1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * vnode op calls for Sun NFS version 2, 3 and 4 40 */ 41 42 #include "opt_kdtrace.h" 43 #include "opt_inet.h" 44 45 #include <sys/param.h> 46 #include <sys/kernel.h> 47 #include <sys/systm.h> 48 #include <sys/resourcevar.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/bio.h> 52 #include <sys/buf.h> 53 #include <sys/jail.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/namei.h> 57 #include <sys/socket.h> 58 #include <sys/vnode.h> 59 #include <sys/dirent.h> 60 #include <sys/fcntl.h> 61 #include <sys/lockf.h> 62 #include <sys/stat.h> 63 #include <sys/sysctl.h> 64 #include <sys/signalvar.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_extern.h> 68 #include <vm/vm_object.h> 69 70 #include <fs/nfs/nfsport.h> 71 #include <fs/nfsclient/nfsnode.h> 72 #include <fs/nfsclient/nfsmount.h> 73 #include <fs/nfsclient/nfs.h> 74 #include <fs/nfsclient/nfs_kdtrace.h> 75 76 #include <net/if.h> 77 #include <netinet/in.h> 78 #include <netinet/in_var.h> 79 80 #include <nfs/nfs_lock.h> 81 82 #ifdef KDTRACE_HOOKS 83 #include <sys/dtrace_bsd.h> 84 85 dtrace_nfsclient_accesscache_flush_probe_func_t 86 dtrace_nfscl_accesscache_flush_done_probe; 87 uint32_t nfscl_accesscache_flush_done_id; 88 89 dtrace_nfsclient_accesscache_get_probe_func_t 90 dtrace_nfscl_accesscache_get_hit_probe, 91 dtrace_nfscl_accesscache_get_miss_probe; 92 uint32_t nfscl_accesscache_get_hit_id; 93 uint32_t nfscl_accesscache_get_miss_id; 94 95 dtrace_nfsclient_accesscache_load_probe_func_t 96 dtrace_nfscl_accesscache_load_done_probe; 97 uint32_t nfscl_accesscache_load_done_id; 98 #endif /* !KDTRACE_HOOKS */ 99 100 /* Defs */ 101 #define TRUE 1 102 #define FALSE 0 103 104 extern struct nfsstats newnfsstats; 105 extern int nfsrv_useacl; 106 MALLOC_DECLARE(M_NEWNFSREQ); 107 108 /* 109 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 110 * calls are not in getblk() and brelse() so that they would not be necessary 111 * here. 112 */ 113 #ifndef B_VMIO 114 #define vfs_busy_pages(bp, f) 115 #endif 116 117 static vop_read_t nfsfifo_read; 118 static vop_write_t nfsfifo_write; 119 static vop_close_t nfsfifo_close; 120 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 121 struct thread *); 122 static vop_lookup_t nfs_lookup; 123 static vop_create_t nfs_create; 124 static vop_mknod_t nfs_mknod; 125 static vop_open_t nfs_open; 126 static vop_pathconf_t nfs_pathconf; 127 static vop_close_t nfs_close; 128 static vop_access_t nfs_access; 129 static vop_getattr_t nfs_getattr; 130 static vop_setattr_t nfs_setattr; 131 static vop_read_t nfs_read; 132 static vop_fsync_t nfs_fsync; 133 static vop_remove_t nfs_remove; 134 static vop_link_t nfs_link; 135 static vop_rename_t nfs_rename; 136 static vop_mkdir_t nfs_mkdir; 137 static vop_rmdir_t nfs_rmdir; 138 static vop_symlink_t nfs_symlink; 139 static vop_readdir_t nfs_readdir; 140 static vop_strategy_t nfs_strategy; 141 static vop_lock1_t nfs_lock1; 142 static int nfs_lookitup(struct vnode *, char *, int, 143 struct ucred *, struct thread *, struct nfsnode **); 144 static int nfs_sillyrename(struct vnode *, struct vnode *, 145 struct componentname *); 146 static vop_access_t nfsspec_access; 147 static vop_readlink_t nfs_readlink; 148 static vop_print_t nfs_print; 149 static vop_advlock_t nfs_advlock; 150 static vop_advlockasync_t nfs_advlockasync; 151 static vop_getacl_t nfs_getacl; 152 static vop_setacl_t nfs_setacl; 153 154 /* 155 * Global vfs data structures for nfs 156 */ 157 struct vop_vector newnfs_vnodeops = { 158 .vop_default = &default_vnodeops, 159 .vop_access = nfs_access, 160 .vop_advlock = nfs_advlock, 161 .vop_advlockasync = nfs_advlockasync, 162 .vop_close = nfs_close, 163 .vop_create = nfs_create, 164 .vop_fsync = nfs_fsync, 165 .vop_getattr = nfs_getattr, 166 .vop_getpages = ncl_getpages, 167 .vop_putpages = ncl_putpages, 168 .vop_inactive = ncl_inactive, 169 .vop_link = nfs_link, 170 .vop_lock1 = nfs_lock1, 171 .vop_lookup = nfs_lookup, 172 .vop_mkdir = nfs_mkdir, 173 .vop_mknod = nfs_mknod, 174 .vop_open = nfs_open, 175 .vop_pathconf = nfs_pathconf, 176 .vop_print = nfs_print, 177 .vop_read = nfs_read, 178 .vop_readdir = nfs_readdir, 179 .vop_readlink = nfs_readlink, 180 .vop_reclaim = ncl_reclaim, 181 .vop_remove = nfs_remove, 182 .vop_rename = nfs_rename, 183 .vop_rmdir = nfs_rmdir, 184 .vop_setattr = nfs_setattr, 185 .vop_strategy = nfs_strategy, 186 .vop_symlink = nfs_symlink, 187 .vop_write = ncl_write, 188 .vop_getacl = nfs_getacl, 189 .vop_setacl = nfs_setacl, 190 }; 191 192 struct vop_vector newnfs_fifoops = { 193 .vop_default = &fifo_specops, 194 .vop_access = nfsspec_access, 195 .vop_close = nfsfifo_close, 196 .vop_fsync = nfs_fsync, 197 .vop_getattr = nfs_getattr, 198 .vop_inactive = ncl_inactive, 199 .vop_print = nfs_print, 200 .vop_read = nfsfifo_read, 201 .vop_reclaim = ncl_reclaim, 202 .vop_setattr = nfs_setattr, 203 .vop_write = nfsfifo_write, 204 }; 205 206 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 207 struct componentname *cnp, struct vattr *vap); 208 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 209 int namelen, struct ucred *cred, struct thread *td); 210 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 211 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 212 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 213 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 214 struct componentname *scnp, struct sillyrename *sp); 215 216 /* 217 * Global variables 218 */ 219 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) 220 221 SYSCTL_DECL(_vfs_nfs); 222 223 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 224 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 225 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 226 227 static int nfs_prime_access_cache = 0; 228 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 229 &nfs_prime_access_cache, 0, 230 "Prime NFS ACCESS cache when fetching attributes"); 231 232 static int newnfs_commit_on_close = 0; 233 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 234 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 235 236 static int nfs_clean_pages_on_close = 1; 237 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 238 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 239 240 int newnfs_directio_enable = 0; 241 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 242 &newnfs_directio_enable, 0, "Enable NFS directio"); 243 244 /* 245 * This sysctl allows other processes to mmap a file that has been opened 246 * O_DIRECT by a process. In general, having processes mmap the file while 247 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 248 * this by default to prevent DoS attacks - to prevent a malicious user from 249 * opening up files O_DIRECT preventing other users from mmap'ing these 250 * files. "Protected" environments where stricter consistency guarantees are 251 * required can disable this knob. The process that opened the file O_DIRECT 252 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 253 * meaningful. 254 */ 255 int newnfs_directio_allow_mmap = 1; 256 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 257 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 258 259 #if 0 260 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 261 &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 262 263 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 264 &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 265 #endif 266 267 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 268 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 269 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 270 271 /* 272 * SMP Locking Note : 273 * The list of locks after the description of the lock is the ordering 274 * of other locks acquired with the lock held. 275 * np->n_mtx : Protects the fields in the nfsnode. 276 VM Object Lock 277 VI_MTX (acquired indirectly) 278 * nmp->nm_mtx : Protects the fields in the nfsmount. 279 rep->r_mtx 280 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 281 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 282 nmp->nm_mtx 283 rep->r_mtx 284 * rep->r_mtx : Protects the fields in an nfsreq. 285 */ 286 287 static int 288 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 289 struct ucred *cred, u_int32_t *retmode) 290 { 291 int error = 0, attrflag, i, lrupos; 292 u_int32_t rmode; 293 struct nfsnode *np = VTONFS(vp); 294 struct nfsvattr nfsva; 295 296 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 297 &rmode, NULL); 298 if (attrflag) 299 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 300 if (!error) { 301 lrupos = 0; 302 mtx_lock(&np->n_mtx); 303 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 304 if (np->n_accesscache[i].uid == cred->cr_uid) { 305 np->n_accesscache[i].mode = rmode; 306 np->n_accesscache[i].stamp = time_second; 307 break; 308 } 309 if (i > 0 && np->n_accesscache[i].stamp < 310 np->n_accesscache[lrupos].stamp) 311 lrupos = i; 312 } 313 if (i == NFS_ACCESSCACHESIZE) { 314 np->n_accesscache[lrupos].uid = cred->cr_uid; 315 np->n_accesscache[lrupos].mode = rmode; 316 np->n_accesscache[lrupos].stamp = time_second; 317 } 318 mtx_unlock(&np->n_mtx); 319 if (retmode != NULL) 320 *retmode = rmode; 321 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 322 } else if (NFS_ISV4(vp)) { 323 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 324 } 325 #ifdef KDTRACE_HOOKS 326 if (error != 0) 327 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 328 error); 329 #endif 330 return (error); 331 } 332 333 /* 334 * nfs access vnode op. 335 * For nfs version 2, just return ok. File accesses may fail later. 336 * For nfs version 3, use the access rpc to check accessibility. If file modes 337 * are changed on the server, accesses might still fail later. 338 */ 339 static int 340 nfs_access(struct vop_access_args *ap) 341 { 342 struct vnode *vp = ap->a_vp; 343 int error = 0, i, gotahit; 344 u_int32_t mode, wmode, rmode; 345 int v34 = NFS_ISV34(vp); 346 struct nfsnode *np = VTONFS(vp); 347 348 /* 349 * Disallow write attempts on filesystems mounted read-only; 350 * unless the file is a socket, fifo, or a block or character 351 * device resident on the filesystem. 352 */ 353 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 354 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 355 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 356 switch (vp->v_type) { 357 case VREG: 358 case VDIR: 359 case VLNK: 360 return (EROFS); 361 default: 362 break; 363 } 364 } 365 /* 366 * For nfs v3 or v4, check to see if we have done this recently, and if 367 * so return our cached result instead of making an ACCESS call. 368 * If not, do an access rpc, otherwise you are stuck emulating 369 * ufs_access() locally using the vattr. This may not be correct, 370 * since the server may apply other access criteria such as 371 * client uid-->server uid mapping that we do not know about. 372 */ 373 if (v34) { 374 if (ap->a_accmode & VREAD) 375 mode = NFSACCESS_READ; 376 else 377 mode = 0; 378 if (vp->v_type != VDIR) { 379 if (ap->a_accmode & VWRITE) 380 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 381 if (ap->a_accmode & VAPPEND) 382 mode |= NFSACCESS_EXTEND; 383 if (ap->a_accmode & VEXEC) 384 mode |= NFSACCESS_EXECUTE; 385 if (ap->a_accmode & VDELETE) 386 mode |= NFSACCESS_DELETE; 387 } else { 388 if (ap->a_accmode & VWRITE) 389 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 390 if (ap->a_accmode & VAPPEND) 391 mode |= NFSACCESS_EXTEND; 392 if (ap->a_accmode & VEXEC) 393 mode |= NFSACCESS_LOOKUP; 394 if (ap->a_accmode & VDELETE) 395 mode |= NFSACCESS_DELETE; 396 if (ap->a_accmode & VDELETE_CHILD) 397 mode |= NFSACCESS_MODIFY; 398 } 399 /* XXX safety belt, only make blanket request if caching */ 400 if (nfsaccess_cache_timeout > 0) { 401 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 402 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 403 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 404 } else { 405 wmode = mode; 406 } 407 408 /* 409 * Does our cached result allow us to give a definite yes to 410 * this request? 