1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * vnode op calls for Sun NFS version 2, 3 and 4 40 */ 41 42 #include "opt_inet.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/systm.h> 47 #include <sys/resourcevar.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/jail.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/namei.h> 56 #include <sys/socket.h> 57 #include <sys/vnode.h> 58 #include <sys/dirent.h> 59 #include <sys/fcntl.h> 60 #include <sys/lockf.h> 61 #include <sys/stat.h> 62 #include <sys/sysctl.h> 63 #include <sys/signalvar.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 #include <vm/vm_object.h> 68 69 #include <fs/nfs/nfsport.h> 70 #include <fs/nfsclient/nfsnode.h> 71 #include <fs/nfsclient/nfsmount.h> 72 #include <fs/nfsclient/nfs.h> 73 #include <fs/nfsclient/nfs_kdtrace.h> 74 75 #include <net/if.h> 76 #include <netinet/in.h> 77 #include <netinet/in_var.h> 78 79 #include <nfs/nfs_lock.h> 80 81 #ifdef KDTRACE_HOOKS 82 #include <sys/dtrace_bsd.h> 83 84 dtrace_nfsclient_accesscache_flush_probe_func_t 85 dtrace_nfscl_accesscache_flush_done_probe; 86 uint32_t nfscl_accesscache_flush_done_id; 87 88 dtrace_nfsclient_accesscache_get_probe_func_t 89 dtrace_nfscl_accesscache_get_hit_probe, 90 dtrace_nfscl_accesscache_get_miss_probe; 91 uint32_t nfscl_accesscache_get_hit_id; 92 uint32_t nfscl_accesscache_get_miss_id; 93 94 dtrace_nfsclient_accesscache_load_probe_func_t 95 dtrace_nfscl_accesscache_load_done_probe; 96 uint32_t nfscl_accesscache_load_done_id; 97 #endif /* !KDTRACE_HOOKS */ 98 99 /* Defs */ 100 #define TRUE 1 101 #define FALSE 0 102 103 extern struct nfsstats newnfsstats; 104 extern int nfsrv_useacl; 105 extern int nfscl_debuglevel; 106 MALLOC_DECLARE(M_NEWNFSREQ); 107 108 /* 109 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 110 * calls are not in getblk() and brelse() so that they would not be necessary 111 * here. 112 */ 113 #ifndef B_VMIO 114 #define vfs_busy_pages(bp, f) 115 #endif 116 117 static vop_read_t nfsfifo_read; 118 static vop_write_t nfsfifo_write; 119 static vop_close_t nfsfifo_close; 120 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 121 struct thread *); 122 static vop_lookup_t nfs_lookup; 123 static vop_create_t nfs_create; 124 static vop_mknod_t nfs_mknod; 125 static vop_open_t nfs_open; 126 static vop_pathconf_t nfs_pathconf; 127 static vop_close_t nfs_close; 128 static vop_access_t nfs_access; 129 static vop_getattr_t nfs_getattr; 130 static vop_setattr_t nfs_setattr; 131 static vop_read_t nfs_read; 132 static vop_fsync_t nfs_fsync; 133 static vop_remove_t nfs_remove; 134 static vop_link_t nfs_link; 135 static vop_rename_t nfs_rename; 136 static vop_mkdir_t nfs_mkdir; 137 static vop_rmdir_t nfs_rmdir; 138 static vop_symlink_t nfs_symlink; 139 static vop_readdir_t nfs_readdir; 140 static vop_strategy_t nfs_strategy; 141 static vop_lock1_t nfs_lock1; 142 static int nfs_lookitup(struct vnode *, char *, int, 143 struct ucred *, struct thread *, struct nfsnode **); 144 static int nfs_sillyrename(struct vnode *, struct vnode *, 145 struct componentname *); 146 static vop_access_t nfsspec_access; 147 static vop_readlink_t nfs_readlink; 148 static vop_print_t nfs_print; 149 static vop_advlock_t nfs_advlock; 150 static vop_advlockasync_t nfs_advlockasync; 151 static vop_getacl_t nfs_getacl; 152 static vop_setacl_t nfs_setacl; 153 154 /* 155 * Global vfs data structures for nfs 156 */ 157 struct vop_vector newnfs_vnodeops = { 158 .vop_default = &default_vnodeops, 159 .vop_access = nfs_access, 160 .vop_advlock = nfs_advlock, 161 .vop_advlockasync = nfs_advlockasync, 162 .vop_close = nfs_close, 163 .vop_create = nfs_create, 164 .vop_fsync = nfs_fsync, 165 .vop_getattr = nfs_getattr, 166 .vop_getpages = ncl_getpages, 167 .vop_putpages = ncl_putpages, 168 .vop_inactive = ncl_inactive, 169 .vop_link = nfs_link, 170 .vop_lock1 = nfs_lock1, 171 .vop_lookup = nfs_lookup, 172 .vop_mkdir = nfs_mkdir, 173 .vop_mknod = nfs_mknod, 174 .vop_open = nfs_open, 175 .vop_pathconf = nfs_pathconf, 176 .vop_print = nfs_print, 177 .vop_read = nfs_read, 178 .vop_readdir = nfs_readdir, 179 .vop_readlink = nfs_readlink, 180 .vop_reclaim = ncl_reclaim, 181 .vop_remove = nfs_remove, 182 .vop_rename = nfs_rename, 183 .vop_rmdir = nfs_rmdir, 184 .vop_setattr = nfs_setattr, 185 .vop_strategy = nfs_strategy, 186 .vop_symlink = nfs_symlink, 187 .vop_write = ncl_write, 188 .vop_getacl = nfs_getacl, 189 .vop_setacl = nfs_setacl, 190 }; 191 192 struct vop_vector newnfs_fifoops = { 193 .vop_default = &fifo_specops, 194 .vop_access = nfsspec_access, 195 .vop_close = nfsfifo_close, 196 .vop_fsync = nfs_fsync, 197 .vop_getattr = nfs_getattr, 198 .vop_inactive = ncl_inactive, 199 .vop_print = nfs_print, 200 .vop_read = nfsfifo_read, 201 .vop_reclaim = ncl_reclaim, 202 .vop_setattr = nfs_setattr, 203 .vop_write = nfsfifo_write, 204 }; 205 206 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 207 struct componentname *cnp, struct vattr *vap); 208 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 209 int namelen, struct ucred *cred, struct thread *td); 210 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 211 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 212 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 213 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 214 struct componentname *scnp, struct sillyrename *sp); 215 216 /* 217 * Global variables 218 */ 219 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) 220 221 SYSCTL_DECL(_vfs_nfs); 222 223 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 224 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 225 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 226 227 static int nfs_prime_access_cache = 0; 228 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 229 &nfs_prime_access_cache, 0, 230 "Prime NFS ACCESS cache when fetching attributes"); 231 232 static int newnfs_commit_on_close = 0; 233 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 234 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 235 236 static int nfs_clean_pages_on_close = 1; 237 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 238 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 239 240 int newnfs_directio_enable = 0; 241 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 242 &newnfs_directio_enable, 0, "Enable NFS directio"); 243 244 int nfs_keep_dirty_on_error; 245 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, 246 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); 247 248 /* 249 * This sysctl allows other processes to mmap a file that has been opened 250 * O_DIRECT by a process. In general, having processes mmap the file while 251 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 252 * this by default to prevent DoS attacks - to prevent a malicious user from 253 * opening up files O_DIRECT preventing other users from mmap'ing these 254 * files. "Protected" environments where stricter consistency guarantees are 255 * required can disable this knob. The process that opened the file O_DIRECT 256 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 257 * meaningful. 258 */ 259 int newnfs_directio_allow_mmap = 1; 260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 261 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 262 263 #if 0 264 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 265 &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 266 267 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 268 &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 269 #endif 270 271 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 272 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 273 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 274 275 /* 276 * SMP Locking Note : 277 * The list of locks after the description of the lock is the ordering 278 * of other locks acquired with the lock held. 279 * np->n_mtx : Protects the fields in the nfsnode. 280 VM Object Lock 281 VI_MTX (acquired indirectly) 282 * nmp->nm_mtx : Protects the fields in the nfsmount. 283 rep->r_mtx 284 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 285 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 286 nmp->nm_mtx 287 rep->r_mtx 288 * rep->r_mtx : Protects the fields in an nfsreq. 289 */ 290 291 static int 292 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 293 struct ucred *cred, u_int32_t *retmode) 294 { 295 int error = 0, attrflag, i, lrupos; 296 u_int32_t rmode; 297 struct nfsnode *np = VTONFS(vp); 298 struct nfsvattr nfsva; 299 300 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 301 &rmode, NULL); 302 if (attrflag) 303 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 304 if (!error) { 305 lrupos = 0; 306 mtx_lock(&np->n_mtx); 307 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 308 if (np->n_accesscache[i].uid == cred->cr_uid) { 309 np->n_accesscache[i].mode = rmode; 310 np->n_accesscache[i].stamp = time_second; 311 break; 312 } 313 if (i > 0 && np->n_accesscache[i].stamp < 314 np->n_accesscache[lrupos].stamp) 315 lrupos = i; 316 } 317 if (i == NFS_ACCESSCACHESIZE) { 318 np->n_accesscache[lrupos].uid = cred->cr_uid; 319 np->n_accesscache[lrupos].mode = rmode; 320 np->n_accesscache[lrupos].stamp = time_second; 321 } 322 mtx_unlock(&np->n_mtx); 323 if (retmode != NULL) 324 *retmode = rmode; 325 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 326 } else if (NFS_ISV4(vp)) { 327 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 328 } 329 #ifdef KDTRACE_HOOKS 330 if (error != 0) 331 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 332 error); 333 #endif 334 return (error); 335 } 336 337 /* 338 * nfs access vnode op. 339 * For nfs version 2, just return ok. File accesses may fail later. 340 * For nfs version 3, use the access rpc to check accessibility. If file modes 341 * are changed on the server, accesses might still fail later. 342 */ 343 static int 344 nfs_access(struct vop_access_args *ap) 345 { 346 struct vnode *vp = ap->a_vp; 347 int error = 0, i, gotahit; 348 u_int32_t mode, wmode, rmode; 349 int v34 = NFS_ISV34(vp); 350 struct nfsnode *np = VTONFS(vp); 351 352 /* 353 * Disallow write attempts on filesystems mounted read-only; 354 * unless the file is a socket, fifo, or a block or character 355 * device resident on the filesystem. 356 */ 357 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 358 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 359 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 360 switch (vp->v_type) { 361 case VREG: 362 case VDIR: 363 case VLNK: 364 return (EROFS); 365 default: 366 break; 367 } 368 } 369 /* 370 * For nfs v3 or v4, check to see if we have done this recently, and if 371 * so return our cached result instead of making an ACCESS call. 372 * If not, do an access rpc, otherwise you are stuck emulating 373 * ufs_access() locally using the vattr. This may not be correct, 374 * since the server may apply other access criteria such as 375 * client uid-->server uid mapping that we do not know about. 376 */ 377 if (v34) { 378 if (ap->a_accmode & VREAD) 379 mode = NFSACCESS_READ; 380 else 381 mode = 0; 382 if (vp->v_type != VDIR) { 383 if (ap->a_accmode & VWRITE) 384 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 385 if (ap->a_accmode & VAPPEND) 386 mode |= NFSACCESS_EXTEND; 387 if (ap->a_accmode & VEXEC) 388 mode |= NFSACCESS_EXECUTE; 389 if (ap->a_accmode & VDELETE) 390 mode |= NFSACCESS_DELETE; 391 } else { 392 if (ap->a_accmode & VWRITE) 393 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 394 if (ap->a_accmode & VAPPEND) 395 mode |= NFSACCESS_EXTEND; 396 if (ap->a_accmode & VEXEC) 397 mode |= NFSACCESS_LOOKUP; 398 if (ap->a_accmode & VDELETE) 399 mode |= NFSACCESS_DELETE; 400 if (ap->a_accmode & VDELETE_CHILD) 401 mode |= NFSACCESS_MODIFY; 402 } 403 /* XXX safety belt, only make blanket request if caching */ 404 if (nfsaccess_cache_timeout > 0) { 405 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 406 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 407 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 408 } else { 409 wmode = mode; 410 } 411 412 /* 413 * Does our cached result allow us to give a definite yes to 414 * this request? 