1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 */ 35 36 #include <sys/cdefs.h> 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/capsicum.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/fail.h> 47 #include <sys/hash.h> 48 #include <sys/sysctl.h> 49 #include <fs/nfs/nfsport.h> 50 #include <netinet/in_fib.h> 51 #include <netinet/if_ether.h> 52 #include <netinet6/ip6_var.h> 53 #include <net/if_types.h> 54 #include <net/route/nhop.h> 55 56 #include <fs/nfsclient/nfs_kdtrace.h> 57 58 #ifdef KDTRACE_HOOKS 59 dtrace_nfsclient_attrcache_flush_probe_func_t 60 dtrace_nfscl_attrcache_flush_done_probe; 61 uint32_t nfscl_attrcache_flush_done_id; 62 63 dtrace_nfsclient_attrcache_get_hit_probe_func_t 64 dtrace_nfscl_attrcache_get_hit_probe; 65 uint32_t nfscl_attrcache_get_hit_id; 66 67 dtrace_nfsclient_attrcache_get_miss_probe_func_t 68 dtrace_nfscl_attrcache_get_miss_probe; 69 uint32_t nfscl_attrcache_get_miss_id; 70 71 dtrace_nfsclient_attrcache_load_probe_func_t 72 dtrace_nfscl_attrcache_load_done_probe; 73 uint32_t nfscl_attrcache_load_done_id; 74 #endif /* !KDTRACE_HOOKS */ 75 76 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 77 extern struct vop_vector newnfs_vnodeops; 78 extern struct vop_vector newnfs_fifoops; 79 extern uma_zone_t newnfsnode_zone; 80 extern struct buf_ops buf_ops_newnfs; 81 extern uma_zone_t ncl_pbuf_zone; 82 extern short nfsv4_cbport; 83 extern int nfscl_enablecallb; 84 extern int nfs_numnfscbd; 85 extern int nfscl_inited; 86 struct mtx ncl_iod_mutex; 87 NFSDLOCKMUTEX; 88 extern struct mtx nfsrv_dslock_mtx; 89 90 extern void (*ncl_call_invalcaches)(struct vnode *); 91 92 SYSCTL_DECL(_vfs_nfs); 93 static int ncl_fileid_maxwarnings = 10; 94 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 95 &ncl_fileid_maxwarnings, 0, 96 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 97 static volatile int ncl_fileid_nwarnings; 98 99 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 100 struct nfsvattr *); 101 102 /* 103 * Comparison function for vfs_hash functions. 104 */ 105 int 106 newnfs_vncmpf(struct vnode *vp, void *arg) 107 { 108 struct nfsfh *nfhp = (struct nfsfh *)arg; 109 struct nfsnode *np = VTONFS(vp); 110 111 if (np->n_fhp->nfh_len != nfhp->nfh_len || 112 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 113 return (1); 114 return (0); 115 } 116 117 /* 118 * Look up a vnode/nfsnode by file handle. 119 * Callers must check for mount points!! 120 * In all cases, a pointer to a 121 * nfsnode structure is returned. 122 * This variant takes a "struct nfsfh *" as second argument and uses 123 * that structure up, either by hanging off the nfsnode or FREEing it. 124 */ 125 int 126 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 127 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 128 int lkflags) 129 { 130 struct nfsnode *np, *dnp; 131 struct vnode *vp, *nvp; 132 struct nfsv4node *newd, *oldd; 133 int error; 134 u_int hash; 135 struct nfsmount *nmp; 136 137 nmp = VFSTONFS(mntp); 138 dnp = VTONFS(dvp); 139 *npp = NULL; 140 141 /* 142 * If this is the mount point fh and NFSMNTP_FAKEROOT is set, replace 143 * it with the fake fh. 144 */ 145 if ((nmp->nm_privflag & NFSMNTP_FAKEROOTFH) != 0 && 146 nmp->nm_fhsize > 0 && nmp->nm_fhsize == nfhp->nfh_len && 147 !NFSBCMP(nmp->nm_fh, nfhp->nfh_fh, nmp->nm_fhsize)) { 148 free(nfhp, M_NFSFH); 149 nfhp = malloc(sizeof(struct nfsfh) + NFSX_FHMAX + 1, 150 M_NFSFH, M_WAITOK | M_ZERO); 151 nfhp->nfh_len = NFSX_FHMAX + 1; 152 } 153 154 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 155 156 error = vfs_hash_get(mntp, hash, lkflags, 157 td, &nvp, newnfs_vncmpf, nfhp); 158 if (error == 0 && nvp != NULL) { 159 /* 160 * I believe there is a slight chance that vgonel() could 161 * get called on this vnode between when NFSVOPLOCK() drops 162 * the VI_LOCK() and vget() acquires it again, so that it 163 * hasn't yet had v_usecount incremented. If this were to 164 * happen, the VIRF_DOOMED flag would be set, so check for 165 * that here. Since we now have the v_usecount incremented, 166 * we should be ok until we vrele() it, if the VIRF_DOOMED 167 * flag isn't set now. 168 */ 169 VI_LOCK(nvp); 170 if (VN_IS_DOOMED(nvp)) { 171 VI_UNLOCK(nvp); 172 vrele(nvp); 173 error = ENOENT; 174 } else { 175 VI_UNLOCK(nvp); 176 } 177 } 178 if (error) { 179 free(nfhp, M_NFSFH); 180 return (error); 181 } 182 if (nvp != NULL) { 183 np = VTONFS(nvp); 184 /* 185 * For NFSv4, check to see if it is the same name and 186 * replace the name, if it is different. 187 */ 188 oldd = newd = NULL; 189 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 190 nvp->v_type == VREG && 191 (np->n_v4->n4_namelen != cnp->cn_namelen || 192 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 193 cnp->cn_namelen) || 194 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 195 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 196 dnp->n_fhp->nfh_len))) { 197 newd = malloc( 198 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 199 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 200 NFSLOCKNODE(np); 201 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 202 && (np->n_v4->n4_namelen != cnp->cn_namelen || 203 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 204 cnp->cn_namelen) || 205 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 206 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 207 dnp->n_fhp->nfh_len))) { 208 oldd = np->n_v4; 209 np->n_v4 = newd; 210 newd = NULL; 211 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 212 np->n_v4->n4_namelen = cnp->cn_namelen; 213 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 214 dnp->n_fhp->nfh_len); 215 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 216 cnp->cn_namelen); 217 } 218 NFSUNLOCKNODE(np); 219 } 220 if (newd != NULL) 221 free(newd, M_NFSV4NODE); 222 if (oldd != NULL) 223 free(oldd, M_NFSV4NODE); 224 *npp = np; 225 free(nfhp, M_NFSFH); 226 return (0); 227 } 228 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 229 230 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 231 if (error) { 232 uma_zfree(newnfsnode_zone, np); 233 free(nfhp, M_NFSFH); 234 return (error); 235 } 236 vp = nvp; 237 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 238 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 239 vp->v_data = np; 240 np->n_vnode = vp; 241 /* 242 * Initialize the mutex even if the vnode is going to be a loser. 243 * This simplifies the logic in reclaim, which can then unconditionally 244 * destroy the mutex (in the case of the loser, or if hash_insert 245 * happened to return an error no special casing is needed). 246 */ 247 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 248 lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE | 249 LK_CANRECURSE); 250 251 /* 252 * Are we getting the root? If so, make sure the vnode flags 253 * are correct 254 */ 255 if (nfhp->nfh_len == NFSX_FHMAX + 1 || 256 (nfhp->nfh_len == nmp->nm_fhsize && 257 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len))) { 258 if (vp->v_type == VNON) 259 vp->v_type = VDIR; 260 vp->v_vflag |= VV_ROOT; 261 } 262 263 vp->v_vflag |= VV_VMSIZEVNLOCK; 264 265 np->n_fhp = nfhp; 266 /* 267 * For NFSv4, we have to attach the directory file handle and 268 * file name, so that Open Ops can be done later. 269 */ 270 if (nmp->nm_flag & NFSMNT_NFSV4) { 271 np->n_v4 = malloc(sizeof (struct nfsv4node) 272 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 273 M_WAITOK); 274 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 275 np->n_v4->n4_namelen = cnp->cn_namelen; 276 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 277 dnp->n_fhp->nfh_len); 278 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 279 cnp->cn_namelen); 280 } else { 281 np->n_v4 = NULL; 282 } 283 284 /* 285 * NFS supports recursive and shared locking. 286 */ 287 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 288 VN_LOCK_AREC(vp); 289 VN_LOCK_ASHARE(vp); 290 error = insmntque(vp, mntp); 291 if (error != 0) { 292 *npp = NULL; 293 mtx_destroy(&np->n_mtx); 294 lockdestroy(&np->n_excl); 295 free(nfhp, M_NFSFH); 296 if (np->n_v4 != NULL) 297 free(np->n_v4, M_NFSV4NODE); 298 uma_zfree(newnfsnode_zone, np); 299 return (error); 300 } 301 vn_set_state(vp, VSTATE_CONSTRUCTED); 302 error = vfs_hash_insert(vp, hash, lkflags, 303 td, &nvp, newnfs_vncmpf, nfhp); 304 if (error) 305 return (error); 306 if (nvp != NULL) { 307 *npp = VTONFS(nvp); 308 /* vfs_hash_insert() vput()'s the losing vnode */ 309 return (0); 310 } 311 *npp = np; 312 313 return (0); 314 } 315 316 /* 317 * Another variant of nfs_nget(). This one is only used by reopen. It 318 * takes almost the same args as nfs_nget(), but only succeeds if an entry 319 * exists in the cache. (Since files should already be "open" with a 320 * vnode ref cnt on the node when reopen calls this, it should always 321 * succeed.) 322 * Also, don't get a vnode lock, since it may already be locked by some 323 * other process that is handling it. This is ok, since all other threads 324 * on the client are blocked by the nfsc_lock being exclusively held by the 325 * caller of this function. 326 */ 327 int 328 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 329 struct thread *td, struct nfsnode **npp) 330 { 331 struct vnode *nvp; 332 u_int hash; 333 struct nfsfh *nfhp; 334 int error; 335 336 *npp = NULL; 337 /* For forced dismounts, just return error. */ 338 if (NFSCL_FORCEDISM(mntp)) 339 return (EINTR); 340 nfhp = malloc(sizeof (struct nfsfh) + fhsize, 341 M_NFSFH, M_WAITOK); 342 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 343 nfhp->nfh_len = fhsize; 344 345 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 346 347 /* 348 * First, try to get the vnode locked, but don't block for the lock. 349 */ 350 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 351 newnfs_vncmpf, nfhp); 352 if (error == 0 && nvp != NULL) { 353 NFSVOPUNLOCK(nvp); 354 } else if (error == EBUSY) { 355 /* 356 * It is safe so long as a vflush() with 357 * FORCECLOSE has not been done. Since the Renew thread is 358 * stopped and the MNTK_UNMOUNTF flag is set before doing 359 * a vflush() with FORCECLOSE, we should be ok here. 360 */ 361 if (NFSCL_FORCEDISM(mntp)) 362 error = EINTR; 363 else { 364 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); 365 if (nvp == NULL) { 366 error = ENOENT; 367 } else if (VN_IS_DOOMED(nvp)) { 368 error = ENOENT; 369 vrele(nvp); 370 } else { 371 error = 0; 372 } 373 } 374 } 375 free(nfhp, M_NFSFH); 376 if (error) 377 return (error); 378 if (nvp != NULL) { 379 *npp = VTONFS(nvp); 380 return (0); 381 } 382 return (EINVAL); 383 } 384 385 static void 386 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 387 struct nfsvattr *newnap) 388 { 389 int off; 390 391 if (ncl_fileid_maxwarnings >= 0 && 392 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 393 return; 394 off = 0; 395 if (ncl_fileid_maxwarnings >= 0) { 396 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 397 off = 1; 398 } 399 400 printf("newnfs: server '%s' error: fileid changed. " 401 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 402 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 403 nmp->nm_com.nmcom_hostname, 404 (uintmax_t)nmp->nm_fsid[0], 405 (uintmax_t)nmp->nm_fsid[1], 406 (uintmax_t)oldnap->na_fileid, 407 (uintmax_t)newnap->na_fileid); 408 409 if (off) 410 printf("newnfs: Logged %d times about fileid corruption; " 411 "going quiet to avoid spamming logs excessively. (Limit " 412 "is: %d).