411 */ 412 gotahit = 0; 413 mtx_lock(&np->n_mtx); 414 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 415 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 416 if (time_second < (np->n_accesscache[i].stamp 417 + nfsaccess_cache_timeout) && 418 (np->n_accesscache[i].mode & mode) == mode) { 419 NFSINCRGLOBAL(newnfsstats.accesscache_hits); 420 gotahit = 1; 421 } 422 break; 423 } 424 } 425 mtx_unlock(&np->n_mtx); 426 #ifdef KDTRACE_HOOKS 427 if (gotahit != 0) 428 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 429 ap->a_cred->cr_uid, mode); 430 else 431 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 432 ap->a_cred->cr_uid, mode); 433 #endif 434 if (gotahit == 0) { 435 /* 436 * Either a no, or a don't know. Go to the wire. 437 */ 438 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 439 error = nfs34_access_otw(vp, wmode, ap->a_td, 440 ap->a_cred, &rmode); 441 if (!error && 442 (rmode & mode) != mode) 443 error = EACCES; 444 } 445 return (error); 446 } else { 447 if ((error = nfsspec_access(ap)) != 0) { 448 return (error); 449 } 450 /* 451 * Attempt to prevent a mapped root from accessing a file 452 * which it shouldn't. We try to read a byte from the file 453 * if the user is root and the file is not zero length. 454 * After calling nfsspec_access, we should have the correct 455 * file size cached. 456 */ 457 mtx_lock(&np->n_mtx); 458 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 459 && VTONFS(vp)->n_size > 0) { 460 struct iovec aiov; 461 struct uio auio; 462 char buf[1]; 463 464 mtx_unlock(&np->n_mtx); 465 aiov.iov_base = buf; 466 aiov.iov_len = 1; 467 auio.uio_iov = &aiov; 468 auio.uio_iovcnt = 1; 469 auio.uio_offset = 0; 470 auio.uio_resid = 1; 471 auio.uio_segflg = UIO_SYSSPACE; 472 auio.uio_rw = UIO_READ; 473 auio.uio_td = ap->a_td; 474 475 if (vp->v_type == VREG) 476 error = ncl_readrpc(vp, &auio, ap->a_cred); 477 else if (vp->v_type == VDIR) { 478 char* bp; 479 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 480 aiov.iov_base = bp; 481 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 482 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 483 ap->a_td); 484 free(bp, M_TEMP); 485 } else if (vp->v_type == VLNK) 486 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 487 else 488 error = EACCES; 489 } else 490 mtx_unlock(&np->n_mtx); 491 return (error); 492 } 493 } 494 495 496 /* 497 * nfs open vnode op 498 * Check to see if the type is ok 499 * and that deletion is not in progress. 500 * For paged in text files, you will need to flush the page cache 501 * if consistency is lost. 502 */ 503 /* ARGSUSED */ 504 static int 505 nfs_open(struct vop_open_args *ap) 506 { 507 struct vnode *vp = ap->a_vp; 508 struct nfsnode *np = VTONFS(vp); 509 struct vattr vattr; 510 int error; 511 int fmode = ap->a_mode; 512 513 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 514 return (EOPNOTSUPP); 515 516 /* 517 * For NFSv4, we need to do the Open Op before cache validation, 518 * so that we conform to RFC3530 Sec. 9.3.1. 519 */ 520 if (NFS_ISV4(vp)) { 521 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 522 if (error) { 523 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 524 (gid_t)0); 525 return (error); 526 } 527 } 528 529 /* 530 * Now, if this Open will be doing reading, re-validate/flush the 531 * cache, so that Close/Open coherency is maintained. 532 */ 533 mtx_lock(&np->n_mtx); 534 if (np->n_flag & NMODIFIED) { 535 mtx_unlock(&np->n_mtx); 536 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 537 if (error == EINTR || error == EIO) { 538 if (NFS_ISV4(vp)) 539 (void) nfsrpc_close(vp, 0, ap->a_td); 540 return (error); 541 } 542 mtx_lock(&np->n_mtx); 543 np->n_attrstamp = 0; 544 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 545 if (vp->v_type == VDIR) 546 np->n_direofoffset = 0; 547 mtx_unlock(&np->n_mtx); 548 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 549 if (error) { 550 if (NFS_ISV4(vp)) 551 (void) nfsrpc_close(vp, 0, ap->a_td); 552 return (error); 553 } 554 mtx_lock(&np->n_mtx); 555 np->n_mtime = vattr.va_mtime; 556 if (NFS_ISV4(vp)) 557 np->n_change = vattr.va_filerev; 558 } else { 559 mtx_unlock(&np->n_mtx); 560 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 561 if (error) { 562 if (NFS_ISV4(vp)) 563 (void) nfsrpc_close(vp, 0, ap->a_td); 564 return (error); 565 } 566 mtx_lock(&np->n_mtx); 567 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 568 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 569 if (vp->v_type == VDIR) 570 np->n_direofoffset = 0; 571 mtx_unlock(&np->n_mtx); 572 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 573 if (error == EINTR || error == EIO) { 574 if (NFS_ISV4(vp)) 575 (void) nfsrpc_close(vp, 0, ap->a_td); 576 return (error); 577 } 578 mtx_lock(&np->n_mtx); 579 np->n_mtime = vattr.va_mtime; 580 if (NFS_ISV4(vp)) 581 np->n_change = vattr.va_filerev; 582 } 583 } 584 585 /* 586 * If the object has >= 1 O_DIRECT active opens, we disable caching. 587 */ 588 if (newnfs_directio_enable && (fmode & O_DIRECT) && 589 (vp->v_type == VREG)) { 590 if (np->n_directio_opens == 0) { 591 mtx_unlock(&np->n_mtx); 592 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 593 if (error) { 594 if (NFS_ISV4(vp)) 595 (void) nfsrpc_close(vp, 0, ap->a_td); 596 return (error); 597 } 598 mtx_lock(&np->n_mtx); 599 np->n_flag |= NNONCACHE; 600 } 601 np->n_directio_opens++; 602 } 603 mtx_unlock(&np->n_mtx); 604 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 605 return (0); 606 } 607 608 /* 609 * nfs close vnode op 610 * What an NFS client should do upon close after writing is a debatable issue. 611 * Most NFS clients push delayed writes to the server upon close, basically for 612 * two reasons: 613 * 1 - So that any write errors may be reported back to the client process 614 * doing the close system call. By far the two most likely errors are 615 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 616 * 2 - To put a worst case upper bound on cache inconsistency between 617 * multiple clients for the file. 618 * There is also a consistency problem for Version 2 of the protocol w.r.t. 619 * not being able to tell if other clients are writing a file concurrently, 620 * since there is no way of knowing if the changed modify time in the reply 621 * is only due to the write for this client. 622 * (NFS Version 3 provides weak cache consistency data in the reply that 623 * should be sufficient to detect and handle this case.) 624 * 625 * The current code does the following: 626 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 627 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 628 * or commit them (this satisfies 1 and 2 except for the 629 * case where the server crashes after this close but 630 * before the commit RPC, which is felt to be "good 631 * enough". Changing the last argument to ncl_flush() to 632 * a 1 would force a commit operation, if it is felt a 633 * commit is necessary now. 634 * for NFS Version 4 - flush the dirty buffers and commit them, if 635 * nfscl_mustflush() says this is necessary. 636 * It is necessary if there is no write delegation held, 637 * in order to satisfy open/close coherency. 638 * If the file isn't cached on local stable storage, 639 * it may be necessary in order to detect "out of space" 640 * errors from the server, if the write delegation 641 * issued by the server doesn't allow the file to grow. 642 */ 643 /* ARGSUSED */ 644 static int 645 nfs_close(struct vop_close_args *ap) 646 { 647 struct vnode *vp = ap->a_vp; 648 struct nfsnode *np = VTONFS(vp); 649 struct nfsvattr nfsva; 650 struct ucred *cred; 651 int error = 0, ret, localcred = 0; 652 int fmode = ap->a_fflag; 653 654 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) 655 return (0); 656 /* 657 * During shutdown, a_cred isn't valid, so just use root. 658 */ 659 if (ap->a_cred == NOCRED) { 660 cred = newnfs_getcred(); 661 localcred = 1; 662 } else { 663 cred = ap->a_cred; 664 } 665 if (vp->v_type == VREG) { 666 /* 667 * Examine and clean dirty pages, regardless of NMODIFIED. 668 * This closes a major hole in close-to-open consistency. 669 * We want to push out all dirty pages (and buffers) on 670 * close, regardless of whether they were dirtied by 671 * mmap'ed writes or via write(). 672 */ 673 if (nfs_clean_pages_on_close && vp->v_object) { 674 VM_OBJECT_LOCK(vp->v_object); 675 vm_object_page_clean(vp->v_object, 0, 0, 0); 676 VM_OBJECT_UNLOCK(vp->v_object); 677 } 678 mtx_lock(&np->n_mtx); 679 if (np->n_flag & NMODIFIED) { 680 mtx_unlock(&np->n_mtx); 681 if (NFS_ISV3(vp)) { 682 /* 683 * Under NFSv3 we have dirty buffers to dispose of. We 684 * must flush them to the NFS server. We have the option 685 * of waiting all the way through the commit rpc or just 686 * waiting for the initial write. The default is to only 687 * wait through the initial write so the data is in the 688 * server's cache, which is roughly similar to the state 689 * a standard disk subsystem leaves the file in on close(). 690 * 691 * We cannot clear the NMODIFIED bit in np->n_flag due to 692 * potential races with other processes, and certainly 693 * cannot clear it if we don't commit. 694 * These races occur when there is no longer the old 695 * traditional vnode locking implemented for Vnode Ops. 696 */ 697 int cm = newnfs_commit_on_close ? 1 : 0; 698 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); 699 /* np->n_flag &= ~NMODIFIED; */ 700 } else if (NFS_ISV4(vp)) { 701 if (nfscl_mustflush(vp) != 0) { 702 int cm = newnfs_commit_on_close ? 1 : 0; 703 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, 704 cm, 0); 705 /* 706 * as above w.r.t races when clearing 707 * NMODIFIED. 708 * np->n_flag &= ~NMODIFIED; 709 */ 710 } 711 } else 712 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 713 mtx_lock(&np->n_mtx); 714 } 715 /* 716 * Invalidate the attribute cache in all cases. 717 * An open is going to fetch fresh attrs any way, other procs 718 * on this node that have file open will be forced to do an 719 * otw attr fetch, but this is safe. 720 * --> A user found that their RPC count dropped by 20% when 721 * this was commented out and I can't see any requirement 722 * for it, so I've disabled it when negative lookups are 723 * enabled. (What does this have to do with negative lookup 724 * caching? Well nothing, except it was reported by the 725 * same user that needed negative lookup caching and I wanted 726 * there to be a way to disable it to see if it 727 * is the cause of some caching/coherency issue that might 728 * crop up.) 729 */ 730 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 731 np->n_attrstamp = 0; 732 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 733 } 734 if (np->n_flag & NWRITEERR) { 735 np->n_flag &= ~NWRITEERR; 736 error = np->n_error; 737 } 738 mtx_unlock(&np->n_mtx); 739 } 740 741 if (NFS_ISV4(vp)) { 742 /* 743 * Get attributes so "change" is up to date. 744 */ 745 if (error == 0 && nfscl_mustflush(vp) != 0) { 746 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 747 NULL); 748 if (!ret) { 749 np->n_change = nfsva.na_filerev; 750 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 751 NULL, 0, 0); 752 } 753 } 754 755 /* 756 * and do the close. 757 */ 758 ret = nfsrpc_close(vp, 0, ap->a_td); 759 if (!error && ret) 760 error = ret; 761 if (error) 762 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 763 (gid_t)0); 764 } 765 if (newnfs_directio_enable) 766 KASSERT((np->n_directio_asyncwr == 0), 767 ("nfs_close: dirty unflushed (%d) directio buffers\n", 768 np->n_directio_asyncwr)); 769 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 770 mtx_lock(&np->n_mtx); 771 KASSERT((np->n_directio_opens > 0), 772 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 773 np->n_directio_opens--; 774 if (np->n_directio_opens == 0) 775 np->n_flag &= ~NNONCACHE; 776 mtx_unlock(&np->n_mtx); 777 } 778 if (localcred) 779 NFSFREECRED(cred); 780 return (error); 781 } 782 783 /* 784 * nfs getattr call from vfs. 785 */ 786 static int 787 nfs_getattr(struct vop_getattr_args *ap) 788 { 789 struct vnode *vp = ap->a_vp; 790 struct thread *td = curthread; /* XXX */ 791 struct nfsnode *np = VTONFS(vp); 792 int error = 0; 793 struct nfsvattr nfsva; 794 struct vattr *vap = ap->a_vap; 795 struct vattr vattr; 796 797 /* 798 * Update local times for special files. 799 */ 800 mtx_lock(&np->n_mtx); 801 if (np->n_flag & (NACC | NUPD)) 802 np->n_flag |= NCHG; 803 mtx_unlock(&np->n_mtx); 804 /* 805 * First look in the cache. 806 */ 807 if (ncl_getattrcache(vp, &vattr) == 0) { 808 vap->va_type = vattr.va_type; 809 vap->va_mode = vattr.va_mode; 810 vap->va_nlink = vattr.va_nlink; 811 vap->va_uid = vattr.va_uid; 812 vap->va_gid = vattr.va_gid; 813 vap->va_fsid = vattr.va_fsid; 814 vap->va_fileid = vattr.va_fileid; 815 vap->va_size = vattr.va_size; 816 vap->va_blocksize = vattr.va_blocksize; 817 vap->va_atime = vattr.va_atime; 818 vap->va_mtime = vattr.va_mtime; 819 vap->va_ctime = vattr.va_ctime; 820 vap->va_gen = vattr.va_gen; 821 vap->va_flags = vattr.va_flags; 822 vap->va_rdev = vattr.va_rdev; 823 vap->va_bytes = vattr.va_bytes; 824 vap->va_filerev = vattr.va_filerev; 825 /* 826 * Get the local modify time for the case of a write 827 * delegation. 