252 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2253 int error = 0, eof, attrflag; 2254 2255 KASSERT(uiop->uio_iovcnt == 1 && 2256 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2257 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2258 ("nfs readdirrpc bad uio")); 2259 2260 /* 2261 * If there is no cookie, assume directory was stale. 2262 */ 2263 ncl_dircookie_lock(dnp); 2264 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2265 if (cookiep) { 2266 cookie = *cookiep; 2267 ncl_dircookie_unlock(dnp); 2268 } else { 2269 ncl_dircookie_unlock(dnp); 2270 return (NFSERR_BAD_COOKIE); 2271 } 2272 2273 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2274 (void)ncl_fsinfo(nmp, vp, cred, td); 2275 2276 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2277 &attrflag, &eof, NULL); 2278 if (attrflag) 2279 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2280 2281 if (!error) { 2282 /* 2283 * We are now either at the end of the directory or have filled 2284 * the block. 2285 */ 2286 if (eof) 2287 dnp->n_direofoffset = uiop->uio_offset; 2288 else { 2289 if (uiop->uio_resid > 0) 2290 ncl_printf("EEK! readdirrpc resid > 0\n"); 2291 ncl_dircookie_lock(dnp); 2292 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2293 *cookiep = cookie; 2294 ncl_dircookie_unlock(dnp); 2295 } 2296 } else if (NFS_ISV4(vp)) { 2297 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2298 } 2299 return (error); 2300 } 2301 2302 /* 2303 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2304 */ 2305 int 2306 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2307 struct thread *td) 2308 { 2309 struct nfsvattr nfsva; 2310 nfsuint64 *cookiep, cookie; 2311 struct nfsnode *dnp = VTONFS(vp); 2312 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2313 int error = 0, attrflag, eof; 2314 2315 KASSERT(uiop->uio_iovcnt == 1 && 2316 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2317 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2318 ("nfs readdirplusrpc bad uio")); 2319 2320 /* 2321 * If there is no cookie, assume directory was stale. 2322 */ 2323 ncl_dircookie_lock(dnp); 2324 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2325 if (cookiep) { 2326 cookie = *cookiep; 2327 ncl_dircookie_unlock(dnp); 2328 } else { 2329 ncl_dircookie_unlock(dnp); 2330 return (NFSERR_BAD_COOKIE); 2331 } 2332 2333 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2334 (void)ncl_fsinfo(nmp, vp, cred, td); 2335 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2336 &attrflag, &eof, NULL); 2337 if (attrflag) 2338 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2339 2340 if (!error) { 2341 /* 2342 * We are now either at end of the directory or have filled the 2343 * the block. 2344 */ 2345 if (eof) 2346 dnp->n_direofoffset = uiop->uio_offset; 2347 else { 2348 if (uiop->uio_resid > 0) 2349 ncl_printf("EEK! readdirplusrpc resid > 0\n"); 2350 ncl_dircookie_lock(dnp); 2351 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2352 *cookiep = cookie; 2353 ncl_dircookie_unlock(dnp); 2354 } 2355 } else if (NFS_ISV4(vp)) { 2356 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2357 } 2358 return (error); 2359 } 2360 2361 /* 2362 * Silly rename. To make the NFS filesystem that is stateless look a little 2363 * more like the "ufs" a remove of an active vnode is translated to a rename 2364 * to a funny looking filename that is removed by nfs_inactive on the 2365 * nfsnode. There is the potential for another process on a different client 2366 * to create the same funny name between the nfs_lookitup() fails and the 2367 * nfs_rename() completes, but... 2368 */ 2369 static int 2370 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2371 { 2372 struct sillyrename *sp; 2373 struct nfsnode *np; 2374 int error; 2375 short pid; 2376 unsigned int lticks; 2377 2378 cache_purge(dvp); 2379 np = VTONFS(vp); 2380 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2381 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2382 M_NEWNFSREQ, M_WAITOK); 2383 sp->s_cred = crhold(cnp->cn_cred); 2384 sp->s_dvp = dvp; 2385 VREF(dvp); 2386 2387 /* 2388 * Fudge together a funny name. 2389 * Changing the format of the funny name to accomodate more 2390 * sillynames per directory. 