\n", ncl_fileid_nwarnings, 413 ncl_fileid_maxwarnings); 414 } 415 416 void 417 ncl_copy_vattr(struct vattr *dst, struct vattr *src) 418 { 419 dst->va_type = src->va_type; 420 dst->va_mode = src->va_mode; 421 dst->va_nlink = src->va_nlink; 422 dst->va_uid = src->va_uid; 423 dst->va_gid = src->va_gid; 424 dst->va_fsid = src->va_fsid; 425 dst->va_fileid = src->va_fileid; 426 dst->va_size = src->va_size; 427 dst->va_blocksize = src->va_blocksize; 428 dst->va_atime = src->va_atime; 429 dst->va_mtime = src->va_mtime; 430 dst->va_ctime = src->va_ctime; 431 dst->va_birthtime = src->va_birthtime; 432 dst->va_gen = src->va_gen; 433 dst->va_flags = src->va_flags; 434 dst->va_rdev = src->va_rdev; 435 dst->va_bytes = src->va_bytes; 436 dst->va_filerev = src->va_filerev; 437 } 438 439 /* 440 * Load the attribute cache (that lives in the nfsnode entry) with 441 * the attributes of the second argument and 442 * Iff vaper not NULL 443 * copy the attributes to *vaper 444 * Similar to nfs_loadattrcache(), except the attributes are passed in 445 * instead of being parsed out of the mbuf list. 446 */ 447 int 448 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 449 int writeattr, int dontshrink) 450 { 451 struct vnode *vp = *vpp; 452 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 453 struct nfsnode *np; 454 struct nfsmount *nmp; 455 struct timespec mtime_save; 456 int error, force_fid_err; 457 dev_t topfsid; 458 459 error = 0; 460 461 /* 462 * If v_type == VNON it is a new node, so fill in the v_type, 463 * n_mtime fields. Check to see if it represents a special 464 * device, and if so, check for a possible alias. Once the 465 * correct vnode has been obtained, fill in the rest of the 466 * information. 467 */ 468 np = VTONFS(vp); 469 NFSLOCKNODE(np); 470 if (vp->v_type != nvap->va_type) { 471 vp->v_type = nvap->va_type; 472 if (vp->v_type == VFIFO) 473 vp->v_op = &newnfs_fifoops; 474 np->n_mtime = nvap->va_mtime; 475 } 476 nmp = VFSTONFS(vp->v_mount); 477 vap = &np->n_vattr.na_vattr; 478 mtime_save = vap->va_mtime; 479 if (writeattr) { 480 np->n_vattr.na_filerev = nap->na_filerev; 481 np->n_vattr.na_size = nap->na_size; 482 np->n_vattr.na_mtime = nap->na_mtime; 483 np->n_vattr.na_ctime = nap->na_ctime; 484 np->n_vattr.na_btime = nap->na_btime; 485 np->n_vattr.na_fsid = nap->na_fsid; 486 np->n_vattr.na_mode = nap->na_mode; 487 } else { 488 force_fid_err = 0; 489 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 490 force_fid_err); 491 /* 492 * BROKEN NFS SERVER OR MIDDLEWARE 493 * 494 * Certain NFS servers (certain old proprietary filers ca. 495 * 2006) or broken middleboxes (e.g. WAN accelerator products) 496 * will respond to GETATTR requests with results for a 497 * different fileid. 498 * 499 * The WAN accelerator we've observed not only serves stale 500 * cache results for a given file, it also occasionally serves 501 * results for wholly different files. This causes surprising 502 * problems; for example the cached size attribute of a file 503 * may truncate down and then back up, resulting in zero 504 * regions in file contents read by applications. We observed 505 * this reliably with Clang and .c files during parallel build. 506 * A pcap revealed packet fragmentation and GETATTR RPC 507 * responses with wholly wrong fileids. 508 * For the case where the file handle is a fake one 509 * generated via the "syskrb5" mount option and 510 * the old fileid is 2, ignore the test, since this might 511 * be replacing the fake attributes with correct ones. 512 */ 513 if ((np->n_vattr.na_fileid != 0 && 514 np->n_vattr.na_fileid != nap->na_fileid && 515 (np->n_vattr.na_fileid != 2 || !NFSHASSYSKRB5(nmp) || 516 np->n_fhp->nfh_len != NFSX_FHMAX + 1)) || 517 force_fid_err) { 518 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 519 error = EIDRM; 520 goto out; 521 } 522 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 523 sizeof (struct nfsvattr)); 524 } 525 526 /* 527 * For NFSv4, the server's export may be a tree of file systems 528 * where a fileno is a unique value within each file system. 529 * na_filesid[0,1] uniquely identify the server file system 530 * and nm_fsid[0,1] is the value for the root file system mounted. 531 * As such, the value of va_fsid generated by vn_fsid() represents 532 * the root file system on the server and a different value for 533 * va_fsid is needed for the other server file systems. This 534 * va_fsid is ideally unique for all of the server file systems, 535 * so a 64bit hash on na_filesid[0,1] is calculated. 