415 */ 416 gotahit = 0; 417 mtx_lock(&np->n_mtx); 418 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 419 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 420 if (time_second < (np->n_accesscache[i].stamp 421 + nfsaccess_cache_timeout) && 422 (np->n_accesscache[i].mode & mode) == mode) { 423 NFSINCRGLOBAL(newnfsstats.accesscache_hits); 424 gotahit = 1; 425 } 426 break; 427 } 428 } 429 mtx_unlock(&np->n_mtx); 430 #ifdef KDTRACE_HOOKS 431 if (gotahit != 0) 432 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 433 ap->a_cred->cr_uid, mode); 434 else 435 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 436 ap->a_cred->cr_uid, mode); 437 #endif 438 if (gotahit == 0) { 439 /* 440 * Either a no, or a don't know. Go to the wire. 441 */ 442 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 443 error = nfs34_access_otw(vp, wmode, ap->a_td, 444 ap->a_cred, &rmode); 445 if (!error && 446 (rmode & mode) != mode) 447 error = EACCES; 448 } 449 return (error); 450 } else { 451 if ((error = nfsspec_access(ap)) != 0) { 452 return (error); 453 } 454 /* 455 * Attempt to prevent a mapped root from accessing a file 456 * which it shouldn't. We try to read a byte from the file 457 * if the user is root and the file is not zero length. 458 * After calling nfsspec_access, we should have the correct 459 * file size cached. 460 */ 461 mtx_lock(&np->n_mtx); 462 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 463 && VTONFS(vp)->n_size > 0) { 464 struct iovec aiov; 465 struct uio auio; 466 char buf[1]; 467 468 mtx_unlock(&np->n_mtx); 469 aiov.iov_base = buf; 470 aiov.iov_len = 1; 471 auio.uio_iov = &aiov; 472 auio.uio_iovcnt = 1; 473 auio.uio_offset = 0; 474 auio.uio_resid = 1; 475 auio.uio_segflg = UIO_SYSSPACE; 476 auio.uio_rw = UIO_READ; 477 auio.uio_td = ap->a_td; 478 479 if (vp->v_type == VREG) 480 error = ncl_readrpc(vp, &auio, ap->a_cred); 481 else if (vp->v_type == VDIR) { 482 char* bp; 483 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 484 aiov.iov_base = bp; 485 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 486 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 487 ap->a_td); 488 free(bp, M_TEMP); 489 } else if (vp->v_type == VLNK) 490 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 491 else 492 error = EACCES; 493 } else 494 mtx_unlock(&np->n_mtx); 495 return (error); 496 } 497 } 498 499 500 /* 501 * nfs open vnode op 502 * Check to see if the type is ok 503 * and that deletion is not in progress. 504 * For paged in text files, you will need to flush the page cache 505 * if consistency is lost. 506 */ 507 /* ARGSUSED */ 508 static int 509 nfs_open(struct vop_open_args *ap) 510 { 511 struct vnode *vp = ap->a_vp; 512 struct nfsnode *np = VTONFS(vp); 513 struct vattr vattr; 514 int error; 515 int fmode = ap->a_mode; 516 struct ucred *cred; 517 518 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 519 return (EOPNOTSUPP); 520 521 /* 522 * For NFSv4, we need to do the Open Op before cache validation, 523 * so that we conform to RFC3530 Sec. 9.3.1. 524 */ 525 if (NFS_ISV4(vp)) { 526 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 527 if (error) { 528 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 529 (gid_t)0); 530 return (error); 531 } 532 } 533 534 /* 535 * Now, if this Open will be doing reading, re-validate/flush the 536 * cache, so that Close/Open coherency is maintained. 537 */ 538 mtx_lock(&np->n_mtx); 539 if (np->n_flag & NMODIFIED) { 540 mtx_unlock(&np->n_mtx); 541 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 542 if (error == EINTR || error == EIO) { 543 if (NFS_ISV4(vp)) 544 (void) nfsrpc_close(vp, 0, ap->a_td); 545 return (error); 546 } 547 mtx_lock(&np->n_mtx); 548 np->n_attrstamp = 0; 549 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 550 if (vp->v_type == VDIR) 551 np->n_direofoffset = 0; 552 mtx_unlock(&np->n_mtx); 553 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 554 if (error) { 555 if (NFS_ISV4(vp)) 556 (void) nfsrpc_close(vp, 0, ap->a_td); 557 return (error); 558 } 559 mtx_lock(&np->n_mtx); 560 np->n_mtime = vattr.va_mtime; 561 if (NFS_ISV4(vp)) 562 np->n_change = vattr.va_filerev; 563 } else { 564 mtx_unlock(&np->n_mtx); 565 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 566 if (error) { 567 if (NFS_ISV4(vp)) 568 (void) nfsrpc_close(vp, 0, ap->a_td); 569 return (error); 570 } 571 mtx_lock(&np->n_mtx); 572 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 573 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 574 if (vp->v_type == VDIR) 575 np->n_direofoffset = 0; 576 mtx_unlock(&np->n_mtx); 577 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 578 if (error == EINTR || error == EIO) { 579 if (NFS_ISV4(vp)) 580 (void) nfsrpc_close(vp, 0, ap->a_td); 581 return (error); 582 } 583 mtx_lock(&np->n_mtx); 584 np->n_mtime = vattr.va_mtime; 585 if (NFS_ISV4(vp)) 586 np->n_change = vattr.va_filerev; 587 } 588 } 589 590 /* 591 * If the object has >= 1 O_DIRECT active opens, we disable caching. 592 */ 593 if (newnfs_directio_enable && (fmode & O_DIRECT) && 594 (vp->v_type == VREG)) { 595 if (np->n_directio_opens == 0) { 596 mtx_unlock(&np->n_mtx); 597 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 598 if (error) { 599 if (NFS_ISV4(vp)) 600 (void) nfsrpc_close(vp, 0, ap->a_td); 601 return (error); 602 } 603 mtx_lock(&np->n_mtx); 604 np->n_flag |= NNONCACHE; 605 } 606 np->n_directio_opens++; 607 } 608 609 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ 610 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) 611 np->n_flag |= NWRITEOPENED; 612 613 /* 614 * If this is an open for writing, capture a reference to the 615 * credentials, so they can be used by ncl_putpages(). Using 616 * these write credentials is preferable to the credentials of 617 * whatever thread happens to be doing the VOP_PUTPAGES() since 618 * the write RPCs are less likely to fail with EACCES. 619 */ 620 if ((fmode & FWRITE) != 0) { 621 cred = np->n_writecred; 622 np->n_writecred = crhold(ap->a_cred); 623 } else 624 cred = NULL; 625 mtx_unlock(&np->n_mtx); 626 627 if (cred != NULL) 628 crfree(cred); 629 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 630 return (0); 631 } 632 633 /* 634 * nfs close vnode op 635 * What an NFS client should do upon close after writing is a debatable issue. 636 * Most NFS clients push delayed writes to the server upon close, basically for 637 * two reasons: 638 * 1 - So that any write errors may be reported back to the client process 639 * doing the close system call. By far the two most likely errors are 640 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 641 * 2 - To put a worst case upper bound on cache inconsistency between 642 * multiple clients for the file. 643 * There is also a consistency problem for Version 2 of the protocol w.r.t. 644 * not being able to tell if other clients are writing a file concurrently, 645 * since there is no way of knowing if the changed modify time in the reply 646 * is only due to the write for this client. 647 * (NFS Version 3 provides weak cache consistency data in the reply that 648 * should be sufficient to detect and handle this case.) 649 * 650 * The current code does the following: 651 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 652 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 653 * or commit them (this satisfies 1 and 2 except for the 654 * case where the server crashes after this close but 655 * before the commit RPC, which is felt to be "good 656 * enough". Changing the last argument to ncl_flush() to 657 * a 1 would force a commit operation, if it is felt a 658 * commit is necessary now. 659 * for NFS Version 4 - flush the dirty buffers and commit them, if 660 * nfscl_mustflush() says this is necessary. 661 * It is necessary if there is no write delegation held, 662 * in order to satisfy open/close coherency. 663 * If the file isn't cached on local stable storage, 664 * it may be necessary in order to detect "out of space" 665 * errors from the server, if the write delegation 666 * issued by the server doesn't allow the file to grow. 667 */ 668 /* ARGSUSED */ 669 static int 670 nfs_close(struct vop_close_args *ap) 671 { 672 struct vnode *vp = ap->a_vp; 673 struct nfsnode *np = VTONFS(vp); 674 struct nfsvattr nfsva; 675 struct ucred *cred; 676 int error = 0, ret, localcred = 0; 677 int fmode = ap->a_fflag; 678 679 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) 680 return (0); 681 /* 682 * During shutdown, a_cred isn't valid, so just use root. 683 */ 684 if (ap->a_cred == NOCRED) { 685 cred = newnfs_getcred(); 686 localcred = 1; 687 } else { 688 cred = ap->a_cred; 689 } 690 if (vp->v_type == VREG) { 691 /* 692 * Examine and clean dirty pages, regardless of NMODIFIED. 693 * This closes a major hole in close-to-open consistency. 694 * We want to push out all dirty pages (and buffers) on 695 * close, regardless of whether they were dirtied by 696 * mmap'ed writes or via write(). 697 */ 698 if (nfs_clean_pages_on_close && vp->v_object) { 699 VM_OBJECT_WLOCK(vp->v_object); 700 vm_object_page_clean(vp->v_object, 0, 0, 0); 701 VM_OBJECT_WUNLOCK(vp->v_object); 702 } 703 mtx_lock(&np->n_mtx); 704 if (np->n_flag & NMODIFIED) { 705 mtx_unlock(&np->n_mtx); 706 if (NFS_ISV3(vp)) { 707 /* 708 * Under NFSv3 we have dirty buffers to dispose of. We 709 * must flush them to the NFS server. We have the option 710 * of waiting all the way through the commit rpc or just 711 * waiting for the initial write. The default is to only 712 * wait through the initial write so the data is in the 713 * server's cache, which is roughly similar to the state 714 * a standard disk subsystem leaves the file in on close(). 715 * 716 * We cannot clear the NMODIFIED bit in np->n_flag due to 717 * potential races with other processes, and certainly 718 * cannot clear it if we don't commit. 719 * These races occur when there is no longer the old 720 * traditional vnode locking implemented for Vnode Ops. 721 */ 722 int cm = newnfs_commit_on_close ? 1 : 0; 723 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); 724 /* np->n_flag &= ~NMODIFIED; */ 725 } else if (NFS_ISV4(vp)) { 726 if (nfscl_mustflush(vp) != 0) { 727 int cm = newnfs_commit_on_close ? 1 : 0; 728 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, 729 cm, 0); 730 /* 731 * as above w.r.t races when clearing 732 * NMODIFIED. 733 * np->n_flag &= ~NMODIFIED; 734 */ 735 } 736 } else 737 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 738 mtx_lock(&np->n_mtx); 739 } 740 /* 741 * Invalidate the attribute cache in all cases. 742 * An open is going to fetch fresh attrs any way, other procs 743 * on this node that have file open will be forced to do an 744 * otw attr fetch, but this is safe. 745 * --> A user found that their RPC count dropped by 20% when 746 * this was commented out and I can't see any requirement 747 * for it, so I've disabled it when negative lookups are 748 * enabled. (What does this have to do with negative lookup 749 * caching? Well nothing, except it was reported by the 750 * same user that needed negative lookup caching and I wanted 751 * there to be a way to disable it to see if it 752 * is the cause of some caching/coherency issue that might 753 * crop up.) 754 */ 755 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 756 np->n_attrstamp = 0; 757 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 758 } 759 if (np->n_flag & NWRITEERR) { 760 np->n_flag &= ~NWRITEERR; 761 error = np->n_error; 762 } 763 mtx_unlock(&np->n_mtx); 764 } 765 766 if (NFS_ISV4(vp)) { 767 /* 768 * Get attributes so "change" is up to date. 769 */ 770 if (error == 0 && nfscl_mustflush(vp) != 0) { 771 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 772 NULL); 773 if (!ret) { 774 np->n_change = nfsva.na_filerev; 775 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 776 NULL, 0, 0); 777 } 778 } 779 780 /* 781 * and do the close. 782 */ 783 ret = nfsrpc_close(vp, 0, ap->a_td); 784 if (!error && ret) 785 error = ret; 786 if (error) 787 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 788 (gid_t)0); 789 } 790 if (newnfs_directio_enable) 791 KASSERT((np->n_directio_asyncwr == 0), 792 ("nfs_close: dirty unflushed (%d) directio buffers\n", 793 np->n_directio_asyncwr)); 794 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 795 mtx_lock(&np->n_mtx); 796 KASSERT((np->n_directio_opens > 0), 797 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 798 np->n_directio_opens--; 799 if (np->n_directio_opens == 0) 800 np->n_flag &= ~NNONCACHE; 801 mtx_unlock(&np->n_mtx); 802 } 803 if (localcred) 804 NFSFREECRED(cred); 805 return (error); 806 } 807 808 /* 809 * nfs getattr call from vfs. 810 */ 811 static int 812 nfs_getattr(struct vop_getattr_args *ap) 813 { 814 struct vnode *vp = ap->a_vp; 815 struct thread *td = curthread; /* XXX */ 816 struct nfsnode *np = VTONFS(vp); 817 int error = 0; 818 struct nfsvattr nfsva; 819 struct vattr *vap = ap->a_vap; 820 struct vattr vattr; 821 822 /* 823 * Update local times for special files. 824 */ 825 mtx_lock(&np->n_mtx); 826 if (np->n_flag & (NACC | NUPD)) 827 np->n_flag |= NCHG; 828 mtx_unlock(&np->n_mtx); 829 /* 830 * First look in the cache. 