2391 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2392 * CPU ticks since boot. 2393 */ 2394 pid = cnp->cn_thread->td_proc->p_pid; 2395 lticks = (unsigned int)ticks; 2396 for ( ; ; ) { 2397 sp->s_namlen = sprintf(sp->s_name, 2398 ".nfs.%08x.%04x4.4", lticks, 2399 pid); 2400 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2401 cnp->cn_thread, NULL)) 2402 break; 2403 lticks++; 2404 } 2405 error = nfs_renameit(dvp, vp, cnp, sp); 2406 if (error) 2407 goto bad; 2408 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2409 cnp->cn_thread, &np); 2410 np->n_sillyrename = sp; 2411 return (0); 2412 bad: 2413 vrele(sp->s_dvp); 2414 crfree(sp->s_cred); 2415 free((caddr_t)sp, M_NEWNFSREQ); 2416 return (error); 2417 } 2418 2419 /* 2420 * Look up a file name and optionally either update the file handle or 2421 * allocate an nfsnode, depending on the value of npp. 2422 * npp == NULL --> just do the lookup 2423 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2424 * handled too 2425 * *npp != NULL --> update the file handle in the vnode 2426 */ 2427 static int 2428 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2429 struct thread *td, struct nfsnode **npp) 2430 { 2431 struct vnode *newvp = NULL, *vp; 2432 struct nfsnode *np, *dnp = VTONFS(dvp); 2433 struct nfsfh *nfhp, *onfhp; 2434 struct nfsvattr nfsva, dnfsva; 2435 struct componentname cn; 2436 int error = 0, attrflag, dattrflag; 2437 u_int hash; 2438 2439 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2440 &nfhp, &attrflag, &dattrflag, NULL); 2441 if (dattrflag) 2442 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2443 if (npp && !error) { 2444 if (*npp != NULL) { 2445 np = *npp; 2446 vp = NFSTOV(np); 2447 /* 2448 * For NFSv4, check to see if it is the same name and 2449 * replace the name, if it is different. 2450 */ 2451 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2452 (np->n_v4->n4_namelen != len || 2453 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2454 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2455 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2456 dnp->n_fhp->nfh_len))) { 2457 #ifdef notdef 2458 { char nnn[100]; int nnnl; 2459 nnnl = (len < 100) ? len : 99; 2460 bcopy(name, nnn, nnnl); 2461 nnn[nnnl] = '\0'; 2462 printf("replace=%s\n",nnn); 2463 } 2464 #endif 2465 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 2466 MALLOC(np->n_v4, struct nfsv4node *, 2467 sizeof (struct nfsv4node) + 2468 dnp->n_fhp->nfh_len + len - 1, 2469 M_NFSV4NODE, M_WAITOK); 2470 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2471 np->n_v4->n4_namelen = len; 2472 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2473 dnp->n_fhp->nfh_len); 2474 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2475 } 2476 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2477 FNV1_32_INIT); 2478 onfhp = np->n_fhp; 2479 /* 2480 * Rehash node for new file handle. 2481 */ 2482 vfs_hash_rehash(vp, hash); 2483 np->n_fhp = nfhp; 2484 if (onfhp != NULL) 2485 FREE((caddr_t)onfhp, M_NFSFH); 2486 newvp = NFSTOV(np); 2487 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2488 FREE((caddr_t)nfhp, M_NFSFH); 2489 VREF(dvp); 2490 newvp = dvp; 2491 } else { 2492 cn.cn_nameptr = name; 2493 cn.cn_namelen = len; 2494 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2495 &np, NULL, LK_EXCLUSIVE); 2496 if (error) 2497 return (error); 2498 newvp = NFSTOV(np); 2499 } 2500 if (!attrflag && *npp == NULL) { 2501 if (newvp == dvp) 2502 vrele(newvp); 2503 else 2504 vput(newvp); 2505 return (ENOENT); 2506 } 2507 if (attrflag) 2508 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2509 0, 1); 2510 } 2511 if (npp && *npp == NULL) { 2512 if (error) { 2513 if (newvp) { 2514 if (newvp == dvp) 2515 vrele(newvp); 2516 else 2517 vput(newvp); 2518 } 2519 } else 2520 *npp = np; 2521 } 2522 if (error && NFS_ISV4(dvp)) 2523 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2524 return (error); 2525 } 2526 2527 /* 2528 * Nfs Version 3 and 4 commit rpc 2529 */ 2530 int 2531 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2532 struct thread *td) 2533 { 2534 struct nfsvattr nfsva; 2535 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2536 int