828 */ 829 nfscl_deleggetmodtime(vp, &vap->va_mtime); 830 return (0); 831 } 832 833 if (NFS_ISV34(vp) && nfs_prime_access_cache && 834 nfsaccess_cache_timeout > 0) { 835 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 836 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 837 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 838 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 839 return (0); 840 } 841 } 842 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 843 if (!error) 844 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 845 if (!error) { 846 /* 847 * Get the local modify time for the case of a write 848 * delegation. 849 */ 850 nfscl_deleggetmodtime(vp, &vap->va_mtime); 851 } else if (NFS_ISV4(vp)) { 852 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 853 } 854 return (error); 855 } 856 857 /* 858 * nfs setattr call. 859 */ 860 static int 861 nfs_setattr(struct vop_setattr_args *ap) 862 { 863 struct vnode *vp = ap->a_vp; 864 struct nfsnode *np = VTONFS(vp); 865 struct thread *td = curthread; /* XXX */ 866 struct vattr *vap = ap->a_vap; 867 int error = 0; 868 u_quad_t tsize; 869 870 #ifndef nolint 871 tsize = (u_quad_t)0; 872 #endif 873 874 /* 875 * Setting of flags and marking of atimes are not supported. 876 */ 877 if (vap->va_flags != VNOVAL) 878 return (EOPNOTSUPP); 879 880 /* 881 * Disallow write attempts if the filesystem is mounted read-only. 882 */ 883 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 884 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 885 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 886 (vp->v_mount->mnt_flag & MNT_RDONLY)) 887 return (EROFS); 888 if (vap->va_size != VNOVAL) { 889 switch (vp->v_type) { 890 case VDIR: 891 return (EISDIR); 892 case VCHR: 893 case VBLK: 894 case VSOCK: 895 case VFIFO: 896 if (vap->va_mtime.tv_sec == VNOVAL && 897 vap->va_atime.tv_sec == VNOVAL && 898 vap->va_mode == (mode_t)VNOVAL && 899 vap->va_uid == (uid_t)VNOVAL && 900 vap->va_gid == (gid_t)VNOVAL) 901 return (0); 902 vap->va_size = VNOVAL; 903 break; 904 default: 905 /* 906 * Disallow write attempts if the filesystem is 907 * mounted read-only. 908 */ 909 if (vp->v_mount->mnt_flag & MNT_RDONLY) 910 return (EROFS); 911 /* 912 * We run vnode_pager_setsize() early (why?), 913 * we must set np->n_size now to avoid vinvalbuf 914 * V_SAVE races that might setsize a lower 915 * value. 916 */ 917 mtx_lock(&np->n_mtx); 918 tsize = np->n_size; 919 mtx_unlock(&np->n_mtx); 920 error = ncl_meta_setsize(vp, ap->a_cred, td, 921 vap->va_size); 922 mtx_lock(&np->n_mtx); 923 if (np->n_flag & NMODIFIED) { 924 tsize = np->n_size; 925 mtx_unlock(&np->n_mtx); 926 if (vap->va_size == 0) 927 error = ncl_vinvalbuf(vp, 0, td, 1); 928 else 929 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 930 if (error) { 931 vnode_pager_setsize(vp, tsize); 932 return (error); 933 } 934 /* 935 * Call nfscl_delegmodtime() to set the modify time 936 * locally, as required. 937 */ 938 nfscl_delegmodtime(vp); 939 } else 940 mtx_unlock(&np->n_mtx); 941 /* 942 * np->n_size has already been set to vap->va_size 943 * in ncl_meta_setsize(). We must set it again since 944 * nfs_loadattrcache() could be called through 945 * ncl_meta_setsize() and could modify np->n_size. 946 */ 947 mtx_lock(&np->n_mtx); 948 np->n_vattr.na_size = np->n_size = vap->va_size; 949 mtx_unlock(&np->n_mtx); 950 }; 951 } else { 952 mtx_lock(&np->n_mtx); 953 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 954 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 955 mtx_unlock(&np->n_mtx); 956 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && 957 (error == EINTR || error == EIO)) 958 return (error); 959 } else 960 mtx_unlock(&np->n_mtx); 961 } 962 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 963 if (error && vap->va_size != VNOVAL) { 964 mtx_lock(&np->n_mtx); 965 np->n_size = np->n_vattr.na_size = tsize; 966 vnode_pager_setsize(vp, tsize); 967 mtx_unlock(&np->n_mtx); 968 } 969 return (error); 970 } 971 972 /* 973 * Do an nfs setattr rpc. 974 */ 975 static int 976 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 977 struct thread *td) 978 { 979 struct nfsnode *np = VTONFS(vp); 980 int error, ret, attrflag, i; 981 struct nfsvattr nfsva; 982 983 if (NFS_ISV34(vp)) { 984 mtx_lock(&np->n_mtx); 985 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 986 np->n_accesscache[i].stamp = 0; 987 np->n_flag |= NDELEGMOD; 988 mtx_unlock(&np->n_mtx); 989 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 990 } 991 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 992 NULL); 993 if (attrflag) { 994 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 995 if (ret && !error) 996 error = ret; 997 } 998 if (error && NFS_ISV4(vp)) 999 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1000 return (error); 1001 } 1002 1003 /* 1004 * nfs lookup call, one step at a time... 1005 * First look in cache 1006 * If not found, unlock the directory nfsnode and do the rpc 1007 */ 1008 static int 1009 nfs_lookup(struct vop_lookup_args *ap) 1010 { 1011 struct componentname *cnp = ap->a_cnp; 1012 struct vnode *dvp = ap->a_dvp; 1013 struct vnode **vpp = ap->a_vpp; 1014 struct mount *mp = dvp->v_mount; 1015 int flags = cnp->cn_flags; 1016 struct vnode *newvp; 1017 struct nfsmount *nmp; 1018 struct nfsnode *np, *newnp; 1019 int error = 0, attrflag, dattrflag, ltype; 1020 struct thread *td = cnp->cn_thread; 1021 struct nfsfh *nfhp; 1022 struct nfsvattr dnfsva, nfsva; 1023 struct vattr vattr; 1024 struct timespec dmtime; 1025 1026 *vpp = NULLVP; 1027 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1028 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1029 return (EROFS); 1030 if (dvp->v_type != VDIR) 1031 return (ENOTDIR); 1032 nmp = VFSTONFS(mp); 1033 np = VTONFS(dvp); 1034 1035 /* For NFSv4, wait until any remove is done. */ 1036 mtx_lock(&np->n_mtx); 1037 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1038 np->n_flag |= NREMOVEWANT; 1039 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1040 } 1041 mtx_unlock(&np->n_mtx); 1042 1043 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1044 return (error); 1045 error = cache_lookup(dvp, vpp, cnp); 1046 if (error > 0 && error != ENOENT) 1047 return (error); 1048 if (error == -1) { 1049 /* 1050 * We only accept a positive hit in the cache if the 1051 * change time of the file matches our cached copy. 1052 * Otherwise, we discard the cache entry and fallback 1053 * to doing a lookup RPC. 1054 * 1055 * To better handle stale file handles and attributes, 1056 * clear the attribute cache of this node if it is a 1057 * leaf component, part of an open() call, and not 1058 * locally modified before fetching the attributes. 1059 * This should allow stale file handles to be detected 1060 * here where we can fall back to a LOOKUP RPC to 1061 * recover rather than having nfs_open() detect the 1062 * stale file handle and failing open(2) with ESTALE. 1063 */ 1064 newvp = *vpp; 1065 newnp = VTONFS(newvp); 1066 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1067 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1068 !(newnp->n_flag & NMODIFIED)) { 1069 mtx_lock(&newnp->n_mtx); 1070 newnp->n_attrstamp = 0; 1071 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1072 mtx_unlock(&newnp->n_mtx); 1073 } 1074 if (nfscl_nodeleg(newvp, 0) == 0 || 1075 (VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1076 timespeccmp(&vattr.va_ctime, &newnp->n_ctime, ==))) { 1077 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1078 if (cnp->cn_nameiop != LOOKUP && 1079 (flags & ISLASTCN)) 1080 cnp->cn_flags |= SAVENAME; 1081 return (0); 1082 } 1083 cache_purge(newvp); 1084 if (dvp != newvp) 1085 vput(newvp); 1086 else 1087 vrele(newvp); 1088 *vpp = NULLVP; 1089 } else if (error == ENOENT) { 1090 if (dvp->v_iflag & VI_DOOMED) 1091 return (ENOENT); 1092 /* 1093 * We only accept a negative hit in the cache if the 1094 * modification time of the parent directory matches 1095 * our cached copy. Otherwise, we discard all of the 1096 * negative cache entries for this directory. We also 1097 * only trust -ve cache entries for less than 1098 * nm_negative_namecache_timeout seconds. 1099 */ 1100 if ((u_int)(ticks - np->n_dmtime_ticks) < 1101 (nmp->nm_negnametimeo * hz) && 1102 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1103 timespeccmp(&vattr.va_mtime, &np->n_dmtime, ==)) { 1104 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1105 return (ENOENT); 1106 } 1107 cache_purge_negative(dvp); 1108 mtx_lock(&np->n_mtx); 1109 timespecclear(&np->n_dmtime); 1110 mtx_unlock(&np->n_mtx); 1111 } 1112 1113 /* 1114 * Cache the modification time of the parent directory in case 1115 * the lookup fails and results in adding the first negative 1116 * name cache entry for the directory. Since this is reading 1117 * a single time_t, don't bother with locking. The 1118 * modification time may be a bit stale, but it must be read 1119 * before performing the lookup RPC to prevent a race where 1120 * another lookup updates the timestamp on the directory after 1121 * the lookup RPC has been performed on the server but before 1122 * n_dmtime is set at the end of this function. 1123 */ 1124 dmtime = np->n_vattr.na_mtime; 1125 error = 0; 1126 newvp = NULLVP; 1127 NFSINCRGLOBAL(newnfsstats.lookupcache_misses); 1128 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1129 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1130 NULL); 1131 if (dattrflag) 1132 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1133 if (error) { 1134 if (newvp != NULLVP) { 1135 vput(newvp); 1136 *vpp = NULLVP; 1137 } 1138 1139 if (error != ENOENT) { 1140 if (NFS_ISV4(dvp)) 1141 error = nfscl_maperr(td, error, (uid_t)0, 1142 (gid_t)0); 1143 return (error); 1144 } 1145 1146 /* The requested file was not found. */ 1147 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1148 (flags & ISLASTCN)) { 1149 /* 1150 * XXX: UFS does a full VOP_ACCESS(dvp, 1151 * VWRITE) here instead of just checking 1152 * MNT_RDONLY. 1153 */ 1154 if (mp->mnt_flag & MNT_RDONLY) 1155 return (EROFS); 1156 cnp->cn_flags |= SAVENAME; 1157 return (EJUSTRETURN); 1158 } 1159 1160 if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) { 1161 /* 1162 * Maintain n_dmtime as the modification time 1163 * of the parent directory when the oldest -ve 1164 * name cache entry for this directory was 1165 * added. If a -ve cache entry has already 1166 * been added with a newer modification time 1167 * by a concurrent lookup, then don't bother 1168 * adding a cache entry. The modification 1169 * time of the directory might have changed 1170 * due to the file this lookup failed to find 1171 * being created. In that case a subsequent 1172 * lookup would incorrectly use the entry 1173 * added here instead of doing an extra 1174 * lookup. 1175 */ 1176 mtx_lock(&np->n_mtx); 1177 if (timespeccmp(&np->n_dmtime, &dmtime, <=)) { 1178 if (!timespecisset(&np->n_dmtime)) { 1179 np->n_dmtime = dmtime; 1180 np->n_dmtime_ticks = ticks; 1181 } 1182 mtx_unlock(&np->n_mtx); 1183 cache_enter(dvp, NULL, cnp); 1184 } else 1185 mtx_unlock(&np->n_mtx); 1186 } 1187 return (ENOENT); 1188 } 1189 1190 /* 1191 * Handle RENAME case... 1192 */ 1193 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1194 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1195 FREE((caddr_t)nfhp, M_NFSFH); 1196 return (EISDIR); 1197 } 1198 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1199 LK_EXCLUSIVE); 1200 if (error) 1201 return (error); 1202 newvp = NFSTOV(np); 1203 if (attrflag) 1204 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1205 0, 1); 1206 *vpp = newvp; 1207 cnp->cn_flags |= SAVENAME; 1208 return (0); 1209 } 1210 1211 if (flags & ISDOTDOT) { 1212 ltype = NFSVOPISLOCKED(dvp); 1213 error = vfs_busy(mp, MBF_NOWAIT); 1214 if (error != 0) { 1215 vfs_ref(mp); 1216 NFSVOPUNLOCK(dvp, 0); 1217 error = vfs_busy(mp, 0); 1218 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1219 vfs_rel(mp); 1220 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1221 vfs_unbusy(mp); 1222 error = ENOENT; 1223 } 1224 if (error != 0) 1225 return (error); 1226 } 1227 NFSVOPUNLOCK(dvp, 0); 1228 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1229 cnp->cn_lkflags); 1230 if (error == 0) 1231 newvp = NFSTOV(np); 1232 vfs_unbusy(mp); 1233 if (newvp != dvp) 1234 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1235 if (dvp->v_iflag & VI_DOOMED) { 1236 if (error == 0) { 1237 if (newvp == dvp) 1238 vrele(newvp); 1239 else 1240 vput(newvp); 1241 } 1242 error = ENOENT; 1243 } 1244 if (error != 0) 1245 return (error); 1246 if (attrflag) 1247 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1248 0, 1); 1249 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1250 FREE((caddr_t)nfhp, M_NFSFH); 1251 VREF(dvp); 1252 newvp = dvp; 1253 if (attrflag) 1254 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1255 0, 1); 1256 } else { 1257 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1258 cnp->cn_lkflags); 1259 if (error) 1260 return (error); 1261 newvp = NFSTOV(np); 1262 if (attrflag) 1263 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1264 0, 1); 1265 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1266 !