831 */ 832 if (ncl_getattrcache(vp, &vattr) == 0) { 833 vap->va_type = vattr.va_type; 834 vap->va_mode = vattr.va_mode; 835 vap->va_nlink = vattr.va_nlink; 836 vap->va_uid = vattr.va_uid; 837 vap->va_gid = vattr.va_gid; 838 vap->va_fsid = vattr.va_fsid; 839 vap->va_fileid = vattr.va_fileid; 840 vap->va_size = vattr.va_size; 841 vap->va_blocksize = vattr.va_blocksize; 842 vap->va_atime = vattr.va_atime; 843 vap->va_mtime = vattr.va_mtime; 844 vap->va_ctime = vattr.va_ctime; 845 vap->va_gen = vattr.va_gen; 846 vap->va_flags = vattr.va_flags; 847 vap->va_rdev = vattr.va_rdev; 848 vap->va_bytes = vattr.va_bytes; 849 vap->va_filerev = vattr.va_filerev; 850 /* 851 * Get the local modify time for the case of a write 852 * delegation. 853 */ 854 nfscl_deleggetmodtime(vp, &vap->va_mtime); 855 return (0); 856 } 857 858 if (NFS_ISV34(vp) && nfs_prime_access_cache && 859 nfsaccess_cache_timeout > 0) { 860 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 861 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 862 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 863 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 864 return (0); 865 } 866 } 867 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 868 if (!error) 869 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 870 if (!error) { 871 /* 872 * Get the local modify time for the case of a write 873 * delegation. 874 */ 875 nfscl_deleggetmodtime(vp, &vap->va_mtime); 876 } else if (NFS_ISV4(vp)) { 877 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 878 } 879 return (error); 880 } 881 882 /* 883 * nfs setattr call. 884 */ 885 static int 886 nfs_setattr(struct vop_setattr_args *ap) 887 { 888 struct vnode *vp = ap->a_vp; 889 struct nfsnode *np = VTONFS(vp); 890 struct thread *td = curthread; /* XXX */ 891 struct vattr *vap = ap->a_vap; 892 int error = 0; 893 u_quad_t tsize; 894 895 #ifndef nolint 896 tsize = (u_quad_t)0; 897 #endif 898 899 /* 900 * Setting of flags and marking of atimes are not supported. 901 */ 902 if (vap->va_flags != VNOVAL) 903 return (EOPNOTSUPP); 904 905 /* 906 * Disallow write attempts if the filesystem is mounted read-only. 907 */ 908 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 909 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 910 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 911 (vp->v_mount->mnt_flag & MNT_RDONLY)) 912 return (EROFS); 913 if (vap->va_size != VNOVAL) { 914 switch (vp->v_type) { 915 case VDIR: 916 return (EISDIR); 917 case VCHR: 918 case VBLK: 919 case VSOCK: 920 case VFIFO: 921 if (vap->va_mtime.tv_sec == VNOVAL && 922 vap->va_atime.tv_sec == VNOVAL && 923 vap->va_mode == (mode_t)VNOVAL && 924 vap->va_uid == (uid_t)VNOVAL && 925 vap->va_gid == (gid_t)VNOVAL) 926 return (0); 927 vap->va_size = VNOVAL; 928 break; 929 default: 930 /* 931 * Disallow write attempts if the filesystem is 932 * mounted read-only. 933 */ 934 if (vp->v_mount->mnt_flag & MNT_RDONLY) 935 return (EROFS); 936 /* 937 * We run vnode_pager_setsize() early (why?), 938 * we must set np->n_size now to avoid vinvalbuf 939 * V_SAVE races that might setsize a lower 940 * value. 941 */ 942 mtx_lock(&np->n_mtx); 943 tsize = np->n_size; 944 mtx_unlock(&np->n_mtx); 945 error = ncl_meta_setsize(vp, ap->a_cred, td, 946 vap->va_size); 947 mtx_lock(&np->n_mtx); 948 if (np->n_flag & NMODIFIED) { 949 tsize = np->n_size; 950 mtx_unlock(&np->n_mtx); 951 if (vap->va_size == 0) 952 error = ncl_vinvalbuf(vp, 0, td, 1); 953 else 954 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 955 if (error) { 956 vnode_pager_setsize(vp, tsize); 957 return (error); 958 } 959 /* 960 * Call nfscl_delegmodtime() to set the modify time 961 * locally, as required. 962 */ 963 nfscl_delegmodtime(vp); 964 } else 965 mtx_unlock(&np->n_mtx); 966 /* 967 * np->n_size has already been set to vap->va_size 968 * in ncl_meta_setsize(). We must set it again since 969 * nfs_loadattrcache() could be called through 970 * ncl_meta_setsize() and could modify np->n_size. 971 */ 972 mtx_lock(&np->n_mtx); 973 np->n_vattr.na_size = np->n_size = vap->va_size; 974 mtx_unlock(&np->n_mtx); 975 }; 976 } else { 977 mtx_lock(&np->n_mtx); 978 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 979 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 980 mtx_unlock(&np->n_mtx); 981 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && 982 (error == EINTR || error == EIO)) 983 return (error); 984 } else 985 mtx_unlock(&np->n_mtx); 986 } 987 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 988 if (error && vap->va_size != VNOVAL) { 989 mtx_lock(&np->n_mtx); 990 np->n_size = np->n_vattr.na_size = tsize; 991 vnode_pager_setsize(vp, tsize); 992 mtx_unlock(&np->n_mtx); 993 } 994 return (error); 995 } 996 997 /* 998 * Do an nfs setattr rpc. 999 */ 1000 static int 1001 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 1002 struct thread *td) 1003 { 1004 struct nfsnode *np = VTONFS(vp); 1005 int error, ret, attrflag, i; 1006 struct nfsvattr nfsva; 1007 1008 if (NFS_ISV34(vp)) { 1009 mtx_lock(&np->n_mtx); 1010 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 1011 np->n_accesscache[i].stamp = 0; 1012 np->n_flag |= NDELEGMOD; 1013 mtx_unlock(&np->n_mtx); 1014 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 1015 } 1016 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 1017 NULL); 1018 if (attrflag) { 1019 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1020 if (ret && !error) 1021 error = ret; 1022 } 1023 if (error && NFS_ISV4(vp)) 1024 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1025 return (error); 1026 } 1027 1028 /* 1029 * nfs lookup call, one step at a time... 1030 * First look in cache 1031 * If not found, unlock the directory nfsnode and do the rpc 1032 */ 1033 static int 1034 nfs_lookup(struct vop_lookup_args *ap) 1035 { 1036 struct componentname *cnp = ap->a_cnp; 1037 struct vnode *dvp = ap->a_dvp; 1038 struct vnode **vpp = ap->a_vpp; 1039 struct mount *mp = dvp->v_mount; 1040 int flags = cnp->cn_flags; 1041 struct vnode *newvp; 1042 struct nfsmount *nmp; 1043 struct nfsnode *np, *newnp; 1044 int error = 0, attrflag, dattrflag, ltype, ncticks; 1045 struct thread *td = cnp->cn_thread; 1046 struct nfsfh *nfhp; 1047 struct nfsvattr dnfsva, nfsva; 1048 struct vattr vattr; 1049 struct timespec nctime; 1050 1051 *vpp = NULLVP; 1052 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1053 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1054 return (EROFS); 1055 if (dvp->v_type != VDIR) 1056 return (ENOTDIR); 1057 nmp = VFSTONFS(mp); 1058 np = VTONFS(dvp); 1059 1060 /* For NFSv4, wait until any remove is done. */ 1061 mtx_lock(&np->n_mtx); 1062 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1063 np->n_flag |= NREMOVEWANT; 1064 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1065 } 1066 mtx_unlock(&np->n_mtx); 1067 1068 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1069 return (error); 1070 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); 1071 if (error > 0 && error != ENOENT) 1072 return (error); 1073 if (error == -1) { 1074 /* 1075 * Lookups of "." are special and always return the 1076 * current directory. cache_lookup() already handles 1077 * associated locking bookkeeping, etc. 1078 */ 1079 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 1080 /* XXX: Is this really correct? */ 1081 if (cnp->cn_nameiop != LOOKUP && 1082 (flags & ISLASTCN)) 1083 cnp->cn_flags |= SAVENAME; 1084 return (0); 1085 } 1086 1087 /* 1088 * We only accept a positive hit in the cache if the 1089 * change time of the file matches our cached copy. 1090 * Otherwise, we discard the cache entry and fallback 1091 * to doing a lookup RPC. We also only trust cache 1092 * entries for less than nm_nametimeo seconds. 1093 * 1094 * To better handle stale file handles and attributes, 1095 * clear the attribute cache of this node if it is a 1096 * leaf component, part of an open() call, and not 1097 * locally modified before fetching the attributes. 1098 * This should allow stale file handles to be detected 1099 * here where we can fall back to a LOOKUP RPC to 1100 * recover rather than having nfs_open() detect the 1101 * stale file handle and failing open(2) with ESTALE. 1102 */ 1103 newvp = *vpp; 1104 newnp = VTONFS(newvp); 1105 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1106 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1107 !(newnp->n_flag & NMODIFIED)) { 1108 mtx_lock(&newnp->n_mtx); 1109 newnp->n_attrstamp = 0; 1110 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1111 mtx_unlock(&newnp->n_mtx); 1112 } 1113 if (nfscl_nodeleg(newvp, 0) == 0 || 1114 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && 1115 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1116 timespeccmp(&vattr.va_ctime, &nctime, ==))) { 1117 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1118 if (cnp->cn_nameiop != LOOKUP && 1119 (flags & ISLASTCN)) 1120 cnp->cn_flags |= SAVENAME; 1121 return (0); 1122 } 1123 cache_purge(newvp); 1124 if (dvp != newvp) 1125 vput(newvp); 1126 else 1127 vrele(newvp); 1128 *vpp = NULLVP; 1129 } else if (error == ENOENT) { 1130 if (dvp->v_iflag & VI_DOOMED) 1131 return (ENOENT); 1132 /* 1133 * We only accept a negative hit in the cache if the 1134 * modification time of the parent directory matches 1135 * the cached copy in the name cache entry. 1136 * Otherwise, we discard all of the negative cache 1137 * entries for this directory. We also only trust 1138 * negative cache entries for up to nm_negnametimeo 1139 * seconds. 1140 */ 1141 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && 1142 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1143 timespeccmp(&vattr.va_mtime, &nctime, ==)) { 1144 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1145 return (ENOENT); 1146 } 1147 cache_purge_negative(dvp); 1148 } 1149 1150 error = 0; 1151 newvp = NULLVP; 1152 NFSINCRGLOBAL(newnfsstats.lookupcache_misses); 1153 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1154 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1155 NULL); 1156 if (dattrflag) 1157 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1158 if (error) { 1159 if (newvp != NULLVP) { 1160 vput(newvp); 1161 *vpp = NULLVP; 1162 } 1163 1164 if (error != ENOENT) { 1165 if (NFS_ISV4(dvp)) 1166 error = nfscl_maperr(td, error, (uid_t)0, 1167 (gid_t)0); 1168 return (error); 1169 } 1170 1171 /* The requested file was not found. */ 1172 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1173 (flags & ISLASTCN)) { 1174 /* 1175 * XXX: UFS does a full VOP_ACCESS(dvp, 1176 * VWRITE) here instead of just checking 1177 * MNT_RDONLY. 1178 */ 1179 if (mp->mnt_flag & MNT_RDONLY) 1180 return (EROFS); 1181 cnp->cn_flags |= SAVENAME; 1182 return (EJUSTRETURN); 1183 } 1184 1185 if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE && 1186 dattrflag) { 1187 /* 1188 * Cache the modification time of the parent 1189 * directory from the post-op attributes in 1190 * the name cache entry. The negative cache 1191 * entry will be ignored once the directory 1192 * has changed. Don't bother adding the entry 1193 * if the directory has already changed. 1194 */ 1195 mtx_lock(&np->n_mtx); 1196 if (timespeccmp(&np->n_vattr.na_mtime, 1197 &dnfsva.na_mtime, ==)) { 1198 mtx_unlock(&np->n_mtx); 1199 cache_enter_time(dvp, NULL, cnp, 1200 &dnfsva.na_mtime, NULL); 1201 } else 1202 mtx_unlock(&np->n_mtx); 1203 } 1204 return (ENOENT); 1205 } 1206 1207 /* 1208 * Handle RENAME case... 1209 */ 1210 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1211 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1212 FREE((caddr_t)nfhp, M_NFSFH); 1213 return (EISDIR); 1214 } 1215 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1216 LK_EXCLUSIVE); 1217 if (error) 1218 return (error); 1219 newvp = NFSTOV(np); 1220 if (attrflag) 1221 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1222 0, 1); 1223 *vpp = newvp; 1224 cnp->cn_flags |= SAVENAME; 1225 return (0); 1226 } 1227 1228 if (flags & ISDOTDOT) { 1229 ltype = NFSVOPISLOCKED(dvp); 1230 error = vfs_busy(mp, MBF_NOWAIT); 1231 if (error != 0) { 1232 vfs_ref(mp); 1233 NFSVOPUNLOCK(dvp, 0); 1234 error = vfs_busy(mp, 0); 1235 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1236 vfs_rel(mp); 1237 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1238 vfs_unbusy(mp); 1239 error = ENOENT; 1240 } 1241 if (error != 0) 1242 return (error); 1243 } 1244 NFSVOPUNLOCK(dvp, 0); 1245 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1246 cnp->cn_lkflags); 1247 if (error == 0) 1248 newvp = NFSTOV(np); 1249 vfs_unbusy(mp); 1250 if (newvp != dvp) 1251 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1252 if (dvp->v_iflag & VI_DOOMED) { 1253 if (error == 0) { 1254 if (newvp == dvp) 1255 vrele(newvp); 1256 else 1257 vput(newvp); 1258 } 1259 error = ENOENT; 1260 } 1261 if (error != 0) 1262 return (error); 1263 if (attrflag) 1264 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1265 0, 1); 1266 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1267 FREE((caddr_t)nfhp, M_NFSFH); 1268 VREF(dvp); 1269 newvp = dvp; 1270 if (attrflag) 1271 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1272 0, 1); 1273 } else { 1274 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1275 cnp->cn_lkflags); 1276 if (error) 1277 return (error); 1278 newvp = NFSTOV(np); 1279 if (attrflag) 1280 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1281 0, 1); 1282 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1283 !