error, attrflag; 2537 u_char verf[NFSX_VERF]; 2538 2539 mtx_lock(&nmp->nm_mtx); 2540 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2541 mtx_unlock(&nmp->nm_mtx); 2542 return (0); 2543 } 2544 mtx_unlock(&nmp->nm_mtx); 2545 error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva, 2546 &attrflag, NULL); 2547 if (!error) { 2548 mtx_lock(&nmp->nm_mtx); 2549 if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) { 2550 NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF); 2551 error = NFSERR_STALEWRITEVERF; 2552 } 2553 mtx_unlock(&nmp->nm_mtx); 2554 if (!error && attrflag) 2555 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2556 0, 1); 2557 } else if (NFS_ISV4(vp)) { 2558 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2559 } 2560 return (error); 2561 } 2562 2563 /* 2564 * Strategy routine. 2565 * For async requests when nfsiod(s) are running, queue the request by 2566 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2567 * request. 2568 */ 2569 static int 2570 nfs_strategy(struct vop_strategy_args *ap) 2571 { 2572 struct buf *bp = ap->a_bp; 2573 struct ucred *cr; 2574 2575 KASSERT(!(bp->b_flags & B_DONE), 2576 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2577 BUF_ASSERT_HELD(bp); 2578 2579 if (bp->b_iocmd == BIO_READ) 2580 cr = bp->b_rcred; 2581 else 2582 cr = bp->b_wcred; 2583 2584 /* 2585 * If the op is asynchronous and an i/o daemon is waiting 2586 * queue the request, wake it up and wait for completion 2587 * otherwise just do it ourselves. 2588 */ 2589 if ((bp->b_flags & B_ASYNC) == 0 || 2590 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) 2591 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); 2592 return (0); 2593 } 2594 2595 /* 2596 * fsync vnode op. Just call ncl_flush() with commit == 1. 2597 */ 2598 /* ARGSUSED */ 2599 static int 2600 nfs_fsync(struct vop_fsync_args *ap) 2601 { 2602 2603 if (ap->a_vp->v_type != VREG) { 2604 /* 2605 * For NFS, metadata is changed synchronously on the server, 2606 * so there is nothing to flush. Also, ncl_flush() clears 2607 * the NMODIFIED flag and that shouldn't be done here for 2608 * directories. 2609 */ 2610 return (0); 2611 } 2612 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); 2613 } 2614 2615 /* 2616 * Flush all the blocks associated with a vnode. 2617 * Walk through the buffer pool and push any dirty pages 2618 * associated with the vnode. 2619 * If the called_from_renewthread argument is TRUE, it has been called 2620 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2621 * waiting for a buffer write to complete. 2622 */ 2623 int 2624 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, 2625 int commit, int called_from_renewthread) 2626 { 2627 struct nfsnode *np = VTONFS(vp); 2628 struct buf *bp; 2629 int i; 2630 struct buf *nbp; 2631 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2632 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2633 int passone = 1, trycnt = 0; 2634 u_quad_t off, endoff, toff; 2635 struct ucred* wcred = NULL; 2636 struct buf **bvec = NULL; 2637 struct bufobj *bo; 2638 #ifndef NFS_COMMITBVECSIZ 2639 #define NFS_COMMITBVECSIZ 20 2640 #endif 2641 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2642 int bvecsize = 0, bveccount; 2643 2644 if (called_from_renewthread != 0) 2645 slptimeo = hz; 2646 if (nmp->nm_flag & NFSMNT_INT) 2647 slpflag = NFS_PCATCH; 2648 if (!commit) 2649 passone = 0; 2650 bo = &vp->v_bufobj; 2651 /* 2652 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2653 * server, but has not been committed to stable storage on the server 2654 * yet. On the first pass, the byte range is worked out and the commit 2655 * rpc is done. On the second pass, ncl_writebp() is called to do the 2656 * job. 2657 */ 2658 again: 2659 off = (u_quad_t)-1; 2660 endoff = 0; 2661 bvecpos = 0; 2662 if (NFS_ISV34(vp) && commit) { 2663 if (bvec != NULL && bvec != bvec_on_stack) 2664 free(bvec, M_TEMP); 2665 /* 2666 * Count up how many buffers waiting for a commit. 2667 */ 2668 bveccount = 0; 2669 BO_LOCK(bo); 2670 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2671 if (!BUF_ISLOCKED(bp) && 2672 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2673 == (B_DELWRI | B_NEEDCOMMIT)) 2674 bveccount++; 2675 } 2676 /* 2677 * Allocate space to remember the list of bufs to commit. It is 2678 * important to use M_NOWAIT here to avoid a race with nfs_write. 