(np->n_flag & NMODIFIED)) { 1267 /* 1268 * Flush the attribute cache when opening a 1269 * leaf node to ensure that fresh attributes 1270 * are fetched in nfs_open() since we did not 1271 * fetch attributes from the LOOKUP reply. 1272 */ 1273 mtx_lock(&np->n_mtx); 1274 np->n_attrstamp = 0; 1275 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1276 mtx_unlock(&np->n_mtx); 1277 } 1278 } 1279 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1280 cnp->cn_flags |= SAVENAME; 1281 if ((cnp->cn_flags & MAKEENTRY) && 1282 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) { 1283 np->n_ctime = np->n_vattr.na_vattr.va_ctime; 1284 cache_enter(dvp, newvp, cnp); 1285 } 1286 *vpp = newvp; 1287 return (0); 1288 } 1289 1290 /* 1291 * nfs read call. 1292 * Just call ncl_bioread() to do the work. 1293 */ 1294 static int 1295 nfs_read(struct vop_read_args *ap) 1296 { 1297 struct vnode *vp = ap->a_vp; 1298 1299 switch (vp->v_type) { 1300 case VREG: 1301 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1302 case VDIR: 1303 return (EISDIR); 1304 default: 1305 return (EOPNOTSUPP); 1306 } 1307 } 1308 1309 /* 1310 * nfs readlink call 1311 */ 1312 static int 1313 nfs_readlink(struct vop_readlink_args *ap) 1314 { 1315 struct vnode *vp = ap->a_vp; 1316 1317 if (vp->v_type != VLNK) 1318 return (EINVAL); 1319 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1320 } 1321 1322 /* 1323 * Do a readlink rpc. 1324 * Called by ncl_doio() from below the buffer cache. 1325 */ 1326 int 1327 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1328 { 1329 int error, ret, attrflag; 1330 struct nfsvattr nfsva; 1331 1332 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1333 &attrflag, NULL); 1334 if (attrflag) { 1335 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1336 if (ret && !error) 1337 error = ret; 1338 } 1339 if (error && NFS_ISV4(vp)) 1340 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1341 return (error); 1342 } 1343 1344 /* 1345 * nfs read rpc call 1346 * Ditto above 1347 */ 1348 int 1349 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1350 { 1351 int error, ret, attrflag; 1352 struct nfsvattr nfsva; 1353 1354 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag, 1355 NULL); 1356 if (attrflag) { 1357 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1358 if (ret && !error) 1359 error = ret; 1360 } 1361 if (error && NFS_ISV4(vp)) 1362 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1363 return (error); 1364 } 1365 1366 /* 1367 * nfs write call 1368 */ 1369 int 1370 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1371 int *iomode, int *must_commit, int called_from_strategy) 1372 { 1373 struct nfsvattr nfsva; 1374 int error = 0, attrflag, ret; 1375 1376 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1377 uiop->uio_td, &nfsva, &attrflag, NULL, called_from_strategy); 1378 if (attrflag) { 1379 if (VTONFS(vp)->n_flag & ND_NFSV4) 1380 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1381 1); 1382 else 1383 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1384 1); 1385 if (ret && !error) 1386 error = ret; 1387 } 1388 if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC) 1389 *iomode = NFSWRITE_FILESYNC; 1390 if (error && NFS_ISV4(vp)) 1391 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1392 return (error); 1393 } 1394 1395 /* 1396 * nfs mknod rpc 1397 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1398 * mode set to specify the file type and the size field for rdev. 1399 */ 1400 static int 1401 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1402 struct vattr *vap) 1403 { 1404 struct nfsvattr nfsva, dnfsva; 1405 struct vnode *newvp = NULL; 1406 struct nfsnode *np = NULL, *dnp; 1407 struct nfsfh *nfhp; 1408 struct vattr vattr; 1409 int error = 0, attrflag, dattrflag; 1410 u_int32_t rdev; 1411 1412 if (vap->va_type == VCHR || vap->va_type == VBLK) 1413 rdev = vap->va_rdev; 1414 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1415 rdev = 0xffffffff; 1416 else 1417 return (EOPNOTSUPP); 1418 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1419 return (error); 1420 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1421 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1422 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1423 if (!error) { 1424 if (!nfhp) 1425 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1426 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1427 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1428 NULL); 1429 if (nfhp) 1430 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1431 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1432 } 1433 if (dattrflag) 1434 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1435 if (!error) { 1436 newvp = NFSTOV(np); 1437 if (attrflag != 0) { 1438 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1439 0, 1); 1440 if (error != 0) 1441 vput(newvp); 1442 } 1443 } 1444 if (!error) { 1445 if ((cnp->cn_flags & MAKEENTRY)) 1446 cache_enter(dvp, newvp, cnp); 1447 *vpp = newvp; 1448 } else if (NFS_ISV4(dvp)) { 1449 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1450 vap->va_gid); 1451 } 1452 dnp = VTONFS(dvp); 1453 mtx_lock(&dnp->n_mtx); 1454 dnp->n_flag |= NMODIFIED; 1455 if (!dattrflag) { 1456 dnp->n_attrstamp = 0; 1457 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1458 } 1459 mtx_unlock(&dnp->n_mtx); 1460 return (error); 1461 } 1462 1463 /* 1464 * nfs mknod vop 1465 * just call nfs_mknodrpc() to do the work. 1466 */ 1467 /* ARGSUSED */ 1468 static int 1469 nfs_mknod(struct vop_mknod_args *ap) 1470 { 1471 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1472 } 1473 1474 static struct mtx nfs_cverf_mtx; 1475 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1476 MTX_DEF); 1477 1478 static nfsquad_t 1479 nfs_get_cverf(void) 1480 { 1481 static nfsquad_t cverf; 1482 nfsquad_t ret; 1483 static int cverf_initialized = 0; 1484 1485 mtx_lock(&nfs_cverf_mtx); 1486 if (cverf_initialized == 0) { 1487 cverf.lval[0] = arc4random(); 1488 cverf.lval[1] = arc4random(); 1489 cverf_initialized = 1; 1490 } else 1491 cverf.qval++; 1492 ret = cverf; 1493 mtx_unlock(&nfs_cverf_mtx); 1494 1495 return (ret); 1496 } 1497 1498 /* 1499 * nfs file create call 1500 */ 1501 static int 1502 nfs_create(struct vop_create_args *ap) 1503 { 1504 struct vnode *dvp = ap->a_dvp; 1505 struct vattr *vap = ap->a_vap; 1506 struct componentname *cnp = ap->a_cnp; 1507 struct nfsnode *np = NULL, *dnp; 1508 struct vnode *newvp = NULL; 1509 struct nfsmount *nmp; 1510 struct nfsvattr dnfsva, nfsva; 1511 struct nfsfh *nfhp; 1512 nfsquad_t cverf; 1513 int error = 0, attrflag, dattrflag, fmode = 0; 1514 struct vattr vattr; 1515 1516 /* 1517 * Oops, not for me.. 1518 */ 1519 if (vap->va_type == VSOCK) 1520 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1521 1522 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1523 return (error); 1524 if (vap->va_vaflags & VA_EXCLUSIVE) 1525 fmode |= O_EXCL; 1526 dnp = VTONFS(dvp); 1527 nmp = VFSTONFS(vnode_mount(dvp)); 1528 again: 1529 /* For NFSv4, wait until any remove is done. */ 1530 mtx_lock(&dnp->n_mtx); 1531 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1532 dnp->n_flag |= NREMOVEWANT; 1533 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1534 } 1535 mtx_unlock(&dnp->n_mtx); 1536 1537 cverf = nfs_get_cverf(); 1538 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1539 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1540 &nfhp, &attrflag, &dattrflag, NULL); 1541 if (!error) { 1542 if (nfhp == NULL) 1543 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1544 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1545 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1546 NULL); 1547 if (nfhp != NULL) 1548 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1549 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1550 } 1551 if (dattrflag) 1552 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1553 if (!error) { 1554 newvp = NFSTOV(np); 1555 if (attrflag) 1556 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1557 0, 1); 1558 } 1559 if (error) { 1560 if (newvp != NULL) { 1561 vput(newvp); 1562 newvp = NULL; 1563 } 1564 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1565 error == NFSERR_NOTSUPP) { 1566 fmode &= ~O_EXCL; 1567 goto again; 1568 } 1569 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1570 if (nfscl_checksattr(vap, &nfsva)) { 1571 /* 1572 * We are normally called with only a partially 1573 * initialized VAP. Since the NFSv3 spec says that 1574 * the server may use the file attributes to 1575 * store the verifier, the spec requires us to do a 1576 * SETATTR RPC. FreeBSD servers store the verifier in 1577 * atime, but we can't really assume that all servers 1578 * will so we ensure that our SETATTR sets both atime 1579 * and mtime. 1580 */ 1581 if (vap->va_mtime.tv_sec == VNOVAL) 1582 vfs_timestamp(&vap->va_mtime); 1583 if (vap->va_atime.tv_sec == VNOVAL) 1584 vap->va_atime = vap->va_mtime; 1585 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1586 cnp->cn_thread, &nfsva, &attrflag, NULL); 1587 if (error && (vap->va_uid != (uid_t)VNOVAL || 1588 vap->va_gid != (gid_t)VNOVAL)) { 1589 /* try again without setting uid/gid */ 1590 vap->va_uid = (uid_t)VNOVAL; 1591 vap->va_gid = (uid_t)VNOVAL; 1592 error = nfsrpc_setattr(newvp, vap, NULL, 1593 cnp->cn_cred, cnp->cn_thread, &nfsva, 1594 &attrflag, NULL); 1595 } 1596 if (attrflag) 1597 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1598 NULL, 0, 1); 1599 if (error != 0) 1600 vput(newvp); 1601 } 1602 } 1603 if (!error) { 1604 if (cnp->cn_flags & MAKEENTRY) 1605 cache_enter(dvp, newvp, cnp); 1606 *ap->a_vpp = newvp; 1607 } else if (NFS_ISV4(dvp)) { 1608 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1609 vap->va_gid); 1610 } 1611 mtx_lock(&dnp->n_mtx); 1612 dnp->n_flag |= NMODIFIED; 1613 if (!dattrflag) { 1614 dnp->n_attrstamp = 0; 1615 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1616 } 1617 mtx_unlock(&dnp->n_mtx); 1618 return (error); 1619 } 1620 1621 /* 1622 * nfs file remove call 1623 * To try and make nfs semantics closer to ufs semantics, a file that has 1624 * other processes using the vnode is renamed instead of removed and then 1625 * removed later on the last close. 1626 * - If v_usecount > 1 1627 * If a rename is not already in the works 1628 * call nfs_sillyrename() to set it up 1629 * else 1630 * do the remove rpc 1631 */ 1632 static int 1633 nfs_remove(struct vop_remove_args *ap) 1634 { 1635 struct vnode *vp = ap->a_vp; 1636 struct vnode *dvp = ap->a_dvp; 1637 struct componentname *cnp = ap->a_cnp; 1638 struct nfsnode *np = VTONFS(vp); 1639 int error = 0; 1640 struct vattr vattr; 1641 1642 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1643 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1644 if (vp->v_type == VDIR) 1645 error = EPERM; 1646 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1647 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1648 vattr.va_nlink > 1)) { 1649 /* 1650 * Purge the name cache so that the chance of a lookup for 1651 * the name succeeding while the remove is in progress is 1652 * minimized. Without node locking it can still happen, such 1653 * that an I/O op returns ESTALE, but since you get this if 1654 * another host removes the file.. 1655 */ 1656 cache_purge(vp); 1657 /* 1658 * throw away biocache buffers, mainly to avoid 1659 * unnecessary delayed writes later. 1660 */ 1661 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1662 /* Do the rpc */ 1663 if (error != EINTR && error != EIO) 1664 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1665 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1666 /* 1667 * Kludge City: If the first reply to the remove rpc is lost.. 1668 * the reply to the retransmitted request will be ENOENT 1669 * since the file was in fact removed 1670 * Therefore, we cheat and return success. 