(np->n_flag & NMODIFIED)) { 1284 /* 1285 * Flush the attribute cache when opening a 1286 * leaf node to ensure that fresh attributes 1287 * are fetched in nfs_open() since we did not 1288 * fetch attributes from the LOOKUP reply. 1289 */ 1290 mtx_lock(&np->n_mtx); 1291 np->n_attrstamp = 0; 1292 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1293 mtx_unlock(&np->n_mtx); 1294 } 1295 } 1296 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1297 cnp->cn_flags |= SAVENAME; 1298 if ((cnp->cn_flags & MAKEENTRY) && 1299 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && 1300 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) 1301 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1302 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); 1303 *vpp = newvp; 1304 return (0); 1305 } 1306 1307 /* 1308 * nfs read call. 1309 * Just call ncl_bioread() to do the work. 1310 */ 1311 static int 1312 nfs_read(struct vop_read_args *ap) 1313 { 1314 struct vnode *vp = ap->a_vp; 1315 1316 switch (vp->v_type) { 1317 case VREG: 1318 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1319 case VDIR: 1320 return (EISDIR); 1321 default: 1322 return (EOPNOTSUPP); 1323 } 1324 } 1325 1326 /* 1327 * nfs readlink call 1328 */ 1329 static int 1330 nfs_readlink(struct vop_readlink_args *ap) 1331 { 1332 struct vnode *vp = ap->a_vp; 1333 1334 if (vp->v_type != VLNK) 1335 return (EINVAL); 1336 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1337 } 1338 1339 /* 1340 * Do a readlink rpc. 1341 * Called by ncl_doio() from below the buffer cache. 1342 */ 1343 int 1344 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1345 { 1346 int error, ret, attrflag; 1347 struct nfsvattr nfsva; 1348 1349 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1350 &attrflag, NULL); 1351 if (attrflag) { 1352 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1353 if (ret && !error) 1354 error = ret; 1355 } 1356 if (error && NFS_ISV4(vp)) 1357 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1358 return (error); 1359 } 1360 1361 /* 1362 * nfs read rpc call 1363 * Ditto above 1364 */ 1365 int 1366 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1367 { 1368 int error, ret, attrflag; 1369 struct nfsvattr nfsva; 1370 struct nfsmount *nmp; 1371 1372 nmp = VFSTONFS(vnode_mount(vp)); 1373 error = EIO; 1374 attrflag = 0; 1375 if (NFSHASPNFS(nmp)) 1376 error = nfscl_doiods(vp, uiop, NULL, NULL, 1377 NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td); 1378 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); 1379 if (error != 0) 1380 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, 1381 &attrflag, NULL); 1382 if (attrflag) { 1383 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1384 if (ret && !error) 1385 error = ret; 1386 } 1387 if (error && NFS_ISV4(vp)) 1388 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1389 return (error); 1390 } 1391 1392 /* 1393 * nfs write call 1394 */ 1395 int 1396 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1397 int *iomode, int *must_commit, int called_from_strategy) 1398 { 1399 struct nfsvattr nfsva; 1400 int error, attrflag, ret; 1401 struct nfsmount *nmp; 1402 1403 nmp = VFSTONFS(vnode_mount(vp)); 1404 error = EIO; 1405 attrflag = 0; 1406 if (NFSHASPNFS(nmp)) 1407 error = nfscl_doiods(vp, uiop, iomode, must_commit, 1408 NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td); 1409 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); 1410 if (error != 0) 1411 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1412 uiop->uio_td, &nfsva, &attrflag, NULL, 1413 called_from_strategy); 1414 if (attrflag) { 1415 if (VTONFS(vp)->n_flag & ND_NFSV4) 1416 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1417 1); 1418 else 1419 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1420 1); 1421 if (ret && !error) 1422 error = ret; 1423 } 1424 if (DOINGASYNC(vp)) 1425 *iomode = NFSWRITE_FILESYNC; 1426 if (error && NFS_ISV4(vp)) 1427 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1428 return (error); 1429 } 1430 1431 /* 1432 * nfs mknod rpc 1433 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1434 * mode set to specify the file type and the size field for rdev. 1435 */ 1436 static int 1437 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1438 struct vattr *vap) 1439 { 1440 struct nfsvattr nfsva, dnfsva; 1441 struct vnode *newvp = NULL; 1442 struct nfsnode *np = NULL, *dnp; 1443 struct nfsfh *nfhp; 1444 struct vattr vattr; 1445 int error = 0, attrflag, dattrflag; 1446 u_int32_t rdev; 1447 1448 if (vap->va_type == VCHR || vap->va_type == VBLK) 1449 rdev = vap->va_rdev; 1450 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1451 rdev = 0xffffffff; 1452 else 1453 return (EOPNOTSUPP); 1454 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1455 return (error); 1456 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1457 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1458 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1459 if (!error) { 1460 if (!nfhp) 1461 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1462 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1463 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1464 NULL); 1465 if (nfhp) 1466 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1467 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1468 } 1469 if (dattrflag) 1470 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1471 if (!error) { 1472 newvp = NFSTOV(np); 1473 if (attrflag != 0) { 1474 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1475 0, 1); 1476 if (error != 0) 1477 vput(newvp); 1478 } 1479 } 1480 if (!error) { 1481 *vpp = newvp; 1482 } else if (NFS_ISV4(dvp)) { 1483 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1484 vap->va_gid); 1485 } 1486 dnp = VTONFS(dvp); 1487 mtx_lock(&dnp->n_mtx); 1488 dnp->n_flag |= NMODIFIED; 1489 if (!dattrflag) { 1490 dnp->n_attrstamp = 0; 1491 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1492 } 1493 mtx_unlock(&dnp->n_mtx); 1494 return (error); 1495 } 1496 1497 /* 1498 * nfs mknod vop 1499 * just call nfs_mknodrpc() to do the work. 1500 */ 1501 /* ARGSUSED */ 1502 static int 1503 nfs_mknod(struct vop_mknod_args *ap) 1504 { 1505 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1506 } 1507 1508 static struct mtx nfs_cverf_mtx; 1509 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1510 MTX_DEF); 1511 1512 static nfsquad_t 1513 nfs_get_cverf(void) 1514 { 1515 static nfsquad_t cverf; 1516 nfsquad_t ret; 1517 static int cverf_initialized = 0; 1518 1519 mtx_lock(&nfs_cverf_mtx); 1520 if (cverf_initialized == 0) { 1521 cverf.lval[0] = arc4random(); 1522 cverf.lval[1] = arc4random(); 1523 cverf_initialized = 1; 1524 } else 1525 cverf.qval++; 1526 ret = cverf; 1527 mtx_unlock(&nfs_cverf_mtx); 1528 1529 return (ret); 1530 } 1531 1532 /* 1533 * nfs file create call 1534 */ 1535 static int 1536 nfs_create(struct vop_create_args *ap) 1537 { 1538 struct vnode *dvp = ap->a_dvp; 1539 struct vattr *vap = ap->a_vap; 1540 struct componentname *cnp = ap->a_cnp; 1541 struct nfsnode *np = NULL, *dnp; 1542 struct vnode *newvp = NULL; 1543 struct nfsmount *nmp; 1544 struct nfsvattr dnfsva, nfsva; 1545 struct nfsfh *nfhp; 1546 nfsquad_t cverf; 1547 int error = 0, attrflag, dattrflag, fmode = 0; 1548 struct vattr vattr; 1549 1550 /* 1551 * Oops, not for me.. 1552 */ 1553 if (vap->va_type == VSOCK) 1554 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1555 1556 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1557 return (error); 1558 if (vap->va_vaflags & VA_EXCLUSIVE) 1559 fmode |= O_EXCL; 1560 dnp = VTONFS(dvp); 1561 nmp = VFSTONFS(vnode_mount(dvp)); 1562 again: 1563 /* For NFSv4, wait until any remove is done. */ 1564 mtx_lock(&dnp->n_mtx); 1565 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1566 dnp->n_flag |= NREMOVEWANT; 1567 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1568 } 1569 mtx_unlock(&dnp->n_mtx); 1570 1571 cverf = nfs_get_cverf(); 1572 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1573 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1574 &nfhp, &attrflag, &dattrflag, NULL); 1575 if (!error) { 1576 if (nfhp == NULL) 1577 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1578 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1579 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1580 NULL); 1581 if (nfhp != NULL) 1582 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1583 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1584 } 1585 if (dattrflag) 1586 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1587 if (!error) { 1588 newvp = NFSTOV(np); 1589 if (attrflag == 0) 1590 error = nfsrpc_getattr(newvp, cnp->cn_cred, 1591 cnp->cn_thread, &nfsva, NULL); 1592 if (error == 0) 1593 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1594 0, 1); 1595 } 1596 if (error) { 1597 if (newvp != NULL) { 1598 vput(newvp); 1599 newvp = NULL; 1600 } 1601 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1602 error == NFSERR_NOTSUPP) { 1603 fmode &= ~O_EXCL; 1604 goto again; 1605 } 1606 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1607 if (nfscl_checksattr(vap, &nfsva)) { 1608 /* 1609 * We are normally called with only a partially 1610 * initialized VAP. Since the NFSv3 spec says that 1611 * the server may use the file attributes to 1612 * store the verifier, the spec requires us to do a 1613 * SETATTR RPC. FreeBSD servers store the verifier in 1614 * atime, but we can't really assume that all servers 1615 * will so we ensure that our SETATTR sets both atime 1616 * and mtime. 1617 */ 1618 if (vap->va_mtime.tv_sec == VNOVAL) 1619 vfs_timestamp(&vap->va_mtime); 1620 if (vap->va_atime.tv_sec == VNOVAL) 1621 vap->va_atime = vap->va_mtime; 1622 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1623 cnp->cn_thread, &nfsva, &attrflag, NULL); 1624 if (error && (vap->va_uid != (uid_t)VNOVAL || 1625 vap->va_gid != (gid_t)VNOVAL)) { 1626 /* try again without setting uid/gid */ 1627 vap->va_uid = (uid_t)VNOVAL; 1628 vap->va_gid = (uid_t)VNOVAL; 1629 error = nfsrpc_setattr(newvp, vap, NULL, 1630 cnp->cn_cred, cnp->cn_thread, &nfsva, 1631 &attrflag, NULL); 1632 } 1633 if (attrflag) 1634 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1635 NULL, 0, 1); 1636 if (error != 0) 1637 vput(newvp); 1638 } 1639 } 1640 if (!error) { 1641 if ((cnp->cn_flags & MAKEENTRY) && attrflag) 1642 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1643 NULL); 1644 *ap->a_vpp = newvp; 1645 } else if (NFS_ISV4(dvp)) { 1646 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1647 vap->va_gid); 1648 } 1649 mtx_lock(&dnp->n_mtx); 1650 dnp->n_flag |= NMODIFIED; 1651 if (!dattrflag) { 1652 dnp->n_attrstamp = 0; 1653 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1654 } 1655 mtx_unlock(&dnp->n_mtx); 1656 return (error); 1657 } 1658 1659 /* 1660 * nfs file remove call 1661 * To try and make nfs semantics closer to ufs semantics, a file that has 1662 * other processes using the vnode is renamed instead of removed and then 1663 * removed later on the last close. 1664 * - If v_usecount > 1 1665 * If a rename is not already in the works 1666 * call nfs_sillyrename() to set it up 1667 * else 1668 * do the remove rpc 1669 */ 1670 static int 1671 nfs_remove(struct vop_remove_args *ap) 1672 { 1673 struct vnode *vp = ap->a_vp; 1674 struct vnode *dvp = ap->a_dvp; 1675 struct componentname *cnp = ap->a_cnp; 1676 struct nfsnode *np = VTONFS(vp); 1677 int error = 0; 1678 struct vattr vattr; 1679 1680 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1681 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1682 if (vp->v_type == VDIR) 1683 error = EPERM; 1684 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1685 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1686 vattr.va_nlink > 1)) { 1687 /* 1688 * Purge the name cache so that the chance of a lookup for 1689 * the name succeeding while the remove is in progress is 1690 * minimized. Without node locking it can still happen, such 1691 * that an I/O op returns ESTALE, but since you get this if 1692 * another host removes the file.. 1693 */ 1694 cache_purge(vp); 1695 /* 1696 * throw away biocache buffers, mainly to avoid 1697 * unnecessary delayed writes later. 1698 */ 1699 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1700 /* Do the rpc */ 1701 if (error != EINTR && error != EIO) 1702 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1703 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1704 /* 1705 * Kludge City: If the first reply to the remove rpc is lost.. 1706 * the reply to the retransmitted request will be ENOENT 1707 * since the file was in fact removed 1708 * Therefore, we cheat and return success. 