2679 * If we can't get memory (for whatever reason), we will end up 2680 * committing the buffers one-by-one in the loop below. 2681 */ 2682 if (bveccount > NFS_COMMITBVECSIZ) { 2683 /* 2684 * Release the vnode interlock to avoid a lock 2685 * order reversal. 2686 */ 2687 BO_UNLOCK(bo); 2688 bvec = (struct buf **) 2689 malloc(bveccount * sizeof(struct buf *), 2690 M_TEMP, M_NOWAIT); 2691 BO_LOCK(bo); 2692 if (bvec == NULL) { 2693 bvec = bvec_on_stack; 2694 bvecsize = NFS_COMMITBVECSIZ; 2695 } else 2696 bvecsize = bveccount; 2697 } else { 2698 bvec = bvec_on_stack; 2699 bvecsize = NFS_COMMITBVECSIZ; 2700 } 2701 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2702 if (bvecpos >= bvecsize) 2703 break; 2704 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2705 nbp = TAILQ_NEXT(bp, b_bobufs); 2706 continue; 2707 } 2708 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2709 (B_DELWRI | B_NEEDCOMMIT)) { 2710 BUF_UNLOCK(bp); 2711 nbp = TAILQ_NEXT(bp, b_bobufs); 2712 continue; 2713 } 2714 BO_UNLOCK(bo); 2715 bremfree(bp); 2716 /* 2717 * Work out if all buffers are using the same cred 2718 * so we can deal with them all with one commit. 2719 * 2720 * NOTE: we are not clearing B_DONE here, so we have 2721 * to do it later on in this routine if we intend to 2722 * initiate I/O on the bp. 2723 * 2724 * Note: to avoid loopback deadlocks, we do not 2725 * assign b_runningbufspace. 2726 */ 2727 if (wcred == NULL) 2728 wcred = bp->b_wcred; 2729 else if (wcred != bp->b_wcred) 2730 wcred = NOCRED; 2731 vfs_busy_pages(bp, 1); 2732 2733 BO_LOCK(bo); 2734 /* 2735 * bp is protected by being locked, but nbp is not 2736 * and vfs_busy_pages() may sleep. We have to 2737 * recalculate nbp. 2738 */ 2739 nbp = TAILQ_NEXT(bp, b_bobufs); 2740 2741 /* 2742 * A list of these buffers is kept so that the 2743 * second loop knows which buffers have actually 2744 * been committed. This is necessary, since there 2745 * may be a race between the commit rpc and new 2746 * uncommitted writes on the file. 2747 */ 2748 bvec[bvecpos++] = bp; 2749 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2750 bp->b_dirtyoff; 2751 if (toff < off) 2752 off = toff; 2753 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2754 if (toff > endoff) 2755 endoff = toff; 2756 } 2757 BO_UNLOCK(bo); 2758 } 2759 if (bvecpos > 0) { 2760 /* 2761 * Commit data on the server, as required. 2762 * If all bufs are using the same wcred, then use that with 2763 * one call for all of them, otherwise commit each one 2764 * separately. 2765 */ 2766 if (wcred != NOCRED) 2767 retv = ncl_commit(vp, off, (int)(endoff - off), 2768 wcred, td); 2769 else { 2770 retv = 0; 2771 for (i = 0; i < bvecpos; i++) { 2772 off_t off, size; 2773 bp = bvec[i]; 2774 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2775 bp->b_dirtyoff; 2776 size = (u_quad_t)(bp->b_dirtyend 2777 - bp->b_dirtyoff); 2778 retv = ncl_commit(vp, off, (int)size, 2779 bp->b_wcred, td); 2780 if (retv) break; 2781 } 2782 } 2783 2784 if (retv == NFSERR_STALEWRITEVERF) 2785 ncl_clearcommit(vp->v_mount); 2786 2787 /* 2788 * Now, either mark the blocks I/O done or mark the 2789 * blocks dirty, depending on whether the commit 2790 * succeeded. 2791 */ 2792 for (i = 0; i < bvecpos; i++) { 2793 bp = bvec[i]; 2794 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2795 if (retv) { 2796 /* 2797 * Error, leave B_DELWRI intact 2798 */ 2799 vfs_unbusy_pages(bp); 2800 brelse(bp); 2801 } else { 2802 /* 2803 * Success, remove B_DELWRI ( bundirty() ). 2804 * 2805 * b_dirtyoff/b_dirtyend seem to be NFS 2806 * specific. We should probably move that 2807 * into bundirty(). XXX 2808 */ 2809 bufobj_wref(bo); 2810 bp->b_flags |= B_ASYNC; 2811 bundirty(bp); 2812 bp->b_flags &= ~B_DONE; 2813 bp->b_ioflags &= ~BIO_ERROR; 2814 bp->b_dirtyoff = bp->b_dirtyend = 0; 2815 bufdone(bp); 2816 } 2817 } 2818 } 2819 2820 /* 2821 * Start/do any write(s) that are required. 