1671 */ 1672 if (error == ENOENT) 1673 error = 0; 1674 } else if (!np->n_sillyrename) 1675 error = nfs_sillyrename(dvp, vp, cnp); 1676 mtx_lock(&np->n_mtx); 1677 np->n_attrstamp = 0; 1678 mtx_unlock(&np->n_mtx); 1679 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1680 return (error); 1681 } 1682 1683 /* 1684 * nfs file remove rpc called from nfs_inactive 1685 */ 1686 int 1687 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1688 { 1689 /* 1690 * Make sure that the directory vnode is still valid. 1691 * XXX we should lock sp->s_dvp here. 1692 */ 1693 if (sp->s_dvp->v_type == VBAD) 1694 return (0); 1695 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1696 sp->s_cred, NULL)); 1697 } 1698 1699 /* 1700 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1701 */ 1702 static int 1703 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1704 int namelen, struct ucred *cred, struct thread *td) 1705 { 1706 struct nfsvattr dnfsva; 1707 struct nfsnode *dnp = VTONFS(dvp); 1708 int error = 0, dattrflag; 1709 1710 mtx_lock(&dnp->n_mtx); 1711 dnp->n_flag |= NREMOVEINPROG; 1712 mtx_unlock(&dnp->n_mtx); 1713 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1714 &dattrflag, NULL); 1715 mtx_lock(&dnp->n_mtx); 1716 if ((dnp->n_flag & NREMOVEWANT)) { 1717 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1718 mtx_unlock(&dnp->n_mtx); 1719 wakeup((caddr_t)dnp); 1720 } else { 1721 dnp->n_flag &= ~NREMOVEINPROG; 1722 mtx_unlock(&dnp->n_mtx); 1723 } 1724 if (dattrflag) 1725 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1726 mtx_lock(&dnp->n_mtx); 1727 dnp->n_flag |= NMODIFIED; 1728 if (!dattrflag) { 1729 dnp->n_attrstamp = 0; 1730 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1731 } 1732 mtx_unlock(&dnp->n_mtx); 1733 if (error && NFS_ISV4(dvp)) 1734 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1735 return (error); 1736 } 1737 1738 /* 1739 * nfs file rename call 1740 */ 1741 static int 1742 nfs_rename(struct vop_rename_args *ap) 1743 { 1744 struct vnode *fvp = ap->a_fvp; 1745 struct vnode *tvp = ap->a_tvp; 1746 struct vnode *fdvp = ap->a_fdvp; 1747 struct vnode *tdvp = ap->a_tdvp; 1748 struct componentname *tcnp = ap->a_tcnp; 1749 struct componentname *fcnp = ap->a_fcnp; 1750 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1751 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1752 struct nfsv4node *newv4 = NULL; 1753 int error; 1754 1755 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1756 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1757 /* Check for cross-device rename */ 1758 if ((fvp->v_mount != tdvp->v_mount) || 1759 (tvp && (fvp->v_mount != tvp->v_mount))) { 1760 error = EXDEV; 1761 goto out; 1762 } 1763 1764 if (fvp == tvp) { 1765 ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); 1766 error = 0; 1767 goto out; 1768 } 1769 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1770 goto out; 1771 1772 /* 1773 * We have to flush B_DELWRI data prior to renaming 1774 * the file. If we don't, the delayed-write buffers 1775 * can be flushed out later after the file has gone stale 1776 * under NFSV3. NFSV2 does not have this problem because 1777 * ( as far as I can tell ) it flushes dirty buffers more 1778 * often. 1779 * 1780 * Skip the rename operation if the fsync fails, this can happen 1781 * due to the server's volume being full, when we pushed out data 1782 * that was written back to our cache earlier. Not checking for 1783 * this condition can result in potential (silent) data loss. 1784 */ 1785 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1786 NFSVOPUNLOCK(fvp, 0); 1787 if (!error && tvp) 1788 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1789 if (error) 1790 goto out; 1791 1792 /* 1793 * If the tvp exists and is in use, sillyrename it before doing the 1794 * rename of the new file over it. 1795 * XXX Can't sillyrename a directory. 1796 */ 1797 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1798 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1799 vput(tvp); 1800 tvp = NULL; 1801 } 1802 1803 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1804 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1805 tcnp->cn_thread); 1806 1807 if (error == 0 && NFS_ISV4(tdvp)) { 1808 /* 1809 * For NFSv4, check to see if it is the same name and 1810 * replace the name, if it is different. 1811 */ 1812 MALLOC(newv4, struct nfsv4node *, 1813 sizeof (struct nfsv4node) + 1814 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1815 M_NFSV4NODE, M_WAITOK); 1816 mtx_lock(&tdnp->n_mtx); 1817 mtx_lock(&fnp->n_mtx); 1818 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1819 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1820 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1821 tcnp->cn_namelen) || 1822 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1823 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1824 tdnp->n_fhp->nfh_len))) { 1825 #ifdef notdef 1826 { char nnn[100]; int nnnl; 1827 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1828 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1829 nnn[nnnl] = '\0'; 1830 printf("ren replace=%s\n",nnn); 1831 } 1832 #endif 1833 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); 1834 fnp->n_v4 = newv4; 1835 newv4 = NULL; 1836 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1837 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1838 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1839 tdnp->n_fhp->nfh_len); 1840 NFSBCOPY(tcnp->cn_nameptr, 1841 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1842 } 1843 mtx_unlock(&tdnp->n_mtx); 1844 mtx_unlock(&fnp->n_mtx); 1845 if (newv4 != NULL) 1846 FREE((caddr_t)newv4, M_NFSV4NODE); 1847 } 1848 1849 if (fvp->v_type == VDIR) { 1850 if (tvp != NULL && tvp->v_type == VDIR) 1851 cache_purge(tdvp); 1852 cache_purge(fdvp); 1853 } 1854 1855 out: 1856 if (tdvp == tvp) 1857 vrele(tdvp); 1858 else 1859 vput(tdvp); 1860 if (tvp) 1861 vput(tvp); 1862 vrele(fdvp); 1863 vrele(fvp); 1864 /* 1865 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1866 */ 1867 if (error == ENOENT) 1868 error = 0; 1869 return (error); 1870 } 1871 1872 /* 1873 * nfs file rename rpc called from nfs_remove() above 1874 */ 1875 static int 1876 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1877 struct sillyrename *sp) 1878 { 1879 1880 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1881 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1882 scnp->cn_thread)); 1883 } 1884 1885 /* 1886 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1887 */ 1888 static int 1889 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1890 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1891 int tnamelen, struct ucred *cred, struct thread *td) 1892 { 1893 struct nfsvattr fnfsva, tnfsva; 1894 struct nfsnode *fdnp = VTONFS(fdvp); 1895 struct nfsnode *tdnp = VTONFS(tdvp); 1896 int error = 0, fattrflag, tattrflag; 1897 1898 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1899 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1900 &tattrflag, NULL, NULL); 1901 mtx_lock(&fdnp->n_mtx); 1902 fdnp->n_flag |= NMODIFIED; 1903 if (fattrflag != 0) { 1904 mtx_unlock(&fdnp->n_mtx); 1905 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1906 } else { 1907 fdnp->n_attrstamp = 0; 1908 mtx_unlock(&fdnp->n_mtx); 1909 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1910 } 1911 mtx_lock(&tdnp->n_mtx); 1912 tdnp->n_flag |= NMODIFIED; 1913 if (tattrflag != 0) { 1914 mtx_unlock(&tdnp->n_mtx); 1915 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1916 } else { 1917 tdnp->n_attrstamp = 0; 1918 mtx_unlock(&tdnp->n_mtx); 1919 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1920 } 1921 if (error && NFS_ISV4(fdvp)) 1922 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1923 return (error); 1924 } 1925 1926 /* 1927 * nfs hard link create call 1928 */ 1929 static int 1930 nfs_link(struct vop_link_args *ap) 1931 { 1932 struct vnode *vp = ap->a_vp; 1933 struct vnode *tdvp = ap->a_tdvp; 1934 struct componentname *cnp = ap->a_cnp; 1935 struct nfsnode *np, *tdnp; 1936 struct nfsvattr nfsva, dnfsva; 1937 int error = 0, attrflag, dattrflag; 1938 1939 if (vp->v_mount != tdvp->v_mount) { 1940 return (EXDEV); 1941 } 1942 1943 /* 1944 * Push all writes to the server, so that the attribute cache 1945 * doesn't get "out of sync" with the server. 1946 * XXX There should be a better way! 1947 */ 1948 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1949 1950 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1951 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1952 &dattrflag, NULL); 1953 tdnp = VTONFS(tdvp); 1954 mtx_lock(&tdnp->n_mtx); 1955 tdnp->n_flag |= NMODIFIED; 1956 if (dattrflag != 0) { 1957 mtx_unlock(&tdnp->n_mtx); 1958 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 1959 } else { 1960 tdnp->n_attrstamp = 0; 1961 mtx_unlock(&tdnp->n_mtx); 1962 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1963 } 1964 if (attrflag) 1965 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1966 else { 1967 np = VTONFS(vp); 1968 mtx_lock(&np->n_mtx); 1969 np->n_attrstamp = 0; 1970 mtx_unlock(&np->n_mtx); 1971 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1972 } 1973 /* 1974 * If negative lookup caching is enabled, I might as well 1975 * add an entry for this node. Not necessary for correctness, 1976 * but if negative caching is enabled, then the system 1977 * must care about lookup caching hit rate, so... 1978 */ 1979 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 1980 (cnp->cn_flags & MAKEENTRY)) 1981 cache_enter(tdvp, vp, cnp); 1982 if (error && NFS_ISV4(vp)) 1983 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 1984 (gid_t)0); 1985 return (error); 1986 } 1987 1988 /* 1989 * nfs symbolic link create call 1990 */ 1991 static int 1992 nfs_symlink(struct vop_symlink_args *ap) 1993 { 1994 struct vnode *dvp = ap->a_dvp; 1995 struct vattr *vap = ap->a_vap; 1996 struct componentname *cnp = ap->a_cnp; 1997 struct nfsvattr nfsva, dnfsva; 1998 struct nfsfh *nfhp; 1999 struct nfsnode *np = NULL, *dnp; 2000 struct vnode *newvp = NULL; 2001 int error = 0, attrflag, dattrflag, ret; 2002 2003 vap->va_type = VLNK; 2004 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2005 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2006 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2007 if (nfhp) { 2008 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2009 &np, NULL, LK_EXCLUSIVE); 2010 if (!ret) 2011 newvp = NFSTOV(np); 2012 else if (!error) 2013 error = ret; 2014 } 2015 if (newvp != NULL) { 2016 if (attrflag) 2017 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2018 0, 1); 2019 } else if (!error) { 2020 /* 2021 * If we do not have an error and we could not extract the 2022 * newvp from the response due to the request being NFSv2, we 2023 * have to do a lookup in order to obtain a newvp to return. 