1709 */ 1710 if (error == ENOENT) 1711 error = 0; 1712 } else if (!np->n_sillyrename) 1713 error = nfs_sillyrename(dvp, vp, cnp); 1714 mtx_lock(&np->n_mtx); 1715 np->n_attrstamp = 0; 1716 mtx_unlock(&np->n_mtx); 1717 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1718 return (error); 1719 } 1720 1721 /* 1722 * nfs file remove rpc called from nfs_inactive 1723 */ 1724 int 1725 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1726 { 1727 /* 1728 * Make sure that the directory vnode is still valid. 1729 * XXX we should lock sp->s_dvp here. 1730 */ 1731 if (sp->s_dvp->v_type == VBAD) 1732 return (0); 1733 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1734 sp->s_cred, NULL)); 1735 } 1736 1737 /* 1738 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1739 */ 1740 static int 1741 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1742 int namelen, struct ucred *cred, struct thread *td) 1743 { 1744 struct nfsvattr dnfsva; 1745 struct nfsnode *dnp = VTONFS(dvp); 1746 int error = 0, dattrflag; 1747 1748 mtx_lock(&dnp->n_mtx); 1749 dnp->n_flag |= NREMOVEINPROG; 1750 mtx_unlock(&dnp->n_mtx); 1751 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1752 &dattrflag, NULL); 1753 mtx_lock(&dnp->n_mtx); 1754 if ((dnp->n_flag & NREMOVEWANT)) { 1755 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1756 mtx_unlock(&dnp->n_mtx); 1757 wakeup((caddr_t)dnp); 1758 } else { 1759 dnp->n_flag &= ~NREMOVEINPROG; 1760 mtx_unlock(&dnp->n_mtx); 1761 } 1762 if (dattrflag) 1763 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1764 mtx_lock(&dnp->n_mtx); 1765 dnp->n_flag |= NMODIFIED; 1766 if (!dattrflag) { 1767 dnp->n_attrstamp = 0; 1768 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1769 } 1770 mtx_unlock(&dnp->n_mtx); 1771 if (error && NFS_ISV4(dvp)) 1772 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1773 return (error); 1774 } 1775 1776 /* 1777 * nfs file rename call 1778 */ 1779 static int 1780 nfs_rename(struct vop_rename_args *ap) 1781 { 1782 struct vnode *fvp = ap->a_fvp; 1783 struct vnode *tvp = ap->a_tvp; 1784 struct vnode *fdvp = ap->a_fdvp; 1785 struct vnode *tdvp = ap->a_tdvp; 1786 struct componentname *tcnp = ap->a_tcnp; 1787 struct componentname *fcnp = ap->a_fcnp; 1788 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1789 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1790 struct nfsv4node *newv4 = NULL; 1791 int error; 1792 1793 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1794 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1795 /* Check for cross-device rename */ 1796 if ((fvp->v_mount != tdvp->v_mount) || 1797 (tvp && (fvp->v_mount != tvp->v_mount))) { 1798 error = EXDEV; 1799 goto out; 1800 } 1801 1802 if (fvp == tvp) { 1803 ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); 1804 error = 0; 1805 goto out; 1806 } 1807 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1808 goto out; 1809 1810 /* 1811 * We have to flush B_DELWRI data prior to renaming 1812 * the file. If we don't, the delayed-write buffers 1813 * can be flushed out later after the file has gone stale 1814 * under NFSV3. NFSV2 does not have this problem because 1815 * ( as far as I can tell ) it flushes dirty buffers more 1816 * often. 1817 * 1818 * Skip the rename operation if the fsync fails, this can happen 1819 * due to the server's volume being full, when we pushed out data 1820 * that was written back to our cache earlier. Not checking for 1821 * this condition can result in potential (silent) data loss. 1822 */ 1823 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1824 NFSVOPUNLOCK(fvp, 0); 1825 if (!error && tvp) 1826 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1827 if (error) 1828 goto out; 1829 1830 /* 1831 * If the tvp exists and is in use, sillyrename it before doing the 1832 * rename of the new file over it. 1833 * XXX Can't sillyrename a directory. 1834 */ 1835 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1836 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1837 vput(tvp); 1838 tvp = NULL; 1839 } 1840 1841 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1842 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1843 tcnp->cn_thread); 1844 1845 if (error == 0 && NFS_ISV4(tdvp)) { 1846 /* 1847 * For NFSv4, check to see if it is the same name and 1848 * replace the name, if it is different. 1849 */ 1850 MALLOC(newv4, struct nfsv4node *, 1851 sizeof (struct nfsv4node) + 1852 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1853 M_NFSV4NODE, M_WAITOK); 1854 mtx_lock(&tdnp->n_mtx); 1855 mtx_lock(&fnp->n_mtx); 1856 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1857 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1858 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1859 tcnp->cn_namelen) || 1860 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1861 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1862 tdnp->n_fhp->nfh_len))) { 1863 #ifdef notdef 1864 { char nnn[100]; int nnnl; 1865 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1866 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1867 nnn[nnnl] = '\0'; 1868 printf("ren replace=%s\n",nnn); 1869 } 1870 #endif 1871 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); 1872 fnp->n_v4 = newv4; 1873 newv4 = NULL; 1874 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1875 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1876 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1877 tdnp->n_fhp->nfh_len); 1878 NFSBCOPY(tcnp->cn_nameptr, 1879 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1880 } 1881 mtx_unlock(&tdnp->n_mtx); 1882 mtx_unlock(&fnp->n_mtx); 1883 if (newv4 != NULL) 1884 FREE((caddr_t)newv4, M_NFSV4NODE); 1885 } 1886 1887 if (fvp->v_type == VDIR) { 1888 if (tvp != NULL && tvp->v_type == VDIR) 1889 cache_purge(tdvp); 1890 cache_purge(fdvp); 1891 } 1892 1893 out: 1894 if (tdvp == tvp) 1895 vrele(tdvp); 1896 else 1897 vput(tdvp); 1898 if (tvp) 1899 vput(tvp); 1900 vrele(fdvp); 1901 vrele(fvp); 1902 /* 1903 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1904 */ 1905 if (error == ENOENT) 1906 error = 0; 1907 return (error); 1908 } 1909 1910 /* 1911 * nfs file rename rpc called from nfs_remove() above 1912 */ 1913 static int 1914 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1915 struct sillyrename *sp) 1916 { 1917 1918 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1919 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1920 scnp->cn_thread)); 1921 } 1922 1923 /* 1924 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1925 */ 1926 static int 1927 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1928 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1929 int tnamelen, struct ucred *cred, struct thread *td) 1930 { 1931 struct nfsvattr fnfsva, tnfsva; 1932 struct nfsnode *fdnp = VTONFS(fdvp); 1933 struct nfsnode *tdnp = VTONFS(tdvp); 1934 int error = 0, fattrflag, tattrflag; 1935 1936 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1937 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1938 &tattrflag, NULL, NULL); 1939 mtx_lock(&fdnp->n_mtx); 1940 fdnp->n_flag |= NMODIFIED; 1941 if (fattrflag != 0) { 1942 mtx_unlock(&fdnp->n_mtx); 1943 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1944 } else { 1945 fdnp->n_attrstamp = 0; 1946 mtx_unlock(&fdnp->n_mtx); 1947 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1948 } 1949 mtx_lock(&tdnp->n_mtx); 1950 tdnp->n_flag |= NMODIFIED; 1951 if (tattrflag != 0) { 1952 mtx_unlock(&tdnp->n_mtx); 1953 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1954 } else { 1955 tdnp->n_attrstamp = 0; 1956 mtx_unlock(&tdnp->n_mtx); 1957 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1958 } 1959 if (error && NFS_ISV4(fdvp)) 1960 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1961 return (error); 1962 } 1963 1964 /* 1965 * nfs hard link create call 1966 */ 1967 static int 1968 nfs_link(struct vop_link_args *ap) 1969 { 1970 struct vnode *vp = ap->a_vp; 1971 struct vnode *tdvp = ap->a_tdvp; 1972 struct componentname *cnp = ap->a_cnp; 1973 struct nfsnode *np, *tdnp; 1974 struct nfsvattr nfsva, dnfsva; 1975 int error = 0, attrflag, dattrflag; 1976 1977 if (vp->v_mount != tdvp->v_mount) { 1978 return (EXDEV); 1979 } 1980 1981 /* 1982 * Push all writes to the server, so that the attribute cache 1983 * doesn't get "out of sync" with the server. 1984 * XXX There should be a better way! 1985 */ 1986 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1987 1988 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1989 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1990 &dattrflag, NULL); 1991 tdnp = VTONFS(tdvp); 1992 mtx_lock(&tdnp->n_mtx); 1993 tdnp->n_flag |= NMODIFIED; 1994 if (dattrflag != 0) { 1995 mtx_unlock(&tdnp->n_mtx); 1996 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 1997 } else { 1998 tdnp->n_attrstamp = 0; 1999 mtx_unlock(&tdnp->n_mtx); 2000 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 2001 } 2002 if (attrflag) 2003 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2004 else { 2005 np = VTONFS(vp); 2006 mtx_lock(&np->n_mtx); 2007 np->n_attrstamp = 0; 2008 mtx_unlock(&np->n_mtx); 2009 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 2010 } 2011 /* 2012 * If negative lookup caching is enabled, I might as well 2013 * add an entry for this node. Not necessary for correctness, 2014 * but if negative caching is enabled, then the system 2015 * must care about lookup caching hit rate, so... 2016 */ 2017 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 2018 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2019 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); 2020 } 2021 if (error && NFS_ISV4(vp)) 2022 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2023 (gid_t)0); 2024 return (error); 2025 } 2026 2027 /* 2028 * nfs symbolic link create call 2029 */ 2030 static int 2031 nfs_symlink(struct vop_symlink_args *ap) 2032 { 2033 struct vnode *dvp = ap->a_dvp; 2034 struct vattr *vap = ap->a_vap; 2035 struct componentname *cnp = ap->a_cnp; 2036 struct nfsvattr nfsva, dnfsva; 2037 struct nfsfh *nfhp; 2038 struct nfsnode *np = NULL, *dnp; 2039 struct vnode *newvp = NULL; 2040 int error = 0, attrflag, dattrflag, ret; 2041 2042 vap->va_type = VLNK; 2043 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2044 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2045 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2046 if (nfhp) { 2047 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2048 &np, NULL, LK_EXCLUSIVE); 2049 if (!ret) 2050 newvp = NFSTOV(np); 2051 else if (!error) 2052 error = ret; 2053 } 2054 if (newvp != NULL) { 2055 if (attrflag) 2056 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2057 0, 1); 2058 } else if (!error) { 2059 /* 2060 * If we do not have an error and we could not extract the 2061 * newvp from the response due to the request being NFSv2, we 2062 * have to do a lookup in order to obtain a newvp to return. 