2822 */ 2823 loop: 2824 BO_LOCK(bo); 2825 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2826 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2827 if (waitfor != MNT_WAIT || passone) 2828 continue; 2829 2830 error = BUF_TIMELOCK(bp, 2831 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2832 BO_MTX(bo), "nfsfsync", slpflag, slptimeo); 2833 if (error == 0) { 2834 BUF_UNLOCK(bp); 2835 goto loop; 2836 } 2837 if (error == ENOLCK) { 2838 error = 0; 2839 goto loop; 2840 } 2841 if (called_from_renewthread != 0) { 2842 /* 2843 * Return EIO so the flush will be retried 2844 * later. 2845 */ 2846 error = EIO; 2847 goto done; 2848 } 2849 if (newnfs_sigintr(nmp, td)) { 2850 error = EINTR; 2851 goto done; 2852 } 2853 if (slpflag & PCATCH) { 2854 slpflag = 0; 2855 slptimeo = 2 * hz; 2856 } 2857 goto loop; 2858 } 2859 if ((bp->b_flags & B_DELWRI) == 0) 2860 panic("nfs_fsync: not dirty"); 2861 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2862 BUF_UNLOCK(bp); 2863 continue; 2864 } 2865 BO_UNLOCK(bo); 2866 bremfree(bp); 2867 if (passone || !commit) 2868 bp->b_flags |= B_ASYNC; 2869 else 2870 bp->b_flags |= B_ASYNC; 2871 bwrite(bp); 2872 if (newnfs_sigintr(nmp, td)) { 2873 error = EINTR; 2874 goto done; 2875 } 2876 goto loop; 2877 } 2878 if (passone) { 2879 passone = 0; 2880 BO_UNLOCK(bo); 2881 goto again; 2882 } 2883 if (waitfor == MNT_WAIT) { 2884 while (bo->bo_numoutput) { 2885 error = bufobj_wwait(bo, slpflag, slptimeo); 2886 if (error) { 2887 BO_UNLOCK(bo); 2888 if (called_from_renewthread != 0) { 2889 /* 2890 * Return EIO so that the flush will be 2891 * retried later. 2892 */ 2893 error = EIO; 2894 goto done; 2895 } 2896 error = newnfs_sigintr(nmp, td); 2897 if (error) 2898 goto done; 2899 if (slpflag & PCATCH) { 2900 slpflag = 0; 2901 slptimeo = 2 * hz; 2902 } 2903 BO_LOCK(bo); 2904 } 2905 } 2906 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2907 BO_UNLOCK(bo); 2908 goto loop; 2909 } 2910 /* 2911 * Wait for all the async IO requests to drain 2912 */ 2913 BO_UNLOCK(bo); 2914 mtx_lock(&np->n_mtx); 2915 while (np->n_directio_asyncwr > 0) { 2916 np->n_flag |= NFSYNCWAIT; 2917 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2918 &np->n_mtx, slpflag | (PRIBIO + 1), 2919 "nfsfsync", 0); 2920 if (error) { 2921 if (newnfs_sigintr(nmp, td)) { 2922 mtx_unlock(&np->n_mtx); 2923 error = EINTR; 2924 goto done; 2925 } 2926 } 2927 } 2928 mtx_unlock(&np->n_mtx); 2929 } else 2930 BO_UNLOCK(bo); 2931 mtx_lock(&np->n_mtx); 2932 if (np->n_flag & NWRITEERR) { 2933 error = np->n_error; 2934 np->n_flag &= ~NWRITEERR; 2935 } 2936 if (commit && bo->bo_dirty.bv_cnt == 0 && 2937 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2938 np->n_flag &= ~NMODIFIED; 2939 mtx_unlock(&np->n_mtx); 2940 done: 2941 if (bvec != NULL && bvec != bvec_on_stack) 2942 free(bvec, M_TEMP); 2943 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 2944 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 2945 np->n_directio_asyncwr != 0) && trycnt++ < 5) { 2946 /* try, try again... */ 2947 passone = 1; 2948 wcred = NULL; 2949 bvec = NULL; 2950 bvecsize = 0; 2951 printf("try%d\n", trycnt); 2952 goto again; 2953 } 2954 return (error); 2955 } 2956 2957 /* 2958 * NFS advisory byte-level locks. 2959 */ 2960 static int 2961 nfs_advlock(struct vop_advlock_args *ap) 2962 { 2963 struct vnode *vp = ap->a_vp; 2964 struct ucred *cred; 2965 struct nfsnode *np = VTONFS(ap->a_vp); 2966 struct proc *p = (struct proc *)ap->a_id; 2967 struct thread *td = curthread; /* XXX */ 2968 struct vattr va; 2969 int ret, error = EOPNOTSUPP; 2970 u_quad_t size; 2971 2972 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 2973 if (vp->v_type != VREG) 2974 return (EINVAL); 2975 if ((ap->a_flags & F_POSIX) != 0) 2976 cred = p->p_ucred; 2977 else 2978 cred = td->td_ucred; 2979 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 2980 if (vp->v_iflag & VI_DOOMED) { 2981 NFSVOPUNLOCK(vp, 0); 2982 return (EBADF); 2983 } 2984 2985 /* 2986 * If this is unlocking a write locked region, flush and 2987 * commit them before unlocking. This is required by 2988 * RFC3530 Sec. 9.3.2. 2989 */ 2990 if (ap->a_op == F_UNLCK && 2991 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 2992 ap->a_flags)) 2993 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); 2994 2995 /* 2996 * Loop around doing the lock op, while a blocking lock 2997 * must wait for the lock op to succeed. 