2024 */ 2025 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2026 cnp->cn_cred, cnp->cn_thread, &np); 2027 if (!error) 2028 newvp = NFSTOV(np); 2029 } 2030 if (error) { 2031 if (newvp) 2032 vput(newvp); 2033 if (NFS_ISV4(dvp)) 2034 error = nfscl_maperr(cnp->cn_thread, error, 2035 vap->va_uid, vap->va_gid); 2036 } else { 2037 /* 2038 * If negative lookup caching is enabled, I might as well 2039 * add an entry for this node. Not necessary for correctness, 2040 * but if negative caching is enabled, then the system 2041 * must care about lookup caching hit rate, so... 2042 */ 2043 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2044 (cnp->cn_flags & MAKEENTRY)) 2045 cache_enter(dvp, newvp, cnp); 2046 *ap->a_vpp = newvp; 2047 } 2048 2049 dnp = VTONFS(dvp); 2050 mtx_lock(&dnp->n_mtx); 2051 dnp->n_flag |= NMODIFIED; 2052 if (dattrflag != 0) { 2053 mtx_unlock(&dnp->n_mtx); 2054 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2055 } else { 2056 dnp->n_attrstamp = 0; 2057 mtx_unlock(&dnp->n_mtx); 2058 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2059 } 2060 return (error); 2061 } 2062 2063 /* 2064 * nfs make dir call 2065 */ 2066 static int 2067 nfs_mkdir(struct vop_mkdir_args *ap) 2068 { 2069 struct vnode *dvp = ap->a_dvp; 2070 struct vattr *vap = ap->a_vap; 2071 struct componentname *cnp = ap->a_cnp; 2072 struct nfsnode *np = NULL, *dnp; 2073 struct vnode *newvp = NULL; 2074 struct vattr vattr; 2075 struct nfsfh *nfhp; 2076 struct nfsvattr nfsva, dnfsva; 2077 int error = 0, attrflag, dattrflag, ret; 2078 2079 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2080 return (error); 2081 vap->va_type = VDIR; 2082 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2083 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2084 &attrflag, &dattrflag, NULL); 2085 dnp = VTONFS(dvp); 2086 mtx_lock(&dnp->n_mtx); 2087 dnp->n_flag |= NMODIFIED; 2088 if (dattrflag != 0) { 2089 mtx_unlock(&dnp->n_mtx); 2090 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2091 } else { 2092 dnp->n_attrstamp = 0; 2093 mtx_unlock(&dnp->n_mtx); 2094 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2095 } 2096 if (nfhp) { 2097 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2098 &np, NULL, LK_EXCLUSIVE); 2099 if (!ret) { 2100 newvp = NFSTOV(np); 2101 if (attrflag) 2102 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2103 NULL, 0, 1); 2104 } else if (!error) 2105 error = ret; 2106 } 2107 if (!error && newvp == NULL) { 2108 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2109 cnp->cn_cred, cnp->cn_thread, &np); 2110 if (!error) { 2111 newvp = NFSTOV(np); 2112 if (newvp->v_type != VDIR) 2113 error = EEXIST; 2114 } 2115 } 2116 if (error) { 2117 if (newvp) 2118 vput(newvp); 2119 if (NFS_ISV4(dvp)) 2120 error = nfscl_maperr(cnp->cn_thread, error, 2121 vap->va_uid, vap->va_gid); 2122 } else { 2123 /* 2124 * If negative lookup caching is enabled, I might as well 2125 * add an entry for this node. Not necessary for correctness, 2126 * but if negative caching is enabled, then the system 2127 * must care about lookup caching hit rate, so... 2128 */ 2129 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2130 (cnp->cn_flags & MAKEENTRY)) 2131 cache_enter(dvp, newvp, cnp); 2132 *ap->a_vpp = newvp; 2133 } 2134 return (error); 2135 } 2136 2137 /* 2138 * nfs remove directory call 2139 */ 2140 static int 2141 nfs_rmdir(struct vop_rmdir_args *ap) 2142 { 2143 struct vnode *vp = ap->a_vp; 2144 struct vnode *dvp = ap->a_dvp; 2145 struct componentname *cnp = ap->a_cnp; 2146 struct nfsnode *dnp; 2147 struct nfsvattr dnfsva; 2148 int error, dattrflag; 2149 2150 if (dvp == vp) 2151 return (EINVAL); 2152 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2153 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2154 dnp = VTONFS(dvp); 2155 mtx_lock(&dnp->n_mtx); 2156 dnp->n_flag |= NMODIFIED; 2157 if (dattrflag != 0) { 2158 mtx_unlock(&dnp->n_mtx); 2159 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2160 } else { 2161 dnp->n_attrstamp = 0; 2162 mtx_unlock(&dnp->n_mtx); 2163 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2164 } 2165 2166 cache_purge(dvp); 2167 cache_purge(vp); 2168 if (error && NFS_ISV4(dvp)) 2169 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2170 (gid_t)0); 2171 /* 2172 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2173 */ 2174 if (error == ENOENT) 2175 error = 0; 2176 return (error); 2177 } 2178 2179 /* 2180 * nfs readdir call 2181 */ 2182 static int 2183 nfs_readdir(struct vop_readdir_args *ap) 2184 { 2185 struct vnode *vp = ap->a_vp; 2186 struct nfsnode *np = VTONFS(vp); 2187 struct uio *uio = ap->a_uio; 2188 int tresid, error = 0; 2189 struct vattr vattr; 2190 2191 if (vp->v_type != VDIR) 2192 return(EPERM); 2193 2194 /* 2195 * First, check for hit on the EOF offset cache 2196 */ 2197 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2198 (np->n_flag & NMODIFIED) == 0) { 2199 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2200 mtx_lock(&np->n_mtx); 2201 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2202 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2203 mtx_unlock(&np->n_mtx); 2204 NFSINCRGLOBAL(newnfsstats.direofcache_hits); 2205 return (0); 2206 } else 2207 mtx_unlock(&np->n_mtx); 2208 } 2209 } 2210 2211 /* 2212 * Call ncl_bioread() to do the real work. 2213 */ 2214 tresid = uio->uio_resid; 2215 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2216 2217 if (!error && uio->uio_resid == tresid) 2218 NFSINCRGLOBAL(newnfsstats.direofcache_misses); 2219 return (error); 2220 } 2221 2222 /* 2223 * Readdir rpc call. 2224 * Called from below the buffer cache by ncl_doio(). 2225 */ 2226 int 2227 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2228 struct thread *td) 2229 { 2230 struct nfsvattr nfsva; 2231 nfsuint64 *cookiep, cookie; 2232 struct nfsnode *dnp = VTONFS(vp); 2233 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2234 int error = 0, eof, attrflag; 2235 2236 KASSERT(uiop->uio_iovcnt == 1 && 2237 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2238 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2239 ("nfs readdirrpc bad uio")); 2240 2241 /* 2242 * If there is no cookie, assume directory was stale. 2243 */ 2244 ncl_dircookie_lock(dnp); 2245 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2246 if (cookiep) { 2247 cookie = *cookiep; 2248 ncl_dircookie_unlock(dnp); 2249 } else { 2250 ncl_dircookie_unlock(dnp); 2251 return (NFSERR_BAD_COOKIE); 2252 } 2253 2254 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2255 (void)ncl_fsinfo(nmp, vp, cred, td); 2256 2257 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2258 &attrflag, &eof, NULL); 2259 if (attrflag) 2260 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2261 2262 if (!error) { 2263 /* 2264 * We are now either at the end of the directory or have filled 2265 * the block. 2266 */ 2267 if (eof) 2268 dnp->n_direofoffset = uiop->uio_offset; 2269 else { 2270 if (uiop->uio_resid > 0) 2271 ncl_printf("EEK! readdirrpc resid > 0\n"); 2272 ncl_dircookie_lock(dnp); 2273 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2274 *cookiep = cookie; 2275 ncl_dircookie_unlock(dnp); 2276 } 2277 } else if (NFS_ISV4(vp)) { 2278 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2279 } 2280 return (error); 2281 } 2282 2283 /* 2284 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2285 */ 2286 int 2287 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2288 struct thread *td) 2289 { 2290 struct nfsvattr nfsva; 2291 nfsuint64 *cookiep, cookie; 2292 struct nfsnode *dnp = VTONFS(vp); 2293 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2294 int error = 0, attrflag, eof; 2295 2296 KASSERT(uiop->uio_iovcnt == 1 && 2297 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2298 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2299 ("nfs readdirplusrpc bad uio")); 2300 2301 /* 2302 * If there is no cookie, assume directory was stale. 2303 */ 2304 ncl_dircookie_lock(dnp); 2305 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2306 if (cookiep) { 2307 cookie = *cookiep; 2308 ncl_dircookie_unlock(dnp); 2309 } else { 2310 ncl_dircookie_unlock(dnp); 2311 return (NFSERR_BAD_COOKIE); 2312 } 2313 2314 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2315 (void)ncl_fsinfo(nmp, vp, cred, td); 2316 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2317 &attrflag, &eof, NULL); 2318 if (attrflag) 2319 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2320 2321 if (!error) { 2322 /* 2323 * We are now either at end of the directory or have filled the 2324 * the block. 2325 */ 2326 if (eof) 2327 dnp->n_direofoffset = uiop->uio_offset; 2328 else { 2329 if (uiop->uio_resid > 0) 2330 ncl_printf("EEK! readdirplusrpc resid > 0\n"); 2331 ncl_dircookie_lock(dnp); 2332 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2333 *cookiep = cookie; 2334 ncl_dircookie_unlock(dnp); 2335 } 2336 } else if (NFS_ISV4(vp)) { 2337 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2338 } 2339 return (error); 2340 } 2341 2342 /* 2343 * Silly rename. To make the NFS filesystem that is stateless look a little 2344 * more like the "ufs" a remove of an active vnode is translated to a rename 2345 * to a funny looking filename that is removed by nfs_inactive on the 2346 * nfsnode. There is the potential for another process on a different client 2347 * to create the same funny name between the nfs_lookitup() fails and the 2348 * nfs_rename() completes, but... 2349 */ 2350 static int 2351 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2352 { 2353 struct sillyrename *sp; 2354 struct nfsnode *np; 2355 int error; 2356 short pid; 2357 unsigned int lticks; 2358 2359 cache_purge(dvp); 2360 np = VTONFS(vp); 2361 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2362 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2363 M_NEWNFSREQ, M_WAITOK); 2364 sp->s_cred = crhold(cnp->cn_cred); 2365 sp->s_dvp = dvp; 2366 VREF(dvp); 2367 2368 /* 2369 * Fudge together a funny name. 2370 * Changing the format of the funny name to accomodate more 2371 * sillynames per directory. 2372 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2373 * CPU ticks since boot. 2374 */ 2375 pid = cnp->cn_thread->td_proc->p_pid; 2376 lticks = (unsigned int)ticks; 2377 for ( ; ; ) { 2378 sp->s_namlen = sprintf(sp->s_name, 2379 ".nfs.%08x.%04x4.4", lticks, 2380 pid); 2381 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2382 cnp->cn_thread, NULL)) 2383 break; 2384 lticks++; 2385 } 2386 error = nfs_renameit(dvp, vp, cnp, sp); 2387 if (error) 2388 goto bad; 2389 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2390 cnp->cn_thread, &np); 2391 np->n_sillyrename = sp; 2392 return (0); 2393 bad: 2394 vrele(sp->s_dvp); 2395 crfree(sp->s_cred); 2396 free((caddr_t)sp, M_NEWNFSREQ); 2397 return (error); 2398 } 2399 2400 /* 2401 * Look up a file name and optionally either update the file handle or 2402 * allocate an nfsnode, depending on the value of npp. 2403 * npp == NULL --> just do the lookup 2404 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2405 * handled too 2406 * *npp != NULL --> update the file handle in the vnode 2407 */ 2408 static int 2409 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2410 struct thread *td, struct nfsnode **npp) 2411 { 2412 struct vnode *newvp = NULL, *vp; 2413 struct nfsnode *np, *dnp = VTONFS(dvp); 2414 struct nfsfh *nfhp, *onfhp; 2415 struct nfsvattr nfsva, dnfsva; 2416 struct componentname cn; 2417 int error = 0, attrflag, dattrflag; 2418 u_int hash; 2419 2420 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2421 &nfhp, &attrflag, &dattrflag, NULL); 2422 if (dattrflag) 2423 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2424 if (npp && !error) { 2425 if (*npp != NULL) { 2426 np = *npp; 2427 vp = NFSTOV(np); 2428 /* 2429 * For NFSv4, check to see if it is the same name and 2430 * replace the name, if it is different. 2431 */ 2432 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2433 (np->n_v4->n4_namelen != len || 2434 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2435 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2436 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2437 dnp->n_fhp->nfh_len))) { 2438 #ifdef notdef 2439 { char nnn[100]; int nnnl; 2440 nnnl = (len < 100) ? len : 99; 2441 bcopy(name, nnn, nnnl); 2442 nnn[nnnl] = '\0'; 2443 printf("replace=%s\n",nnn); 2444 } 2445 #endif 2446 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 2447 MALLOC(np->n_v4, struct nfsv4node *, 2448 sizeof (struct nfsv4node) + 2449 dnp->n_fhp->nfh_len + len - 1, 2450 M_NFSV4NODE, M_WAITOK); 2451 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2452 np->n_v4->n4_namelen = len; 2453 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2454 dnp->n_fhp->nfh_len); 2455 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2456 } 2457 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2458 FNV1_32_INIT); 2459 onfhp = np->n_fhp; 2460 /* 2461 * Rehash node for new file handle. 2462 */ 2463 vfs_hash_rehash(vp, hash); 2464 np->n_fhp = nfhp; 2465 if (onfhp != NULL) 2466 FREE((caddr_t)onfhp, M_NFSFH); 2467 newvp = NFSTOV(np); 2468 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2469 FREE((caddr_t)nfhp, M_NFSFH); 2470 VREF(dvp); 2471 newvp = dvp; 2472 } else { 2473 cn.cn_nameptr = name; 2474 cn.cn_namelen = len; 2475 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2476 &np, NULL, LK_EXCLUSIVE); 2477 if (error) 2478 return (error); 2479 newvp = NFSTOV(np); 2480 } 2481 if (!attrflag && *npp == NULL) { 2482 if (newvp == dvp) 2483 vrele(newvp); 2484 else 2485 vput(newvp); 2486 return (ENOENT); 2487 } 2488 if (attrflag) 2489 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2490 0, 1); 2491 } 2492 if (npp && *npp == NULL) { 2493 if (error) { 2494 if (newvp) { 2495 if (newvp == dvp) 2496 vrele(newvp); 2497 else 2498 vput(newvp); 2499 } 2500 } else 2501 *npp = np; 2502 } 2503 if (error && NFS_ISV4(dvp)) 2504 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2505 return (error); 2506 } 2507 2508 /* 2509 * Nfs Version 3 and 4 commit rpc 2510 */ 2511 int 2512 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2513 struct thread *td) 2514 { 2515 struct nfsvattr nfsva; 2516 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2517 int error, attrflag; 2518 u_char verf[NFSX_VERF]; 2519 2520 mtx_lock(&nmp->nm_mtx); 2521 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2522 mtx_unlock(&nmp->nm_mtx); 2523 return (0); 2524 } 2525 mtx_unlock(&nmp->nm_mtx); 2526 error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva, 2527 &attrflag, NULL); 2528 if (!error) { 2529 mtx_lock(&nmp->nm_mtx); 2530 if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) { 2531 NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF); 2532 error = NFSERR_STALEWRITEVERF; 2533 } 2534 mtx_unlock(&nmp->nm_mtx); 2535 if (!error && attrflag) 2536 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2537 0, 1); 2538 } else if (NFS_ISV4(vp)) { 2539 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2540 } 2541 return (error); 2542 } 2543 2544 /* 2545 * Strategy routine. 