2063 */ 2064 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2065 cnp->cn_cred, cnp->cn_thread, &np); 2066 if (!error) 2067 newvp = NFSTOV(np); 2068 } 2069 if (error) { 2070 if (newvp) 2071 vput(newvp); 2072 if (NFS_ISV4(dvp)) 2073 error = nfscl_maperr(cnp->cn_thread, error, 2074 vap->va_uid, vap->va_gid); 2075 } else { 2076 *ap->a_vpp = newvp; 2077 } 2078 2079 dnp = VTONFS(dvp); 2080 mtx_lock(&dnp->n_mtx); 2081 dnp->n_flag |= NMODIFIED; 2082 if (dattrflag != 0) { 2083 mtx_unlock(&dnp->n_mtx); 2084 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2085 } else { 2086 dnp->n_attrstamp = 0; 2087 mtx_unlock(&dnp->n_mtx); 2088 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2089 } 2090 /* 2091 * If negative lookup caching is enabled, I might as well 2092 * add an entry for this node. Not necessary for correctness, 2093 * but if negative caching is enabled, then the system 2094 * must care about lookup caching hit rate, so... 2095 */ 2096 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2097 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2098 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); 2099 } 2100 return (error); 2101 } 2102 2103 /* 2104 * nfs make dir call 2105 */ 2106 static int 2107 nfs_mkdir(struct vop_mkdir_args *ap) 2108 { 2109 struct vnode *dvp = ap->a_dvp; 2110 struct vattr *vap = ap->a_vap; 2111 struct componentname *cnp = ap->a_cnp; 2112 struct nfsnode *np = NULL, *dnp; 2113 struct vnode *newvp = NULL; 2114 struct vattr vattr; 2115 struct nfsfh *nfhp; 2116 struct nfsvattr nfsva, dnfsva; 2117 int error = 0, attrflag, dattrflag, ret; 2118 2119 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2120 return (error); 2121 vap->va_type = VDIR; 2122 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2123 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2124 &attrflag, &dattrflag, NULL); 2125 dnp = VTONFS(dvp); 2126 mtx_lock(&dnp->n_mtx); 2127 dnp->n_flag |= NMODIFIED; 2128 if (dattrflag != 0) { 2129 mtx_unlock(&dnp->n_mtx); 2130 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2131 } else { 2132 dnp->n_attrstamp = 0; 2133 mtx_unlock(&dnp->n_mtx); 2134 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2135 } 2136 if (nfhp) { 2137 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2138 &np, NULL, LK_EXCLUSIVE); 2139 if (!ret) { 2140 newvp = NFSTOV(np); 2141 if (attrflag) 2142 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2143 NULL, 0, 1); 2144 } else if (!error) 2145 error = ret; 2146 } 2147 if (!error && newvp == NULL) { 2148 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2149 cnp->cn_cred, cnp->cn_thread, &np); 2150 if (!error) { 2151 newvp = NFSTOV(np); 2152 if (newvp->v_type != VDIR) 2153 error = EEXIST; 2154 } 2155 } 2156 if (error) { 2157 if (newvp) 2158 vput(newvp); 2159 if (NFS_ISV4(dvp)) 2160 error = nfscl_maperr(cnp->cn_thread, error, 2161 vap->va_uid, vap->va_gid); 2162 } else { 2163 /* 2164 * If negative lookup caching is enabled, I might as well 2165 * add an entry for this node. Not necessary for correctness, 2166 * but if negative caching is enabled, then the system 2167 * must care about lookup caching hit rate, so... 2168 */ 2169 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2170 (cnp->cn_flags & MAKEENTRY) && 2171 attrflag != 0 && dattrflag != 0) 2172 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 2173 &dnfsva.na_ctime); 2174 *ap->a_vpp = newvp; 2175 } 2176 return (error); 2177 } 2178 2179 /* 2180 * nfs remove directory call 2181 */ 2182 static int 2183 nfs_rmdir(struct vop_rmdir_args *ap) 2184 { 2185 struct vnode *vp = ap->a_vp; 2186 struct vnode *dvp = ap->a_dvp; 2187 struct componentname *cnp = ap->a_cnp; 2188 struct nfsnode *dnp; 2189 struct nfsvattr dnfsva; 2190 int error, dattrflag; 2191 2192 if (dvp == vp) 2193 return (EINVAL); 2194 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2195 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2196 dnp = VTONFS(dvp); 2197 mtx_lock(&dnp->n_mtx); 2198 dnp->n_flag |= NMODIFIED; 2199 if (dattrflag != 0) { 2200 mtx_unlock(&dnp->n_mtx); 2201 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2202 } else { 2203 dnp->n_attrstamp = 0; 2204 mtx_unlock(&dnp->n_mtx); 2205 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2206 } 2207 2208 cache_purge(dvp); 2209 cache_purge(vp); 2210 if (error && NFS_ISV4(dvp)) 2211 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2212 (gid_t)0); 2213 /* 2214 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2215 */ 2216 if (error == ENOENT) 2217 error = 0; 2218 return (error); 2219 } 2220 2221 /* 2222 * nfs readdir call 2223 */ 2224 static int 2225 nfs_readdir(struct vop_readdir_args *ap) 2226 { 2227 struct vnode *vp = ap->a_vp; 2228 struct nfsnode *np = VTONFS(vp); 2229 struct uio *uio = ap->a_uio; 2230 ssize_t tresid; 2231 int error = 0; 2232 struct vattr vattr; 2233 2234 if (ap->a_eofflag != NULL) 2235 *ap->a_eofflag = 0; 2236 if (vp->v_type != VDIR) 2237 return(EPERM); 2238 2239 /* 2240 * First, check for hit on the EOF offset cache 2241 */ 2242 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2243 (np->n_flag & NMODIFIED) == 0) { 2244 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2245 mtx_lock(&np->n_mtx); 2246 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2247 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2248 mtx_unlock(&np->n_mtx); 2249 NFSINCRGLOBAL(newnfsstats.direofcache_hits); 2250 if (ap->a_eofflag != NULL) 2251 *ap->a_eofflag = 1; 2252 return (0); 2253 } else 2254 mtx_unlock(&np->n_mtx); 2255 } 2256 } 2257 2258 /* 2259 * Call ncl_bioread() to do the real work. 2260 */ 2261 tresid = uio->uio_resid; 2262 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2263 2264 if (!error && uio->uio_resid == tresid) { 2265 NFSINCRGLOBAL(newnfsstats.direofcache_misses); 2266 if (ap->a_eofflag != NULL) 2267 *ap->a_eofflag = 1; 2268 } 2269 return (error); 2270 } 2271 2272 /* 2273 * Readdir rpc call. 2274 * Called from below the buffer cache by ncl_doio(). 2275 */ 2276 int 2277 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2278 struct thread *td) 2279 { 2280 struct nfsvattr nfsva; 2281 nfsuint64 *cookiep, cookie; 2282 struct nfsnode *dnp = VTONFS(vp); 2283 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2284 int error = 0, eof, attrflag; 2285 2286 KASSERT(uiop->uio_iovcnt == 1 && 2287 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2288 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2289 ("nfs readdirrpc bad uio")); 2290 2291 /* 2292 * If there is no cookie, assume directory was stale. 2293 */ 2294 ncl_dircookie_lock(dnp); 2295 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2296 if (cookiep) { 2297 cookie = *cookiep; 2298 ncl_dircookie_unlock(dnp); 2299 } else { 2300 ncl_dircookie_unlock(dnp); 2301 return (NFSERR_BAD_COOKIE); 2302 } 2303 2304 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2305 (void)ncl_fsinfo(nmp, vp, cred, td); 2306 2307 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2308 &attrflag, &eof, NULL); 2309 if (attrflag) 2310 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2311 2312 if (!error) { 2313 /* 2314 * We are now either at the end of the directory or have filled 2315 * the block. 2316 */ 2317 if (eof) 2318 dnp->n_direofoffset = uiop->uio_offset; 2319 else { 2320 if (uiop->uio_resid > 0) 2321 ncl_printf("EEK! readdirrpc resid > 0\n"); 2322 ncl_dircookie_lock(dnp); 2323 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2324 *cookiep = cookie; 2325 ncl_dircookie_unlock(dnp); 2326 } 2327 } else if (NFS_ISV4(vp)) { 2328 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2329 } 2330 return (error); 2331 } 2332 2333 /* 2334 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2335 */ 2336 int 2337 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2338 struct thread *td) 2339 { 2340 struct nfsvattr nfsva; 2341 nfsuint64 *cookiep, cookie; 2342 struct nfsnode *dnp = VTONFS(vp); 2343 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2344 int error = 0, attrflag, eof; 2345 2346 KASSERT(uiop->uio_iovcnt == 1 && 2347 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2348 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2349 ("nfs readdirplusrpc bad uio")); 2350 2351 /* 2352 * If there is no cookie, assume directory was stale. 2353 */ 2354 ncl_dircookie_lock(dnp); 2355 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2356 if (cookiep) { 2357 cookie = *cookiep; 2358 ncl_dircookie_unlock(dnp); 2359 } else { 2360 ncl_dircookie_unlock(dnp); 2361 return (NFSERR_BAD_COOKIE); 2362 } 2363 2364 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2365 (void)ncl_fsinfo(nmp, vp, cred, td); 2366 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2367 &attrflag, &eof, NULL); 2368 if (attrflag) 2369 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2370 2371 if (!error) { 2372 /* 2373 * We are now either at end of the directory or have filled the 2374 * the block. 2375 */ 2376 if (eof) 2377 dnp->n_direofoffset = uiop->uio_offset; 2378 else { 2379 if (uiop->uio_resid > 0) 2380 ncl_printf("EEK! readdirplusrpc resid > 0\n"); 2381 ncl_dircookie_lock(dnp); 2382 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2383 *cookiep = cookie; 2384 ncl_dircookie_unlock(dnp); 2385 } 2386 } else if (NFS_ISV4(vp)) { 2387 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2388 } 2389 return (error); 2390 } 2391 2392 /* 2393 * Silly rename. To make the NFS filesystem that is stateless look a little 2394 * more like the "ufs" a remove of an active vnode is translated to a rename 2395 * to a funny looking filename that is removed by nfs_inactive on the 2396 * nfsnode. There is the potential for another process on a different client 2397 * to create the same funny name between the nfs_lookitup() fails and the 2398 * nfs_rename() completes, but... 2399 */ 2400 static int 2401 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2402 { 2403 struct sillyrename *sp; 2404 struct nfsnode *np; 2405 int error; 2406 short pid; 2407 unsigned int lticks; 2408 2409 cache_purge(dvp); 2410 np = VTONFS(vp); 2411 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2412 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2413 M_NEWNFSREQ, M_WAITOK); 2414 sp->s_cred = crhold(cnp->cn_cred); 2415 sp->s_dvp = dvp; 2416 VREF(dvp); 2417 2418 /* 2419 * Fudge together a funny name. 2420 * Changing the format of the funny name to accomodate more 2421 * sillynames per directory. 2422 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2423 * CPU ticks since boot. 2424 */ 2425 pid = cnp->cn_thread->td_proc->p_pid; 2426 lticks = (unsigned int)ticks; 2427 for ( ; ; ) { 2428 sp->s_namlen = sprintf(sp->s_name, 2429 ".nfs.%08x.%04x4.4", lticks, 2430 pid); 2431 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2432 cnp->cn_thread, NULL)) 2433 break; 2434 lticks++; 2435 } 2436 error = nfs_renameit(dvp, vp, cnp, sp); 2437 if (error) 2438 goto bad; 2439 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2440 cnp->cn_thread, &np); 2441 np->n_sillyrename = sp; 2442 return (0); 2443 bad: 2444 vrele(sp->s_dvp); 2445 crfree(sp->s_cred); 2446 free((caddr_t)sp, M_NEWNFSREQ); 2447 return (error); 2448 } 2449 2450 /* 2451 * Look up a file name and optionally either update the file handle or 2452 * allocate an nfsnode, depending on the value of npp. 2453 * npp == NULL --> just do the lookup 2454 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2455 * handled too 2456 * *npp != NULL --> update the file handle in the vnode 2457 */ 2458 static int 2459 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2460 struct thread *td, struct nfsnode **npp) 2461 { 2462 struct vnode *newvp = NULL, *vp; 2463 struct nfsnode *np, *dnp = VTONFS(dvp); 2464 struct nfsfh *nfhp, *onfhp; 2465 struct nfsvattr nfsva, dnfsva; 2466 struct componentname cn; 2467 int error = 0, attrflag, dattrflag; 2468 u_int hash; 2469 2470 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2471 &nfhp, &attrflag, &dattrflag, NULL); 2472 if (dattrflag) 2473 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2474 if (npp && !error) { 2475 if (*npp != NULL) { 2476 np = *npp; 2477 vp = NFSTOV(np); 2478 /* 2479 * For NFSv4, check to see if it is the same name and 2480 * replace the name, if it is different. 2481 */ 2482 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2483 (np->n_v4->n4_namelen != len || 2484 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2485 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2486 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2487 dnp->n_fhp->nfh_len))) { 2488 #ifdef notdef 2489 { char nnn[100]; int nnnl; 2490 nnnl = (len < 100) ? len : 99; 2491 bcopy(name, nnn, nnnl); 2492 nnn[nnnl] = '\0'; 2493 printf("replace=%s\n",nnn); 2494 } 2495 #endif 2496 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 2497 MALLOC(np->n_v4, struct nfsv4node *, 2498 sizeof (struct nfsv4node) + 2499 dnp->n_fhp->nfh_len + len - 1, 2500 M_NFSV4NODE, M_WAITOK); 2501 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2502 np->n_v4->n4_namelen = len; 2503 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2504 dnp->n_fhp->nfh_len); 2505 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2506 } 2507 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2508 FNV1_32_INIT); 2509 onfhp = np->n_fhp; 2510 /* 2511 * Rehash node for new file handle. 2512 */ 2513 vfs_hash_rehash(vp, hash); 2514 np->n_fhp = nfhp; 2515 if (onfhp != NULL) 2516 FREE((caddr_t)onfhp, M_NFSFH); 2517 newvp = NFSTOV(np); 2518 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2519 FREE((caddr_t)nfhp, M_NFSFH); 2520 VREF(dvp); 2521 newvp = dvp; 2522 } else { 2523 cn.cn_nameptr = name; 2524 cn.cn_namelen = len; 2525 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2526 &np, NULL, LK_EXCLUSIVE); 2527 if (error) 2528 return (error); 2529 newvp = NFSTOV(np); 2530 } 2531 if (!attrflag && *npp == NULL) { 2532 if (newvp == dvp) 2533 vrele(newvp); 2534 else 2535 vput(newvp); 2536 return (ENOENT); 2537 } 2538 if (attrflag) 2539 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2540 0, 1); 2541 } 2542 if (npp && *npp == NULL) { 2543 if (error) { 2544 if (newvp) { 2545 if (newvp == dvp) 2546 vrele(newvp); 2547 else 2548 vput(newvp); 2549 } 2550 } else 2551 *npp = np; 2552 } 2553 if (error && NFS_ISV4(dvp)) 2554 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2555 return (error); 2556 } 2557 2558 /* 2559 * Nfs Version 3 and 4 commit rpc 2560 */ 2561 int 2562 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2563 struct thread *td) 2564 { 2565 struct nfsvattr nfsva; 2566 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2567 int error, attrflag; 2568 2569 mtx_lock(&nmp->nm_mtx); 2570 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2571 mtx_unlock(&nmp->nm_mtx); 2572 return (0); 2573 } 2574 mtx_unlock(&nmp->nm_mtx); 2575 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, 2576 &attrflag, NULL); 2577 if (attrflag != 0) 2578 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2579 0, 1); 2580 if (error != 0 && NFS_ISV4(vp)) 2581 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2582 return (error); 2583 } 2584 2585 /* 2586 * Strategy routine. 