536 * Although highly unlikely that the fnv_64_hash() will be 537 * the same as the root, test for this case and recalculate the hash. 538 */ 539 vn_fsid(vp, vap); 540 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 541 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 542 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 543 topfsid = vap->va_fsid; 544 vap->va_fsid = FNV1_64_INIT; 545 do { 546 vap->va_fsid = fnv_64_buf(np->n_vattr.na_filesid, 547 sizeof(np->n_vattr.na_filesid), vap->va_fsid); 548 } while (vap->va_fsid == topfsid); 549 } 550 551 np->n_attrstamp = time_second; 552 if (vap->va_size != np->n_size) { 553 if (vap->va_type == VREG) { 554 if (dontshrink && vap->va_size < np->n_size) { 555 /* 556 * We've been told not to shrink the file; 557 * zero np->n_attrstamp to indicate that 558 * the attributes are stale. 559 */ 560 vap->va_size = np->n_size; 561 np->n_attrstamp = 0; 562 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 563 } else if (np->n_flag & NMODIFIED) { 564 /* 565 * We've modified the file: Use the larger 566 * of our size, and the server's size. 567 */ 568 if (vap->va_size < np->n_size) { 569 vap->va_size = np->n_size; 570 } else { 571 np->n_size = vap->va_size; 572 np->n_flag |= NSIZECHANGED; 573 } 574 } else { 575 np->n_size = vap->va_size; 576 np->n_flag |= NSIZECHANGED; 577 } 578 } else { 579 np->n_size = vap->va_size; 580 } 581 } 582 /* 583 * The following checks are added to prevent a race between (say) 584 * a READDIR+ and a WRITE. 585 * READDIR+, WRITE requests sent out. 586 * READDIR+ resp, WRITE resp received on client. 587 * However, the WRITE resp was handled before the READDIR+ resp 588 * causing the post op attrs from the write to be loaded first 589 * and the attrs from the READDIR+ to be loaded later. If this 590 * happens, we have stale attrs loaded into the attrcache. 591 * We detect this by for the mtime moving back. We invalidate the 592 * attrcache when this happens. 593 */ 594 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 595 /* Size changed or mtime went backwards */ 596 np->n_attrstamp = 0; 597 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 598 } 599 if (vaper != NULL) { 600 ncl_copy_vattr(vaper, vap); 601 if (np->n_flag & NCHG) { 602 if (np->n_flag & NACC) 603 vaper->va_atime = np->n_atim; 604 if (np->n_flag & NUPD) 605 vaper->va_mtime = np->n_mtim; 606 } 607 } 608 609 out: 610 #ifdef KDTRACE_HOOKS 611 if (np->n_attrstamp != 0) 612 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 613 #endif 614 (void)ncl_pager_setsize(vp, NULL); 615 return (error); 616 } 617 618 /* 619 * Call vnode_pager_setsize() if the size of the node changed, as 620 * recorded in nfsnode vs. v_object, or delay the call if notifying 621 * the pager is not possible at the moment. 622 * 623 * If nsizep is non-NULL, the call is delayed and the new node size is 624 * provided. Caller should itself call vnode_pager_setsize() if 625 * function returned true. If nsizep is NULL, function tries to call 626 * vnode_pager_setsize() itself if needed and possible, and the nfs 627 * node is unlocked unconditionally, the return value is not useful. 628 */ 629 bool 630 ncl_pager_setsize(struct vnode *vp, u_quad_t *nsizep) 631 { 632 struct nfsnode *np; 633 vm_object_t object; 634 struct vattr *vap; 635 u_quad_t nsize; 636 bool setnsize; 637 638 np = VTONFS(vp); 639 NFSASSERTNODE(np); 640 641 vap = &np->n_vattr.na_vattr; 642 nsize = vap->va_size; 643 object = vp->v_object; 644 setnsize = false; 645 646 if (object != NULL && nsize != object->un_pager.vnp.vnp_size) { 647 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 648 (curthread->td_pflags2 & TDP2_SBPAGES) == 0) 649 setnsize = true; 650 else 651 np->n_flag |= NVNSETSZSKIP; 652 } 653 if (nsizep == NULL) { 654 NFSUNLOCKNODE(np); 655 if (setnsize) 656 vnode_pager_setsize(vp, nsize); 657 setnsize = false; 658 } else { 659 *nsizep = nsize; 660 } 661 return (setnsize); 662 } 663 664 /* 665 * Fill in the client id name. For these bytes: 666 * 1 - they must be unique 667 * 2 - they should be persistent across client reboots 668 * 1 is more critical than 2 669 * Use the mount point's unique id plus either the uuid or, if that 670 * isn't set, random junk. 671 */ 672 void 673 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 674 { 675 int uuidlen; 676 677 /* 678 * First, put in the 64bit mount point identifier. 679 */ 680 if (idlen >= sizeof (u_int64_t)) { 681 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 682 cp += sizeof (u_int64_t); 683 idlen -= sizeof (u_int64_t); 684 } 685 686 /* 687 * If uuid is non-zero length, use it. 688 */ 689 uuidlen = strlen(uuid); 690 if (uuidlen > 0 && idlen >= uuidlen) { 691 NFSBCOPY(uuid, cp, uuidlen); 692 cp += uuidlen; 693 idlen -= uuidlen; 694 } 695 696 /* 697 * This only normally happens if the uuid isn't set. 698 */ 699 while (idlen > 0) { 700 *cp++ = (u_int8_t)(arc4random() % 256); 701 idlen--; 702 } 703 } 704 705 /* 706 * Fill in a lock owner name. For now, pid + the process's creation time. 707 */ 708 void 709 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 710 { 711 union { 712 u_int32_t lval; 713 u_int8_t cval[4]; 714 } tl; 715 struct proc *p; 716 717 if (id == NULL) { 718 /* Return the single open_owner of all 0 bytes. */ 719 bzero(cp, NFSV4CL_LOCKNAMELEN); 720 return; 721 } 722 if ((flags & F_POSIX) != 0) { 723 p = (struct proc *)id; 724 tl.lval = p->p_pid; 725 *cp++ = tl.cval[0]; 726 *cp++ = tl.cval[1]; 727 *cp++ = tl.cval[2]; 728 *cp++ = tl.cval[3]; 729 tl.lval = p->p_stats->p_start.tv_sec; 730 *cp++ = tl.cval[0]; 731 *cp++ = tl.cval[1]; 732 *cp++ = tl.cval[2]; 733 *cp++ = tl.cval[3]; 734 tl.lval = p->p_stats->p_start.tv_usec; 735 *cp++ = tl.cval[0]; 736 *cp++ = tl.cval[1]; 737 *cp++ = tl.cval[2]; 738 *cp = tl.cval[3]; 739 } else if ((flags & F_FLOCK) != 0) { 740 bcopy(&id, cp, sizeof(id)); 741 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 742 } else { 743 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 744 bzero(cp, NFSV4CL_LOCKNAMELEN); 745 } 746 } 747 748 /* 749 * Find the parent process for the thread passed in as an argument. 