1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * vnode op calls for Sun NFS version 2, 3 and 4 42 */ 43 44 #include "opt_inet.h" 45 46 #include <sys/param.h> 47 #include <sys/kernel.h> 48 #include <sys/systm.h> 49 #include <sys/resourcevar.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/bio.h> 53 #include <sys/buf.h> 54 #include <sys/jail.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/namei.h> 58 #include <sys/socket.h> 59 #include <sys/vnode.h> 60 #include <sys/dirent.h> 61 #include <sys/fcntl.h> 62 #include <sys/lockf.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/signalvar.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_extern.h> 69 #include <vm/vm_object.h> 70 71 #include <fs/nfs/nfsport.h> 72 #include <fs/nfsclient/nfsnode.h> 73 #include <fs/nfsclient/nfsmount.h> 74 #include <fs/nfsclient/nfs.h> 75 #include <fs/nfsclient/nfs_kdtrace.h> 76 77 #include <net/if.h> 78 #include <netinet/in.h> 79 #include <netinet/in_var.h> 80 81 #include <nfs/nfs_lock.h> 82 83 #ifdef KDTRACE_HOOKS 84 #include <sys/dtrace_bsd.h> 85 86 dtrace_nfsclient_accesscache_flush_probe_func_t 87 dtrace_nfscl_accesscache_flush_done_probe; 88 uint32_t nfscl_accesscache_flush_done_id; 89 90 dtrace_nfsclient_accesscache_get_probe_func_t 91 dtrace_nfscl_accesscache_get_hit_probe, 92 dtrace_nfscl_accesscache_get_miss_probe; 93 uint32_t nfscl_accesscache_get_hit_id; 94 uint32_t nfscl_accesscache_get_miss_id; 95 96 dtrace_nfsclient_accesscache_load_probe_func_t 97 dtrace_nfscl_accesscache_load_done_probe; 98 uint32_t nfscl_accesscache_load_done_id; 99 #endif /* !KDTRACE_HOOKS */ 100 101 /* Defs */ 102 #define TRUE 1 103 #define FALSE 0 104 105 extern struct nfsstatsv1 nfsstatsv1; 106 extern int nfsrv_useacl; 107 extern int nfscl_debuglevel; 108 MALLOC_DECLARE(M_NEWNFSREQ); 109 110 static vop_read_t nfsfifo_read; 111 static vop_write_t nfsfifo_write; 112 static vop_close_t nfsfifo_close; 113 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 114 struct thread *); 115 static vop_lookup_t nfs_lookup; 116 static vop_create_t nfs_create; 117 static vop_mknod_t nfs_mknod; 118 static vop_open_t nfs_open; 119 static vop_pathconf_t nfs_pathconf; 120 static vop_close_t nfs_close; 121 static vop_access_t nfs_access; 122 static vop_getattr_t nfs_getattr; 123 static vop_setattr_t nfs_setattr; 124 static vop_read_t nfs_read; 125 static vop_fsync_t nfs_fsync; 126 static vop_remove_t nfs_remove; 127 static vop_link_t nfs_link; 128 static vop_rename_t nfs_rename; 129 static vop_mkdir_t nfs_mkdir; 130 static vop_rmdir_t nfs_rmdir; 131 static vop_symlink_t nfs_symlink; 132 static vop_readdir_t nfs_readdir; 133 static vop_strategy_t nfs_strategy; 134 static int nfs_lookitup(struct vnode *, char *, int, 135 struct ucred *, struct thread *, struct nfsnode **); 136 static int nfs_sillyrename(struct vnode *, struct vnode *, 137 struct componentname *); 138 static vop_access_t nfsspec_access; 139 static vop_readlink_t nfs_readlink; 140 static vop_print_t nfs_print; 141 static vop_advlock_t nfs_advlock; 142 static vop_advlockasync_t nfs_advlockasync; 143 static vop_getacl_t nfs_getacl; 144 static vop_setacl_t nfs_setacl; 145 static vop_set_text_t nfs_set_text; 146 147 /* 148 * Global vfs data structures for nfs 149 */ 150 151 static struct vop_vector newnfs_vnodeops_nosig = { 152 .vop_default = &default_vnodeops, 153 .vop_access = nfs_access, 154 .vop_advlock = nfs_advlock, 155 .vop_advlockasync = nfs_advlockasync, 156 .vop_close = nfs_close, 157 .vop_create = nfs_create, 158 .vop_fsync = nfs_fsync, 159 .vop_getattr = nfs_getattr, 160 .vop_getpages = ncl_getpages, 161 .vop_putpages = ncl_putpages, 162 .vop_inactive = ncl_inactive, 163 .vop_link = nfs_link, 164 .vop_lookup = nfs_lookup, 165 .vop_mkdir = nfs_mkdir, 166 .vop_mknod = nfs_mknod, 167 .vop_open = nfs_open, 168 .vop_pathconf = nfs_pathconf, 169 .vop_print = nfs_print, 170 .vop_read = nfs_read, 171 .vop_readdir = nfs_readdir, 172 .vop_readlink = nfs_readlink, 173 .vop_reclaim = ncl_reclaim, 174 .vop_remove = nfs_remove, 175 .vop_rename = nfs_rename, 176 .vop_rmdir = nfs_rmdir, 177 .vop_setattr = nfs_setattr, 178 .vop_strategy = nfs_strategy, 179 .vop_symlink = nfs_symlink, 180 .vop_write = ncl_write, 181 .vop_getacl = nfs_getacl, 182 .vop_setacl = nfs_setacl, 183 .vop_set_text = nfs_set_text, 184 }; 185 186 static int 187 nfs_vnodeops_bypass(struct vop_generic_args *a) 188 { 189 190 return (vop_sigdefer(&newnfs_vnodeops_nosig, a)); 191 } 192 193 struct vop_vector newnfs_vnodeops = { 194 .vop_default = &default_vnodeops, 195 .vop_bypass = nfs_vnodeops_bypass, 196 }; 197 198 static struct vop_vector newnfs_fifoops_nosig = { 199 .vop_default = &fifo_specops, 200 .vop_access = nfsspec_access, 201 .vop_close = nfsfifo_close, 202 .vop_fsync = nfs_fsync, 203 .vop_getattr = nfs_getattr, 204 .vop_inactive = ncl_inactive, 205 .vop_pathconf = nfs_pathconf, 206 .vop_print = nfs_print, 207 .vop_read = nfsfifo_read, 208 .vop_reclaim = ncl_reclaim, 209 .vop_setattr = nfs_setattr, 210 .vop_write = nfsfifo_write, 211 }; 212 213 static int 214 nfs_fifoops_bypass(struct vop_generic_args *a) 215 { 216 217 return (vop_sigdefer(&newnfs_fifoops_nosig, a)); 218 } 219 220 struct vop_vector newnfs_fifoops = { 221 .vop_default = &default_vnodeops, 222 .vop_bypass = nfs_fifoops_bypass, 223 }; 224 225 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 226 struct componentname *cnp, struct vattr *vap); 227 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 228 int namelen, struct ucred *cred, struct thread *td); 229 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 230 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 231 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 232 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 233 struct componentname *scnp, struct sillyrename *sp); 234 235 /* 236 * Global variables 237 */ 238 SYSCTL_DECL(_vfs_nfs); 239 240 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 242 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 243 244 static int nfs_prime_access_cache = 0; 245 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 246 &nfs_prime_access_cache, 0, 247 "Prime NFS ACCESS cache when fetching attributes"); 248 249 static int newnfs_commit_on_close = 0; 250 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 251 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 252 253 static int nfs_clean_pages_on_close = 1; 254 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 255 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 256 257 int newnfs_directio_enable = 0; 258 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 259 &newnfs_directio_enable, 0, "Enable NFS directio"); 260 261 int nfs_keep_dirty_on_error; 262 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, 263 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); 264 265 /* 266 * This sysctl allows other processes to mmap a file that has been opened 267 * O_DIRECT by a process. In general, having processes mmap the file while 268 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 269 * this by default to prevent DoS attacks - to prevent a malicious user from 270 * opening up files O_DIRECT preventing other users from mmap'ing these 271 * files. "Protected" environments where stricter consistency guarantees are 272 * required can disable this knob. The process that opened the file O_DIRECT 273 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 274 * meaningful. 275 */ 276 int newnfs_directio_allow_mmap = 1; 277 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 278 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 279 280 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 281 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 282 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 283 284 /* 285 * SMP Locking Note : 286 * The list of locks after the description of the lock is the ordering 287 * of other locks acquired with the lock held. 288 * np->n_mtx : Protects the fields in the nfsnode. 289 VM Object Lock 290 VI_MTX (acquired indirectly) 291 * nmp->nm_mtx : Protects the fields in the nfsmount. 292 rep->r_mtx 293 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 294 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 295 nmp->nm_mtx 296 rep->r_mtx 297 * rep->r_mtx : Protects the fields in an nfsreq. 298 */ 299 300 static int 301 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 302 struct ucred *cred, u_int32_t *retmode) 303 { 304 int error = 0, attrflag, i, lrupos; 305 u_int32_t rmode; 306 struct nfsnode *np = VTONFS(vp); 307 struct nfsvattr nfsva; 308 309 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 310 &rmode, NULL); 311 if (attrflag) 312 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 313 if (!error) { 314 lrupos = 0; 315 mtx_lock(&np->n_mtx); 316 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 317 if (np->n_accesscache[i].uid == cred->cr_uid) { 318 np->n_accesscache[i].mode = rmode; 319 np->n_accesscache[i].stamp = time_second; 320 break; 321 } 322 if (i > 0 && np->n_accesscache[i].stamp < 323 np->n_accesscache[lrupos].stamp) 324 lrupos = i; 325 } 326 if (i == NFS_ACCESSCACHESIZE) { 327 np->n_accesscache[lrupos].uid = cred->cr_uid; 328 np->n_accesscache[lrupos].mode = rmode; 329 np->n_accesscache[lrupos].stamp = time_second; 330 } 331 mtx_unlock(&np->n_mtx); 332 if (retmode != NULL) 333 *retmode = rmode; 334 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 335 } else if (NFS_ISV4(vp)) { 336 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 337 } 338 #ifdef KDTRACE_HOOKS 339 if (error != 0) 340 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 341 error); 342 #endif 343 return (error); 344 } 345 346 /* 347 * nfs access vnode op. 348 * For nfs version 2, just return ok. File accesses may fail later. 349 * For nfs version 3, use the access rpc to check accessibility. If file modes 350 * are changed on the server, accesses might still fail later. 351 */ 352 static int 353 nfs_access(struct vop_access_args *ap) 354 { 355 struct vnode *vp = ap->a_vp; 356 int error = 0, i, gotahit; 357 u_int32_t mode, wmode, rmode; 358 int v34 = NFS_ISV34(vp); 359 struct nfsnode *np = VTONFS(vp); 360 361 /* 362 * Disallow write attempts on filesystems mounted read-only; 363 * unless the file is a socket, fifo, or a block or character 364 * device resident on the filesystem. 365 */ 366 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 367 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 368 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 369 switch (vp->v_type) { 370 case VREG: 371 case VDIR: 372 case VLNK: 373 return (EROFS); 374 default: 375 break; 376 } 377 } 378 /* 379 * For nfs v3 or v4, check to see if we have done this recently, and if 380 * so return our cached result instead of making an ACCESS call. 381 * If not, do an access rpc, otherwise you are stuck emulating 382 * ufs_access() locally using the vattr. This may not be correct, 383 * since the server may apply other access criteria such as 384 * client uid-->server uid mapping that we do not know about. 385 */ 386 if (v34) { 387 if (ap->a_accmode & VREAD) 388 mode = NFSACCESS_READ; 389 else 390 mode = 0; 391 if (vp->v_type != VDIR) { 392 if (ap->a_accmode & VWRITE) 393 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 394 if (ap->a_accmode & VAPPEND) 395 mode |= NFSACCESS_EXTEND; 396 if (ap->a_accmode & VEXEC) 397 mode |= NFSACCESS_EXECUTE; 398 if (ap->a_accmode & VDELETE) 399 mode |= NFSACCESS_DELETE; 400 } else { 401 if (ap->a_accmode & VWRITE) 402 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 403 if (ap->a_accmode & VAPPEND) 404 mode |= NFSACCESS_EXTEND; 405 if (ap->a_accmode & VEXEC) 406 mode |= NFSACCESS_LOOKUP; 407 if (ap->a_accmode & VDELETE) 408 mode |= NFSACCESS_DELETE; 409 if (ap->a_accmode & VDELETE_CHILD) 410 mode |= NFSACCESS_MODIFY; 411 } 412 /* XXX safety belt, only make blanket request if caching */ 413 if (nfsaccess_cache_timeout > 0) { 414 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 415 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 416 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 417 } else { 418 wmode = mode; 419 } 420 421 /* 422 * Does our cached result allow us to give a definite yes to 423 * this request? 