xref: /freebsd/sys/fs/nfsclient/nfs_clport.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet6.h"
38 #include "opt_kdtrace.h"
39 
40 #include <sys/capability.h>
41 
42 /*
43  * generally, I don't like #includes inside .h files, but it seems to
44  * be the easiest way to handle the port.
45  */
46 #include <sys/hash.h>
47 #include <fs/nfs/nfsport.h>
48 #include <netinet/if_ether.h>
49 #include <net/if_types.h>
50 
51 #include <fs/nfsclient/nfs_kdtrace.h>
52 
53 #ifdef KDTRACE_HOOKS
54 dtrace_nfsclient_attrcache_flush_probe_func_t
55 		dtrace_nfscl_attrcache_flush_done_probe;
56 uint32_t	nfscl_attrcache_flush_done_id;
57 
58 dtrace_nfsclient_attrcache_get_hit_probe_func_t
59 		dtrace_nfscl_attrcache_get_hit_probe;
60 uint32_t	nfscl_attrcache_get_hit_id;
61 
62 dtrace_nfsclient_attrcache_get_miss_probe_func_t
63 		dtrace_nfscl_attrcache_get_miss_probe;
64 uint32_t	nfscl_attrcache_get_miss_id;
65 
66 dtrace_nfsclient_attrcache_load_probe_func_t
67 		dtrace_nfscl_attrcache_load_done_probe;
68 uint32_t	nfscl_attrcache_load_done_id;
69 #endif /* !KDTRACE_HOOKS */
70 
71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
72 extern struct vop_vector newnfs_vnodeops;
73 extern struct vop_vector newnfs_fifoops;
74 extern uma_zone_t newnfsnode_zone;
75 extern struct buf_ops buf_ops_newnfs;
76 extern int ncl_pbuf_freecnt;
77 extern short nfsv4_cbport;
78 extern int nfscl_enablecallb;
79 extern int nfs_numnfscbd;
80 extern int nfscl_inited;
81 struct mtx nfs_clstate_mutex;
82 struct mtx ncl_iod_mutex;
83 NFSDLOCKMUTEX;
84 
85 extern void (*ncl_call_invalcaches)(struct vnode *);
86 
87 /*
88  * Comparison function for vfs_hash functions.
89  */
90 int
91 newnfs_vncmpf(struct vnode *vp, void *arg)
92 {
93 	struct nfsfh *nfhp = (struct nfsfh *)arg;
94 	struct nfsnode *np = VTONFS(vp);
95 
96 	if (np->n_fhp->nfh_len != nfhp->nfh_len ||
97 	    NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
98 		return (1);
99 	return (0);
100 }
101 
102 /*
103  * Look up a vnode/nfsnode by file handle.
104  * Callers must check for mount points!!
105  * In all cases, a pointer to a
106  * nfsnode structure is returned.
107  * This variant takes a "struct nfsfh *" as second argument and uses
108  * that structure up, either by hanging off the nfsnode or FREEing it.
109  */
110 int
111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
112     struct componentname *cnp, struct thread *td, struct nfsnode **npp,
113     void *stuff, int lkflags)
114 {
115 	struct nfsnode *np, *dnp;
116 	struct vnode *vp, *nvp;
117 	struct nfsv4node *newd, *oldd;
118 	int error;
119 	u_int hash;
120 	struct nfsmount *nmp;
121 
122 	nmp = VFSTONFS(mntp);
123 	dnp = VTONFS(dvp);
124 	*npp = NULL;
125 
126 	hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
127 
128 	error = vfs_hash_get(mntp, hash, lkflags,
129 	    td, &nvp, newnfs_vncmpf, nfhp);
130 	if (error == 0 && nvp != NULL) {
131 		/*
132 		 * I believe there is a slight chance that vgonel() could
133 		 * get called on this vnode between when NFSVOPLOCK() drops
134 		 * the VI_LOCK() and vget() acquires it again, so that it
135 		 * hasn't yet had v_usecount incremented. If this were to
136 		 * happen, the VI_DOOMED flag would be set, so check for
137 		 * that here. Since we now have the v_usecount incremented,
138 		 * we should be ok until we vrele() it, if the VI_DOOMED
139 		 * flag isn't set now.