750 * If none exists, return NULL, otherwise return a thread for the parent. 751 * (Can be any of the threads, since it is only used for td->td_proc.) 752 */ 753 NFSPROC_T * 754 nfscl_getparent(struct thread *td) 755 { 756 struct proc *p; 757 struct thread *ptd; 758 759 if (td == NULL) 760 return (NULL); 761 p = td->td_proc; 762 if (p->p_pid == 0) 763 return (NULL); 764 p = p->p_pptr; 765 if (p == NULL) 766 return (NULL); 767 ptd = TAILQ_FIRST(&p->p_threads); 768 return (ptd); 769 } 770 771 /* 772 * Start up the renew kernel thread. 773 */ 774 static void 775 start_nfscl(void *arg) 776 { 777 struct nfsclclient *clp; 778 struct thread *td; 779 780 clp = (struct nfsclclient *)arg; 781 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 782 nfscl_renewthread(clp, td); 783 kproc_exit(0); 784 } 785 786 void 787 nfscl_start_renewthread(struct nfsclclient *clp) 788 { 789 790 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 791 "nfscl"); 792 } 793 794 /* 795 * Handle wcc_data. 796 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 797 * as the first Op after PutFH. 798 * (For NFSv4, the postop attributes are after the Op, so they can't be 799 * parsed here. A separate call to nfscl_postop_attr() is required.) 800 */ 801 int 802 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 803 struct nfsvattr *nap, int *flagp, int *wccflagp, uint64_t *repsizep) 804 { 805 u_int32_t *tl; 806 struct nfsnode *np = VTONFS(vp); 807 struct nfsvattr nfsva; 808 int error = 0; 809 810 if (wccflagp != NULL) 811 *wccflagp = 0; 812 if (nd->nd_flag & ND_NFSV3) { 813 *flagp = 0; 814 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 815 if (*tl == newnfs_true) { 816 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 817 if (wccflagp != NULL) { 818 NFSLOCKNODE(np); 819 *wccflagp = (np->n_mtime.tv_sec == 820 fxdr_unsigned(u_int32_t, *(tl + 2)) && 821 np->n_mtime.tv_nsec == 822 fxdr_unsigned(u_int32_t, *(tl + 3))); 823 NFSUNLOCKNODE(np); 824 } 825 } 826 error = nfscl_postop_attr(nd, nap, flagp); 827 if (wccflagp != NULL && *flagp == 0) 828 *wccflagp = 0; 829 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 830 == (ND_NFSV4 | ND_V4WCCATTR)) { 831 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 832 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 833 NULL, NULL, NULL, NULL, NULL); 834 if (error) 835 return (error); 836 /* 837 * Get rid of Op# and status for next op. 838 */ 839 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 840 if (*++tl) 841 nd->nd_flag |= ND_NOMOREDATA; 842 if (repsizep != NULL) 843 *repsizep = nfsva.na_size; 844 if (wccflagp != NULL && 845 nfsva.na_vattr.va_mtime.tv_sec != 0) { 846 NFSLOCKNODE(np); 847 *wccflagp = (np->n_mtime.tv_sec == 848 nfsva.na_vattr.va_mtime.tv_sec && 849 np->n_mtime.tv_nsec == 850 nfsva.na_vattr.va_mtime.tv_sec); 851 NFSUNLOCKNODE(np); 852 } 853 } 854 nfsmout: 855 return (error); 856 } 857 858 /* 859 * Get postop attributes. 860 */ 861 int 862 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp) 863 { 864 u_int32_t *tl; 865 int error = 0; 866 867 *retp = 0; 868 if (nd->nd_flag & ND_NOMOREDATA) 869 return (error); 870 if (nd->nd_flag & ND_NFSV3) { 871 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 872 *retp = fxdr_unsigned(int, *tl); 873 } else if (nd->nd_flag & ND_NFSV4) { 874 /* 875 * For NFSv4, the postop attr are at the end, so no point 876 * in looking if nd_repstat != 0. 877 */ 878 if (!nd->nd_repstat) { 879 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 880 if (*(tl + 1)) 881 /* should never happen since nd_repstat != 0 */ 882 nd->nd_flag |= ND_NOMOREDATA; 883 else 884 *retp = 1; 885 } 886 } else if (!nd->nd_repstat) { 887 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 888 *retp = 1; 889 } 890 if (*retp) { 891 error = nfsm_loadattr(nd, nap); 892 if (error) 893 *retp = 0; 894 } 895 nfsmout: 896 return (error); 897 } 898 899 /* 900 * nfscl_request() - mostly a wrapper for newnfs_request(). 901 */ 902 int 903 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 904 struct ucred *cred) 905 { 906 int ret, vers; 907 struct nfsmount *nmp; 908 909 nmp = VFSTONFS(vp->v_mount); 910 if (nd->nd_flag & ND_NFSV4) 911 vers = NFS_VER4; 912 else if (nd->nd_flag & ND_NFSV3) 913 vers = NFS_VER3; 914 else 915 vers = NFS_VER2; 916 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 917 NFS_PROG, vers, NULL, 1, NULL, NULL); 918 return (ret); 919 } 920 921 /* 922 * fill in this bsden's variant of statfs using nfsstatfs. 923 */ 924 void 925 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 926 { 927 struct statfs *sbp = (struct statfs *)statfs; 928 929 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 930 sbp->f_bsize = NFS_FABLKSIZE; 931 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 932 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 933 /* 934 * Although sf_abytes is uint64_t and f_bavail is int64_t, 935 * the value after dividing by NFS_FABLKSIZE is small 936 * enough that it will fit in 63bits, so it is ok to 937 * assign it to f_bavail without fear that it will become 938 * negative. 