424 */ 425 gotahit = 0; 426 mtx_lock(&np->n_mtx); 427 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 428 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 429 if (time_second < (np->n_accesscache[i].stamp 430 + nfsaccess_cache_timeout) && 431 (np->n_accesscache[i].mode & mode) == mode) { 432 NFSINCRGLOBAL(nfsstatsv1.accesscache_hits); 433 gotahit = 1; 434 } 435 break; 436 } 437 } 438 mtx_unlock(&np->n_mtx); 439 #ifdef KDTRACE_HOOKS 440 if (gotahit != 0) 441 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 442 ap->a_cred->cr_uid, mode); 443 else 444 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 445 ap->a_cred->cr_uid, mode); 446 #endif 447 if (gotahit == 0) { 448 /* 449 * Either a no, or a don't know. Go to the wire. 450 */ 451 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses); 452 error = nfs34_access_otw(vp, wmode, ap->a_td, 453 ap->a_cred, &rmode); 454 if (!error && 455 (rmode & mode) != mode) 456 error = EACCES; 457 } 458 return (error); 459 } else { 460 if ((error = nfsspec_access(ap)) != 0) { 461 return (error); 462 } 463 /* 464 * Attempt to prevent a mapped root from accessing a file 465 * which it shouldn't. We try to read a byte from the file 466 * if the user is root and the file is not zero length. 467 * After calling nfsspec_access, we should have the correct 468 * file size cached. 469 */ 470 mtx_lock(&np->n_mtx); 471 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 472 && VTONFS(vp)->n_size > 0) { 473 struct iovec aiov; 474 struct uio auio; 475 char buf[1]; 476 477 mtx_unlock(&np->n_mtx); 478 aiov.iov_base = buf; 479 aiov.iov_len = 1; 480 auio.uio_iov = &aiov; 481 auio.uio_iovcnt = 1; 482 auio.uio_offset = 0; 483 auio.uio_resid = 1; 484 auio.uio_segflg = UIO_SYSSPACE; 485 auio.uio_rw = UIO_READ; 486 auio.uio_td = ap->a_td; 487 488 if (vp->v_type == VREG) 489 error = ncl_readrpc(vp, &auio, ap->a_cred); 490 else if (vp->v_type == VDIR) { 491 char* bp; 492 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 493 aiov.iov_base = bp; 494 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 495 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 496 ap->a_td); 497 free(bp, M_TEMP); 498 } else if (vp->v_type == VLNK) 499 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 500 else 501 error = EACCES; 502 } else 503 mtx_unlock(&np->n_mtx); 504 return (error); 505 } 506 } 507 508 509 /* 510 * nfs open vnode op 511 * Check to see if the type is ok 512 * and that deletion is not in progress. 513 * For paged in text files, you will need to flush the page cache 514 * if consistency is lost. 515 */ 516 /* ARGSUSED */ 517 static int 518 nfs_open(struct vop_open_args *ap) 519 { 520 struct vnode *vp = ap->a_vp; 521 struct nfsnode *np = VTONFS(vp); 522 struct vattr vattr; 523 int error; 524 int fmode = ap->a_mode; 525 struct ucred *cred; 526 527 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 528 return (EOPNOTSUPP); 529 530 /* 531 * For NFSv4, we need to do the Open Op before cache validation, 532 * so that we conform to RFC3530 Sec. 9.3.1. 533 */ 534 if (NFS_ISV4(vp)) { 535 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 536 if (error) { 537 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 538 (gid_t)0); 539 return (error); 540 } 541 } 542 543 /* 544 * Now, if this Open will be doing reading, re-validate/flush the 545 * cache, so that Close/Open coherency is maintained. 546 */ 547 mtx_lock(&np->n_mtx); 548 if (np->n_flag & NMODIFIED) { 549 mtx_unlock(&np->n_mtx); 550 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 551 if (error == EINTR || error == EIO) { 552 if (NFS_ISV4(vp)) 553 (void) nfsrpc_close(vp, 0, ap->a_td); 554 return (error); 555 } 556 mtx_lock(&np->n_mtx); 557 np->n_attrstamp = 0; 558 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 559 if (vp->v_type == VDIR) 560 np->n_direofoffset = 0; 561 mtx_unlock(&np->n_mtx); 562 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 563 if (error) { 564 if (NFS_ISV4(vp)) 565 (void) nfsrpc_close(vp, 0, ap->a_td); 566 return (error); 567 } 568 mtx_lock(&np->n_mtx); 569 np->n_mtime = vattr.va_mtime; 570 if (NFS_ISV4(vp)) 571 np->n_change = vattr.va_filerev; 572 } else { 573 mtx_unlock(&np->n_mtx); 574 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 575 if (error) { 576 if (NFS_ISV4(vp)) 577 (void) nfsrpc_close(vp, 0, ap->a_td); 578 return (error); 579 } 580 mtx_lock(&np->n_mtx); 581 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 582 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 583 if (vp->v_type == VDIR) 584 np->n_direofoffset = 0; 585 mtx_unlock(&np->n_mtx); 586 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 587 if (error == EINTR || error == EIO) { 588 if (NFS_ISV4(vp)) 589 (void) nfsrpc_close(vp, 0, ap->a_td); 590 return (error); 591 } 592 mtx_lock(&np->n_mtx); 593 np->n_mtime = vattr.va_mtime; 594 if (NFS_ISV4(vp)) 595 np->n_change = vattr.va_filerev; 596 } 597 } 598 599 /* 600 * If the object has >= 1 O_DIRECT active opens, we disable caching. 601 */ 602 if (newnfs_directio_enable && (fmode & O_DIRECT) && 603 (vp->v_type == VREG)) { 604 if (np->n_directio_opens == 0) { 605 mtx_unlock(&np->n_mtx); 606 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 607 if (error) { 608 if (NFS_ISV4(vp)) 609 (void) nfsrpc_close(vp, 0, ap->a_td); 610 return (error); 611 } 612 mtx_lock(&np->n_mtx); 613 np->n_flag |= NNONCACHE; 614 } 615 np->n_directio_opens++; 616 } 617 618 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ 619 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) 620 np->n_flag |= NWRITEOPENED; 621 622 /* 623 * If this is an open for writing, capture a reference to the 624 * credentials, so they can be used by ncl_putpages(). Using 625 * these write credentials is preferable to the credentials of 626 * whatever thread happens to be doing the VOP_PUTPAGES() since 627 * the write RPCs are less likely to fail with EACCES. 628 */ 629 if ((fmode & FWRITE) != 0) { 630 cred = np->n_writecred; 631 np->n_writecred = crhold(ap->a_cred); 632 } else 633 cred = NULL; 634 mtx_unlock(&np->n_mtx); 635 636 if (cred != NULL) 637 crfree(cred); 638 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 639 return (0); 640 } 641 642 /* 643 * nfs close vnode op 644 * What an NFS client should do upon close after writing is a debatable issue. 645 * Most NFS clients push delayed writes to the server upon close, basically for 646 * two reasons: 647 * 1 - So that any write errors may be reported back to the client process 648 * doing the close system call. By far the two most likely errors are 649 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 650 * 2 - To put a worst case upper bound on cache inconsistency between 651 * multiple clients for the file. 652 * There is also a consistency problem for Version 2 of the protocol w.r.t. 653 * not being able to tell if other clients are writing a file concurrently, 654 * since there is no way of knowing if the changed modify time in the reply 655 * is only due to the write for this client. 656 * (NFS Version 3 provides weak cache consistency data in the reply that 657 * should be sufficient to detect and handle this case.) 658 * 659 * The current code does the following: 660 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 661 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 662 * or commit them (this satisfies 1 and 2 except for the 663 * case where the server crashes after this close but 664 * before the commit RPC, which is felt to be "good 665 * enough". Changing the last argument to ncl_flush() to 666 * a 1 would force a commit operation, if it is felt a 667 * commit is necessary now. 668 * for NFS Version 4 - flush the dirty buffers and commit them, if 669 * nfscl_mustflush() says this is necessary. 670 * It is necessary if there is no write delegation held, 671 * in order to satisfy open/close coherency. 672 * If the file isn't cached on local stable storage, 673 * it may be necessary in order to detect "out of space" 674 * errors from the server, if the write delegation 675 * issued by the server doesn't allow the file to grow. 676 */ 677 /* ARGSUSED */ 678 static int 679 nfs_close(struct vop_close_args *ap) 680 { 681 struct vnode *vp = ap->a_vp; 682 struct nfsnode *np = VTONFS(vp); 683 struct nfsvattr nfsva; 684 struct ucred *cred; 685 int error = 0, ret, localcred = 0; 686 int fmode = ap->a_fflag; 687 688 if (NFSCL_FORCEDISM(vp->v_mount)) 689 return (0); 690 /* 691 * During shutdown, a_cred isn't valid, so just use root. 692 */ 693 if (ap->a_cred == NOCRED) { 694 cred = newnfs_getcred(); 695 localcred = 1; 696 } else { 697 cred = ap->a_cred; 698 } 699 if (vp->v_type == VREG) { 700 /* 701 * Examine and clean dirty pages, regardless of NMODIFIED. 702 * This closes a major hole in close-to-open consistency. 703 * We want to push out all dirty pages (and buffers) on 704 * close, regardless of whether they were dirtied by 705 * mmap'ed writes or via write(). 706 */ 707 if (nfs_clean_pages_on_close && vp->v_object) { 708 VM_OBJECT_WLOCK(vp->v_object); 709 vm_object_page_clean(vp->v_object, 0, 0, 0); 710 VM_OBJECT_WUNLOCK(vp->v_object); 711 } 712 mtx_lock(&np->n_mtx); 713 if (np->n_flag & NMODIFIED) { 714 mtx_unlock(&np->n_mtx); 715 if (NFS_ISV3(vp)) { 716 /* 717 * Under NFSv3 we have dirty buffers to dispose of. We 718 * must flush them to the NFS server. We have the option 719 * of waiting all the way through the commit rpc or just 720 * waiting for the initial write. The default is to only 721 * wait through the initial write so the data is in the 722 * server's cache, which is roughly similar to the state 723 * a standard disk subsystem leaves the file in on close(). 724 * 725 * We cannot clear the NMODIFIED bit in np->n_flag due to 726 * potential races with other processes, and certainly 727 * cannot clear it if we don't commit. 728 * These races occur when there is no longer the old 729 * traditional vnode locking implemented for Vnode Ops. 730 */ 731 int cm = newnfs_commit_on_close ? 1 : 0; 732 error = ncl_flush(vp, MNT_WAIT, ap->a_td, cm, 0); 733 /* np->n_flag &= ~NMODIFIED; */ 734 } else if (NFS_ISV4(vp)) { 735 if (nfscl_mustflush(vp) != 0) { 736 int cm = newnfs_commit_on_close ? 1 : 0; 737 error = ncl_flush(vp, MNT_WAIT, ap->a_td, 738 cm, 0); 739 /* 740 * as above w.r.t races when clearing 741 * NMODIFIED. 742 * np->n_flag &= ~NMODIFIED; 743 */ 744 } 745 } else { 746 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 747 } 748 mtx_lock(&np->n_mtx); 749 } 750 /* 751 * Invalidate the attribute cache in all cases. 752 * An open is going to fetch fresh attrs any way, other procs 753 * on this node that have file open will be forced to do an 754 * otw attr fetch, but this is safe. 755 * --> A user found that their RPC count dropped by 20% when 756 * this was commented out and I can't see any requirement 757 * for it, so I've disabled it when negative lookups are 758 * enabled. (What does this have to do with negative lookup 759 * caching? Well nothing, except it was reported by the 760 * same user that needed negative lookup caching and I wanted 761 * there to be a way to disable it to see if it 762 * is the cause of some caching/coherency issue that might 763 * crop up.) 764 */ 765 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 766 np->n_attrstamp = 0; 767 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 768 } 769 if (np->n_flag & NWRITEERR) { 770 np->n_flag &= ~NWRITEERR; 771 error = np->n_error; 772 } 773 mtx_unlock(&np->n_mtx); 774 } 775 776 if (NFS_ISV4(vp)) { 777 /* 778 * Get attributes so "change" is up to date. 779 */ 780 if (error == 0 && nfscl_mustflush(vp) != 0 && 781 vp->v_type == VREG && 782 (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) { 783 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 784 NULL); 785 if (!ret) { 786 np->n_change = nfsva.na_filerev; 787 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 788 NULL, 0, 0); 789 } 790 } 791 792 /* 793 * and do the close. 794 */ 795 ret = nfsrpc_close(vp, 0, ap->a_td); 796 if (!error && ret) 797 error = ret; 798 if (error) 799 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 800 (gid_t)0); 801 } 802 if (newnfs_directio_enable) 803 KASSERT((np->n_directio_asyncwr == 0), 804 ("nfs_close: dirty unflushed (%d) directio buffers\n", 805 np->n_directio_asyncwr)); 806 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 807 mtx_lock(&np->n_mtx); 808 KASSERT((np->n_directio_opens > 0), 809 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 810 np->n_directio_opens--; 811 if (np->n_directio_opens == 0) 812 np->n_flag &= ~NNONCACHE; 813 mtx_unlock(&np->n_mtx); 814 } 815 if (localcred) 816 NFSFREECRED(cred); 817 return (error); 818 } 819 820 /* 821 * nfs getattr call from vfs. 822 */ 823 static int 824 nfs_getattr(struct vop_getattr_args *ap) 825 { 826 struct vnode *vp = ap->a_vp; 827 struct thread *td = curthread; /* XXX */ 828 struct nfsnode *np = VTONFS(vp); 829 int error = 0; 830 struct nfsvattr nfsva; 831 struct vattr *vap = ap->a_vap; 832 struct vattr vattr; 833 834 /* 835 * Update local times for special files. 836 */ 837 mtx_lock(&np->n_mtx); 838 if (np->n_flag & (NACC | NUPD)) 839 np->n_flag |= NCHG; 840 mtx_unlock(&np->n_mtx); 841 /* 842 * First look in the cache. 