140 		 */
141 		VI_LOCK(nvp);
142 		if ((nvp->v_iflag & VI_DOOMED)) {
143 			VI_UNLOCK(nvp);
144 			vrele(nvp);
145 			error = ENOENT;
146 		} else {
147 			VI_UNLOCK(nvp);
148 		}
149 	}
150 	if (error) {
151 		FREE((caddr_t)nfhp, M_NFSFH);
152 		return (error);
153 	}
154 	if (nvp != NULL) {
155 		np = VTONFS(nvp);
156 		/*
157 		 * For NFSv4, check to see if it is the same name and
158 		 * replace the name, if it is different.
159 		 */
160 		oldd = newd = NULL;
161 		if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
162 		    nvp->v_type == VREG &&
163 		    (np->n_v4->n4_namelen != cnp->cn_namelen ||
164 		     NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
165 		     cnp->cn_namelen) ||
166 		     dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
167 		     NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
168 		     dnp->n_fhp->nfh_len))) {
169 		    MALLOC(newd, struct nfsv4node *,
170 			sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
171 			+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
172 		    NFSLOCKNODE(np);
173 		    if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
174 			&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
175 			 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
176 			 cnp->cn_namelen) ||
177 			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
178 			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
179 			 dnp->n_fhp->nfh_len))) {
180 			oldd = np->n_v4;
181 			np->n_v4 = newd;
182 			newd = NULL;
183 			np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
184 			np->n_v4->n4_namelen = cnp->cn_namelen;
185 			NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
186 			    dnp->n_fhp->nfh_len);
187 			NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
188 			    cnp->cn_namelen);
189 		    }
190 		    NFSUNLOCKNODE(np);
191 		}
192 		if (newd != NULL)
193 			FREE((caddr_t)newd, M_NFSV4NODE);
194 		if (oldd != NULL)
195 			FREE((caddr_t)oldd, M_NFSV4NODE);
196 		*npp = np;
197 		FREE((caddr_t)nfhp, M_NFSFH);
198 		return (0);
199 	}
200 	np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
201 
202 	error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
203 	if (error) {
204 		uma_zfree(newnfsnode_zone, np);
205 		FREE((caddr_t)nfhp, M_NFSFH);
206 		return (error);
207 	}
208 	vp = nvp;
209 	KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
210 	vp->v_bufobj.bo_ops = &buf_ops_newnfs;
211 	vp->v_data = np;
212 	np->n_vnode = vp;
213 	/*
214 	 * Initialize the mutex even if the vnode is going to be a loser.
215 	 * This simplifies the logic in reclaim, which can then unconditionally
216 	 * destroy the mutex (in the case of the loser, or if hash_insert
217 	 * happened to return an error no special casing is needed).
218 	 */
219 	mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
220 
221 	/*
222 	 * Are we getting the root? If so, make sure the vnode flags
223 	 * are correct
224 	 */
225 	if ((nfhp->nfh_len == nmp->nm_fhsize) &&
226 	    !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
227 		if (vp->v_type == VNON)
228 			vp->v_type = VDIR;
229 		vp->v_vflag |= VV_ROOT;
230 	}
231 
232 	np->n_fhp = nfhp;
233 	/*
234 	 * For NFSv4, we have to attach the directory file handle and
235 	 * file name, so that Open Ops can be done later.
236 	 */
237 	if (nmp->nm_flag & NFSMNT_NFSV4) {
238 		MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
239 		    + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
240 		    M_WAITOK);
241 		np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
242 		np->n_v4->n4_namelen = cnp->cn_namelen;
243 		NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
244 		    dnp->n_fhp->nfh_len);
245 		NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
246 		    cnp->cn_namelen);
247 	} else {
248 		np->n_v4 = NULL;
249 	}
250 
251 	/*
252 	 * NFS supports recursive and shared locking.