2546 * For async requests when nfsiod(s) are running, queue the request by 2547 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2548 * request. 2549 */ 2550 static int 2551 nfs_strategy(struct vop_strategy_args *ap) 2552 { 2553 struct buf *bp = ap->a_bp; 2554 struct ucred *cr; 2555 2556 KASSERT(!(bp->b_flags & B_DONE), 2557 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2558 BUF_ASSERT_HELD(bp); 2559 2560 if (bp->b_iocmd == BIO_READ) 2561 cr = bp->b_rcred; 2562 else 2563 cr = bp->b_wcred; 2564 2565 /* 2566 * If the op is asynchronous and an i/o daemon is waiting 2567 * queue the request, wake it up and wait for completion 2568 * otherwise just do it ourselves. 2569 */ 2570 if ((bp->b_flags & B_ASYNC) == 0 || 2571 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) 2572 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); 2573 return (0); 2574 } 2575 2576 /* 2577 * fsync vnode op. Just call ncl_flush() with commit == 1. 2578 */ 2579 /* ARGSUSED */ 2580 static int 2581 nfs_fsync(struct vop_fsync_args *ap) 2582 { 2583 2584 if (ap->a_vp->v_type != VREG) { 2585 /* 2586 * For NFS, metadata is changed synchronously on the server, 2587 * so there is nothing to flush. Also, ncl_flush() clears 2588 * the NMODIFIED flag and that shouldn't be done here for 2589 * directories. 2590 */ 2591 return (0); 2592 } 2593 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); 2594 } 2595 2596 /* 2597 * Flush all the blocks associated with a vnode. 2598 * Walk through the buffer pool and push any dirty pages 2599 * associated with the vnode. 2600 * If the called_from_renewthread argument is TRUE, it has been called 2601 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2602 * waiting for a buffer write to complete. 2603 */ 2604 int 2605 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, 2606 int commit, int called_from_renewthread) 2607 { 2608 struct nfsnode *np = VTONFS(vp); 2609 struct buf *bp; 2610 int i; 2611 struct buf *nbp; 2612 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2613 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2614 int passone = 1, trycnt = 0; 2615 u_quad_t off, endoff, toff; 2616 struct ucred* wcred = NULL; 2617 struct buf **bvec = NULL; 2618 struct bufobj *bo; 2619 #ifndef NFS_COMMITBVECSIZ 2620 #define NFS_COMMITBVECSIZ 20 2621 #endif 2622 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2623 int bvecsize = 0, bveccount; 2624 2625 if (called_from_renewthread != 0) 2626 slptimeo = hz; 2627 if (nmp->nm_flag & NFSMNT_INT) 2628 slpflag = NFS_PCATCH; 2629 if (!commit) 2630 passone = 0; 2631 bo = &vp->v_bufobj; 2632 /* 2633 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2634 * server, but has not been committed to stable storage on the server 2635 * yet. On the first pass, the byte range is worked out and the commit 2636 * rpc is done. On the second pass, ncl_writebp() is called to do the 2637 * job. 2638 */ 2639 again: 2640 off = (u_quad_t)-1; 2641 endoff = 0; 2642 bvecpos = 0; 2643 if (NFS_ISV34(vp) && commit) { 2644 if (bvec != NULL && bvec != bvec_on_stack) 2645 free(bvec, M_TEMP); 2646 /* 2647 * Count up how many buffers waiting for a commit. 2648 */ 2649 bveccount = 0; 2650 BO_LOCK(bo); 2651 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2652 if (!BUF_ISLOCKED(bp) && 2653 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2654 == (B_DELWRI | B_NEEDCOMMIT)) 2655 bveccount++; 2656 } 2657 /* 2658 * Allocate space to remember the list of bufs to commit. It is 2659 * important to use M_NOWAIT here to avoid a race with nfs_write. 2660 * If we can't get memory (for whatever reason), we will end up 2661 * committing the buffers one-by-one in the loop below. 2662 */ 2663 if (bveccount > NFS_COMMITBVECSIZ) { 2664 /* 2665 * Release the vnode interlock to avoid a lock 2666 * order reversal. 2667 */ 2668 BO_UNLOCK(bo); 2669 bvec = (struct buf **) 2670 malloc(bveccount * sizeof(struct buf *), 2671 M_TEMP, M_NOWAIT); 2672 BO_LOCK(bo); 2673 if (bvec == NULL) { 2674 bvec = bvec_on_stack; 2675 bvecsize = NFS_COMMITBVECSIZ; 2676 } else 2677 bvecsize = bveccount; 2678 } else { 2679 bvec = bvec_on_stack; 2680 bvecsize = NFS_COMMITBVECSIZ; 2681 } 2682 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2683 if (bvecpos >= bvecsize) 2684 break; 2685 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2686 nbp = TAILQ_NEXT(bp, b_bobufs); 2687 continue; 2688 } 2689 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2690 (B_DELWRI | B_NEEDCOMMIT)) { 2691 BUF_UNLOCK(bp); 2692 nbp = TAILQ_NEXT(bp, b_bobufs); 2693 continue; 2694 } 2695 BO_UNLOCK(bo); 2696 bremfree(bp); 2697 /* 2698 * Work out if all buffers are using the same cred 2699 * so we can deal with them all with one commit. 2700 * 2701 * NOTE: we are not clearing B_DONE here, so we have 2702 * to do it later on in this routine if we intend to 2703 * initiate I/O on the bp. 2704 * 2705 * Note: to avoid loopback deadlocks, we do not 2706 * assign b_runningbufspace. 2707 */ 2708 if (wcred == NULL) 2709 wcred = bp->b_wcred; 2710 else if (wcred != bp->b_wcred) 2711 wcred = NOCRED; 2712 vfs_busy_pages(bp, 1); 2713 2714 BO_LOCK(bo); 2715 /* 2716 * bp is protected by being locked, but nbp is not 2717 * and vfs_busy_pages() may sleep. We have to 2718 * recalculate nbp. 2719 */ 2720 nbp = TAILQ_NEXT(bp, b_bobufs); 2721 2722 /* 2723 * A list of these buffers is kept so that the 2724 * second loop knows which buffers have actually 2725 * been committed. This is necessary, since there 2726 * may be a race between the commit rpc and new 2727 * uncommitted writes on the file. 2728 */ 2729 bvec[bvecpos++] = bp; 2730 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2731 bp->b_dirtyoff; 2732 if (toff < off) 2733 off = toff; 2734 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2735 if (toff > endoff) 2736 endoff = toff; 2737 } 2738 BO_UNLOCK(bo); 2739 } 2740 if (bvecpos > 0) { 2741 /* 2742 * Commit data on the server, as required. 2743 * If all bufs are using the same wcred, then use that with 2744 * one call for all of them, otherwise commit each one 2745 * separately. 2746 */ 2747 if (wcred != NOCRED) 2748 retv = ncl_commit(vp, off, (int)(endoff - off), 2749 wcred, td); 2750 else { 2751 retv = 0; 2752 for (i = 0; i < bvecpos; i++) { 2753 off_t off, size; 2754 bp = bvec[i]; 2755 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2756 bp->b_dirtyoff; 2757 size = (u_quad_t)(bp->b_dirtyend 2758 - bp->b_dirtyoff); 2759 retv = ncl_commit(vp, off, (int)size, 2760 bp->b_wcred, td); 2761 if (retv) break; 2762 } 2763 } 2764 2765 if (retv == NFSERR_STALEWRITEVERF) 2766 ncl_clearcommit(vp->v_mount); 2767 2768 /* 2769 * Now, either mark the blocks I/O done or mark the 2770 * blocks dirty, depending on whether the commit 2771 * succeeded. 2772 */ 2773 for (i = 0; i < bvecpos; i++) { 2774 bp = bvec[i]; 2775 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2776 if (retv) { 2777 /* 2778 * Error, leave B_DELWRI intact 2779 */ 2780 vfs_unbusy_pages(bp); 2781 brelse(bp); 2782 } else { 2783 /* 2784 * Success, remove B_DELWRI ( bundirty() ). 2785 * 2786 * b_dirtyoff/b_dirtyend seem to be NFS 2787 * specific. We should probably move that 2788 * into bundirty(). XXX 2789 */ 2790 bufobj_wref(bo); 2791 bp->b_flags |= B_ASYNC; 2792 bundirty(bp); 2793 bp->b_flags &= ~B_DONE; 2794 bp->b_ioflags &= ~BIO_ERROR; 2795 bp->b_dirtyoff = bp->b_dirtyend = 0; 2796 bufdone(bp); 2797 } 2798 } 2799 } 2800 2801 /* 2802 * Start/do any write(s) that are required. 2803 */ 2804 loop: 2805 BO_LOCK(bo); 2806 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2807 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2808 if (waitfor != MNT_WAIT || passone) 2809 continue; 2810 2811 error = BUF_TIMELOCK(bp, 2812 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2813 BO_MTX(bo), "nfsfsync", slpflag, slptimeo); 2814 if (error == 0) { 2815 BUF_UNLOCK(bp); 2816 goto loop; 2817 } 2818 if (error == ENOLCK) { 2819 error = 0; 2820 goto loop; 2821 } 2822 if (called_from_renewthread != 0) { 2823 /* 2824 * Return EIO so the flush will be retried 2825 * later. 2826 */ 2827 error = EIO; 2828 goto done; 2829 } 2830 if (newnfs_sigintr(nmp, td)) { 2831 error = EINTR; 2832 goto done; 2833 } 2834 if (slpflag & PCATCH) { 2835 slpflag = 0; 2836 slptimeo = 2 * hz; 2837 } 2838 goto loop; 2839 } 2840 if ((bp->b_flags & B_DELWRI) == 0) 2841 panic("nfs_fsync: not dirty"); 2842 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2843 BUF_UNLOCK(bp); 2844 continue; 2845 } 2846 BO_UNLOCK(bo); 2847 bremfree(bp); 2848 if (passone || !commit) 2849 bp->b_flags |= B_ASYNC; 2850 else 2851 bp->b_flags |= B_ASYNC; 2852 bwrite(bp); 2853 if (newnfs_sigintr(nmp, td)) { 2854 error = EINTR; 2855 goto done; 2856 } 2857 goto loop; 2858 } 2859 if (passone) { 2860 passone = 0; 2861 BO_UNLOCK(bo); 2862 goto again; 2863 } 2864 if (waitfor == MNT_WAIT) { 2865 while (bo->bo_numoutput) { 2866 error = bufobj_wwait(bo, slpflag, slptimeo); 2867 if (error) { 2868 BO_UNLOCK(bo); 2869 if (called_from_renewthread != 0) { 2870 /* 2871 * Return EIO so that the flush will be 2872 * retried later. 2873 */ 2874 error = EIO; 2875 goto done; 2876 } 2877 error = newnfs_sigintr(nmp, td); 2878 if (error) 2879 goto done; 2880 if (slpflag & PCATCH) { 2881 slpflag = 0; 2882 slptimeo = 2 * hz; 2883 } 2884 BO_LOCK(bo); 2885 } 2886 } 2887 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2888 BO_UNLOCK(bo); 2889 goto loop; 2890 } 2891 /* 2892 * Wait for all the async IO requests to drain 2893 */ 2894 BO_UNLOCK(bo); 2895 mtx_lock(&np->n_mtx); 2896 while (np->n_directio_asyncwr > 0) { 2897 np->n_flag |= NFSYNCWAIT; 2898 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2899 &np->n_mtx, slpflag | (PRIBIO + 1), 2900 "nfsfsync", 0); 2901 if (error) { 2902 if (newnfs_sigintr(nmp, td)) { 2903 mtx_unlock(&np->n_mtx); 2904 error = EINTR; 2905 goto done; 2906 } 2907 } 2908 } 2909 mtx_unlock(&np->n_mtx); 2910 } else 2911 BO_UNLOCK(bo); 2912 mtx_lock(&np->n_mtx); 2913 if (np->n_flag & NWRITEERR) { 2914 error = np->n_error; 2915 np->n_flag &= ~NWRITEERR; 2916 } 2917 if (commit && bo->bo_dirty.bv_cnt == 0 && 2918 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2919 np->n_flag &= ~NMODIFIED; 2920 mtx_unlock(&np->n_mtx); 2921 done: 2922 if (bvec != NULL && bvec != bvec_on_stack) 2923 free(bvec, M_TEMP); 2924 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 2925 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 2926 np->n_directio_asyncwr != 0) && trycnt++ < 5) { 2927 /* try, try again... */ 2928 passone = 1; 2929 wcred = NULL; 2930 bvec = NULL; 2931 bvecsize = 0; 2932 printf("try%d\n", trycnt); 2933 goto again; 2934 } 2935 return (error); 2936 } 2937 2938 /* 2939 * NFS advisory byte-level locks. 2940 */ 2941 static int 2942 nfs_advlock(struct vop_advlock_args *ap) 2943 { 2944 struct vnode *vp = ap->a_vp; 2945 struct ucred *cred; 2946 struct nfsnode *np = VTONFS(ap->a_vp); 2947 struct proc *p = (struct proc *)ap->a_id; 2948 struct thread *td = curthread; /* XXX */ 2949 struct vattr va; 2950 int ret, error = EOPNOTSUPP; 2951 u_quad_t size; 2952 2953 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 2954 if (vp->v_type != VREG) 2955 return (EINVAL); 2956 if ((ap->a_flags & F_POSIX) != 0) 2957 cred = p->p_ucred; 2958 else 2959 cred = td->td_ucred; 2960 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 2961 if (vp->v_iflag & VI_DOOMED) { 2962 NFSVOPUNLOCK(vp, 0); 2963 return (EBADF); 2964 } 2965 2966 /* 2967 * If this is unlocking a write locked region, flush and 2968 * commit them before unlocking. This is required by 2969 * RFC3530 Sec. 9.3.2. 2970 */ 2971 if (ap->a_op == F_UNLCK && 2972 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 2973 ap->a_flags)) 2974 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); 2975 2976 /* 2977 * Loop around doing the lock op, while a blocking lock 2978 * must wait for the lock op to succeed. 