2998 */ 2999 do { 3000 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 3001 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 3002 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3003 ap->a_op == F_SETLK) { 3004 NFSVOPUNLOCK(vp, 0); 3005 error = nfs_catnap(PZERO | PCATCH, ret, 3006 "ncladvl"); 3007 if (error) 3008 return (EINTR); 3009 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3010 if (vp->v_iflag & VI_DOOMED) { 3011 NFSVOPUNLOCK(vp, 0); 3012 return (EBADF); 3013 } 3014 } 3015 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3016 ap->a_op == F_SETLK); 3017 if (ret == NFSERR_DENIED) { 3018 NFSVOPUNLOCK(vp, 0); 3019 return (EAGAIN); 3020 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3021 NFSVOPUNLOCK(vp, 0); 3022 return (ret); 3023 } else if (ret != 0) { 3024 NFSVOPUNLOCK(vp, 0); 3025 return (EACCES); 3026 } 3027 3028 /* 3029 * Now, if we just got a lock, invalidate data in the buffer 3030 * cache, as required, so that the coherency conforms with 3031 * RFC3530 Sec. 9.3.2. 3032 */ 3033 if (ap->a_op == F_SETLK) { 3034 if ((np->n_flag & NMODIFIED) == 0) { 3035 np->n_attrstamp = 0; 3036 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3037 ret = VOP_GETATTR(vp, &va, cred); 3038 } 3039 if ((np->n_flag & NMODIFIED) || ret || 3040 np->n_change != va.va_filerev) { 3041 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3042 np->n_attrstamp = 0; 3043 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3044 ret = VOP_GETATTR(vp, &va, cred); 3045 if (!ret) { 3046 np->n_mtime = va.va_mtime; 3047 np->n_change = va.va_filerev; 3048 } 3049 } 3050 } 3051 NFSVOPUNLOCK(vp, 0); 3052 return (0); 3053 } else if (!NFS_ISV4(vp)) { 3054 error = NFSVOPLOCK(vp, LK_SHARED); 3055 if (error) 3056 return (error); 3057 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3058 size = VTONFS(vp)->n_size; 3059 NFSVOPUNLOCK(vp, 0); 3060 error = lf_advlock(ap, &(vp->v_lockf), size); 3061 } else { 3062 if (nfs_advlock_p != NULL) 3063 error = nfs_advlock_p(ap); 3064 else { 3065 NFSVOPUNLOCK(vp, 0); 3066 error = ENOLCK; 3067 } 3068 } 3069 } 3070 return (error); 3071 } 3072 3073 /* 3074 * NFS advisory byte-level locks. 3075 */ 3076 static int 3077 nfs_advlockasync(struct vop_advlockasync_args *ap) 3078 { 3079 struct vnode *vp = ap->a_vp; 3080 u_quad_t size; 3081 int error; 3082 3083 if (NFS_ISV4(vp)) 3084 return (EOPNOTSUPP); 3085 error = NFSVOPLOCK(vp, LK_SHARED); 3086 if (error) 3087 return (error); 3088 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3089 size = VTONFS(vp)->n_size; 3090 NFSVOPUNLOCK(vp, 0); 3091 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3092 } else { 3093 NFSVOPUNLOCK(vp, 0); 3094 error = EOPNOTSUPP; 3095 } 3096 return (error); 3097 } 3098 3099 /* 3100 * Print out the contents of an nfsnode. 3101 */ 3102 static int 3103 nfs_print(struct vop_print_args *ap) 3104 { 3105 struct vnode *vp = ap->a_vp; 3106 struct nfsnode *np = VTONFS(vp); 3107 3108 ncl_printf("\tfileid %ld fsid 0x%x", 3109 np->n_vattr.na_fileid, np->n_vattr.na_fsid); 3110 if (vp->v_type == VFIFO) 3111 fifo_printinfo(vp); 3112 printf("\n"); 3113 return (0); 3114 } 3115 3116 /* 3117 * This is the "real" nfs::bwrite(struct buf*). 3118 * We set B_CACHE if this is a VMIO buffer. 3119 */ 3120 int 3121 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3122 { 3123 int s; 3124 int oldflags = bp->b_flags; 3125 #if 0 3126 int retv = 1; 3127 off_t off; 3128 #endif 3129 3130 BUF_ASSERT_HELD(bp); 3131 3132 if (bp->b_flags & B_INVAL) { 3133 brelse(bp); 3134 return(0); 3135 } 3136 3137 bp->b_flags |= B_CACHE; 3138 3139 /* 3140 * Undirty the bp. We will redirty it later if the I/O fails. 3141 */ 3142 3143 s = splbio(); 3144 bundirty(bp); 3145 bp->b_flags &= ~B_DONE; 3146 bp->b_ioflags &= ~BIO_ERROR; 3147 bp->b_iocmd = BIO_WRITE; 3148 3149 bufobj_wref(bp->b_bufobj); 3150 curthread->td_ru.ru_oublock++; 3151 splx(s); 3152 3153 /* 3154 * Note: to avoid loopback deadlocks, we do not 3155 * assign b_runningbufspace. 