2587 * For async requests when nfsiod(s) are running, queue the request by 2588 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2589 * request. 2590 */ 2591 static int 2592 nfs_strategy(struct vop_strategy_args *ap) 2593 { 2594 struct buf *bp = ap->a_bp; 2595 struct ucred *cr; 2596 2597 KASSERT(!(bp->b_flags & B_DONE), 2598 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2599 BUF_ASSERT_HELD(bp); 2600 2601 if (bp->b_iocmd == BIO_READ) 2602 cr = bp->b_rcred; 2603 else 2604 cr = bp->b_wcred; 2605 2606 /* 2607 * If the op is asynchronous and an i/o daemon is waiting 2608 * queue the request, wake it up and wait for completion 2609 * otherwise just do it ourselves. 2610 */ 2611 if ((bp->b_flags & B_ASYNC) == 0 || 2612 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) 2613 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); 2614 return (0); 2615 } 2616 2617 /* 2618 * fsync vnode op. Just call ncl_flush() with commit == 1. 2619 */ 2620 /* ARGSUSED */ 2621 static int 2622 nfs_fsync(struct vop_fsync_args *ap) 2623 { 2624 2625 if (ap->a_vp->v_type != VREG) { 2626 /* 2627 * For NFS, metadata is changed synchronously on the server, 2628 * so there is nothing to flush. Also, ncl_flush() clears 2629 * the NMODIFIED flag and that shouldn't be done here for 2630 * directories. 2631 */ 2632 return (0); 2633 } 2634 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); 2635 } 2636 2637 /* 2638 * Flush all the blocks associated with a vnode. 2639 * Walk through the buffer pool and push any dirty pages 2640 * associated with the vnode. 2641 * If the called_from_renewthread argument is TRUE, it has been called 2642 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2643 * waiting for a buffer write to complete. 2644 */ 2645 int 2646 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, 2647 int commit, int called_from_renewthread) 2648 { 2649 struct nfsnode *np = VTONFS(vp); 2650 struct buf *bp; 2651 int i; 2652 struct buf *nbp; 2653 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2654 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2655 int passone = 1, trycnt = 0; 2656 u_quad_t off, endoff, toff; 2657 struct ucred* wcred = NULL; 2658 struct buf **bvec = NULL; 2659 struct bufobj *bo; 2660 #ifndef NFS_COMMITBVECSIZ 2661 #define NFS_COMMITBVECSIZ 20 2662 #endif 2663 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2664 int bvecsize = 0, bveccount; 2665 2666 if (called_from_renewthread != 0) 2667 slptimeo = hz; 2668 if (nmp->nm_flag & NFSMNT_INT) 2669 slpflag = PCATCH; 2670 if (!commit) 2671 passone = 0; 2672 bo = &vp->v_bufobj; 2673 /* 2674 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2675 * server, but has not been committed to stable storage on the server 2676 * yet. On the first pass, the byte range is worked out and the commit 2677 * rpc is done. On the second pass, ncl_writebp() is called to do the 2678 * job. 2679 */ 2680 again: 2681 off = (u_quad_t)-1; 2682 endoff = 0; 2683 bvecpos = 0; 2684 if (NFS_ISV34(vp) && commit) { 2685 if (bvec != NULL && bvec != bvec_on_stack) 2686 free(bvec, M_TEMP); 2687 /* 2688 * Count up how many buffers waiting for a commit. 2689 */ 2690 bveccount = 0; 2691 BO_LOCK(bo); 2692 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2693 if (!BUF_ISLOCKED(bp) && 2694 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2695 == (B_DELWRI | B_NEEDCOMMIT)) 2696 bveccount++; 2697 } 2698 /* 2699 * Allocate space to remember the list of bufs to commit. It is 2700 * important to use M_NOWAIT here to avoid a race with nfs_write. 2701 * If we can't get memory (for whatever reason), we will end up 2702 * committing the buffers one-by-one in the loop below. 2703 */ 2704 if (bveccount > NFS_COMMITBVECSIZ) { 2705 /* 2706 * Release the vnode interlock to avoid a lock 2707 * order reversal. 2708 */ 2709 BO_UNLOCK(bo); 2710 bvec = (struct buf **) 2711 malloc(bveccount * sizeof(struct buf *), 2712 M_TEMP, M_NOWAIT); 2713 BO_LOCK(bo); 2714 if (bvec == NULL) { 2715 bvec = bvec_on_stack; 2716 bvecsize = NFS_COMMITBVECSIZ; 2717 } else 2718 bvecsize = bveccount; 2719 } else { 2720 bvec = bvec_on_stack; 2721 bvecsize = NFS_COMMITBVECSIZ; 2722 } 2723 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2724 if (bvecpos >= bvecsize) 2725 break; 2726 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2727 nbp = TAILQ_NEXT(bp, b_bobufs); 2728 continue; 2729 } 2730 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2731 (B_DELWRI | B_NEEDCOMMIT)) { 2732 BUF_UNLOCK(bp); 2733 nbp = TAILQ_NEXT(bp, b_bobufs); 2734 continue; 2735 } 2736 BO_UNLOCK(bo); 2737 bremfree(bp); 2738 /* 2739 * Work out if all buffers are using the same cred 2740 * so we can deal with them all with one commit. 2741 * 2742 * NOTE: we are not clearing B_DONE here, so we have 2743 * to do it later on in this routine if we intend to 2744 * initiate I/O on the bp. 2745 * 2746 * Note: to avoid loopback deadlocks, we do not 2747 * assign b_runningbufspace. 2748 */ 2749 if (wcred == NULL) 2750 wcred = bp->b_wcred; 2751 else if (wcred != bp->b_wcred) 2752 wcred = NOCRED; 2753 vfs_busy_pages(bp, 1); 2754 2755 BO_LOCK(bo); 2756 /* 2757 * bp is protected by being locked, but nbp is not 2758 * and vfs_busy_pages() may sleep. We have to 2759 * recalculate nbp. 2760 */ 2761 nbp = TAILQ_NEXT(bp, b_bobufs); 2762 2763 /* 2764 * A list of these buffers is kept so that the 2765 * second loop knows which buffers have actually 2766 * been committed. This is necessary, since there 2767 * may be a race between the commit rpc and new 2768 * uncommitted writes on the file. 2769 */ 2770 bvec[bvecpos++] = bp; 2771 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2772 bp->b_dirtyoff; 2773 if (toff < off) 2774 off = toff; 2775 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2776 if (toff > endoff) 2777 endoff = toff; 2778 } 2779 BO_UNLOCK(bo); 2780 } 2781 if (bvecpos > 0) { 2782 /* 2783 * Commit data on the server, as required. 2784 * If all bufs are using the same wcred, then use that with 2785 * one call for all of them, otherwise commit each one 2786 * separately. 2787 */ 2788 if (wcred != NOCRED) 2789 retv = ncl_commit(vp, off, (int)(endoff - off), 2790 wcred, td); 2791 else { 2792 retv = 0; 2793 for (i = 0; i < bvecpos; i++) { 2794 off_t off, size; 2795 bp = bvec[i]; 2796 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2797 bp->b_dirtyoff; 2798 size = (u_quad_t)(bp->b_dirtyend 2799 - bp->b_dirtyoff); 2800 retv = ncl_commit(vp, off, (int)size, 2801 bp->b_wcred, td); 2802 if (retv) break; 2803 } 2804 } 2805 2806 if (retv == NFSERR_STALEWRITEVERF) 2807 ncl_clearcommit(vp->v_mount); 2808 2809 /* 2810 * Now, either mark the blocks I/O done or mark the 2811 * blocks dirty, depending on whether the commit 2812 * succeeded. 2813 */ 2814 for (i = 0; i < bvecpos; i++) { 2815 bp = bvec[i]; 2816 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2817 if (retv) { 2818 /* 2819 * Error, leave B_DELWRI intact 2820 */ 2821 vfs_unbusy_pages(bp); 2822 brelse(bp); 2823 } else { 2824 /* 2825 * Success, remove B_DELWRI ( bundirty() ). 2826 * 2827 * b_dirtyoff/b_dirtyend seem to be NFS 2828 * specific. We should probably move that 2829 * into bundirty(). XXX 2830 */ 2831 bufobj_wref(bo); 2832 bp->b_flags |= B_ASYNC; 2833 bundirty(bp); 2834 bp->b_flags &= ~B_DONE; 2835 bp->b_ioflags &= ~BIO_ERROR; 2836 bp->b_dirtyoff = bp->b_dirtyend = 0; 2837 bufdone(bp); 2838 } 2839 } 2840 } 2841 2842 /* 2843 * Start/do any write(s) that are required. 2844 */ 2845 loop: 2846 BO_LOCK(bo); 2847 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2848 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2849 if (waitfor != MNT_WAIT || passone) 2850 continue; 2851 2852 error = BUF_TIMELOCK(bp, 2853 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2854 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); 2855 if (error == 0) { 2856 BUF_UNLOCK(bp); 2857 goto loop; 2858 } 2859 if (error == ENOLCK) { 2860 error = 0; 2861 goto loop; 2862 } 2863 if (called_from_renewthread != 0) { 2864 /* 2865 * Return EIO so the flush will be retried 2866 * later. 2867 */ 2868 error = EIO; 2869 goto done; 2870 } 2871 if (newnfs_sigintr(nmp, td)) { 2872 error = EINTR; 2873 goto done; 2874 } 2875 if (slpflag == PCATCH) { 2876 slpflag = 0; 2877 slptimeo = 2 * hz; 2878 } 2879 goto loop; 2880 } 2881 if ((bp->b_flags & B_DELWRI) == 0) 2882 panic("nfs_fsync: not dirty"); 2883 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2884 BUF_UNLOCK(bp); 2885 continue; 2886 } 2887 BO_UNLOCK(bo); 2888 bremfree(bp); 2889 if (passone || !commit) 2890 bp->b_flags |= B_ASYNC; 2891 else 2892 bp->b_flags |= B_ASYNC; 2893 bwrite(bp); 2894 if (newnfs_sigintr(nmp, td)) { 2895 error = EINTR; 2896 goto done; 2897 } 2898 goto loop; 2899 } 2900 if (passone) { 2901 passone = 0; 2902 BO_UNLOCK(bo); 2903 goto again; 2904 } 2905 if (waitfor == MNT_WAIT) { 2906 while (bo->bo_numoutput) { 2907 error = bufobj_wwait(bo, slpflag, slptimeo); 2908 if (error) { 2909 BO_UNLOCK(bo); 2910 if (called_from_renewthread != 0) { 2911 /* 2912 * Return EIO so that the flush will be 2913 * retried later. 2914 */ 2915 error = EIO; 2916 goto done; 2917 } 2918 error = newnfs_sigintr(nmp, td); 2919 if (error) 2920 goto done; 2921 if (slpflag == PCATCH) { 2922 slpflag = 0; 2923 slptimeo = 2 * hz; 2924 } 2925 BO_LOCK(bo); 2926 } 2927 } 2928 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2929 BO_UNLOCK(bo); 2930 goto loop; 2931 } 2932 /* 2933 * Wait for all the async IO requests to drain 2934 */ 2935 BO_UNLOCK(bo); 2936 mtx_lock(&np->n_mtx); 2937 while (np->n_directio_asyncwr > 0) { 2938 np->n_flag |= NFSYNCWAIT; 2939 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2940 &np->n_mtx, slpflag | (PRIBIO + 1), 2941 "nfsfsync", 0); 2942 if (error) { 2943 if (newnfs_sigintr(nmp, td)) { 2944 mtx_unlock(&np->n_mtx); 2945 error = EINTR; 2946 goto done; 2947 } 2948 } 2949 } 2950 mtx_unlock(&np->n_mtx); 2951 } else 2952 BO_UNLOCK(bo); 2953 if (NFSHASPNFS(nmp)) { 2954 nfscl_layoutcommit(vp, td); 2955 /* 2956 * Invalidate the attribute cache, since writes to a DS 2957 * won't update the size attribute. 2958 */ 2959 mtx_lock(&np->n_mtx); 2960 np->n_attrstamp = 0; 2961 } else 2962 mtx_lock(&np->n_mtx); 2963 if (np->n_flag & NWRITEERR) { 2964 error = np->n_error; 2965 np->n_flag &= ~NWRITEERR; 2966 } 2967 if (commit && bo->bo_dirty.bv_cnt == 0 && 2968 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2969 np->n_flag &= ~NMODIFIED; 2970 mtx_unlock(&np->n_mtx); 2971 done: 2972 if (bvec != NULL && bvec != bvec_on_stack) 2973 free(bvec, M_TEMP); 2974 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 2975 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 2976 np->n_directio_asyncwr != 0) && trycnt++ < 5) { 2977 /* try, try again... */ 2978 passone = 1; 2979 wcred = NULL; 2980 bvec = NULL; 2981 bvecsize = 0; 2982 printf("try%d\n", trycnt); 2983 goto again; 2984 } 2985 return (error); 2986 } 2987 2988 /* 2989 * NFS advisory byte-level locks. 2990 */ 2991 static int 2992 nfs_advlock(struct vop_advlock_args *ap) 2993 { 2994 struct vnode *vp = ap->a_vp; 2995 struct ucred *cred; 2996 struct nfsnode *np = VTONFS(ap->a_vp); 2997 struct proc *p = (struct proc *)ap->a_id; 2998 struct thread *td = curthread; /* XXX */ 2999 struct vattr va; 3000 int ret, error = EOPNOTSUPP; 3001 u_quad_t size; 3002 3003 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 3004 if (vp->v_type != VREG) 3005 return (EINVAL); 3006 if ((ap->a_flags & F_POSIX) != 0) 3007 cred = p->p_ucred; 3008 else 3009 cred = td->td_ucred; 3010 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3011 if (vp->v_iflag & VI_DOOMED) { 3012 NFSVOPUNLOCK(vp, 0); 3013 return (EBADF); 3014 } 3015 3016 /* 3017 * If this is unlocking a write locked region, flush and 3018 * commit them before unlocking. This is required by 3019 * RFC3530 Sec. 9.3.2. 3020 */ 3021 if (ap->a_op == F_UNLCK && 3022 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 3023 ap->a_flags)) 3024 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); 3025 3026 /* 3027 * Loop around doing the lock op, while a blocking lock 3028 * must wait for the lock op to succeed. 