253 	 */
254 	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
255 	VN_LOCK_AREC(vp);
256 	VN_LOCK_ASHARE(vp);
257 	error = insmntque(vp, mntp);
258 	if (error != 0) {
259 		*npp = NULL;
260 		mtx_destroy(&np->n_mtx);
261 		FREE((caddr_t)nfhp, M_NFSFH);
262 		if (np->n_v4 != NULL)
263 			FREE((caddr_t)np->n_v4, M_NFSV4NODE);
264 		uma_zfree(newnfsnode_zone, np);
265 		return (error);
266 	}
267 	error = vfs_hash_insert(vp, hash, lkflags,
268 	    td, &nvp, newnfs_vncmpf, nfhp);
269 	if (error)
270 		return (error);
271 	if (nvp != NULL) {
272 		*npp = VTONFS(nvp);
273 		/* vfs_hash_insert() vput()'s the losing vnode */
274 		return (0);
275 	}
276 	*npp = np;
277 
278 	return (0);
279 }
280 
281 /*
282  * Anothe variant of nfs_nget(). This one is only used by reopen. It
283  * takes almost the same args as nfs_nget(), but only succeeds if an entry
284  * exists in the cache. (Since files should already be "open" with a
285  * vnode ref cnt on the node when reopen calls this, it should always
286  * succeed.)
287  * Also, don't get a vnode lock, since it may already be locked by some
288  * other process that is handling it. This is ok, since all other threads
289  * on the client are blocked by the nfsc_lock being exclusively held by the
290  * caller of this function.
291  */
292 int
293 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
294     struct thread *td, struct nfsnode **npp)
295 {
296 	struct vnode *nvp;
297 	u_int hash;
298 	struct nfsfh *nfhp;
299 	int error;
300 
301 	*npp = NULL;
302 	/* For forced dismounts, just return error. */
303 	if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
304 		return (EINTR);
305 	MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
306 	    M_NFSFH, M_WAITOK);
307 	bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
308 	nfhp->nfh_len = fhsize;
309 
310 	hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
311 
312 	/*
313 	 * First, try to get the vnode locked, but don't block for the lock.
314 	 */
315 	error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
316 	    newnfs_vncmpf, nfhp);
317 	if (error == 0 && nvp != NULL) {
318 		NFSVOPUNLOCK(nvp, 0);
319 	} else if (error == EBUSY) {
320 		/*
321 		 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
322 		 * and lock the vnode, but just get a v_usecount on it.
323 		 * LK_NOWAIT is set so that when vget() returns ENOENT,
324 		 * vfs_hash_get() fails instead of looping.
325 		 * If this succeeds, it is safe so long as a vflush() with
326 		 * FORCECLOSE has not been done. Since the Renew thread is
327 		 * stopped and the MNTK_UNMOUNTF flag is set before doing
328 		 * a vflush() with FORCECLOSE, we should be ok here.
329 		 */
330 		if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
331 			error = EINTR;
332 		else
333 			error = vfs_hash_get(mntp, hash,
334 			    (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
335 			    newnfs_vncmpf, nfhp);
336 	}
337 	FREE(nfhp, M_NFSFH);
338 	if (error)
339 		return (error);
340 	if (nvp != NULL) {
341 		*npp = VTONFS(nvp);
342 		return (0);
343 	}
344 	return (EINVAL);
345 }
346 
347 /*
348  * Load the attribute cache (that lives in the nfsnode entry) with
349  * the attributes of the second argument and
350  * Iff vaper not NULL
351  *    copy the attributes to *vaper
352  * Similar to nfs_loadattrcache(), except the attributes are passed in
353  * instead of being parsed out of the mbuf list.