3156 */ 3157 vfs_busy_pages(bp, 1); 3158 3159 BUF_KERNPROC(bp); 3160 bp->b_iooffset = dbtob(bp->b_blkno); 3161 bstrategy(bp); 3162 3163 if( (oldflags & B_ASYNC) == 0) { 3164 int rtval = bufwait(bp); 3165 3166 if (oldflags & B_DELWRI) { 3167 s = splbio(); 3168 reassignbuf(bp); 3169 splx(s); 3170 } 3171 brelse(bp); 3172 return (rtval); 3173 } 3174 3175 return (0); 3176 } 3177 3178 /* 3179 * nfs special file access vnode op. 3180 * Essentially just get vattr and then imitate iaccess() since the device is 3181 * local to the client. 3182 */ 3183 static int 3184 nfsspec_access(struct vop_access_args *ap) 3185 { 3186 struct vattr *vap; 3187 struct ucred *cred = ap->a_cred; 3188 struct vnode *vp = ap->a_vp; 3189 accmode_t accmode = ap->a_accmode; 3190 struct vattr vattr; 3191 int error; 3192 3193 /* 3194 * Disallow write attempts on filesystems mounted read-only; 3195 * unless the file is a socket, fifo, or a block or character 3196 * device resident on the filesystem. 3197 */ 3198 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3199 switch (vp->v_type) { 3200 case VREG: 3201 case VDIR: 3202 case VLNK: 3203 return (EROFS); 3204 default: 3205 break; 3206 } 3207 } 3208 vap = &vattr; 3209 error = VOP_GETATTR(vp, vap, cred); 3210 if (error) 3211 goto out; 3212 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3213 accmode, cred, NULL); 3214 out: 3215 return error; 3216 } 3217 3218 /* 3219 * Read wrapper for fifos. 3220 */ 3221 static int 3222 nfsfifo_read(struct vop_read_args *ap) 3223 { 3224 struct nfsnode *np = VTONFS(ap->a_vp); 3225 int error; 3226 3227 /* 3228 * Set access flag. 3229 */ 3230 mtx_lock(&np->n_mtx); 3231 np->n_flag |= NACC; 3232 getnanotime(&np->n_atim); 3233 mtx_unlock(&np->n_mtx); 3234 error = fifo_specops.vop_read(ap); 3235 return error; 3236 } 3237 3238 /* 3239 * Write wrapper for fifos. 3240 */ 3241 static int 3242 nfsfifo_write(struct vop_write_args *ap) 3243 { 3244 struct nfsnode *np = VTONFS(ap->a_vp); 3245 3246 /* 3247 * Set update flag. 3248 */ 3249 mtx_lock(&np->n_mtx); 3250 np->n_flag |= NUPD; 3251 getnanotime(&np->n_mtim); 3252 mtx_unlock(&np->n_mtx); 3253 return(fifo_specops.vop_write(ap)); 3254 } 3255 3256 /* 3257 * Close wrapper for fifos. 3258 * 3259 * Update the times on the nfsnode then do fifo close. 3260 */ 3261 static int 3262 nfsfifo_close(struct vop_close_args *ap) 3263 { 3264 struct vnode *vp = ap->a_vp; 3265 struct nfsnode *np = VTONFS(vp); 3266 struct vattr vattr; 3267 struct timespec ts; 3268 3269 mtx_lock(&np->n_mtx); 3270 if (np->n_flag & (NACC | NUPD)) { 3271 getnanotime(&ts); 3272 if (np->n_flag & NACC) 3273 np->n_atim = ts; 3274 if (np->n_flag & NUPD) 3275 np->n_mtim = ts; 3276 np->n_flag |= NCHG; 3277 if (vrefcnt(vp) == 1 && 3278 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3279 VATTR_NULL(&vattr); 3280 if (np->n_flag & NACC) 3281 vattr.va_atime = np->n_atim; 3282 if (np->n_flag & NUPD) 3283 vattr.va_mtime = np->n_mtim; 3284 mtx_unlock(&np->n_mtx); 3285 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3286 goto out; 3287 } 3288 } 3289 mtx_unlock(&np->n_mtx); 3290 out: 3291 return (fifo_specops.vop_close(ap)); 3292 } 3293 3294 /* 3295 * Just call ncl_writebp() with the force argument set to 1. 3296 * 3297 * NOTE: B_DONE may or may not be set in a_bp on call. 3298 */ 3299 static int 3300 nfs_bwrite(struct buf *bp) 3301 { 3302 3303 return (ncl_writebp(bp, 1, curthread)); 3304 } 3305 3306 struct buf_ops buf_ops_newnfs = { 3307 .bop_name = "buf_ops_nfs", 3308 .bop_write = nfs_bwrite, 3309 .bop_strategy = bufstrategy, 3310 .bop_sync = bufsync, 3311 .bop_bdflush = bufbdflush, 3312 }; 3313 3314 /* 3315 * Cloned from vop_stdlock(), and then the ugly hack added. 3316 */ 3317 static int 3318 nfs_lock1(struct vop_lock1_args *ap) 3319 { 3320 struct vnode *vp = ap->a_vp; 3321 int error = 0; 3322 3323 /* 3324 * Since vfs_hash_get() calls vget() and it will no longer work 3325 * for FreeBSD8 with flags == 0, I can only think of this horrible 3326 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER 3327 * and then handle it here. All I want for this case is a v_usecount 3328 * on the vnode to use for recovery, while another thread might 3329 * hold a lock on the vnode. I have the other threads blocked, so 3330 * there isn't any race problem. 