939 */ 940 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 941 sbp->f_files = sfp->sf_tfiles; 942 /* Since f_ffree is int64_t, clip it to 63bits. */ 943 if (sfp->sf_ffiles > INT64_MAX) 944 sbp->f_ffree = INT64_MAX; 945 else 946 sbp->f_ffree = sfp->sf_ffiles; 947 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 948 /* 949 * The type casts to (int32_t) ensure that this code is 950 * compatible with the old NFS client, in that it will 951 * propagate bit31 to the high order bits. This may or may 952 * not be correct for NFSv2, but since it is a legacy 953 * environment, I'd rather retain backwards compatibility. 954 */ 955 sbp->f_bsize = (int32_t)sfp->sf_bsize; 956 sbp->f_blocks = (int32_t)sfp->sf_blocks; 957 sbp->f_bfree = (int32_t)sfp->sf_bfree; 958 sbp->f_bavail = (int32_t)sfp->sf_bavail; 959 sbp->f_files = 0; 960 sbp->f_ffree = 0; 961 } 962 } 963 964 /* 965 * Use the fsinfo stuff to update the mount point. 966 */ 967 void 968 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 969 { 970 971 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 972 fsp->fs_wtpref >= NFS_FABLKSIZE) 973 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 974 ~(NFS_FABLKSIZE - 1); 975 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 976 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 977 if (nmp->nm_wsize == 0) 978 nmp->nm_wsize = fsp->fs_wtmax; 979 } 980 if (nmp->nm_wsize < NFS_FABLKSIZE) 981 nmp->nm_wsize = NFS_FABLKSIZE; 982 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 983 fsp->fs_rtpref >= NFS_FABLKSIZE) 984 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 985 ~(NFS_FABLKSIZE - 1); 986 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 987 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 988 if (nmp->nm_rsize == 0) 989 nmp->nm_rsize = fsp->fs_rtmax; 990 } 991 if (nmp->nm_rsize < NFS_FABLKSIZE) 992 nmp->nm_rsize = NFS_FABLKSIZE; 993 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 994 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 995 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 996 ~(NFS_DIRBLKSIZ - 1); 997 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 998 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 999 if (nmp->nm_readdirsize == 0) 1000 nmp->nm_readdirsize = fsp->fs_rtmax; 1001 } 1002 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 1003 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 1004 if (fsp->fs_maxfilesize > 0 && 1005 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 1006 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 1007 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 1008 nmp->nm_state |= NFSSTA_GOTFSINFO; 1009 } 1010 1011 /* 1012 * Lookups source address which should be used to communicate with 1013 * @nmp and stores it inside @pdst. 1014 * 1015 * Returns 0 on success. 1016 */ 1017 u_int8_t * 1018 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) 1019 { 1020 #if defined(INET6) || defined(INET) 1021 int fibnum; 1022 1023 fibnum = curthread->td_proc->p_fibnum; 1024 #endif 1025 #ifdef INET 1026 if (nmp->nm_nam->sa_family == AF_INET) { 1027 struct epoch_tracker et; 1028 struct nhop_object *nh; 1029 struct sockaddr_in *sin; 1030 struct in_addr addr = {}; 1031 1032 sin = (struct sockaddr_in *)nmp->nm_nam; 1033 NET_EPOCH_ENTER(et); 1034 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1035 nh = fib4_lookup(fibnum, sin->sin_addr, 0, NHR_NONE, 0); 1036 if (nh != NULL) { 1037 addr = IA_SIN(ifatoia(nh->nh_ifa))->sin_addr; 1038 if (IN_LOOPBACK(ntohl(addr.s_addr))) { 1039 /* Ignore loopback addresses */ 1040 nh = NULL; 1041 } 1042 } 1043 CURVNET_RESTORE(); 1044 NET_EPOCH_EXIT(et); 1045 1046 if (nh == NULL) 1047 return (NULL); 1048 *isinet6p = 0; 1049 *((struct in_addr *)paddr) = addr; 1050 1051 return (u_int8_t *)paddr; 1052 } 1053 #endif 1054 #ifdef INET6 1055 if (nmp->nm_nam->sa_family == AF_INET6) { 1056 struct epoch_tracker et; 1057 struct sockaddr_in6 *sin6; 1058 int error; 1059 1060 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1061 1062 NET_EPOCH_ENTER(et); 1063 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1064 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, 1065 sin6->sin6_scope_id, NULL, paddr, NULL); 1066 CURVNET_RESTORE(); 1067 NET_EPOCH_EXIT(et); 1068 if (error != 0) 1069 return (NULL); 1070 1071 if (IN6_IS_ADDR_LOOPBACK(paddr)) 1072 return (NULL); 1073 1074 /* Scope is embedded in */ 1075 *isinet6p = 1; 1076 1077 return (u_int8_t *)paddr; 1078 } 1079 #endif 1080 return (NULL); 1081 } 1082 1083 /* 1084 * Copy NFS uid, gids from the cred structure. 1085 */ 1086 void 1087 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1088 { 1089 int i; 1090 1091 KASSERT(cr->cr_ngroups >= 0, 1092 ("newnfs_copyincred: negative cr_ngroups")); 1093 nfscr->nfsc_uid = cr->cr_uid; 1094 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1095 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1096 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1097 } 1098 1099 /* 1100 * Do any client specific initialization. 1101 */ 1102 void 1103 nfscl_init(void) 1104 { 1105 static int inited = 0; 1106 1107 if (inited) 1108 return; 1109 inited = 1; 1110 nfscl_inited = 1; 1111 ncl_pbuf_zone = pbuf_zsecond_create("nfspbuf", nswbuf / 2); 1112 } 1113 1114 /* 1115 * Check each of the attributes to be set, to ensure they aren't already 1116 * the correct value. Disable setting ones already correct. 