354  */
355 int
356 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
357     void *stuff, int writeattr, int dontshrink)
358 {
359 	struct vnode *vp = *vpp;
360 	struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
361 	struct nfsnode *np;
362 	struct nfsmount *nmp;
363 	struct timespec mtime_save;
364 	u_quad_t nsize;
365 	int setnsize;
366 
367 	/*
368 	 * If v_type == VNON it is a new node, so fill in the v_type,
369 	 * n_mtime fields. Check to see if it represents a special
370 	 * device, and if so, check for a possible alias. Once the
371 	 * correct vnode has been obtained, fill in the rest of the
372 	 * information.
373 	 */
374 	np = VTONFS(vp);
375 	NFSLOCKNODE(np);
376 	if (vp->v_type != nvap->va_type) {
377 		vp->v_type = nvap->va_type;
378 		if (vp->v_type == VFIFO)
379 			vp->v_op = &newnfs_fifoops;
380 		np->n_mtime = nvap->va_mtime;
381 	}
382 	nmp = VFSTONFS(vp->v_mount);
383 	vap = &np->n_vattr.na_vattr;
384 	mtime_save = vap->va_mtime;
385 	if (writeattr) {
386 		np->n_vattr.na_filerev = nap->na_filerev;
387 		np->n_vattr.na_size = nap->na_size;
388 		np->n_vattr.na_mtime = nap->na_mtime;
389 		np->n_vattr.na_ctime = nap->na_ctime;
390 		np->n_vattr.na_fsid = nap->na_fsid;
391 		np->n_vattr.na_mode = nap->na_mode;
392 	} else {
393 		NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
394 		    sizeof (struct nfsvattr));
395 	}
396 
397 	/*
398 	 * For NFSv4, if the node's fsid is not equal to the mount point's
399 	 * fsid, return the low order 32bits of the node's fsid. This
400 	 * allows getcwd(3) to work. There is a chance that the fsid might
401 	 * be the same as a local fs, but since this is in an NFS mount
402 	 * point, I don't think that will cause any problems?
403 	 */
404 	if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
405 	    (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
406 	     nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
407 		/*
408 		 * va_fsid needs to be set to some value derived from
409 		 * np->n_vattr.na_filesid that is not equal
410 		 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
411 		 * from the value used for the top level server volume
412 		 * in the mounted subtree.
413 		 */
414 		if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
415 		    (uint32_t)np->n_vattr.na_filesid[0])
416 			vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
417 		else
418 			vap->va_fsid = (uint32_t)hash32_buf(
419 			    np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
420 	} else
421 		vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
422 	np->n_attrstamp = time_second;
423 	setnsize = 0;
424 	nsize = 0;
425 	if (vap->va_size != np->n_size) {
426 		if (vap->va_type == VREG) {
427 			if (dontshrink && vap->va_size < np->n_size) {
428 				/*
429 				 * We've been told not to shrink the file;
430 				 * zero np->n_attrstamp to indicate that
431 				 * the attributes are stale.
432 				 */
433 				vap->va_size = np->n_size;
434 				np->n_attrstamp = 0;
435 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
436 				vnode_pager_setsize(vp, np->n_size);
437 			} else if (np->n_flag & NMODIFIED) {
438 				/*
439 				 * We've modified the file: Use the larger
440 				 * of our size, and the server's size.
441 				 */
442 				if (vap->va_size < np->n_size) {
443 					vap->va_size = np->n_size;
444 				} else {
445 					np->n_size = vap->va_size;
446 					np->n_flag |= NSIZECHANGED;
447 				}
448 				vnode_pager_setsize(vp, np->n_size);
449 			} else if (vap->va_size < np->n_size) {
450 				/*
451 				 * When shrinking the size, the call to
452 				 * vnode_pager_setsize() cannot be done
453 				 * with the mutex held, so delay it until
454 				 * after the mtx_unlock call.
455 				 */
456 				nsize = np->n_size = vap->va_size;
457 				np->n_flag |= NSIZECHANGED;
458 				setnsize = 1;
459 			} else {
460 				np->n_size = vap->va_size;
461 				np->n_flag |= NSIZECHANGED;
462 				vnode_pager_setsize(vp, np->n_size);
463 			}
464 		} else {
465 			np->n_size = vap->va_size;
466 		}
467 	}
468 	/*
469 	 * The following checks are added to prevent a race between (say)
470 	 * a READDIR+ and a WRITE.