3029 */ 3030 do { 3031 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 3032 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 3033 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3034 ap->a_op == F_SETLK) { 3035 NFSVOPUNLOCK(vp, 0); 3036 error = nfs_catnap(PZERO | PCATCH, ret, 3037 "ncladvl"); 3038 if (error) 3039 return (EINTR); 3040 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3041 if (vp->v_iflag & VI_DOOMED) { 3042 NFSVOPUNLOCK(vp, 0); 3043 return (EBADF); 3044 } 3045 } 3046 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3047 ap->a_op == F_SETLK); 3048 if (ret == NFSERR_DENIED) { 3049 NFSVOPUNLOCK(vp, 0); 3050 return (EAGAIN); 3051 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3052 NFSVOPUNLOCK(vp, 0); 3053 return (ret); 3054 } else if (ret != 0) { 3055 NFSVOPUNLOCK(vp, 0); 3056 return (EACCES); 3057 } 3058 3059 /* 3060 * Now, if we just got a lock, invalidate data in the buffer 3061 * cache, as required, so that the coherency conforms with 3062 * RFC3530 Sec. 9.3.2. 3063 */ 3064 if (ap->a_op == F_SETLK) { 3065 if ((np->n_flag & NMODIFIED) == 0) { 3066 np->n_attrstamp = 0; 3067 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3068 ret = VOP_GETATTR(vp, &va, cred); 3069 } 3070 if ((np->n_flag & NMODIFIED) || ret || 3071 np->n_change != va.va_filerev) { 3072 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3073 np->n_attrstamp = 0; 3074 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3075 ret = VOP_GETATTR(vp, &va, cred); 3076 if (!ret) { 3077 np->n_mtime = va.va_mtime; 3078 np->n_change = va.va_filerev; 3079 } 3080 } 3081 /* Mark that a file lock has been acquired. */ 3082 mtx_lock(&np->n_mtx); 3083 np->n_flag |= NHASBEENLOCKED; 3084 mtx_unlock(&np->n_mtx); 3085 } 3086 NFSVOPUNLOCK(vp, 0); 3087 return (0); 3088 } else if (!NFS_ISV4(vp)) { 3089 error = NFSVOPLOCK(vp, LK_SHARED); 3090 if (error) 3091 return (error); 3092 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3093 size = VTONFS(vp)->n_size; 3094 NFSVOPUNLOCK(vp, 0); 3095 error = lf_advlock(ap, &(vp->v_lockf), size); 3096 } else { 3097 if (nfs_advlock_p != NULL) 3098 error = nfs_advlock_p(ap); 3099 else { 3100 NFSVOPUNLOCK(vp, 0); 3101 error = ENOLCK; 3102 } 3103 } 3104 if (error == 0 && ap->a_op == F_SETLK) { 3105 /* Mark that a file lock has been acquired. */ 3106 mtx_lock(&np->n_mtx); 3107 np->n_flag |= NHASBEENLOCKED; 3108 mtx_unlock(&np->n_mtx); 3109 } 3110 } 3111 return (error); 3112 } 3113 3114 /* 3115 * NFS advisory byte-level locks. 3116 */ 3117 static int 3118 nfs_advlockasync(struct vop_advlockasync_args *ap) 3119 { 3120 struct vnode *vp = ap->a_vp; 3121 u_quad_t size; 3122 int error; 3123 3124 if (NFS_ISV4(vp)) 3125 return (EOPNOTSUPP); 3126 error = NFSVOPLOCK(vp, LK_SHARED); 3127 if (error) 3128 return (error); 3129 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3130 size = VTONFS(vp)->n_size; 3131 NFSVOPUNLOCK(vp, 0); 3132 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3133 } else { 3134 NFSVOPUNLOCK(vp, 0); 3135 error = EOPNOTSUPP; 3136 } 3137 return (error); 3138 } 3139 3140 /* 3141 * Print out the contents of an nfsnode. 3142 */ 3143 static int 3144 nfs_print(struct vop_print_args *ap) 3145 { 3146 struct vnode *vp = ap->a_vp; 3147 struct nfsnode *np = VTONFS(vp); 3148 3149 ncl_printf("\tfileid %ld fsid 0x%x", 3150 np->n_vattr.na_fileid, np->n_vattr.na_fsid); 3151 if (vp->v_type == VFIFO) 3152 fifo_printinfo(vp); 3153 printf("\n"); 3154 return (0); 3155 } 3156 3157 /* 3158 * This is the "real" nfs::bwrite(struct buf*). 3159 * We set B_CACHE if this is a VMIO buffer. 3160 */ 3161 int 3162 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3163 { 3164 int s; 3165 int oldflags = bp->b_flags; 3166 #if 0 3167 int retv = 1; 3168 off_t off; 3169 #endif 3170 3171 BUF_ASSERT_HELD(bp); 3172 3173 if (bp->b_flags & B_INVAL) { 3174 brelse(bp); 3175 return(0); 3176 } 3177 3178 bp->b_flags |= B_CACHE; 3179 3180 /* 3181 * Undirty the bp. We will redirty it later if the I/O fails. 3182 */ 3183 3184 s = splbio(); 3185 bundirty(bp); 3186 bp->b_flags &= ~B_DONE; 3187 bp->b_ioflags &= ~BIO_ERROR; 3188 bp->b_iocmd = BIO_WRITE; 3189 3190 bufobj_wref(bp->b_bufobj); 3191 curthread->td_ru.ru_oublock++; 3192 splx(s); 3193 3194 /* 3195 * Note: to avoid loopback deadlocks, we do not 3196 * assign b_runningbufspace. 3197 */ 3198 vfs_busy_pages(bp, 1); 3199 3200 BUF_KERNPROC(bp); 3201 bp->b_iooffset = dbtob(bp->b_blkno); 3202 bstrategy(bp); 3203 3204 if( (oldflags & B_ASYNC) == 0) { 3205 int rtval = bufwait(bp); 3206 3207 if (oldflags & B_DELWRI) { 3208 s = splbio(); 3209 reassignbuf(bp); 3210 splx(s); 3211 } 3212 brelse(bp); 3213 return (rtval); 3214 } 3215 3216 return (0); 3217 } 3218 3219 /* 3220 * nfs special file access vnode op. 3221 * Essentially just get vattr and then imitate iaccess() since the device is 3222 * local to the client. 3223 */ 3224 static int 3225 nfsspec_access(struct vop_access_args *ap) 3226 { 3227 struct vattr *vap; 3228 struct ucred *cred = ap->a_cred; 3229 struct vnode *vp = ap->a_vp; 3230 accmode_t accmode = ap->a_accmode; 3231 struct vattr vattr; 3232 int error; 3233 3234 /* 3235 * Disallow write attempts on filesystems mounted read-only; 3236 * unless the file is a socket, fifo, or a block or character 3237 * device resident on the filesystem. 3238 */ 3239 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3240 switch (vp->v_type) { 3241 case VREG: 3242 case VDIR: 3243 case VLNK: 3244 return (EROFS); 3245 default: 3246 break; 3247 } 3248 } 3249 vap = &vattr; 3250 error = VOP_GETATTR(vp, vap, cred); 3251 if (error) 3252 goto out; 3253 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3254 accmode, cred, NULL); 3255 out: 3256 return error; 3257 } 3258 3259 /* 3260 * Read wrapper for fifos. 3261 */ 3262 static int 3263 nfsfifo_read(struct vop_read_args *ap) 3264 { 3265 struct nfsnode *np = VTONFS(ap->a_vp); 3266 int error; 3267 3268 /* 3269 * Set access flag. 3270 */ 3271 mtx_lock(&np->n_mtx); 3272 np->n_flag |= NACC; 3273 vfs_timestamp(&np->n_atim); 3274 mtx_unlock(&np->n_mtx); 3275 error = fifo_specops.vop_read(ap); 3276 return error; 3277 } 3278 3279 /* 3280 * Write wrapper for fifos. 3281 */ 3282 static int 3283 nfsfifo_write(struct vop_write_args *ap) 3284 { 3285 struct nfsnode *np = VTONFS(ap->a_vp); 3286 3287 /* 3288 * Set update flag. 3289 */ 3290 mtx_lock(&np->n_mtx); 3291 np->n_flag |= NUPD; 3292 vfs_timestamp(&np->n_mtim); 3293 mtx_unlock(&np->n_mtx); 3294 return(fifo_specops.vop_write(ap)); 3295 } 3296 3297 /* 3298 * Close wrapper for fifos. 3299 * 3300 * Update the times on the nfsnode then do fifo close. 3301 */ 3302 static int 3303 nfsfifo_close(struct vop_close_args *ap) 3304 { 3305 struct vnode *vp = ap->a_vp; 3306 struct nfsnode *np = VTONFS(vp); 3307 struct vattr vattr; 3308 struct timespec ts; 3309 3310 mtx_lock(&np->n_mtx); 3311 if (np->n_flag & (NACC | NUPD)) { 3312 vfs_timestamp(&ts); 3313 if (np->n_flag & NACC) 3314 np->n_atim = ts; 3315 if (np->n_flag & NUPD) 3316 np->n_mtim = ts; 3317 np->n_flag |= NCHG; 3318 if (vrefcnt(vp) == 1 && 3319 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3320 VATTR_NULL(&vattr); 3321 if (np->n_flag & NACC) 3322 vattr.va_atime = np->n_atim; 3323 if (np->n_flag & NUPD) 3324 vattr.va_mtime = np->n_mtim; 3325 mtx_unlock(&np->n_mtx); 3326 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3327 goto out; 3328 } 3329 } 3330 mtx_unlock(&np->n_mtx); 3331 out: 3332 return (fifo_specops.vop_close(ap)); 3333 } 3334 3335 /* 3336 * Just call ncl_writebp() with the force argument set to 1. 3337 * 3338 * NOTE: B_DONE may or may not be set in a_bp on call. 3339 */ 3340 static int 3341 nfs_bwrite(struct buf *bp) 3342 { 3343 3344 return (ncl_writebp(bp, 1, curthread)); 3345 } 3346 3347 struct buf_ops buf_ops_newnfs = { 3348 .bop_name = "buf_ops_nfs", 3349 .bop_write = nfs_bwrite, 3350 .bop_strategy = bufstrategy, 3351 .bop_sync = bufsync, 3352 .bop_bdflush = bufbdflush, 3353 }; 3354 3355 /* 3356 * Cloned from vop_stdlock(), and then the ugly hack added. 3357 */ 3358 static int 3359 nfs_lock1(struct vop_lock1_args *ap) 3360 { 3361 struct vnode *vp = ap->a_vp; 3362 int error = 0; 3363 3364 /* 3365 * Since vfs_hash_get() calls vget() and it will no longer work 3366 * for FreeBSD8 with flags == 0, I can only think of this horrible 3367 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER 3368 * and then handle it here. All I want for this case is a v_usecount 3369 * on the vnode to use for recovery, while another thread might 3370 * hold a lock on the vnode. I have the other threads blocked, so 3371 * there isn't any race problem. 3372 */ 3373 if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { 3374 if ((ap->a_flags & LK_INTERLOCK) == 0) 3375 panic("ncllock1"); 3376 if ((vp->v_iflag & VI_DOOMED)) 3377 error = ENOENT; 3378 VI_UNLOCK(vp); 3379 return (error); 3380 } 3381 return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 3382 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, 3383 ap->a_line)); 3384 } 3385 3386 static int 3387 nfs_getacl(struct vop_getacl_args *ap) 3388 { 3389 int error; 3390 3391 if (ap->a_type != ACL_TYPE_NFS4) 3392 return (EOPNOTSUPP); 3393 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3394 NULL); 3395 if (error > NFSERR_STALE) { 3396 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3397 error = EPERM; 3398 } 3399 return (error); 3400 } 3401 3402 static int 3403 nfs_setacl(struct vop_setacl_args *ap) 3404 { 3405 int error; 3406 3407 if (ap->a_type != ACL_TYPE_NFS4) 3408 return (EOPNOTSUPP); 3409 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3410 NULL); 3411 if (error > NFSERR_STALE) { 3412 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3413 error = EPERM; 3414 } 3415 return (error); 3416 } 3417 3418 /* 3419 * Return POSIX pathconf information applicable to nfs filesystems. 3420 */ 3421 static int 3422 nfs_pathconf(struct vop_pathconf_args *ap) 3423 { 3424 struct nfsv3_pathconf pc; 3425 struct nfsvattr nfsva; 3426 struct vnode *vp = ap->a_vp; 3427 struct thread *td = curthread; 3428 int attrflag, error; 3429 3430 if (NFS_ISV4(vp) || (NFS_ISV3(vp) && (ap->a_name == _PC_LINK_MAX || 3431 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3432 ap->a_name == _PC_NO_TRUNC))) { 3433 /* 3434 * Since only the above 4 a_names are returned by the NFSv3 3435 * Pathconf RPC, there is no point in doing it for others. 3436 */ 3437 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3438 &attrflag, NULL); 3439 if (attrflag != 0) 3440 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3441 1); 3442 if (error != 0) 3443 return (error); 3444 } else { 3445 /* 3446 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3447 * just fake them. 3448 */ 3449 pc.pc_linkmax = LINK_MAX; 3450 pc.pc_namemax = NFS_MAXNAMLEN; 3451 pc.pc_notrunc = 1; 3452 pc.pc_chownrestricted = 1; 3453 pc.pc_caseinsensitive = 0; 3454 pc.pc_casepreserving = 1; 3455 error = 0; 3456 } 3457 switch (ap->a_name) { 3458 case _PC_LINK_MAX: 3459 *ap->a_retval = pc.pc_linkmax; 3460 break; 3461 case _PC_NAME_MAX: 3462 *ap->a_retval = pc.pc_namemax; 3463 break; 3464 case _PC_PATH_MAX: 3465 *ap->a_retval = PATH_MAX; 3466 break; 3467 case _PC_PIPE_BUF: 3468 *ap->a_retval = PIPE_BUF; 3469 break; 3470 case _PC_CHOWN_RESTRICTED: 3471 *ap->a_retval = pc.pc_chownrestricted; 3472 break; 3473 case _PC_NO_TRUNC: 3474 *ap->a_retval = pc.pc_notrunc; 3475 break; 3476 case _PC_ACL_EXTENDED: 3477 *ap->a_retval = 0; 3478 break; 3479 case _PC_ACL_NFS4: 3480 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3481 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3482 *ap->a_retval = 1; 3483 else 3484 *ap->a_retval = 0; 3485 break; 3486 case _PC_ACL_PATH_MAX: 3487 if (NFS_ISV4(vp)) 3488 *ap->a_retval = ACL_MAX_ENTRIES; 3489 else 3490 *ap->a_retval = 3; 3491 break; 3492 case _PC_MAC_PRESENT: 3493 *ap->a_retval = 0; 3494 break; 3495 case _PC_ASYNC_IO: 3496 /* _PC_ASYNC_IO should have been handled by upper layers. */ 3497 KASSERT(0, ("_PC_ASYNC_IO should not get here")); 3498 error = EINVAL; 3499 break; 3500 case _PC_PRIO_IO: 3501 *ap->a_retval = 0; 3502 break; 3503 case _PC_SYNC_IO: 3504 *ap->a_retval = 0; 3505 break; 3506 case _PC_ALLOC_SIZE_MIN: 3507 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3508 break; 3509 case _PC_FILESIZEBITS: 3510 if (NFS_ISV34(vp)) 3511 *ap->a_retval = 64; 3512 else 3513 *ap->a_retval = 32; 3514 break; 3515 case _PC_REC_INCR_XFER_SIZE: 3516 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3517 break; 3518 case _PC_REC_MAX_XFER_SIZE: 3519 *ap->a_retval = -1; /* means ``unlimited'' */ 3520 break; 3521 case _PC_REC_MIN_XFER_SIZE: 3522 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3523 break; 3524 case _PC_REC_XFER_ALIGN: 3525 *ap->a_retval = PAGE_SIZE; 3526 break; 3527 case _PC_SYMLINK_MAX: 3528 *ap->a_retval = NFS_MAXPATHLEN; 3529 break; 3530 3531 default: 3532 error = EINVAL; 3533 break; 3534 } 3535 return (error); 3536 } 3537 3538