843 */ 844 if (ncl_getattrcache(vp, &vattr) == 0) { 845 vap->va_type = vattr.va_type; 846 vap->va_mode = vattr.va_mode; 847 vap->va_nlink = vattr.va_nlink; 848 vap->va_uid = vattr.va_uid; 849 vap->va_gid = vattr.va_gid; 850 vap->va_fsid = vattr.va_fsid; 851 vap->va_fileid = vattr.va_fileid; 852 vap->va_size = vattr.va_size; 853 vap->va_blocksize = vattr.va_blocksize; 854 vap->va_atime = vattr.va_atime; 855 vap->va_mtime = vattr.va_mtime; 856 vap->va_ctime = vattr.va_ctime; 857 vap->va_gen = vattr.va_gen; 858 vap->va_flags = vattr.va_flags; 859 vap->va_rdev = vattr.va_rdev; 860 vap->va_bytes = vattr.va_bytes; 861 vap->va_filerev = vattr.va_filerev; 862 /* 863 * Get the local modify time for the case of a write 864 * delegation. 865 */ 866 nfscl_deleggetmodtime(vp, &vap->va_mtime); 867 return (0); 868 } 869 870 if (NFS_ISV34(vp) && nfs_prime_access_cache && 871 nfsaccess_cache_timeout > 0) { 872 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses); 873 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 874 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 875 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 876 return (0); 877 } 878 } 879 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 880 if (!error) 881 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 882 if (!error) { 883 /* 884 * Get the local modify time for the case of a write 885 * delegation. 886 */ 887 nfscl_deleggetmodtime(vp, &vap->va_mtime); 888 } else if (NFS_ISV4(vp)) { 889 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 890 } 891 return (error); 892 } 893 894 /* 895 * nfs setattr call. 896 */ 897 static int 898 nfs_setattr(struct vop_setattr_args *ap) 899 { 900 struct vnode *vp = ap->a_vp; 901 struct nfsnode *np = VTONFS(vp); 902 struct thread *td = curthread; /* XXX */ 903 struct vattr *vap = ap->a_vap; 904 int error = 0; 905 u_quad_t tsize; 906 907 #ifndef nolint 908 tsize = (u_quad_t)0; 909 #endif 910 911 /* 912 * Setting of flags and marking of atimes are not supported. 913 */ 914 if (vap->va_flags != VNOVAL) 915 return (EOPNOTSUPP); 916 917 /* 918 * Disallow write attempts if the filesystem is mounted read-only. 919 */ 920 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 921 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 922 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 923 (vp->v_mount->mnt_flag & MNT_RDONLY)) 924 return (EROFS); 925 if (vap->va_size != VNOVAL) { 926 switch (vp->v_type) { 927 case VDIR: 928 return (EISDIR); 929 case VCHR: 930 case VBLK: 931 case VSOCK: 932 case VFIFO: 933 if (vap->va_mtime.tv_sec == VNOVAL && 934 vap->va_atime.tv_sec == VNOVAL && 935 vap->va_mode == (mode_t)VNOVAL && 936 vap->va_uid == (uid_t)VNOVAL && 937 vap->va_gid == (gid_t)VNOVAL) 938 return (0); 939 vap->va_size = VNOVAL; 940 break; 941 default: 942 /* 943 * Disallow write attempts if the filesystem is 944 * mounted read-only. 945 */ 946 if (vp->v_mount->mnt_flag & MNT_RDONLY) 947 return (EROFS); 948 /* 949 * We run vnode_pager_setsize() early (why?), 950 * we must set np->n_size now to avoid vinvalbuf 951 * V_SAVE races that might setsize a lower 952 * value. 953 */ 954 mtx_lock(&np->n_mtx); 955 tsize = np->n_size; 956 mtx_unlock(&np->n_mtx); 957 error = ncl_meta_setsize(vp, ap->a_cred, td, 958 vap->va_size); 959 mtx_lock(&np->n_mtx); 960 if (np->n_flag & NMODIFIED) { 961 tsize = np->n_size; 962 mtx_unlock(&np->n_mtx); 963 error = ncl_vinvalbuf(vp, vap->va_size == 0 ? 964 0 : V_SAVE, td, 1); 965 if (error != 0) { 966 vnode_pager_setsize(vp, tsize); 967 return (error); 968 } 969 /* 970 * Call nfscl_delegmodtime() to set the modify time 971 * locally, as required. 972 */ 973 nfscl_delegmodtime(vp); 974 } else 975 mtx_unlock(&np->n_mtx); 976 /* 977 * np->n_size has already been set to vap->va_size 978 * in ncl_meta_setsize(). We must set it again since 979 * nfs_loadattrcache() could be called through 980 * ncl_meta_setsize() and could modify np->n_size. 981 */ 982 mtx_lock(&np->n_mtx); 983 np->n_vattr.na_size = np->n_size = vap->va_size; 984 mtx_unlock(&np->n_mtx); 985 } 986 } else { 987 mtx_lock(&np->n_mtx); 988 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 989 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 990 mtx_unlock(&np->n_mtx); 991 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 992 if (error == EINTR || error == EIO) 993 return (error); 994 } else 995 mtx_unlock(&np->n_mtx); 996 } 997 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 998 if (error && vap->va_size != VNOVAL) { 999 mtx_lock(&np->n_mtx); 1000 np->n_size = np->n_vattr.na_size = tsize; 1001 vnode_pager_setsize(vp, tsize); 1002 mtx_unlock(&np->n_mtx); 1003 } 1004 return (error); 1005 } 1006 1007 /* 1008 * Do an nfs setattr rpc. 1009 */ 1010 static int 1011 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 1012 struct thread *td) 1013 { 1014 struct nfsnode *np = VTONFS(vp); 1015 int error, ret, attrflag, i; 1016 struct nfsvattr nfsva; 1017 1018 if (NFS_ISV34(vp)) { 1019 mtx_lock(&np->n_mtx); 1020 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 1021 np->n_accesscache[i].stamp = 0; 1022 np->n_flag |= NDELEGMOD; 1023 mtx_unlock(&np->n_mtx); 1024 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 1025 } 1026 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 1027 NULL); 1028 if (attrflag) { 1029 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1030 if (ret && !error) 1031 error = ret; 1032 } 1033 if (error && NFS_ISV4(vp)) 1034 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1035 return (error); 1036 } 1037 1038 /* 1039 * nfs lookup call, one step at a time... 1040 * First look in cache 1041 * If not found, unlock the directory nfsnode and do the rpc 1042 */ 1043 static int 1044 nfs_lookup(struct vop_lookup_args *ap) 1045 { 1046 struct componentname *cnp = ap->a_cnp; 1047 struct vnode *dvp = ap->a_dvp; 1048 struct vnode **vpp = ap->a_vpp; 1049 struct mount *mp = dvp->v_mount; 1050 int flags = cnp->cn_flags; 1051 struct vnode *newvp; 1052 struct nfsmount *nmp; 1053 struct nfsnode *np, *newnp; 1054 int error = 0, attrflag, dattrflag, ltype, ncticks; 1055 struct thread *td = cnp->cn_thread; 1056 struct nfsfh *nfhp; 1057 struct nfsvattr dnfsva, nfsva; 1058 struct vattr vattr; 1059 struct timespec nctime; 1060 1061 *vpp = NULLVP; 1062 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1063 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1064 return (EROFS); 1065 if (dvp->v_type != VDIR) 1066 return (ENOTDIR); 1067 nmp = VFSTONFS(mp); 1068 np = VTONFS(dvp); 1069 1070 /* For NFSv4, wait until any remove is done. */ 1071 mtx_lock(&np->n_mtx); 1072 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1073 np->n_flag |= NREMOVEWANT; 1074 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1075 } 1076 mtx_unlock(&np->n_mtx); 1077 1078 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1079 return (error); 1080 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); 1081 if (error > 0 && error != ENOENT) 1082 return (error); 1083 if (error == -1) { 1084 /* 1085 * Lookups of "." are special and always return the 1086 * current directory. cache_lookup() already handles 1087 * associated locking bookkeeping, etc. 1088 */ 1089 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 1090 /* XXX: Is this really correct? */ 1091 if (cnp->cn_nameiop != LOOKUP && 1092 (flags & ISLASTCN)) 1093 cnp->cn_flags |= SAVENAME; 1094 return (0); 1095 } 1096 1097 /* 1098 * We only accept a positive hit in the cache if the 1099 * change time of the file matches our cached copy. 1100 * Otherwise, we discard the cache entry and fallback 1101 * to doing a lookup RPC. We also only trust cache 1102 * entries for less than nm_nametimeo seconds. 1103 * 1104 * To better handle stale file handles and attributes, 1105 * clear the attribute cache of this node if it is a 1106 * leaf component, part of an open() call, and not 1107 * locally modified before fetching the attributes. 1108 * This should allow stale file handles to be detected 1109 * here where we can fall back to a LOOKUP RPC to 1110 * recover rather than having nfs_open() detect the 1111 * stale file handle and failing open(2) with ESTALE. 1112 */ 1113 newvp = *vpp; 1114 newnp = VTONFS(newvp); 1115 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1116 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1117 !(newnp->n_flag & NMODIFIED)) { 1118 mtx_lock(&newnp->n_mtx); 1119 newnp->n_attrstamp = 0; 1120 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1121 mtx_unlock(&newnp->n_mtx); 1122 } 1123 if (nfscl_nodeleg(newvp, 0) == 0 || 1124 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && 1125 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1126 timespeccmp(&vattr.va_ctime, &nctime, ==))) { 1127 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits); 1128 if (cnp->cn_nameiop != LOOKUP && 1129 (flags & ISLASTCN)) 1130 cnp->cn_flags |= SAVENAME; 1131 return (0); 1132 } 1133 cache_purge(newvp); 1134 if (dvp != newvp) 1135 vput(newvp); 1136 else 1137 vrele(newvp); 1138 *vpp = NULLVP; 1139 } else if (error == ENOENT) { 1140 if (dvp->v_iflag & VI_DOOMED) 1141 return (ENOENT); 1142 /* 1143 * We only accept a negative hit in the cache if the 1144 * modification time of the parent directory matches 1145 * the cached copy in the name cache entry. 1146 * Otherwise, we discard all of the negative cache 1147 * entries for this directory. We also only trust 1148 * negative cache entries for up to nm_negnametimeo 1149 * seconds. 1150 */ 1151 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && 1152 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1153 timespeccmp(&vattr.va_mtime, &nctime, ==)) { 1154 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits); 1155 return (ENOENT); 1156 } 1157 cache_purge_negative(dvp); 1158 } 1159 1160 error = 0; 1161 newvp = NULLVP; 1162 NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses); 1163 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1164 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1165 NULL); 1166 if (dattrflag) 1167 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1168 if (error) { 1169 if (newvp != NULLVP) { 1170 vput(newvp); 1171 *vpp = NULLVP; 1172 } 1173 1174 if (error != ENOENT) { 1175 if (NFS_ISV4(dvp)) 1176 error = nfscl_maperr(td, error, (uid_t)0, 1177 (gid_t)0); 1178 return (error); 1179 } 1180 1181 /* The requested file was not found. */ 1182 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1183 (flags & ISLASTCN)) { 1184 /* 1185 * XXX: UFS does a full VOP_ACCESS(dvp, 1186 * VWRITE) here instead of just checking 1187 * MNT_RDONLY. 1188 */ 1189 if (mp->mnt_flag & MNT_RDONLY) 1190 return (EROFS); 1191 cnp->cn_flags |= SAVENAME; 1192 return (EJUSTRETURN); 1193 } 1194 1195 if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) { 1196 /* 1197 * Cache the modification time of the parent 1198 * directory from the post-op attributes in 1199 * the name cache entry. The negative cache 1200 * entry will be ignored once the directory 1201 * has changed. Don't bother adding the entry 1202 * if the directory has already changed. 1203 */ 1204 mtx_lock(&np->n_mtx); 1205 if (timespeccmp(&np->n_vattr.na_mtime, 1206 &dnfsva.na_mtime, ==)) { 1207 mtx_unlock(&np->n_mtx); 1208 cache_enter_time(dvp, NULL, cnp, 1209 &dnfsva.na_mtime, NULL); 1210 } else 1211 mtx_unlock(&np->n_mtx); 1212 } 1213 return (ENOENT); 1214 } 1215 1216 /* 1217 * Handle RENAME case... 1218 */ 1219 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1220 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1221 free(nfhp, M_NFSFH); 1222 return (EISDIR); 1223 } 1224 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1225 LK_EXCLUSIVE); 1226 if (error) 1227 return (error); 1228 newvp = NFSTOV(np); 1229 if (attrflag) 1230 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1231 0, 1); 1232 *vpp = newvp; 1233 cnp->cn_flags |= SAVENAME; 1234 return (0); 1235 } 1236 1237 if (flags & ISDOTDOT) { 1238 ltype = NFSVOPISLOCKED(dvp); 1239 error = vfs_busy(mp, MBF_NOWAIT); 1240 if (error != 0) { 1241 vfs_ref(mp); 1242 NFSVOPUNLOCK(dvp, 0); 1243 error = vfs_busy(mp, 0); 1244 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1245 vfs_rel(mp); 1246 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1247 vfs_unbusy(mp); 1248 error = ENOENT; 1249 } 1250 if (error != 0) 1251 return (error); 1252 } 1253 NFSVOPUNLOCK(dvp, 0); 1254 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1255 cnp->cn_lkflags); 1256 if (error == 0) 1257 newvp = NFSTOV(np); 1258 vfs_unbusy(mp); 1259 if (newvp != dvp) 1260 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1261 if (dvp->v_iflag & VI_DOOMED) { 1262 if (error == 0) { 1263 if (newvp == dvp) 1264 vrele(newvp); 1265 else 1266 vput(newvp); 1267 } 1268 error = ENOENT; 1269 } 1270 if (error != 0) 1271 return (error); 1272 if (attrflag) 1273 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1274 0, 1); 1275 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1276 free(nfhp, M_NFSFH); 1277 VREF(dvp); 1278 newvp = dvp; 1279 if (attrflag) 1280 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1281 0, 1); 1282 } else { 1283 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1284 cnp->cn_lkflags); 1285 if (error) 1286 return (error); 1287 newvp = NFSTOV(np); 1288 if (attrflag) 1289 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1290 0, 1); 1291 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1292 !