471 	 * READDIR+, WRITE requests sent out.
472 	 * READDIR+ resp, WRITE resp received on client.
473 	 * However, the WRITE resp was handled before the READDIR+ resp
474 	 * causing the post op attrs from the write to be loaded first
475 	 * and the attrs from the READDIR+ to be loaded later. If this
476 	 * happens, we have stale attrs loaded into the attrcache.
477 	 * We detect this by for the mtime moving back. We invalidate the
478 	 * attrcache when this happens.
479 	 */
480 	if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
481 		/* Size changed or mtime went backwards */
482 		np->n_attrstamp = 0;
483 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
484 	}
485 	if (vaper != NULL) {
486 		NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
487 		if (np->n_flag & NCHG) {
488 			if (np->n_flag & NACC)
489 				vaper->va_atime = np->n_atim;
490 			if (np->n_flag & NUPD)
491 				vaper->va_mtime = np->n_mtim;
492 		}
493 	}
494 #ifdef KDTRACE_HOOKS
495 	if (np->n_attrstamp != 0)
496 		KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
497 #endif
498 	NFSUNLOCKNODE(np);
499 	if (setnsize)
500 		vnode_pager_setsize(vp, nsize);
501 	return (0);
502 }
503 
504 /*
505  * Fill in the client id name. For these bytes:
506  * 1 - they must be unique
507  * 2 - they should be persistent across client reboots
508  * 1 is more critical than 2
509  * Use the mount point's unique id plus either the uuid or, if that
510  * isn't set, random junk.
511  */
512 void
513 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
514 {
515 	int uuidlen;
516 
517 	/*
518 	 * First, put in the 64bit mount point identifier.
519 	 */
520 	if (idlen >= sizeof (u_int64_t)) {
521 		NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
522 		cp += sizeof (u_int64_t);
523 		idlen -= sizeof (u_int64_t);
524 	}
525 
526 	/*
527 	 * If uuid is non-zero length, use it.
528 	 */
529 	uuidlen = strlen(uuid);
530 	if (uuidlen > 0 && idlen >= uuidlen) {
531 		NFSBCOPY(uuid, cp, uuidlen);
532 		cp += uuidlen;
533 		idlen -= uuidlen;
534 	}
535 
536 	/*
537 	 * This only normally happens if the uuid isn't set.
538 	 */
539 	while (idlen > 0) {
540 		*cp++ = (u_int8_t)(arc4random() % 256);
541 		idlen--;
542 	}
543 }
544 
545 /*
546  * Fill in a lock owner name. For now, pid + the process's creation time.
547  */
548 void
549 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
550 {
551 	union {
552 		u_int32_t	lval;
553 		u_int8_t	cval[4];
554 	} tl;
555 	struct proc *p;
556 
557 	if (id == NULL) {
558 		printf("NULL id\n");
559 		bzero(cp, NFSV4CL_LOCKNAMELEN);
560 		return;
561 	}
562 	if ((flags & F_POSIX) != 0) {
563 		p = (struct proc *)id;
564 		tl.lval = p->p_pid;
565 		*cp++ = tl.cval[0];
566 		*cp++ = tl.cval[1];
567 		*cp++ = tl.cval[2];
568 		*cp++ = tl.cval[3];
569 		tl.lval = p->p_stats->p_start.tv_sec;
570 		*cp++ = tl.cval[0];
571 		*cp++ = tl.cval[1];
572 		*cp++ = tl.cval[2];
573 		*cp++ = tl.cval[3];
574 		tl.lval = p->p_stats->p_start.tv_usec;
575 		*cp++ = tl.cval[0];
576 		*cp++ = tl.cval[1];
577 		*cp++ = tl.cval[2];
578 		*cp = tl.cval[3];
579 	} else if ((flags & F_FLOCK) != 0) {
580 		bcopy(&id, cp, sizeof(id));
581 		bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
582 	} else {
583 		printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
584 		bzero(cp, NFSV4CL_LOCKNAMELEN);
585 	}
586 }
587 
588 /*
589  * Find the parent process for the thread passed in as an argument.