2979 */ 2980 do { 2981 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 2982 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 2983 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 2984 ap->a_op == F_SETLK) { 2985 NFSVOPUNLOCK(vp, 0); 2986 error = nfs_catnap(PZERO | PCATCH, ret, 2987 "ncladvl"); 2988 if (error) 2989 return (EINTR); 2990 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 2991 if (vp->v_iflag & VI_DOOMED) { 2992 NFSVOPUNLOCK(vp, 0); 2993 return (EBADF); 2994 } 2995 } 2996 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 2997 ap->a_op == F_SETLK); 2998 if (ret == NFSERR_DENIED) { 2999 NFSVOPUNLOCK(vp, 0); 3000 return (EAGAIN); 3001 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3002 NFSVOPUNLOCK(vp, 0); 3003 return (ret); 3004 } else if (ret != 0) { 3005 NFSVOPUNLOCK(vp, 0); 3006 return (EACCES); 3007 } 3008 3009 /* 3010 * Now, if we just got a lock, invalidate data in the buffer 3011 * cache, as required, so that the coherency conforms with 3012 * RFC3530 Sec. 9.3.2. 3013 */ 3014 if (ap->a_op == F_SETLK) { 3015 if ((np->n_flag & NMODIFIED) == 0) { 3016 np->n_attrstamp = 0; 3017 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3018 ret = VOP_GETATTR(vp, &va, cred); 3019 } 3020 if ((np->n_flag & NMODIFIED) || ret || 3021 np->n_change != va.va_filerev) { 3022 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3023 np->n_attrstamp = 0; 3024 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3025 ret = VOP_GETATTR(vp, &va, cred); 3026 if (!ret) { 3027 np->n_mtime = va.va_mtime; 3028 np->n_change = va.va_filerev; 3029 } 3030 } 3031 } 3032 NFSVOPUNLOCK(vp, 0); 3033 return (0); 3034 } else if (!NFS_ISV4(vp)) { 3035 error = NFSVOPLOCK(vp, LK_SHARED); 3036 if (error) 3037 return (error); 3038 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3039 size = VTONFS(vp)->n_size; 3040 NFSVOPUNLOCK(vp, 0); 3041 error = lf_advlock(ap, &(vp->v_lockf), size); 3042 } else { 3043 if (nfs_advlock_p != NULL) 3044 error = nfs_advlock_p(ap); 3045 else { 3046 NFSVOPUNLOCK(vp, 0); 3047 error = ENOLCK; 3048 } 3049 } 3050 } 3051 return (error); 3052 } 3053 3054 /* 3055 * NFS advisory byte-level locks. 3056 */ 3057 static int 3058 nfs_advlockasync(struct vop_advlockasync_args *ap) 3059 { 3060 struct vnode *vp = ap->a_vp; 3061 u_quad_t size; 3062 int error; 3063 3064 if (NFS_ISV4(vp)) 3065 return (EOPNOTSUPP); 3066 error = NFSVOPLOCK(vp, LK_SHARED); 3067 if (error) 3068 return (error); 3069 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3070 size = VTONFS(vp)->n_size; 3071 NFSVOPUNLOCK(vp, 0); 3072 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3073 } else { 3074 NFSVOPUNLOCK(vp, 0); 3075 error = EOPNOTSUPP; 3076 } 3077 return (error); 3078 } 3079 3080 /* 3081 * Print out the contents of an nfsnode. 3082 */ 3083 static int 3084 nfs_print(struct vop_print_args *ap) 3085 { 3086 struct vnode *vp = ap->a_vp; 3087 struct nfsnode *np = VTONFS(vp); 3088 3089 ncl_printf("\tfileid %ld fsid 0x%x", 3090 np->n_vattr.na_fileid, np->n_vattr.na_fsid); 3091 if (vp->v_type == VFIFO) 3092 fifo_printinfo(vp); 3093 printf("\n"); 3094 return (0); 3095 } 3096 3097 /* 3098 * This is the "real" nfs::bwrite(struct buf*). 3099 * We set B_CACHE if this is a VMIO buffer. 3100 */ 3101 int 3102 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3103 { 3104 int s; 3105 int oldflags = bp->b_flags; 3106 #if 0 3107 int retv = 1; 3108 off_t off; 3109 #endif 3110 3111 BUF_ASSERT_HELD(bp); 3112 3113 if (bp->b_flags & B_INVAL) { 3114 brelse(bp); 3115 return(0); 3116 } 3117 3118 bp->b_flags |= B_CACHE; 3119 3120 /* 3121 * Undirty the bp. We will redirty it later if the I/O fails. 3122 */ 3123 3124 s = splbio(); 3125 bundirty(bp); 3126 bp->b_flags &= ~B_DONE; 3127 bp->b_ioflags &= ~BIO_ERROR; 3128 bp->b_iocmd = BIO_WRITE; 3129 3130 bufobj_wref(bp->b_bufobj); 3131 curthread->td_ru.ru_oublock++; 3132 splx(s); 3133 3134 /* 3135 * Note: to avoid loopback deadlocks, we do not 3136 * assign b_runningbufspace. 3137 */ 3138 vfs_busy_pages(bp, 1); 3139 3140 BUF_KERNPROC(bp); 3141 bp->b_iooffset = dbtob(bp->b_blkno); 3142 bstrategy(bp); 3143 3144 if( (oldflags & B_ASYNC) == 0) { 3145 int rtval = bufwait(bp); 3146 3147 if (oldflags & B_DELWRI) { 3148 s = splbio(); 3149 reassignbuf(bp); 3150 splx(s); 3151 } 3152 brelse(bp); 3153 return (rtval); 3154 } 3155 3156 return (0); 3157 } 3158 3159 /* 3160 * nfs special file access vnode op. 3161 * Essentially just get vattr and then imitate iaccess() since the device is 3162 * local to the client. 3163 */ 3164 static int 3165 nfsspec_access(struct vop_access_args *ap) 3166 { 3167 struct vattr *vap; 3168 struct ucred *cred = ap->a_cred; 3169 struct vnode *vp = ap->a_vp; 3170 accmode_t accmode = ap->a_accmode; 3171 struct vattr vattr; 3172 int error; 3173 3174 /* 3175 * Disallow write attempts on filesystems mounted read-only; 3176 * unless the file is a socket, fifo, or a block or character 3177 * device resident on the filesystem. 3178 */ 3179 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3180 switch (vp->v_type) { 3181 case VREG: 3182 case VDIR: 3183 case VLNK: 3184 return (EROFS); 3185 default: 3186 break; 3187 } 3188 } 3189 vap = &vattr; 3190 error = VOP_GETATTR(vp, vap, cred); 3191 if (error) 3192 goto out; 3193 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3194 accmode, cred, NULL); 3195 out: 3196 return error; 3197 } 3198 3199 /* 3200 * Read wrapper for fifos. 3201 */ 3202 static int 3203 nfsfifo_read(struct vop_read_args *ap) 3204 { 3205 struct nfsnode *np = VTONFS(ap->a_vp); 3206 int error; 3207 3208 /* 3209 * Set access flag. 3210 */ 3211 mtx_lock(&np->n_mtx); 3212 np->n_flag |= NACC; 3213 getnanotime(&np->n_atim); 3214 mtx_unlock(&np->n_mtx); 3215 error = fifo_specops.vop_read(ap); 3216 return error; 3217 } 3218 3219 /* 3220 * Write wrapper for fifos. 3221 */ 3222 static int 3223 nfsfifo_write(struct vop_write_args *ap) 3224 { 3225 struct nfsnode *np = VTONFS(ap->a_vp); 3226 3227 /* 3228 * Set update flag. 3229 */ 3230 mtx_lock(&np->n_mtx); 3231 np->n_flag |= NUPD; 3232 getnanotime(&np->n_mtim); 3233 mtx_unlock(&np->n_mtx); 3234 return(fifo_specops.vop_write(ap)); 3235 } 3236 3237 /* 3238 * Close wrapper for fifos. 3239 * 3240 * Update the times on the nfsnode then do fifo close. 3241 */ 3242 static int 3243 nfsfifo_close(struct vop_close_args *ap) 3244 { 3245 struct vnode *vp = ap->a_vp; 3246 struct nfsnode *np = VTONFS(vp); 3247 struct vattr vattr; 3248 struct timespec ts; 3249 3250 mtx_lock(&np->n_mtx); 3251 if (np->n_flag & (NACC | NUPD)) { 3252 getnanotime(&ts); 3253 if (np->n_flag & NACC) 3254 np->n_atim = ts; 3255 if (np->n_flag & NUPD) 3256 np->n_mtim = ts; 3257 np->n_flag |= NCHG; 3258 if (vrefcnt(vp) == 1 && 3259 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3260 VATTR_NULL(&vattr); 3261 if (np->n_flag & NACC) 3262 vattr.va_atime = np->n_atim; 3263 if (np->n_flag & NUPD) 3264 vattr.va_mtime = np->n_mtim; 3265 mtx_unlock(&np->n_mtx); 3266 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3267 goto out; 3268 } 3269 } 3270 mtx_unlock(&np->n_mtx); 3271 out: 3272 return (fifo_specops.vop_close(ap)); 3273 } 3274 3275 /* 3276 * Just call ncl_writebp() with the force argument set to 1. 3277 * 3278 * NOTE: B_DONE may or may not be set in a_bp on call. 3279 */ 3280 static int 3281 nfs_bwrite(struct buf *bp) 3282 { 3283 3284 return (ncl_writebp(bp, 1, curthread)); 3285 } 3286 3287 struct buf_ops buf_ops_newnfs = { 3288 .bop_name = "buf_ops_nfs", 3289 .bop_write = nfs_bwrite, 3290 .bop_strategy = bufstrategy, 3291 .bop_sync = bufsync, 3292 .bop_bdflush = bufbdflush, 3293 }; 3294 3295 /* 3296 * Cloned from vop_stdlock(), and then the ugly hack added. 3297 */ 3298 static int 3299 nfs_lock1(struct vop_lock1_args *ap) 3300 { 3301 struct vnode *vp = ap->a_vp; 3302 int error = 0; 3303 3304 /* 3305 * Since vfs_hash_get() calls vget() and it will no longer work 3306 * for FreeBSD8 with flags == 0, I can only think of this horrible 3307 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER 3308 * and then handle it here. All I want for this case is a v_usecount 3309 * on the vnode to use for recovery, while another thread might 3310 * hold a lock on the vnode. I have the other threads blocked, so 3311 * there isn't any race problem. 3312 */ 3313 if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { 3314 if ((ap->a_flags & LK_INTERLOCK) == 0) 3315 panic("ncllock1"); 3316 if ((vp->v_iflag & VI_DOOMED)) 3317 error = ENOENT; 3318 VI_UNLOCK(vp); 3319 return (error); 3320 } 3321 return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 3322 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, 3323 ap->a_line)); 3324 } 3325 3326 static int 3327 nfs_getacl(struct vop_getacl_args *ap) 3328 { 3329 int error; 3330 3331 if (ap->a_type != ACL_TYPE_NFS4) 3332 return (EOPNOTSUPP); 3333 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3334 NULL); 3335 if (error > NFSERR_STALE) { 3336 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3337 error = EPERM; 3338 } 3339 return (error); 3340 } 3341 3342 static int 3343 nfs_setacl(struct vop_setacl_args *ap) 3344 { 3345 int error; 3346 3347 if (ap->a_type != ACL_TYPE_NFS4) 3348 return (EOPNOTSUPP); 3349 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3350 NULL); 3351 if (error > NFSERR_STALE) { 3352 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3353 error = EPERM; 3354 } 3355 return (error); 3356 } 3357 3358 /* 3359 * Return POSIX pathconf information applicable to nfs filesystems. 3360 */ 3361 static int 3362 nfs_pathconf(struct vop_pathconf_args *ap) 3363 { 3364 struct nfsv3_pathconf pc; 3365 struct nfsvattr nfsva; 3366 struct vnode *vp = ap->a_vp; 3367 struct thread *td = curthread; 3368 int attrflag, error; 3369 3370 if (NFS_ISV4(vp) || (NFS_ISV3(vp) && (ap->a_name == _PC_LINK_MAX || 3371 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3372 ap->a_name == _PC_NO_TRUNC))) { 3373 /* 3374 * Since only the above 4 a_names are returned by the NFSv3 3375 * Pathconf RPC, there is no point in doing it for others. 3376 */ 3377 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3378 &attrflag, NULL); 3379 if (attrflag != 0) 3380 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3381 1); 3382 if (error != 0) 3383 return (error); 3384 } else { 3385 /* 3386 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3387 * just fake them. 3388 */ 3389 pc.pc_linkmax = LINK_MAX; 3390 pc.pc_namemax = NFS_MAXNAMLEN; 3391 pc.pc_notrunc = 1; 3392 pc.pc_chownrestricted = 1; 3393 pc.pc_caseinsensitive = 0; 3394 pc.pc_casepreserving = 1; 3395 error = 0; 3396 } 3397 switch (ap->a_name) { 3398 case _PC_LINK_MAX: 3399 *ap->a_retval = pc.pc_linkmax; 3400 break; 3401 case _PC_NAME_MAX: 3402 *ap->a_retval = pc.pc_namemax; 3403 break; 3404 case _PC_PATH_MAX: 3405 *ap->a_retval = PATH_MAX; 3406 break; 3407 case _PC_PIPE_BUF: 3408 *ap->a_retval = PIPE_BUF; 3409 break; 3410 case _PC_CHOWN_RESTRICTED: 3411 *ap->a_retval = pc.pc_chownrestricted; 3412 break; 3413 case _PC_NO_TRUNC: 3414 *ap->a_retval = pc.pc_notrunc; 3415 break; 3416 case _PC_ACL_EXTENDED: 3417 *ap->a_retval = 0; 3418 break; 3419 case _PC_ACL_NFS4: 3420 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3421 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3422 *ap->a_retval = 1; 3423 else 3424 *ap->a_retval = 0; 3425 break; 3426 case _PC_ACL_PATH_MAX: 3427 if (NFS_ISV4(vp)) 3428 *ap->a_retval = ACL_MAX_ENTRIES; 3429 else 3430 *ap->a_retval = 3; 3431 break; 3432 case _PC_MAC_PRESENT: 3433 *ap->a_retval = 0; 3434 break; 3435 case _PC_ASYNC_IO: 3436 /* _PC_ASYNC_IO should have been handled by upper layers. */ 3437 KASSERT(0, ("_PC_ASYNC_IO should not get here")); 3438 error = EINVAL; 3439 break; 3440 case _PC_PRIO_IO: 3441 *ap->a_retval = 0; 3442 break; 3443 case _PC_SYNC_IO: 3444 *ap->a_retval = 0; 3445 break; 3446 case _PC_ALLOC_SIZE_MIN: 3447 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3448 break; 3449 case _PC_FILESIZEBITS: 3450 if (NFS_ISV34(vp)) 3451 *ap->a_retval = 64; 3452 else 3453 *ap->a_retval = 32; 3454 break; 3455 case _PC_REC_INCR_XFER_SIZE: 3456 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3457 break; 3458 case _PC_REC_MAX_XFER_SIZE: 3459 *ap->a_retval = -1; /* means ``unlimited'' */ 3460 break; 3461 case _PC_REC_MIN_XFER_SIZE: 3462 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3463 break; 3464 case _PC_REC_XFER_ALIGN: 3465 *ap->a_retval = PAGE_SIZE; 3466 break; 3467 case _PC_SYMLINK_MAX: 3468 *ap->a_retval = NFS_MAXPATHLEN; 3469 break; 3470 3471 default: 3472 error = EINVAL; 3473 break; 3474 } 3475 return (error); 3476 } 3477 3478