(np->n_flag & NMODIFIED)) { 1293 /* 1294 * Flush the attribute cache when opening a 1295 * leaf node to ensure that fresh attributes 1296 * are fetched in nfs_open() since we did not 1297 * fetch attributes from the LOOKUP reply. 1298 */ 1299 mtx_lock(&np->n_mtx); 1300 np->n_attrstamp = 0; 1301 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1302 mtx_unlock(&np->n_mtx); 1303 } 1304 } 1305 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1306 cnp->cn_flags |= SAVENAME; 1307 if ((cnp->cn_flags & MAKEENTRY) && 1308 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && 1309 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) 1310 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1311 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); 1312 *vpp = newvp; 1313 return (0); 1314 } 1315 1316 /* 1317 * nfs read call. 1318 * Just call ncl_bioread() to do the work. 1319 */ 1320 static int 1321 nfs_read(struct vop_read_args *ap) 1322 { 1323 struct vnode *vp = ap->a_vp; 1324 1325 switch (vp->v_type) { 1326 case VREG: 1327 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1328 case VDIR: 1329 return (EISDIR); 1330 default: 1331 return (EOPNOTSUPP); 1332 } 1333 } 1334 1335 /* 1336 * nfs readlink call 1337 */ 1338 static int 1339 nfs_readlink(struct vop_readlink_args *ap) 1340 { 1341 struct vnode *vp = ap->a_vp; 1342 1343 if (vp->v_type != VLNK) 1344 return (EINVAL); 1345 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1346 } 1347 1348 /* 1349 * Do a readlink rpc. 1350 * Called by ncl_doio() from below the buffer cache. 1351 */ 1352 int 1353 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1354 { 1355 int error, ret, attrflag; 1356 struct nfsvattr nfsva; 1357 1358 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1359 &attrflag, NULL); 1360 if (attrflag) { 1361 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1362 if (ret && !error) 1363 error = ret; 1364 } 1365 if (error && NFS_ISV4(vp)) 1366 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1367 return (error); 1368 } 1369 1370 /* 1371 * nfs read rpc call 1372 * Ditto above 1373 */ 1374 int 1375 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1376 { 1377 int error, ret, attrflag; 1378 struct nfsvattr nfsva; 1379 struct nfsmount *nmp; 1380 1381 nmp = VFSTONFS(vnode_mount(vp)); 1382 error = EIO; 1383 attrflag = 0; 1384 if (NFSHASPNFS(nmp)) 1385 error = nfscl_doiods(vp, uiop, NULL, NULL, 1386 NFSV4OPEN_ACCESSREAD, 0, cred, uiop->uio_td); 1387 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); 1388 if (error != 0) 1389 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, 1390 &attrflag, NULL); 1391 if (attrflag) { 1392 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1393 if (ret && !error) 1394 error = ret; 1395 } 1396 if (error && NFS_ISV4(vp)) 1397 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1398 return (error); 1399 } 1400 1401 /* 1402 * nfs write call 1403 */ 1404 int 1405 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1406 int *iomode, int *must_commit, int called_from_strategy) 1407 { 1408 struct nfsvattr nfsva; 1409 int error, attrflag, ret; 1410 struct nfsmount *nmp; 1411 1412 nmp = VFSTONFS(vnode_mount(vp)); 1413 error = EIO; 1414 attrflag = 0; 1415 if (NFSHASPNFS(nmp)) 1416 error = nfscl_doiods(vp, uiop, iomode, must_commit, 1417 NFSV4OPEN_ACCESSWRITE, 0, cred, uiop->uio_td); 1418 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); 1419 if (error != 0) 1420 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1421 uiop->uio_td, &nfsva, &attrflag, NULL, 1422 called_from_strategy); 1423 if (attrflag) { 1424 if (VTONFS(vp)->n_flag & ND_NFSV4) 1425 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1426 1); 1427 else 1428 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1429 1); 1430 if (ret && !error) 1431 error = ret; 1432 } 1433 if (DOINGASYNC(vp)) 1434 *iomode = NFSWRITE_FILESYNC; 1435 if (error && NFS_ISV4(vp)) 1436 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1437 return (error); 1438 } 1439 1440 /* 1441 * nfs mknod rpc 1442 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1443 * mode set to specify the file type and the size field for rdev. 1444 */ 1445 static int 1446 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1447 struct vattr *vap) 1448 { 1449 struct nfsvattr nfsva, dnfsva; 1450 struct vnode *newvp = NULL; 1451 struct nfsnode *np = NULL, *dnp; 1452 struct nfsfh *nfhp; 1453 struct vattr vattr; 1454 int error = 0, attrflag, dattrflag; 1455 u_int32_t rdev; 1456 1457 if (vap->va_type == VCHR || vap->va_type == VBLK) 1458 rdev = vap->va_rdev; 1459 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1460 rdev = 0xffffffff; 1461 else 1462 return (EOPNOTSUPP); 1463 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1464 return (error); 1465 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1466 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1467 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1468 if (!error) { 1469 if (!nfhp) 1470 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1471 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1472 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1473 NULL); 1474 if (nfhp) 1475 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1476 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1477 } 1478 if (dattrflag) 1479 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1480 if (!error) { 1481 newvp = NFSTOV(np); 1482 if (attrflag != 0) { 1483 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1484 0, 1); 1485 if (error != 0) 1486 vput(newvp); 1487 } 1488 } 1489 if (!error) { 1490 *vpp = newvp; 1491 } else if (NFS_ISV4(dvp)) { 1492 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1493 vap->va_gid); 1494 } 1495 dnp = VTONFS(dvp); 1496 mtx_lock(&dnp->n_mtx); 1497 dnp->n_flag |= NMODIFIED; 1498 if (!dattrflag) { 1499 dnp->n_attrstamp = 0; 1500 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1501 } 1502 mtx_unlock(&dnp->n_mtx); 1503 return (error); 1504 } 1505 1506 /* 1507 * nfs mknod vop 1508 * just call nfs_mknodrpc() to do the work. 1509 */ 1510 /* ARGSUSED */ 1511 static int 1512 nfs_mknod(struct vop_mknod_args *ap) 1513 { 1514 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1515 } 1516 1517 static struct mtx nfs_cverf_mtx; 1518 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1519 MTX_DEF); 1520 1521 static nfsquad_t 1522 nfs_get_cverf(void) 1523 { 1524 static nfsquad_t cverf; 1525 nfsquad_t ret; 1526 static int cverf_initialized = 0; 1527 1528 mtx_lock(&nfs_cverf_mtx); 1529 if (cverf_initialized == 0) { 1530 cverf.lval[0] = arc4random(); 1531 cverf.lval[1] = arc4random(); 1532 cverf_initialized = 1; 1533 } else 1534 cverf.qval++; 1535 ret = cverf; 1536 mtx_unlock(&nfs_cverf_mtx); 1537 1538 return (ret); 1539 } 1540 1541 /* 1542 * nfs file create call 1543 */ 1544 static int 1545 nfs_create(struct vop_create_args *ap) 1546 { 1547 struct vnode *dvp = ap->a_dvp; 1548 struct vattr *vap = ap->a_vap; 1549 struct componentname *cnp = ap->a_cnp; 1550 struct nfsnode *np = NULL, *dnp; 1551 struct vnode *newvp = NULL; 1552 struct nfsmount *nmp; 1553 struct nfsvattr dnfsva, nfsva; 1554 struct nfsfh *nfhp; 1555 nfsquad_t cverf; 1556 int error = 0, attrflag, dattrflag, fmode = 0; 1557 struct vattr vattr; 1558 1559 /* 1560 * Oops, not for me.. 1561 */ 1562 if (vap->va_type == VSOCK) 1563 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1564 1565 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1566 return (error); 1567 if (vap->va_vaflags & VA_EXCLUSIVE) 1568 fmode |= O_EXCL; 1569 dnp = VTONFS(dvp); 1570 nmp = VFSTONFS(vnode_mount(dvp)); 1571 again: 1572 /* For NFSv4, wait until any remove is done. */ 1573 mtx_lock(&dnp->n_mtx); 1574 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1575 dnp->n_flag |= NREMOVEWANT; 1576 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1577 } 1578 mtx_unlock(&dnp->n_mtx); 1579 1580 cverf = nfs_get_cverf(); 1581 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1582 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1583 &nfhp, &attrflag, &dattrflag, NULL); 1584 if (!error) { 1585 if (nfhp == NULL) 1586 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1587 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1588 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1589 NULL); 1590 if (nfhp != NULL) 1591 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1592 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1593 } 1594 if (dattrflag) 1595 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1596 if (!error) { 1597 newvp = NFSTOV(np); 1598 if (attrflag == 0) 1599 error = nfsrpc_getattr(newvp, cnp->cn_cred, 1600 cnp->cn_thread, &nfsva, NULL); 1601 if (error == 0) 1602 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1603 0, 1); 1604 } 1605 if (error) { 1606 if (newvp != NULL) { 1607 vput(newvp); 1608 newvp = NULL; 1609 } 1610 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1611 error == NFSERR_NOTSUPP) { 1612 fmode &= ~O_EXCL; 1613 goto again; 1614 } 1615 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1616 if (nfscl_checksattr(vap, &nfsva)) { 1617 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1618 cnp->cn_thread, &nfsva, &attrflag, NULL); 1619 if (error && (vap->va_uid != (uid_t)VNOVAL || 1620 vap->va_gid != (gid_t)VNOVAL)) { 1621 /* try again without setting uid/gid */ 1622 vap->va_uid = (uid_t)VNOVAL; 1623 vap->va_gid = (uid_t)VNOVAL; 1624 error = nfsrpc_setattr(newvp, vap, NULL, 1625 cnp->cn_cred, cnp->cn_thread, &nfsva, 1626 &attrflag, NULL); 1627 } 1628 if (attrflag) 1629 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1630 NULL, 0, 1); 1631 if (error != 0) 1632 vput(newvp); 1633 } 1634 } 1635 if (!error) { 1636 if ((cnp->cn_flags & MAKEENTRY) && attrflag) 1637 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1638 NULL); 1639 *ap->a_vpp = newvp; 1640 } else if (NFS_ISV4(dvp)) { 1641 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1642 vap->va_gid); 1643 } 1644 mtx_lock(&dnp->n_mtx); 1645 dnp->n_flag |= NMODIFIED; 1646 if (!dattrflag) { 1647 dnp->n_attrstamp = 0; 1648 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1649 } 1650 mtx_unlock(&dnp->n_mtx); 1651 return (error); 1652 } 1653 1654 /* 1655 * nfs file remove call 1656 * To try and make nfs semantics closer to ufs semantics, a file that has 1657 * other processes using the vnode is renamed instead of removed and then 1658 * removed later on the last close. 1659 * - If v_usecount > 1 1660 * If a rename is not already in the works 1661 * call nfs_sillyrename() to set it up 1662 * else 1663 * do the remove rpc 1664 */ 1665 static int 1666 nfs_remove(struct vop_remove_args *ap) 1667 { 1668 struct vnode *vp = ap->a_vp; 1669 struct vnode *dvp = ap->a_dvp; 1670 struct componentname *cnp = ap->a_cnp; 1671 struct nfsnode *np = VTONFS(vp); 1672 int error = 0; 1673 struct vattr vattr; 1674 1675 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1676 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1677 if (vp->v_type == VDIR) 1678 error = EPERM; 1679 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1680 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1681 vattr.va_nlink > 1)) { 1682 /* 1683 * Purge the name cache so that the chance of a lookup for 1684 * the name succeeding while the remove is in progress is 1685 * minimized. Without node locking it can still happen, such 1686 * that an I/O op returns ESTALE, but since you get this if 1687 * another host removes the file.. 1688 */ 1689 cache_purge(vp); 1690 /* 1691 * throw away biocache buffers, mainly to avoid 1692 * unnecessary delayed writes later. 1693 */ 1694 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1695 if (error != EINTR && error != EIO) 1696 /* Do the rpc */ 1697 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1698 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1699 /* 1700 * Kludge City: If the first reply to the remove rpc is lost.. 1701 * the reply to the retransmitted request will be ENOENT 1702 * since the file was in fact removed 1703 * Therefore, we cheat and return success. 1704 */ 1705 if (error == ENOENT) 1706 error = 0; 1707 } else if (!np->n_sillyrename) 1708 error = nfs_sillyrename(dvp, vp, cnp); 1709 mtx_lock(&np->n_mtx); 1710 np->n_attrstamp = 0; 1711 mtx_unlock(&np->n_mtx); 1712 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1713 return (error); 1714 } 1715 1716 /* 1717 * nfs file remove rpc called from nfs_inactive 1718 */ 1719 int 1720 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1721 { 1722 /* 1723 * Make sure that the directory vnode is still valid. 