1117 */ 1118 int 1119 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1120 { 1121 1122 if (vap->va_mode != (mode_t)VNOVAL) { 1123 if (vap->va_mode == nvap->na_mode) 1124 vap->va_mode = (mode_t)VNOVAL; 1125 } 1126 if (vap->va_uid != (uid_t)VNOVAL) { 1127 if (vap->va_uid == nvap->na_uid) 1128 vap->va_uid = (uid_t)VNOVAL; 1129 } 1130 if (vap->va_gid != (gid_t)VNOVAL) { 1131 if (vap->va_gid == nvap->na_gid) 1132 vap->va_gid = (gid_t)VNOVAL; 1133 } 1134 if (vap->va_size != VNOVAL) { 1135 if (vap->va_size == nvap->na_size) 1136 vap->va_size = VNOVAL; 1137 } 1138 1139 /* 1140 * We are normally called with only a partially initialized 1141 * VAP. Since the NFSv3 spec says that server may use the 1142 * file attributes to store the verifier, the spec requires 1143 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1144 * in atime, but we can't really assume that all servers will 1145 * so we ensure that our SETATTR sets both atime and mtime. 1146 * Set the VA_UTIMES_NULL flag for this case, so that 1147 * the server's time will be used. This is needed to 1148 * work around a bug in some Solaris servers, where 1149 * setting the time TOCLIENT causes the Setattr RPC 1150 * to return NFS_OK, but not set va_mode. 1151 */ 1152 if (vap->va_mtime.tv_sec == VNOVAL) { 1153 vfs_timestamp(&vap->va_mtime); 1154 vap->va_vaflags |= VA_UTIMES_NULL; 1155 } 1156 if (vap->va_atime.tv_sec == VNOVAL) 1157 vap->va_atime = vap->va_mtime; 1158 return (1); 1159 } 1160 1161 /* 1162 * Map nfsv4 errors to errno.h errors. 1163 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1164 * error should only be returned for the Open, Create and Setattr Ops. 1165 * As such, most calls can just pass in 0 for those arguments. 1166 */ 1167 int 1168 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1169 { 1170 struct proc *p; 1171 1172 if (error < 10000 || error >= NFSERR_STALEWRITEVERF) 1173 return (error); 1174 if (td != NULL) 1175 p = td->td_proc; 1176 else 1177 p = NULL; 1178 switch (error) { 1179 case NFSERR_BADOWNER: 1180 tprintf(p, LOG_INFO, 1181 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1182 uid, gid); 1183 return (EPERM); 1184 case NFSERR_BADNAME: 1185 case NFSERR_BADCHAR: 1186 printf("nfsv4 char/name not handled by server\n"); 1187 return (ENOENT); 1188 case NFSERR_STALECLIENTID: 1189 case NFSERR_STALESTATEID: 1190 case NFSERR_EXPIRED: 1191 case NFSERR_BADSTATEID: 1192 case NFSERR_BADSESSION: 1193 printf("nfsv4 recover err returned %d\n", error); 1194 return (EIO); 1195 case NFSERR_BADHANDLE: 1196 case NFSERR_SERVERFAULT: 1197 case NFSERR_BADTYPE: 1198 case NFSERR_FHEXPIRED: 1199 case NFSERR_RESOURCE: 1200 case NFSERR_MOVED: 1201 case NFSERR_MINORVERMISMATCH: 1202 case NFSERR_OLDSTATEID: 1203 case NFSERR_BADSEQID: 1204 case NFSERR_LEASEMOVED: 1205 case NFSERR_RECLAIMBAD: 1206 case NFSERR_BADXDR: 1207 case NFSERR_OPILLEGAL: 1208 printf("nfsv4 client/server protocol prob err=%d\n", 1209 error); 1210 return (EIO); 1211 case NFSERR_NOFILEHANDLE: 1212 printf("nfsv4 no file handle: usually means the file " 1213 "system is not exported on the NFSv4 server\n"); 1214 return (EIO); 1215 case NFSERR_WRONGSEC: 1216 tprintf(p, LOG_INFO, "NFSv4 error WrongSec: You probably need a" 1217 " Kerberos TGT\n"); 1218 return (EIO); 1219 default: 1220 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1221 return (EIO); 1222 }; 1223 } 1224 1225 /* 1226 * Check to see if the process for this owner exists. Return 1 if it doesn't 1227 * and 0 otherwise. 1228 */ 1229 int 1230 nfscl_procdoesntexist(u_int8_t *own) 1231 { 1232 union { 1233 u_int32_t lval; 1234 u_int8_t cval[4]; 1235 } tl; 1236 struct proc *p; 1237 pid_t pid; 1238 int i, ret = 0; 1239 1240 /* For the single open_owner of all 0 bytes, just return 0. */ 1241 for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++) 1242 if (own[i] != 0) 1243 break; 1244 if (i == NFSV4CL_LOCKNAMELEN) 1245 return (0); 1246 1247 tl.cval[0] = *own++; 1248 tl.cval[1] = *own++; 1249 tl.cval[2] = *own++; 1250 tl.cval[3] = *own++; 1251 pid = tl.lval; 1252 p = pfind_any_locked(pid); 1253 if (p == NULL) 1254 return (1); 1255 if (p->p_stats == NULL) { 1256 PROC_UNLOCK(p); 1257 return (0); 1258 } 1259 tl.cval[0] = *own++; 1260 tl.cval[1] = *own++; 1261 tl.cval[2] = *own++; 1262 tl.cval[3] = *own++; 1263 if (tl.lval != p->p_stats->p_start.tv_sec) { 1264 ret = 1; 1265 } else { 1266 tl.cval[0] = *own++; 1267 tl.cval[1] = *own++; 1268 tl.cval[2] = *own++; 1269 tl.cval[3] = *own; 1270 if (tl.lval != p->p_stats->p_start.tv_usec) 1271 ret = 1; 1272 } 1273 PROC_UNLOCK(p); 1274 return (ret); 1275 } 1276 1277 /* 1278 * - nfs pseudo system call for the client 1279 */ 1280 /* 1281 * MPSAFE 1282 */ 1283 static int 1284 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1285 { 1286 struct file *fp; 1287 struct nfscbd_args nfscbdarg; 1288 struct nfsd_nfscbd_args nfscbdarg2; 1289 struct nameidata nd; 1290 struct nfscl_dumpmntopts dumpmntopts; 1291 cap_rights_t rights; 1292 char *buf; 1293 int error; 1294 struct mount *mp; 1295 struct nfsmount *nmp; 1296 1297 NFSD_CURVNET_SET(NFSD_TD_TO_VNET(td)); 1298 if (uap->flag & NFSSVC_CBADDSOCK) { 1299 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1300 if (error) 1301 goto out; 1302 /* 1303 * Since we don't know what rights might be required, 1304 * pretend that we need them all. It is better to be too 1305 * careful than too reckless. 