3331 */ 3332 if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { 3333 if ((ap->a_flags & LK_INTERLOCK) == 0) 3334 panic("ncllock1"); 3335 if ((vp->v_iflag & VI_DOOMED)) 3336 error = ENOENT; 3337 VI_UNLOCK(vp); 3338 return (error); 3339 } 3340 return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 3341 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, 3342 ap->a_line)); 3343 } 3344 3345 static int 3346 nfs_getacl(struct vop_getacl_args *ap) 3347 { 3348 int error; 3349 3350 if (ap->a_type != ACL_TYPE_NFS4) 3351 return (EOPNOTSUPP); 3352 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3353 NULL); 3354 if (error > NFSERR_STALE) { 3355 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3356 error = EPERM; 3357 } 3358 return (error); 3359 } 3360 3361 static int 3362 nfs_setacl(struct vop_setacl_args *ap) 3363 { 3364 int error; 3365 3366 if (ap->a_type != ACL_TYPE_NFS4) 3367 return (EOPNOTSUPP); 3368 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3369 NULL); 3370 if (error > NFSERR_STALE) { 3371 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3372 error = EPERM; 3373 } 3374 return (error); 3375 } 3376 3377 /* 3378 * Return POSIX pathconf information applicable to nfs filesystems. 3379 */ 3380 static int 3381 nfs_pathconf(struct vop_pathconf_args *ap) 3382 { 3383 struct nfsv3_pathconf pc; 3384 struct nfsvattr nfsva; 3385 struct vnode *vp = ap->a_vp; 3386 struct thread *td = curthread; 3387 int attrflag, error; 3388 3389 if (NFS_ISV4(vp) || (NFS_ISV3(vp) && (ap->a_name == _PC_LINK_MAX || 3390 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3391 ap->a_name == _PC_NO_TRUNC))) { 3392 /* 3393 * Since only the above 4 a_names are returned by the NFSv3 3394 * Pathconf RPC, there is no point in doing it for others. 3395 */ 3396 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3397 &attrflag, NULL); 3398 if (attrflag != 0) 3399 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3400 1); 3401 if (error != 0) 3402 return (error); 3403 } else { 3404 /* 3405 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3406 * just fake them. 3407 */ 3408 pc.pc_linkmax = LINK_MAX; 3409 pc.pc_namemax = NFS_MAXNAMLEN; 3410 pc.pc_notrunc = 1; 3411 pc.pc_chownrestricted = 1; 3412 pc.pc_caseinsensitive = 0; 3413 pc.pc_casepreserving = 1; 3414 error = 0; 3415 } 3416 switch (ap->a_name) { 3417 case _PC_LINK_MAX: 3418 *ap->a_retval = pc.pc_linkmax; 3419 break; 3420 case _PC_NAME_MAX: 3421 *ap->a_retval = pc.pc_namemax; 3422 break; 3423 case _PC_PATH_MAX: 3424 *ap->a_retval = PATH_MAX; 3425 break; 3426 case _PC_PIPE_BUF: 3427 *ap->a_retval = PIPE_BUF; 3428 break; 3429 case _PC_CHOWN_RESTRICTED: 3430 *ap->a_retval = pc.pc_chownrestricted; 3431 break; 3432 case _PC_NO_TRUNC: 3433 *ap->a_retval = pc.pc_notrunc; 3434 break; 3435 case _PC_ACL_EXTENDED: 3436 *ap->a_retval = 0; 3437 break; 3438 case _PC_ACL_NFS4: 3439 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3440 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3441 *ap->a_retval = 1; 3442 else 3443 *ap->a_retval = 0; 3444 break; 3445 case _PC_ACL_PATH_MAX: 3446 if (NFS_ISV4(vp)) 3447 *ap->a_retval = ACL_MAX_ENTRIES; 3448 else 3449 *ap->a_retval = 3; 3450 break; 3451 case _PC_MAC_PRESENT: 3452 *ap->a_retval = 0; 3453 break; 3454 case _PC_ASYNC_IO: 3455 /* _PC_ASYNC_IO should have been handled by upper layers. */ 3456 KASSERT(0, ("_PC_ASYNC_IO should not get here")); 3457 error = EINVAL; 3458 break; 3459 case _PC_PRIO_IO: 3460 *ap->a_retval = 0; 3461 break; 3462 case _PC_SYNC_IO: 3463 *ap->a_retval = 0; 3464 break; 3465 case _PC_ALLOC_SIZE_MIN: 3466 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3467 break; 3468 case _PC_FILESIZEBITS: 3469 if (NFS_ISV34(vp)) 3470 *ap->a_retval = 64; 3471 else 3472 *ap->a_retval = 32; 3473 break; 3474 case _PC_REC_INCR_XFER_SIZE: 3475 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3476 break; 3477 case _PC_REC_MAX_XFER_SIZE: 3478 *ap->a_retval = -1; /* means ``unlimited'' */ 3479 break; 3480 case _PC_REC_MIN_XFER_SIZE: 3481 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3482 break; 3483 case _PC_REC_XFER_ALIGN: 3484 *ap->a_retval = PAGE_SIZE; 3485 break; 3486 case _PC_SYMLINK_MAX: 3487 *ap->a_retval = NFS_MAXPATHLEN; 3488 break; 3489 3490 default: 3491 error = EINVAL; 3492 break; 3493 } 3494 return (error); 3495 } 3496 3497