1724 * XXX we should lock sp->s_dvp here. 1725 */ 1726 if (sp->s_dvp->v_type == VBAD) 1727 return (0); 1728 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1729 sp->s_cred, NULL)); 1730 } 1731 1732 /* 1733 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1734 */ 1735 static int 1736 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1737 int namelen, struct ucred *cred, struct thread *td) 1738 { 1739 struct nfsvattr dnfsva; 1740 struct nfsnode *dnp = VTONFS(dvp); 1741 int error = 0, dattrflag; 1742 1743 mtx_lock(&dnp->n_mtx); 1744 dnp->n_flag |= NREMOVEINPROG; 1745 mtx_unlock(&dnp->n_mtx); 1746 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1747 &dattrflag, NULL); 1748 mtx_lock(&dnp->n_mtx); 1749 if ((dnp->n_flag & NREMOVEWANT)) { 1750 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1751 mtx_unlock(&dnp->n_mtx); 1752 wakeup((caddr_t)dnp); 1753 } else { 1754 dnp->n_flag &= ~NREMOVEINPROG; 1755 mtx_unlock(&dnp->n_mtx); 1756 } 1757 if (dattrflag) 1758 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1759 mtx_lock(&dnp->n_mtx); 1760 dnp->n_flag |= NMODIFIED; 1761 if (!dattrflag) { 1762 dnp->n_attrstamp = 0; 1763 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1764 } 1765 mtx_unlock(&dnp->n_mtx); 1766 if (error && NFS_ISV4(dvp)) 1767 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1768 return (error); 1769 } 1770 1771 /* 1772 * nfs file rename call 1773 */ 1774 static int 1775 nfs_rename(struct vop_rename_args *ap) 1776 { 1777 struct vnode *fvp = ap->a_fvp; 1778 struct vnode *tvp = ap->a_tvp; 1779 struct vnode *fdvp = ap->a_fdvp; 1780 struct vnode *tdvp = ap->a_tdvp; 1781 struct componentname *tcnp = ap->a_tcnp; 1782 struct componentname *fcnp = ap->a_fcnp; 1783 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1784 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1785 struct nfsv4node *newv4 = NULL; 1786 int error; 1787 1788 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1789 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1790 /* Check for cross-device rename */ 1791 if ((fvp->v_mount != tdvp->v_mount) || 1792 (tvp && (fvp->v_mount != tvp->v_mount))) { 1793 error = EXDEV; 1794 goto out; 1795 } 1796 1797 if (fvp == tvp) { 1798 printf("nfs_rename: fvp == tvp (can't happen)\n"); 1799 error = 0; 1800 goto out; 1801 } 1802 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1803 goto out; 1804 1805 /* 1806 * We have to flush B_DELWRI data prior to renaming 1807 * the file. If we don't, the delayed-write buffers 1808 * can be flushed out later after the file has gone stale 1809 * under NFSV3. NFSV2 does not have this problem because 1810 * ( as far as I can tell ) it flushes dirty buffers more 1811 * often. 1812 * 1813 * Skip the rename operation if the fsync fails, this can happen 1814 * due to the server's volume being full, when we pushed out data 1815 * that was written back to our cache earlier. Not checking for 1816 * this condition can result in potential (silent) data loss. 1817 */ 1818 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1819 NFSVOPUNLOCK(fvp, 0); 1820 if (!error && tvp) 1821 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1822 if (error) 1823 goto out; 1824 1825 /* 1826 * If the tvp exists and is in use, sillyrename it before doing the 1827 * rename of the new file over it. 1828 * XXX Can't sillyrename a directory. 1829 */ 1830 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1831 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1832 vput(tvp); 1833 tvp = NULL; 1834 } 1835 1836 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1837 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1838 tcnp->cn_thread); 1839 1840 if (error == 0 && NFS_ISV4(tdvp)) { 1841 /* 1842 * For NFSv4, check to see if it is the same name and 1843 * replace the name, if it is different. 1844 */ 1845 newv4 = malloc( 1846 sizeof (struct nfsv4node) + 1847 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1848 M_NFSV4NODE, M_WAITOK); 1849 mtx_lock(&tdnp->n_mtx); 1850 mtx_lock(&fnp->n_mtx); 1851 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1852 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1853 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1854 tcnp->cn_namelen) || 1855 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1856 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1857 tdnp->n_fhp->nfh_len))) { 1858 #ifdef notdef 1859 { char nnn[100]; int nnnl; 1860 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1861 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1862 nnn[nnnl] = '\0'; 1863 printf("ren replace=%s\n",nnn); 1864 } 1865 #endif 1866 free(fnp->n_v4, M_NFSV4NODE); 1867 fnp->n_v4 = newv4; 1868 newv4 = NULL; 1869 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1870 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1871 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1872 tdnp->n_fhp->nfh_len); 1873 NFSBCOPY(tcnp->cn_nameptr, 1874 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1875 } 1876 mtx_unlock(&tdnp->n_mtx); 1877 mtx_unlock(&fnp->n_mtx); 1878 if (newv4 != NULL) 1879 free(newv4, M_NFSV4NODE); 1880 } 1881 1882 if (fvp->v_type == VDIR) { 1883 if (tvp != NULL && tvp->v_type == VDIR) 1884 cache_purge(tdvp); 1885 cache_purge(fdvp); 1886 } 1887 1888 out: 1889 if (tdvp == tvp) 1890 vrele(tdvp); 1891 else 1892 vput(tdvp); 1893 if (tvp) 1894 vput(tvp); 1895 vrele(fdvp); 1896 vrele(fvp); 1897 /* 1898 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1899 */ 1900 if (error == ENOENT) 1901 error = 0; 1902 return (error); 1903 } 1904 1905 /* 1906 * nfs file rename rpc called from nfs_remove() above 1907 */ 1908 static int 1909 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1910 struct sillyrename *sp) 1911 { 1912 1913 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1914 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1915 scnp->cn_thread)); 1916 } 1917 1918 /* 1919 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1920 */ 1921 static int 1922 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1923 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1924 int tnamelen, struct ucred *cred, struct thread *td) 1925 { 1926 struct nfsvattr fnfsva, tnfsva; 1927 struct nfsnode *fdnp = VTONFS(fdvp); 1928 struct nfsnode *tdnp = VTONFS(tdvp); 1929 int error = 0, fattrflag, tattrflag; 1930 1931 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1932 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1933 &tattrflag, NULL, NULL); 1934 mtx_lock(&fdnp->n_mtx); 1935 fdnp->n_flag |= NMODIFIED; 1936 if (fattrflag != 0) { 1937 mtx_unlock(&fdnp->n_mtx); 1938 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1939 } else { 1940 fdnp->n_attrstamp = 0; 1941 mtx_unlock(&fdnp->n_mtx); 1942 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1943 } 1944 mtx_lock(&tdnp->n_mtx); 1945 tdnp->n_flag |= NMODIFIED; 1946 if (tattrflag != 0) { 1947 mtx_unlock(&tdnp->n_mtx); 1948 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1949 } else { 1950 tdnp->n_attrstamp = 0; 1951 mtx_unlock(&tdnp->n_mtx); 1952 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1953 } 1954 if (error && NFS_ISV4(fdvp)) 1955 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1956 return (error); 1957 } 1958 1959 /* 1960 * nfs hard link create call 1961 */ 1962 static int 1963 nfs_link(struct vop_link_args *ap) 1964 { 1965 struct vnode *vp = ap->a_vp; 1966 struct vnode *tdvp = ap->a_tdvp; 1967 struct componentname *cnp = ap->a_cnp; 1968 struct nfsnode *np, *tdnp; 1969 struct nfsvattr nfsva, dnfsva; 1970 int error = 0, attrflag, dattrflag; 1971 1972 /* 1973 * Push all writes to the server, so that the attribute cache 1974 * doesn't get "out of sync" with the server. 1975 * XXX There should be a better way! 1976 */ 1977 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1978 1979 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1980 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1981 &dattrflag, NULL); 1982 tdnp = VTONFS(tdvp); 1983 mtx_lock(&tdnp->n_mtx); 1984 tdnp->n_flag |= NMODIFIED; 1985 if (dattrflag != 0) { 1986 mtx_unlock(&tdnp->n_mtx); 1987 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 1988 } else { 1989 tdnp->n_attrstamp = 0; 1990 mtx_unlock(&tdnp->n_mtx); 1991 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1992 } 1993 if (attrflag) 1994 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1995 else { 1996 np = VTONFS(vp); 1997 mtx_lock(&np->n_mtx); 1998 np->n_attrstamp = 0; 1999 mtx_unlock(&np->n_mtx); 2000 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 2001 } 2002 /* 2003 * If negative lookup caching is enabled, I might as well 2004 * add an entry for this node. Not necessary for correctness, 2005 * but if negative caching is enabled, then the system 2006 * must care about lookup caching hit rate, so... 2007 */ 2008 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 2009 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2010 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); 2011 } 2012 if (error && NFS_ISV4(vp)) 2013 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2014 (gid_t)0); 2015 return (error); 2016 } 2017 2018 /* 2019 * nfs symbolic link create call 2020 */ 2021 static int 2022 nfs_symlink(struct vop_symlink_args *ap) 2023 { 2024 struct vnode *dvp = ap->a_dvp; 2025 struct vattr *vap = ap->a_vap; 2026 struct componentname *cnp = ap->a_cnp; 2027 struct nfsvattr nfsva, dnfsva; 2028 struct nfsfh *nfhp; 2029 struct nfsnode *np = NULL, *dnp; 2030 struct vnode *newvp = NULL; 2031 int error = 0, attrflag, dattrflag, ret; 2032 2033 vap->va_type = VLNK; 2034 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2035 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2036 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2037 if (nfhp) { 2038 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2039 &np, NULL, LK_EXCLUSIVE); 2040 if (!ret) 2041 newvp = NFSTOV(np); 2042 else if (!error) 2043 error = ret; 2044 } 2045 if (newvp != NULL) { 2046 if (attrflag) 2047 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2048 0, 1); 2049 } else if (!error) { 2050 /* 2051 * If we do not have an error and we could not extract the 2052 * newvp from the response due to the request being NFSv2, we 2053 * have to do a lookup in order to obtain a newvp to return. 2054 */ 2055 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2056 cnp->cn_cred, cnp->cn_thread, &np); 2057 if (!error) 2058 newvp = NFSTOV(np); 2059 } 2060 if (error) { 2061 if (newvp) 2062 vput(newvp); 2063 if (NFS_ISV4(dvp)) 2064 error = nfscl_maperr(cnp->cn_thread, error, 2065 vap->va_uid, vap->va_gid); 2066 } else { 2067 *ap->a_vpp = newvp; 2068 } 2069 2070 dnp = VTONFS(dvp); 2071 mtx_lock(&dnp->n_mtx); 2072 dnp->n_flag |= NMODIFIED; 2073 if (dattrflag != 0) { 2074 mtx_unlock(&dnp->n_mtx); 2075 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2076 } else { 2077 dnp->n_attrstamp = 0; 2078 mtx_unlock(&dnp->n_mtx); 2079 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2080 } 2081 /* 2082 * If negative lookup caching is enabled, I might as well 2083 * add an entry for this node. Not necessary for correctness, 2084 * but if negative caching is enabled, then the system 2085 * must care about lookup caching hit rate, so... 2086 */ 2087 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2088 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2089 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); 2090 } 2091 return (error); 2092 } 2093 2094 /* 2095 * nfs make dir call 2096 */ 2097 static int 2098 nfs_mkdir(struct vop_mkdir_args *ap) 2099 { 2100 struct vnode *dvp = ap->a_dvp; 2101 struct vattr *vap = ap->a_vap; 2102 struct componentname *cnp = ap->a_cnp; 2103 struct nfsnode *np = NULL, *dnp; 2104 struct vnode *newvp = NULL; 2105 struct vattr vattr; 2106 struct nfsfh *nfhp; 2107 struct nfsvattr nfsva, dnfsva; 2108 int error = 0, attrflag, dattrflag, ret; 2109 2110 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2111 return (error); 2112 vap->va_type = VDIR; 2113 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2114 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2115 &attrflag, &dattrflag, NULL); 2116 dnp = VTONFS(dvp); 2117 mtx_lock(&dnp->n_mtx); 2118 dnp->n_flag |= NMODIFIED; 2119 if (dattrflag != 0) { 2120 mtx_unlock(&dnp->n_mtx); 2121 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2122 } else { 2123 dnp->n_attrstamp = 0; 2124 mtx_unlock(&dnp->n_mtx); 2125 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2126 } 2127 if (nfhp) { 2128 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2129 &np, NULL, LK_EXCLUSIVE); 2130 if (!ret) { 2131 newvp = NFSTOV(np); 2132 if (attrflag) 2133 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2134 NULL, 0, 1); 2135 } else if (!error) 2136 error = ret; 2137 } 2138 if (!error && newvp == NULL) { 2139 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2140 cnp->cn_cred, cnp->cn_thread, &np); 2141 if (!error) { 2142 newvp = NFSTOV(np); 