1306 */ 1307 error = fget(td, nfscbdarg.sock, 1308 cap_rights_init_one(&rights, CAP_SOCK_CLIENT), &fp); 1309 if (error) 1310 goto out; 1311 if (fp->f_type != DTYPE_SOCKET) { 1312 fdrop(fp, td); 1313 error = EPERM; 1314 goto out; 1315 } 1316 error = nfscbd_addsock(fp); 1317 fdrop(fp, td); 1318 if (!error && nfscl_enablecallb == 0) { 1319 nfsv4_cbport = nfscbdarg.port; 1320 nfscl_enablecallb = 1; 1321 } 1322 } else if (uap->flag & NFSSVC_NFSCBD) { 1323 if (uap->argp == NULL) { 1324 error = EINVAL; 1325 goto out; 1326 } 1327 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1328 sizeof(nfscbdarg2)); 1329 if (error) 1330 goto out; 1331 error = nfscbd_nfsd(td, &nfscbdarg2); 1332 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1333 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1334 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1335 dumpmntopts.ndmnt_blen > 1024)) 1336 error = EINVAL; 1337 if (error == 0) 1338 error = nfsrv_lookupfilename(&nd, 1339 dumpmntopts.ndmnt_fname, td); 1340 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1341 "nfs") != 0) { 1342 vput(nd.ni_vp); 1343 error = EINVAL; 1344 } 1345 if (error == 0) { 1346 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK | 1347 M_ZERO); 1348 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1349 dumpmntopts.ndmnt_blen); 1350 vput(nd.ni_vp); 1351 error = copyout(buf, dumpmntopts.ndmnt_buf, 1352 dumpmntopts.ndmnt_blen); 1353 free(buf, M_TEMP); 1354 } 1355 } else if (uap->flag & NFSSVC_FORCEDISM) { 1356 buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); 1357 error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL); 1358 if (error == 0) { 1359 nmp = NULL; 1360 mtx_lock(&mountlist_mtx); 1361 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1362 if (strcmp(mp->mnt_stat.f_mntonname, buf) == 1363 0 && strcmp(mp->mnt_stat.f_fstypename, 1364 "nfs") == 0 && mp->mnt_data != NULL) { 1365 nmp = VFSTONFS(mp); 1366 NFSDDSLOCK(); 1367 if (nfsv4_findmirror(nmp) != NULL) { 1368 NFSDDSUNLOCK(); 1369 error = ENXIO; 1370 nmp = NULL; 1371 break; 1372 } 1373 mtx_lock(&nmp->nm_mtx); 1374 if ((nmp->nm_privflag & 1375 NFSMNTP_FORCEDISM) == 0) { 1376 nmp->nm_privflag |= 1377 (NFSMNTP_FORCEDISM | 1378 NFSMNTP_CANCELRPCS); 1379 mtx_unlock(&nmp->nm_mtx); 1380 } else { 1381 mtx_unlock(&nmp->nm_mtx); 1382 nmp = NULL; 1383 } 1384 NFSDDSUNLOCK(); 1385 break; 1386 } 1387 } 1388 mtx_unlock(&mountlist_mtx); 1389 1390 if (nmp != NULL) { 1391 /* 1392 * Call newnfs_nmcancelreqs() to cause 1393 * any RPCs in progress on the mount point to 1394 * fail. 1395 * This will cause any process waiting for an 1396 * RPC to complete while holding a vnode lock 1397 * on the mounted-on vnode (such as "df" or 1398 * a non-forced "umount") to fail. 1399 * This will unlock the mounted-on vnode so 1400 * a forced dismount can succeed. 1401 * Then clear NFSMNTP_CANCELRPCS and wakeup(), 1402 * so that nfs_unmount() can complete. 1403 */ 1404 newnfs_nmcancelreqs(nmp); 1405 mtx_lock(&nmp->nm_mtx); 1406 nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS; 1407 wakeup(nmp); 1408 mtx_unlock(&nmp->nm_mtx); 1409 } else if (error == 0) 1410 error = EINVAL; 1411 } 1412 free(buf, M_TEMP); 1413 } else { 1414 error = EINVAL; 1415 } 1416 out: 1417 NFSD_CURVNET_RESTORE(); 1418 return (error); 1419 } 1420 1421 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1422 1423 /* 1424 * Called once to initialize data structures... 1425 */ 1426 static int 1427 nfscl_modevent(module_t mod, int type, void *data) 1428 { 1429 int error = 0; 1430 static int loaded = 0; 1431 1432 switch (type) { 1433 case MOD_LOAD: 1434 if (loaded) 1435 return (0); 1436 newnfs_portinit(); 1437 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1438 nfscl_init(); 1439 NFSD_LOCK(); 1440 nfsrvd_cbinit(0); 1441 NFSD_UNLOCK(); 1442 ncl_call_invalcaches = ncl_invalcaches; 1443 nfsd_call_nfscl = nfssvc_nfscl; 1444 loaded = 1; 1445 break; 1446 1447 case MOD_UNLOAD: 1448 if (nfs_numnfscbd != 0) { 1449 error = EBUSY; 1450 break; 1451 } 1452 1453 /* 1454 * XXX: Unloading of nfscl module is unsupported. 1455 */ 1456 #if 0 1457 ncl_call_invalcaches = NULL; 1458 nfsd_call_nfscl = NULL; 1459 uma_zdestroy(ncl_pbuf_zone); 1460 /* and get rid of the mutexes */ 1461 mtx_destroy(&ncl_iod_mutex); 1462 loaded = 0; 1463 break; 1464 #else 1465 /* FALLTHROUGH */ 1466 #endif 1467 default: 1468 error = EOPNOTSUPP; 1469 break; 1470 } 1471 return error; 1472 } 1473 static moduledata_t nfscl_mod = { 1474 "nfscl", 1475 nfscl_modevent, 1476 NULL, 1477 }; 1478 /* 1479 * This is the main module declaration for the NFS client. The 1480 * nfscl_modevent() function is needed to ensure that the module 1481 * cannot be unloaded, among other things. 1482 * There is also a module declaration in sys/fs/nfsclient/nfs_clvfsops.c 1483 * for the name "nfs" within the VFS_SET() macro that defines the "nfs" 1484 * file system type. 1485 */ 1486 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1487 1488 /* So that loader and kldload(2) can find us, wherever we are.. */ 1489 MODULE_VERSION(nfscl, 1); 1490 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1491 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1492 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1493 MODULE_DEPEND(nfscl, xdr, 1, 1, 1); 1494