2143 if (newvp->v_type != VDIR) 2144 error = EEXIST; 2145 } 2146 } 2147 if (error) { 2148 if (newvp) 2149 vput(newvp); 2150 if (NFS_ISV4(dvp)) 2151 error = nfscl_maperr(cnp->cn_thread, error, 2152 vap->va_uid, vap->va_gid); 2153 } else { 2154 /* 2155 * If negative lookup caching is enabled, I might as well 2156 * add an entry for this node. Not necessary for correctness, 2157 * but if negative caching is enabled, then the system 2158 * must care about lookup caching hit rate, so... 2159 */ 2160 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2161 (cnp->cn_flags & MAKEENTRY) && 2162 attrflag != 0 && dattrflag != 0) 2163 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 2164 &dnfsva.na_ctime); 2165 *ap->a_vpp = newvp; 2166 } 2167 return (error); 2168 } 2169 2170 /* 2171 * nfs remove directory call 2172 */ 2173 static int 2174 nfs_rmdir(struct vop_rmdir_args *ap) 2175 { 2176 struct vnode *vp = ap->a_vp; 2177 struct vnode *dvp = ap->a_dvp; 2178 struct componentname *cnp = ap->a_cnp; 2179 struct nfsnode *dnp; 2180 struct nfsvattr dnfsva; 2181 int error, dattrflag; 2182 2183 if (dvp == vp) 2184 return (EINVAL); 2185 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2186 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2187 dnp = VTONFS(dvp); 2188 mtx_lock(&dnp->n_mtx); 2189 dnp->n_flag |= NMODIFIED; 2190 if (dattrflag != 0) { 2191 mtx_unlock(&dnp->n_mtx); 2192 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2193 } else { 2194 dnp->n_attrstamp = 0; 2195 mtx_unlock(&dnp->n_mtx); 2196 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2197 } 2198 2199 cache_purge(dvp); 2200 cache_purge(vp); 2201 if (error && NFS_ISV4(dvp)) 2202 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2203 (gid_t)0); 2204 /* 2205 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2206 */ 2207 if (error == ENOENT) 2208 error = 0; 2209 return (error); 2210 } 2211 2212 /* 2213 * nfs readdir call 2214 */ 2215 static int 2216 nfs_readdir(struct vop_readdir_args *ap) 2217 { 2218 struct vnode *vp = ap->a_vp; 2219 struct nfsnode *np = VTONFS(vp); 2220 struct uio *uio = ap->a_uio; 2221 ssize_t tresid, left; 2222 int error = 0; 2223 struct vattr vattr; 2224 2225 if (ap->a_eofflag != NULL) 2226 *ap->a_eofflag = 0; 2227 if (vp->v_type != VDIR) 2228 return(EPERM); 2229 2230 /* 2231 * First, check for hit on the EOF offset cache 2232 */ 2233 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2234 (np->n_flag & NMODIFIED) == 0) { 2235 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2236 mtx_lock(&np->n_mtx); 2237 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2238 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2239 mtx_unlock(&np->n_mtx); 2240 NFSINCRGLOBAL(nfsstatsv1.direofcache_hits); 2241 if (ap->a_eofflag != NULL) 2242 *ap->a_eofflag = 1; 2243 return (0); 2244 } else 2245 mtx_unlock(&np->n_mtx); 2246 } 2247 } 2248 2249 /* 2250 * NFS always guarantees that directory entries don't straddle 2251 * DIRBLKSIZ boundaries. As such, we need to limit the size 2252 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial 2253 * directory entry. 2254 */ 2255 left = uio->uio_resid % DIRBLKSIZ; 2256 if (left == uio->uio_resid) 2257 return (EINVAL); 2258 uio->uio_resid -= left; 2259 2260 /* 2261 * Call ncl_bioread() to do the real work. 2262 */ 2263 tresid = uio->uio_resid; 2264 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2265 2266 if (!error && uio->uio_resid == tresid) { 2267 NFSINCRGLOBAL(nfsstatsv1.direofcache_misses); 2268 if (ap->a_eofflag != NULL) 2269 *ap->a_eofflag = 1; 2270 } 2271 2272 /* Add the partial DIRBLKSIZ (left) back in. */ 2273 uio->uio_resid += left; 2274 return (error); 2275 } 2276 2277 /* 2278 * Readdir rpc call. 2279 * Called from below the buffer cache by ncl_doio(). 2280 */ 2281 int 2282 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2283 struct thread *td) 2284 { 2285 struct nfsvattr nfsva; 2286 nfsuint64 *cookiep, cookie; 2287 struct nfsnode *dnp = VTONFS(vp); 2288 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2289 int error = 0, eof, attrflag; 2290 2291 KASSERT(uiop->uio_iovcnt == 1 && 2292 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2293 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2294 ("nfs readdirrpc bad uio")); 2295 2296 /* 2297 * If there is no cookie, assume directory was stale. 2298 */ 2299 ncl_dircookie_lock(dnp); 2300 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2301 if (cookiep) { 2302 cookie = *cookiep; 2303 ncl_dircookie_unlock(dnp); 2304 } else { 2305 ncl_dircookie_unlock(dnp); 2306 return (NFSERR_BAD_COOKIE); 2307 } 2308 2309 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2310 (void)ncl_fsinfo(nmp, vp, cred, td); 2311 2312 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2313 &attrflag, &eof, NULL); 2314 if (attrflag) 2315 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2316 2317 if (!error) { 2318 /* 2319 * We are now either at the end of the directory or have filled 2320 * the block. 2321 */ 2322 if (eof) 2323 dnp->n_direofoffset = uiop->uio_offset; 2324 else { 2325 if (uiop->uio_resid > 0) 2326 printf("EEK! readdirrpc resid > 0\n"); 2327 ncl_dircookie_lock(dnp); 2328 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2329 *cookiep = cookie; 2330 ncl_dircookie_unlock(dnp); 2331 } 2332 } else if (NFS_ISV4(vp)) { 2333 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2334 } 2335 return (error); 2336 } 2337 2338 /* 2339 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2340 */ 2341 int 2342 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2343 struct thread *td) 2344 { 2345 struct nfsvattr nfsva; 2346 nfsuint64 *cookiep, cookie; 2347 struct nfsnode *dnp = VTONFS(vp); 2348 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2349 int error = 0, attrflag, eof; 2350 2351 KASSERT(uiop->uio_iovcnt == 1 && 2352 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2353 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2354 ("nfs readdirplusrpc bad uio")); 2355 2356 /* 2357 * If there is no cookie, assume directory was stale. 2358 */ 2359 ncl_dircookie_lock(dnp); 2360 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2361 if (cookiep) { 2362 cookie = *cookiep; 2363 ncl_dircookie_unlock(dnp); 2364 } else { 2365 ncl_dircookie_unlock(dnp); 2366 return (NFSERR_BAD_COOKIE); 2367 } 2368 2369 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2370 (void)ncl_fsinfo(nmp, vp, cred, td); 2371 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2372 &attrflag, &eof, NULL); 2373 if (attrflag) 2374 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2375 2376 if (!error) { 2377 /* 2378 * We are now either at end of the directory or have filled the 2379 * the block. 2380 */ 2381 if (eof) 2382 dnp->n_direofoffset = uiop->uio_offset; 2383 else { 2384 if (uiop->uio_resid > 0) 2385 printf("EEK! readdirplusrpc resid > 0\n"); 2386 ncl_dircookie_lock(dnp); 2387 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2388 *cookiep = cookie; 2389 ncl_dircookie_unlock(dnp); 2390 } 2391 } else if (NFS_ISV4(vp)) { 2392 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2393 } 2394 return (error); 2395 } 2396 2397 /* 2398 * Silly rename. To make the NFS filesystem that is stateless look a little 2399 * more like the "ufs" a remove of an active vnode is translated to a rename 2400 * to a funny looking filename that is removed by nfs_inactive on the 2401 * nfsnode. There is the potential for another process on a different client 2402 * to create the same funny name between the nfs_lookitup() fails and the 2403 * nfs_rename() completes, but... 2404 */ 2405 static int 2406 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2407 { 2408 struct sillyrename *sp; 2409 struct nfsnode *np; 2410 int error; 2411 short pid; 2412 unsigned int lticks; 2413 2414 cache_purge(dvp); 2415 np = VTONFS(vp); 2416 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2417 sp = malloc(sizeof (struct sillyrename), 2418 M_NEWNFSREQ, M_WAITOK); 2419 sp->s_cred = crhold(cnp->cn_cred); 2420 sp->s_dvp = dvp; 2421 VREF(dvp); 2422 2423 /* 2424 * Fudge together a funny name. 2425 * Changing the format of the funny name to accommodate more 2426 * sillynames per directory. 2427 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2428 * CPU ticks since boot. 2429 */ 2430 pid = cnp->cn_thread->td_proc->p_pid; 2431 lticks = (unsigned int)ticks; 2432 for ( ; ; ) { 2433 sp->s_namlen = sprintf(sp->s_name, 2434 ".nfs.%08x.%04x4.4", lticks, 2435 pid); 2436 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2437 cnp->cn_thread, NULL)) 2438 break; 2439 lticks++; 2440 } 2441 error = nfs_renameit(dvp, vp, cnp, sp); 2442 if (error) 2443 goto bad; 2444 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2445 cnp->cn_thread, &np); 2446 np->n_sillyrename = sp; 2447 return (0); 2448 bad: 2449 vrele(sp->s_dvp); 2450 crfree(sp->s_cred); 2451 free(sp, M_NEWNFSREQ); 2452 return (error); 2453 } 2454 2455 /* 2456 * Look up a file name and optionally either update the file handle or 2457 * allocate an nfsnode, depending on the value of npp. 2458 * npp == NULL --> just do the lookup 2459 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2460 * handled too 2461 * *npp != NULL --> update the file handle in the vnode 2462 */ 2463 static int 2464 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2465 struct thread *td, struct nfsnode **npp) 2466 { 2467 struct vnode *newvp = NULL, *vp; 2468 struct nfsnode *np, *dnp = VTONFS(dvp); 2469 struct nfsfh *nfhp, *onfhp; 2470 struct nfsvattr nfsva, dnfsva; 2471 struct componentname cn; 2472 int error = 0, attrflag, dattrflag; 2473 u_int hash; 2474 2475 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2476 &nfhp, &attrflag, &dattrflag, NULL); 2477 if (dattrflag) 2478 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2479 if (npp && !error) { 2480 if (*npp != NULL) { 2481 np = *npp; 2482 vp = NFSTOV(np); 2483 /* 2484 * For NFSv4, check to see if it is the same name and 2485 * replace the name, if it is different. 2486 */ 2487 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2488 (np->n_v4->n4_namelen != len || 2489 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2490 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2491 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2492 dnp->n_fhp->nfh_len))) { 2493 #ifdef notdef 2494 { char nnn[100]; int nnnl; 2495 nnnl = (len < 100) ? len : 99; 2496 bcopy(name, nnn, nnnl); 2497 nnn[nnnl] = '\0'; 2498 printf("replace=%s\n",nnn); 2499 } 2500 #endif 2501 free(np->n_v4, M_NFSV4NODE); 2502 np->n_v4 = malloc( 2503 sizeof (struct nfsv4node) + 2504 dnp->n_fhp->nfh_len + len - 1, 2505 M_NFSV4NODE, M_WAITOK); 2506 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2507 np->n_v4->n4_namelen = len; 2508 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2509 dnp->n_fhp->nfh_len); 2510 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2511 } 2512 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2513 FNV1_32_INIT); 2514 onfhp = np->n_fhp; 2515 /* 2516 * Rehash node for new file handle. 2517 */ 2518 vfs_hash_rehash(vp, hash); 2519 np->n_fhp = nfhp; 2520 if (onfhp != NULL) 2521 free(onfhp, M_NFSFH); 2522 newvp = NFSTOV(np); 2523 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2524 free(nfhp, M_NFSFH); 2525 VREF(dvp); 2526 newvp = dvp; 2527 } else { 2528 cn.cn_nameptr = name; 2529 cn.cn_namelen = len; 2530 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2531 &np, NULL, LK_EXCLUSIVE); 2532 if (error) 2533 return (error); 2534 newvp = NFSTOV(np); 2535 } 2536 if (!attrflag && *npp == NULL) { 2537 if (newvp == dvp) 2538 vrele(newvp); 2539 else 2540 vput(newvp); 2541 return (ENOENT); 2542 } 2543 if (attrflag) 2544 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2545 0, 1); 2546 } 2547 if (npp && *npp == NULL) { 2548 if (error) { 2549 if (newvp) { 2550 if (newvp == dvp) 2551 vrele(newvp); 2552 else 2553 vput(newvp); 2554 } 2555 } else 2556 *npp = np; 2557 } 2558 if (error && NFS_ISV4(dvp)) 2559 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2560 return (error); 2561 } 2562 2563 /* 2564 * Nfs Version 3 and 4 commit rpc 2565 */ 2566 int 2567 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2568 struct thread *td) 2569 { 2570 struct nfsvattr nfsva; 2571 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2572 struct nfsnode *np; 2573 struct uio uio; 2574 int error, attrflag; 2575 2576 np = VTONFS(vp); 2577 error = EIO; 2578 attrflag = 0; 2579 if (NFSHASPNFS(nmp) && (np->n_flag & NDSCOMMIT) != 0) { 2580 uio.uio_offset = offset; 2581 uio.uio_resid = cnt; 2582 error = nfscl_doiods(vp, &uio, NULL, NULL, 2583 NFSV4OPEN_ACCESSWRITE, 1, cred, td); 2584 if (error != 0) { 2585 mtx_lock(&np->n_mtx); 2586 np->n_flag &= ~NDSCOMMIT; 2587 mtx_unlock(&np->n_mtx); 2588 } 2589 } 2590 if (error != 0) { 2591 mtx_lock(&nmp->nm_mtx); 2592 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2593 mtx_unlock(&nmp->nm_mtx); 2594 return (0); 2595 } 2596 mtx_unlock(&nmp->nm_mtx); 2597 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, 2598 &attrflag, NULL); 2599 } 2600 if (attrflag != 0) 2601 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2602 0, 1); 2603 if (error != 0 && NFS_ISV4(vp)) 2604 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2605 return (error); 2606 } 2607 2608 /* 2609 * Strategy routine. 2610 * For async requests when nfsiod(s) are running, queue the request by 2611 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2612 * request. 2613 */ 2614 static int 2615 nfs_strategy(struct vop_strategy_args *ap) 2616 { 2617 struct buf *bp; 2618 struct vnode *vp; 2619 struct ucred *cr; 2620 2621 bp = ap->a_bp; 2622 vp = ap->a_vp; 2623 KASSERT(bp->b_vp == vp, ("missing b_getvp")); 2624 KASSERT(!(bp->b_flags & B_DONE), 2625 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2626 BUF_ASSERT_HELD(bp); 2627 2628 if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno) 2629 bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize / 2630 DEV_BSIZE); 2631 if (bp->b_iocmd == BIO_READ) 2632 cr = bp->b_rcred; 2633 else 2634 cr = bp->b_wcred; 2635 2636 /* 2637 * If the op is asynchronous and an i/o daemon is waiting 2638 * queue the request, wake it up and wait for completion 2639 * otherwise just do it ourselves. 2640 */ 2641 if ((bp->b_flags & B_ASYNC) == 0 || 2642 ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread)) 2643 (void) ncl_doio(vp, bp, cr, curthread, 1); 2644 return (0); 2645 } 2646 2647 /* 2648 * fsync vnode op. Just call ncl_flush() with commit == 1. 2649 */ 2650 /* ARGSUSED */ 2651 static int 2652 nfs_fsync(struct vop_fsync_args *ap) 2653 { 2654 2655 if (ap->a_vp->v_type != VREG) { 2656 /* 2657 * For NFS, metadata is changed synchronously on the server, 2658 * so there is nothing to flush. Also, ncl_flush() clears 2659 * the NMODIFIED flag and that shouldn't be done here for 2660 * directories. 2661 */ 2662 return (0); 2663 } 2664 return (ncl_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1, 0)); 2665 } 2666 2667 /* 2668 * Flush all the blocks associated with a vnode. 2669 * Walk through the buffer pool and push any dirty pages 2670 * associated with the vnode. 2671 * If the called_from_renewthread argument is TRUE, it has been called 2672 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2673 * waiting for a buffer write to complete. 2674 */ 2675 int 2676 ncl_flush(struct vnode *vp, int waitfor, struct thread *td, 2677 int commit, int called_from_renewthread) 2678 { 2679 struct nfsnode *np = VTONFS(vp); 2680 struct buf *bp; 2681 int i; 2682 struct buf *nbp; 2683 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2684 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2685 int passone = 1, trycnt = 0; 2686 u_quad_t off, endoff, toff; 2687 struct ucred* wcred = NULL; 2688 struct buf **bvec = NULL; 2689 struct bufobj *bo; 2690 #ifndef NFS_COMMITBVECSIZ 2691 #define NFS_COMMITBVECSIZ 20 2692 #endif 2693 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2694 u_int bvecsize = 0, bveccount; 2695 2696 if (called_from_renewthread != 0) 2697 slptimeo = hz; 2698 if (nmp->nm_flag & NFSMNT_INT) 2699 slpflag = PCATCH; 2700 if (!commit) 2701 passone = 0; 2702 bo = &vp->v_bufobj; 2703 /* 2704 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2705 * server, but has not been committed to stable storage on the server 2706 * yet. On the first pass, the byte range is worked out and the commit 2707 * rpc is done. On the second pass, ncl_writebp() is called to do the 2708 * job. 2709 */ 2710 again: 2711 off = (u_quad_t)-1; 2712 endoff = 0; 2713 bvecpos = 0; 2714 if (NFS_ISV34(vp) && commit) { 2715 if (bvec != NULL && bvec != bvec_on_stack) 2716 free(bvec, M_TEMP); 2717 /* 2718 * Count up how many buffers waiting for a commit. 2719 */ 2720 bveccount = 0; 2721 BO_LOCK(bo); 2722 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2723 if (!BUF_ISLOCKED(bp) && 2724 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2725 == (B_DELWRI | B_NEEDCOMMIT)) 2726 bveccount++; 2727 } 2728 /* 2729 * Allocate space to remember the list of bufs to commit. It is 2730 * important to use M_NOWAIT here to avoid a race with nfs_write. 2731 * If we can't get memory (for whatever reason), we will end up 2732 * committing the buffers one-by-one in the loop below. 2733 */ 2734 if (bveccount > NFS_COMMITBVECSIZ) { 2735 /* 2736 * Release the vnode interlock to avoid a lock 2737 * order reversal. 2738 */ 2739 BO_UNLOCK(bo); 2740 bvec = (struct buf **) 2741 malloc(bveccount * sizeof(struct buf *), 2742 M_TEMP, M_NOWAIT); 2743 BO_LOCK(bo); 2744 if (bvec == NULL) { 2745 bvec = bvec_on_stack; 2746 bvecsize = NFS_COMMITBVECSIZ; 2747 } else 2748 bvecsize = bveccount; 2749 } else { 2750 bvec = bvec_on_stack; 2751 bvecsize = NFS_COMMITBVECSIZ; 2752 } 2753 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2754 if (bvecpos >= bvecsize) 2755 break; 2756 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2757 nbp = TAILQ_NEXT(bp, b_bobufs); 2758 continue; 2759 } 2760 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2761 (B_DELWRI | B_NEEDCOMMIT)) { 2762 BUF_UNLOCK(bp); 2763 nbp = TAILQ_NEXT(bp, b_bobufs); 2764 continue; 2765 } 2766 BO_UNLOCK(bo); 2767 bremfree(bp); 2768 /* 2769 * Work out if all buffers are using the same cred 2770 * so we can deal with them all with one commit. 2771 * 2772 * NOTE: we are not clearing B_DONE here, so we have 2773 * to do it later on in this routine if we intend to 2774 * initiate I/O on the bp. 2775 * 2776 * Note: to avoid loopback deadlocks, we do not 2777 * assign b_runningbufspace. 2778 */ 2779 if (wcred == NULL) 2780 wcred = bp->b_wcred; 2781 else if (wcred != bp->b_wcred) 2782 wcred = NOCRED; 2783 vfs_busy_pages(bp, 1); 2784 2785 BO_LOCK(bo); 2786 /* 2787 * bp is protected by being locked, but nbp is not 2788 * and vfs_busy_pages() may sleep. We have to 2789 * recalculate nbp. 2790 */ 2791 nbp = TAILQ_NEXT(bp, b_bobufs); 2792 2793 /* 2794 * A list of these buffers is kept so that the 2795 * second loop knows which buffers have actually 2796 * been committed. This is necessary, since there 2797 * may be a race between the commit rpc and new 2798 * uncommitted writes on the file. 2799 */ 2800 bvec[bvecpos++] = bp; 2801 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2802 bp->b_dirtyoff; 2803 if (toff < off) 2804 off = toff; 2805 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2806 if (toff > endoff) 2807 endoff = toff; 2808 } 2809 BO_UNLOCK(bo); 2810 } 2811 if (bvecpos > 0) { 2812 /* 2813 * Commit data on the server, as required. 2814 * If all bufs are using the same wcred, then use that with 2815 * one call for all of them, otherwise commit each one 2816 * separately. 2817 */ 2818 if (wcred != NOCRED) 2819 retv = ncl_commit(vp, off, (int)(endoff - off), 2820 wcred, td); 2821 else { 2822 retv = 0; 2823 for (i = 0; i < bvecpos; i++) { 2824 off_t off, size; 2825 bp = bvec[i]; 2826 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2827 bp->b_dirtyoff; 2828 size = (u_quad_t)(bp->b_dirtyend 2829 - bp->b_dirtyoff); 2830 retv = ncl_commit(vp, off, (int)size, 2831 bp->b_wcred, td); 2832 if (retv) break; 2833 } 2834 } 2835 2836 if (retv == NFSERR_STALEWRITEVERF) 2837 ncl_clearcommit(vp->v_mount); 2838 2839 /* 2840 * Now, either mark the blocks I/O done or mark the 2841 * blocks dirty, depending on whether the commit 2842 * succeeded. 2843 */ 2844 for (i = 0; i < bvecpos; i++) { 2845 bp = bvec[i]; 2846 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2847 if (retv) { 2848 /* 2849 * Error, leave B_DELWRI intact 2850 */ 2851 vfs_unbusy_pages(bp); 2852 brelse(bp); 2853 } else { 2854 /* 2855 * Success, remove B_DELWRI ( bundirty() ). 2856 * 2857 * b_dirtyoff/b_dirtyend seem to be NFS 2858 * specific. We should probably move that 2859 * into bundirty(). XXX 2860 */ 2861 bufobj_wref(bo); 2862 bp->b_flags |= B_ASYNC; 2863 bundirty(bp); 2864 bp->b_flags &= ~B_DONE; 2865 bp->b_ioflags &= ~BIO_ERROR; 2866 bp->b_dirtyoff = bp->b_dirtyend = 0; 2867 bufdone(bp); 2868 } 2869 } 2870 } 2871 2872 /* 2873 * Start/do any write(s) that are required. 2874 */ 2875 loop: 2876 BO_LOCK(bo); 2877 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2878 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2879 if (waitfor != MNT_WAIT || passone) 2880 continue; 2881 2882 error = BUF_TIMELOCK(bp, 2883 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2884 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); 2885 if (error == 0) { 2886 BUF_UNLOCK(bp); 2887 goto loop; 2888 } 2889 if (error == ENOLCK) { 2890 error = 0; 2891 goto loop; 2892 } 2893 if (called_from_renewthread != 0) { 2894 /* 2895 * Return EIO so the flush will be retried 2896 * later. 2897 */ 2898 error = EIO; 2899 goto done; 2900 } 2901 if (newnfs_sigintr(nmp, td)) { 2902 error = EINTR; 2903 goto done; 2904 } 2905 if (slpflag == PCATCH) { 2906 slpflag = 0; 2907 slptimeo = 2 * hz; 2908 } 2909 goto loop; 2910 } 2911 if ((bp->b_flags & B_DELWRI) == 0) 2912 panic("nfs_fsync: not dirty"); 2913 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2914 BUF_UNLOCK(bp); 2915 continue; 2916 } 2917 BO_UNLOCK(bo); 2918 bremfree(bp); 2919 if (passone || !commit) 2920 bp->b_flags |= B_ASYNC; 2921 else 2922 bp->b_flags |= B_ASYNC; 2923 bwrite(bp); 2924 if (newnfs_sigintr(nmp, td)) { 2925 error = EINTR; 2926 goto done; 2927 } 2928 goto loop; 2929 } 2930 if (passone) { 2931 passone = 0; 2932 BO_UNLOCK(bo); 2933 goto again; 2934 } 2935 if (waitfor == MNT_WAIT) { 2936 while (bo->bo_numoutput) { 2937 error = bufobj_wwait(bo, slpflag, slptimeo); 2938 if (error) { 2939 BO_UNLOCK(bo); 2940 if (called_from_renewthread != 0) { 2941 /* 2942 * Return EIO so that the flush will be 2943 * retried later. 2944 */ 2945 error = EIO; 2946 goto done; 2947 } 2948 error = newnfs_sigintr(nmp, td); 2949 if (error) 2950 goto done; 2951 if (slpflag == PCATCH) { 2952 slpflag = 0; 2953 slptimeo = 2 * hz; 2954 } 2955 BO_LOCK(bo); 2956 } 2957 } 2958 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2959 BO_UNLOCK(bo); 2960 goto loop; 2961 } 2962 /* 2963 * Wait for all the async IO requests to drain 2964 */ 2965 BO_UNLOCK(bo); 2966 mtx_lock(&np->n_mtx); 2967 while (np->n_directio_asyncwr > 0) { 2968 np->n_flag |= NFSYNCWAIT; 2969 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2970 &np->n_mtx, slpflag | (PRIBIO + 1), 2971 "nfsfsync", 0); 2972 if (error) { 2973 if (newnfs_sigintr(nmp, td)) { 2974 mtx_unlock(&np->n_mtx); 2975 error = EINTR; 2976 goto done; 2977 } 2978 } 2979 } 2980 mtx_unlock(&np->n_mtx); 2981 } else 2982 BO_UNLOCK(bo); 2983 if (NFSHASPNFS(nmp)) { 2984 nfscl_layoutcommit(vp, td); 2985 /* 2986 * Invalidate the attribute cache, since writes to a DS 2987 * won't update the size attribute. 2988 */ 2989 mtx_lock(&np->n_mtx); 2990 np->n_attrstamp = 0; 2991 } else 2992 mtx_lock(&np->n_mtx); 2993 if (np->n_flag & NWRITEERR) { 2994 error = np->n_error; 2995 np->n_flag &= ~NWRITEERR; 2996 } 2997 if (commit && bo->bo_dirty.bv_cnt == 0 && 2998 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2999 np->n_flag &= ~NMODIFIED; 3000 mtx_unlock(&np->n_mtx); 3001 done: 3002 if (bvec != NULL && bvec != bvec_on_stack) 3003 free(bvec, M_TEMP); 3004 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 3005 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 3006 np->n_directio_asyncwr != 0)) { 3007 if (trycnt++ < 5) { 3008 /* try, try again... */ 3009 passone = 1; 3010 wcred = NULL; 3011 bvec = NULL; 3012 bvecsize = 0; 3013 goto again; 3014 } 3015 vn_printf(vp, "ncl_flush failed"); 3016 error = called_from_renewthread != 0 ? EIO : EBUSY; 3017 } 3018 return (error); 3019 } 3020 3021 /* 3022 * NFS advisory byte-level locks. 3023 */ 3024 static int 3025 nfs_advlock(struct vop_advlock_args *ap) 3026 { 3027 struct vnode *vp = ap->a_vp; 3028 struct ucred *cred; 3029 struct nfsnode *np = VTONFS(ap->a_vp); 3030 struct proc *p = (struct proc *)ap->a_id; 3031 struct thread *td = curthread; /* XXX */ 3032 struct vattr va; 3033 int ret, error; 3034 u_quad_t size; 3035 3036 error = NFSVOPLOCK(vp, LK_SHARED); 3037 if (error != 0) 3038 return (EBADF); 3039 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 3040 if (vp->v_type != VREG) { 3041 error = EINVAL; 3042 goto out; 3043 } 3044 if ((ap->a_flags & F_POSIX) != 0) 3045 cred = p->p_ucred; 3046 else 3047 cred = td->td_ucred; 3048 NFSVOPLOCK(vp, LK_UPGRADE | LK_RETRY); 3049 if (vp->v_iflag & VI_DOOMED) { 3050 error = EBADF; 3051 goto out; 3052 } 3053 3054 /* 3055 * If this is unlocking a write locked region, flush and 3056 * commit them before unlocking. This is required by 3057 * RFC3530 Sec. 9.3.2. 3058 */ 3059 if (ap->a_op == F_UNLCK && 3060 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 3061 ap->a_flags)) 3062 (void) ncl_flush(vp, MNT_WAIT, td, 1, 0); 3063 3064 /* 3065 * Loop around doing the lock op, while a blocking lock 3066 * must wait for the lock op to succeed. 3067 */ 3068 do { 3069 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 3070 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 3071 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3072 ap->a_op == F_SETLK) { 3073 NFSVOPUNLOCK(vp, 0); 3074 error = nfs_catnap(PZERO | PCATCH, ret, 3075 "ncladvl"); 3076 if (error) 3077 return (EINTR); 3078 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3079 if (vp->v_iflag & VI_DOOMED) { 3080 error = EBADF; 3081 goto out; 3082 } 3083 } 3084 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3085 ap->a_op == F_SETLK); 3086 if (ret == NFSERR_DENIED) { 3087 error = EAGAIN; 3088 goto out; 3089 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3090 error = ret; 3091 goto out; 3092 } else if (ret != 0) { 3093 error = EACCES; 3094 goto out; 3095 } 3096 3097 /* 3098 * Now, if we just got a lock, invalidate data in the buffer 3099 * cache, as required, so that the coherency conforms with 3100 * RFC3530 Sec. 9.3.2. 3101 */ 3102 if (ap->a_op == F_SETLK) { 3103 if ((np->n_flag & NMODIFIED) == 0) { 3104 np->n_attrstamp = 0; 3105 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3106 ret = VOP_GETATTR(vp, &va, cred); 3107 } 3108 if ((np->n_flag & NMODIFIED) || ret || 3109 np->n_change != va.va_filerev) { 3110 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3111 np->n_attrstamp = 0; 3112 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3113 ret = VOP_GETATTR(vp, &va, cred); 3114 if (!ret) { 3115 np->n_mtime = va.va_mtime; 3116 np->n_change = va.va_filerev; 3117 } 3118 } 3119 /* Mark that a file lock has been acquired. */ 3120 mtx_lock(&np->n_mtx); 3121 np->n_flag |= NHASBEENLOCKED; 3122 mtx_unlock(&np->n_mtx); 3123 } 3124 } else if (!NFS_ISV4(vp)) { 3125 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3126 size = VTONFS(vp)->n_size; 3127 NFSVOPUNLOCK(vp, 0); 3128 error = lf_advlock(ap, &(vp->v_lockf), size); 3129 } else { 3130 if (nfs_advlock_p != NULL) 3131 error = nfs_advlock_p(ap); 3132 else { 3133 NFSVOPUNLOCK(vp, 0); 3134 error = ENOLCK; 3135 } 3136 } 3137 if (error == 0 && ap->a_op == F_SETLK) { 3138 error = NFSVOPLOCK(vp, LK_SHARED); 3139 if (error == 0) { 3140 /* Mark that a file lock has been acquired. */ 3141 mtx_lock(&np->n_mtx); 3142 np->n_flag |= NHASBEENLOCKED; 3143 mtx_unlock(&np->n_mtx); 3144 NFSVOPUNLOCK(vp, 0); 3145 } 3146 } 3147 return (error); 3148 } else 3149 error = EOPNOTSUPP; 3150 out: 3151 NFSVOPUNLOCK(vp, 0); 3152 return (error); 3153 } 3154 3155 /* 3156 * NFS advisory byte-level locks. 3157 */ 3158 static int 3159 nfs_advlockasync(struct vop_advlockasync_args *ap) 3160 { 3161 struct vnode *vp = ap->a_vp; 3162 u_quad_t size; 3163 int error; 3164 3165 if (NFS_ISV4(vp)) 3166 return (EOPNOTSUPP); 3167 error = NFSVOPLOCK(vp, LK_SHARED); 3168 if (error) 3169 return (error); 3170 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3171 size = VTONFS(vp)->n_size; 3172 NFSVOPUNLOCK(vp, 0); 3173 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3174 } else { 3175 NFSVOPUNLOCK(vp, 0); 3176 error = EOPNOTSUPP; 3177 } 3178 return (error); 3179 } 3180 3181 /* 3182 * Print out the contents of an nfsnode. 3183 */ 3184 static int 3185 nfs_print(struct vop_print_args *ap) 3186 { 3187 struct vnode *vp = ap->a_vp; 3188 struct nfsnode *np = VTONFS(vp); 3189 3190 printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid, 3191 (uintmax_t)np->n_vattr.na_fsid); 3192 if (vp->v_type == VFIFO) 3193 fifo_printinfo(vp); 3194 printf("\n"); 3195 return (0); 3196 } 3197 3198 /* 3199 * This is the "real" nfs::bwrite(struct buf*). 3200 * We set B_CACHE if this is a VMIO buffer. 3201 */ 3202 int 3203 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3204 { 3205 int oldflags, rtval; 3206 3207 BUF_ASSERT_HELD(bp); 3208 3209 if (bp->b_flags & B_INVAL) { 3210 brelse(bp); 3211 return (0); 3212 } 3213 3214 oldflags = bp->b_flags; 3215 bp->b_flags |= B_CACHE; 3216 3217 /* 3218 * Undirty the bp. We will redirty it later if the I/O fails. 3219 */ 3220 bundirty(bp); 3221 bp->b_flags &= ~B_DONE; 3222 bp->b_ioflags &= ~BIO_ERROR; 3223 bp->b_iocmd = BIO_WRITE; 3224 3225 bufobj_wref(bp->b_bufobj); 3226 curthread->td_ru.ru_oublock++; 3227 3228 /* 3229 * Note: to avoid loopback deadlocks, we do not 3230 * assign b_runningbufspace. 3231 */ 3232 vfs_busy_pages(bp, 1); 3233 3234 BUF_KERNPROC(bp); 3235 bp->b_iooffset = dbtob(bp->b_blkno); 3236 bstrategy(bp); 3237 3238 if ((oldflags & B_ASYNC) != 0) 3239 return (0); 3240 3241 rtval = bufwait(bp); 3242 if (oldflags & B_DELWRI) 3243 reassignbuf(bp); 3244 brelse(bp); 3245 return (rtval); 3246 } 3247 3248 /* 3249 * nfs special file access vnode op. 3250 * Essentially just get vattr and then imitate iaccess() since the device is 3251 * local to the client. 3252 */ 3253 static int 3254 nfsspec_access(struct vop_access_args *ap) 3255 { 3256 struct vattr *vap; 3257 struct ucred *cred = ap->a_cred; 3258 struct vnode *vp = ap->a_vp; 3259 accmode_t accmode = ap->a_accmode; 3260 struct vattr vattr; 3261 int error; 3262 3263 /* 3264 * Disallow write attempts on filesystems mounted read-only; 3265 * unless the file is a socket, fifo, or a block or character 3266 * device resident on the filesystem. 3267 */ 3268 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3269 switch (vp->v_type) { 3270 case VREG: 3271 case VDIR: 3272 case VLNK: 3273 return (EROFS); 3274 default: 3275 break; 3276 } 3277 } 3278 vap = &vattr; 3279 error = VOP_GETATTR(vp, vap, cred); 3280 if (error) 3281 goto out; 3282 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3283 accmode, cred, NULL); 3284 out: 3285 return error; 3286 } 3287 3288 /* 3289 * Read wrapper for fifos. 3290 */ 3291 static int 3292 nfsfifo_read(struct vop_read_args *ap) 3293 { 3294 struct nfsnode *np = VTONFS(ap->a_vp); 3295 int error; 3296 3297 /* 3298 * Set access flag. 3299 */ 3300 mtx_lock(&np->n_mtx); 3301 np->n_flag |= NACC; 3302 vfs_timestamp(&np->n_atim); 3303 mtx_unlock(&np->n_mtx); 3304 error = fifo_specops.vop_read(ap); 3305 return error; 3306 } 3307 3308 /* 3309 * Write wrapper for fifos. 3310 */ 3311 static int 3312 nfsfifo_write(struct vop_write_args *ap) 3313 { 3314 struct nfsnode *np = VTONFS(ap->a_vp); 3315 3316 /* 3317 * Set update flag. 3318 */ 3319 mtx_lock(&np->n_mtx); 3320 np->n_flag |= NUPD; 3321 vfs_timestamp(&np->n_mtim); 3322 mtx_unlock(&np->n_mtx); 3323 return(fifo_specops.vop_write(ap)); 3324 } 3325 3326 /* 3327 * Close wrapper for fifos. 3328 * 3329 * Update the times on the nfsnode then do fifo close. 3330 */ 3331 static int 3332 nfsfifo_close(struct vop_close_args *ap) 3333 { 3334 struct vnode *vp = ap->a_vp; 3335 struct nfsnode *np = VTONFS(vp); 3336 struct vattr vattr; 3337 struct timespec ts; 3338 3339 mtx_lock(&np->n_mtx); 3340 if (np->n_flag & (NACC | NUPD)) { 3341 vfs_timestamp(&ts); 3342 if (np->n_flag & NACC) 3343 np->n_atim = ts; 3344 if (np->n_flag & NUPD) 3345 np->n_mtim = ts; 3346 np->n_flag |= NCHG; 3347 if (vrefcnt(vp) == 1 && 3348 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3349 VATTR_NULL(&vattr); 3350 if (np->n_flag & NACC) 3351 vattr.va_atime = np->n_atim; 3352 if (np->n_flag & NUPD) 3353 vattr.va_mtime = np->n_mtim; 3354 mtx_unlock(&np->n_mtx); 3355 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3356 goto out; 3357 } 3358 } 3359 mtx_unlock(&np->n_mtx); 3360 out: 3361 return (fifo_specops.vop_close(ap)); 3362 } 3363 3364 /* 3365 * Just call ncl_writebp() with the force argument set to 1. 3366 * 3367 * NOTE: B_DONE may or may not be set in a_bp on call. 3368 */ 3369 static int 3370 nfs_bwrite(struct buf *bp) 3371 { 3372 3373 return (ncl_writebp(bp, 1, curthread)); 3374 } 3375 3376 struct buf_ops buf_ops_newnfs = { 3377 .bop_name = "buf_ops_nfs", 3378 .bop_write = nfs_bwrite, 3379 .bop_strategy = bufstrategy, 3380 .bop_sync = bufsync, 3381 .bop_bdflush = bufbdflush, 3382 }; 3383 3384 static int 3385 nfs_getacl(struct vop_getacl_args *ap) 3386 { 3387 int error; 3388 3389 if (ap->a_type != ACL_TYPE_NFS4) 3390 return (EOPNOTSUPP); 3391 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3392 NULL); 3393 if (error > NFSERR_STALE) { 3394 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3395 error = EPERM; 3396 } 3397 return (error); 3398 } 3399 3400 static int 3401 nfs_setacl(struct vop_setacl_args *ap) 3402 { 3403 int error; 3404 3405 if (ap->a_type != ACL_TYPE_NFS4) 3406 return (EOPNOTSUPP); 3407 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3408 NULL); 3409 if (error > NFSERR_STALE) { 3410 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3411 error = EPERM; 3412 } 3413 return (error); 3414 } 3415 3416 static int 3417 nfs_set_text(struct vop_set_text_args *ap) 3418 { 3419 struct vnode *vp = ap->a_vp; 3420 struct nfsnode *np; 3421 3422 /* 3423 * If the text file has been mmap'd, flush any dirty pages to the 3424 * buffer cache and then... 3425 * Make sure all writes are pushed to the NFS server. If this is not 3426 * done, the modify time of the file can change while the text 3427 * file is being executed. This will cause the process that is 3428 * executing the text file to be terminated. 3429 */ 3430 if (vp->v_object != NULL) { 3431 VM_OBJECT_WLOCK(vp->v_object); 3432 vm_object_page_clean(vp->v_object, 0, 0, OBJPC_SYNC); 3433 VM_OBJECT_WUNLOCK(vp->v_object); 3434 } 3435 3436 /* Now, flush the buffer cache. */ 3437 ncl_flush(vp, MNT_WAIT, curthread, 0, 0); 3438 3439 /* And, finally, make sure that n_mtime is up to date. */ 3440 np = VTONFS(vp); 3441 mtx_lock(&np->n_mtx); 3442 np->n_mtime = np->n_vattr.na_mtime; 3443 mtx_unlock(&np->n_mtx); 3444 3445 vp->v_vflag |= VV_TEXT; 3446 return (0); 3447 } 3448 3449 /* 3450 * Return POSIX pathconf information applicable to nfs filesystems. 3451 */ 3452 static int 3453 nfs_pathconf(struct vop_pathconf_args *ap) 3454 { 3455 struct nfsv3_pathconf pc; 3456 struct nfsvattr nfsva; 3457 struct vnode *vp = ap->a_vp; 3458 struct thread *td = curthread; 3459 int attrflag, error; 3460 3461 if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX || 3462 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3463 ap->a_name == _PC_NO_TRUNC)) || 3464 (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) { 3465 /* 3466 * Since only the above 4 a_names are returned by the NFSv3 3467 * Pathconf RPC, there is no point in doing it for others. 3468 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can 3469 * be used for _PC_NFS4_ACL as well. 3470 */ 3471 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3472 &attrflag, NULL); 3473 if (attrflag != 0) 3474 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3475 1); 3476 if (error != 0) 3477 return (error); 3478 } else { 3479 /* 3480 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3481 * just fake them. 3482 */ 3483 pc.pc_linkmax = NFS_LINK_MAX; 3484 pc.pc_namemax = NFS_MAXNAMLEN; 3485 pc.pc_notrunc = 1; 3486 pc.pc_chownrestricted = 1; 3487 pc.pc_caseinsensitive = 0; 3488 pc.pc_casepreserving = 1; 3489 error = 0; 3490 } 3491 switch (ap->a_name) { 3492 case _PC_LINK_MAX: 3493 #ifdef _LP64 3494 *ap->a_retval = pc.pc_linkmax; 3495 #else 3496 *ap->a_retval = MIN(LONG_MAX, pc.pc_linkmax); 3497 #endif 3498 break; 3499 case _PC_NAME_MAX: 3500 *ap->a_retval = pc.pc_namemax; 3501 break; 3502 case _PC_PIPE_BUF: 3503 if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) 3504 *ap->a_retval = PIPE_BUF; 3505 else 3506 error = EINVAL; 3507 break; 3508 case _PC_CHOWN_RESTRICTED: 3509 *ap->a_retval = pc.pc_chownrestricted; 3510 break; 3511 case _PC_NO_TRUNC: 3512 *ap->a_retval = pc.pc_notrunc; 3513 break; 3514 case _PC_ACL_EXTENDED: 3515 *ap->a_retval = 0; 3516 break; 3517 case _PC_ACL_NFS4: 3518 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3519 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3520 *ap->a_retval = 1; 3521 else 3522 *ap->a_retval = 0; 3523 break; 3524 case _PC_ACL_PATH_MAX: 3525 if (NFS_ISV4(vp)) 3526 *ap->a_retval = ACL_MAX_ENTRIES; 3527 else 3528 *ap->a_retval = 3; 3529 break; 3530 case _PC_MAC_PRESENT: 3531 *ap->a_retval = 0; 3532 break; 3533 case _PC_PRIO_IO: 3534 *ap->a_retval = 0; 3535 break; 3536 case _PC_SYNC_IO: 3537 *ap->a_retval = 0; 3538 break; 3539 case _PC_ALLOC_SIZE_MIN: 3540 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3541 break; 3542 case _PC_FILESIZEBITS: 3543 if (NFS_ISV34(vp)) 3544 *ap->a_retval = 64; 3545 else 3546 *ap->a_retval = 32; 3547 break; 3548 case _PC_REC_INCR_XFER_SIZE: 3549 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3550 break; 3551 case _PC_REC_MAX_XFER_SIZE: 3552 *ap->a_retval = -1; /* means ``unlimited'' */ 3553 break; 3554 case _PC_REC_MIN_XFER_SIZE: 3555 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3556 break; 3557 case _PC_REC_XFER_ALIGN: 3558 *ap->a_retval = PAGE_SIZE; 3559 break; 3560 case _PC_SYMLINK_MAX: 3561 *ap->a_retval = NFS_MAXPATHLEN; 3562 break; 3563 3564 default: 3565 error = vop_stdpathconf(ap); 3566 break; 3567 } 3568 return (error); 3569 } 3570 3571