590  * If none exists, return NULL, otherwise return a thread for the parent.
591  * (Can be any of the threads, since it is only used for td->td_proc.)
592  */
593 NFSPROC_T *
594 nfscl_getparent(struct thread *td)
595 {
596 	struct proc *p;
597 	struct thread *ptd;
598 
599 	if (td == NULL)
600 		return (NULL);
601 	p = td->td_proc;
602 	if (p->p_pid == 0)
603 		return (NULL);
604 	p = p->p_pptr;
605 	if (p == NULL)
606 		return (NULL);
607 	ptd = TAILQ_FIRST(&p->p_threads);
608 	return (ptd);
609 }
610 
611 /*
612  * Start up the renew kernel thread.
613  */
614 static void
615 start_nfscl(void *arg)
616 {
617 	struct nfsclclient *clp;
618 	struct thread *td;
619 
620 	clp = (struct nfsclclient *)arg;
621 	td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
622 	nfscl_renewthread(clp, td);
623 	kproc_exit(0);
624 }
625 
626 void
627 nfscl_start_renewthread(struct nfsclclient *clp)
628 {
629 
630 	kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
631 	    "nfscl");
632 }
633 
634 /*
635  * Handle wcc_data.
636  * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
637  * as the first Op after PutFH.
638  * (For NFSv4, the postop attributes are after the Op, so they can't be
639  *  parsed here. A separate call to nfscl_postop_attr() is required.)
640  */
641 int
642 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
643     struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
644 {
645 	u_int32_t *tl;
646 	struct nfsnode *np = VTONFS(vp);
647 	struct nfsvattr nfsva;
648 	int error = 0;
649 
650 	if (wccflagp != NULL)
651 		*wccflagp = 0;
652 	if (nd->nd_flag & ND_NFSV3) {
653 		*flagp = 0;
654 		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
655 		if (*tl == newnfs_true) {
656 			NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
657 			if (wccflagp != NULL) {
658 				mtx_lock(&np->n_mtx);
659 				*wccflagp = (np->n_mtime.tv_sec ==
660 				    fxdr_unsigned(u_int32_t, *(tl + 2)) &&
661 				    np->n_mtime.tv_nsec ==
662 				    fxdr_unsigned(u_int32_t, *(tl + 3)));
663 				mtx_unlock(&np->n_mtx);
664 			}
665 		}
666 		error = nfscl_postop_attr(nd, nap, flagp, stuff);
667 	} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
668 	    == (ND_NFSV4 | ND_V4WCCATTR)) {
669 		error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
670 		    NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
671 		    NULL, NULL, NULL, NULL, NULL);
672 		if (error)
673 			return (error);
674 		/*
675 		 * Get rid of Op# and status for next op.
676 		 */
677 		NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
678 		if (*++tl)
679 			nd->nd_flag |= ND_NOMOREDATA;
680 		if (wccflagp != NULL &&
681 		    nfsva.na_vattr.va_mtime.tv_sec != 0) {
682 			mtx_lock(&np->n_mtx);
683 			*wccflagp = (np->n_mtime.tv_sec ==
684 			    nfsva.na_vattr.va_mtime.tv_sec &&
685 			    np->n_mtime.tv_nsec ==
686 			    nfsva.na_vattr.va_mtime.tv_sec);
687 			mtx_unlock(&np->n_mtx);
688 		}
689 	}
690 nfsmout:
691 	return (error);
692 }
693 
694 /*
695  * Get postop attributes.
696  */
697 int
698 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
699     void *stuff)
700 {
701 	u_int32_t *tl;
702 	int error = 0;
703 
704 	*retp = 0;
705 	if (nd->nd_flag & ND_NOMOREDATA)
706 		return (error);
707 	if (nd->nd_flag & ND_NFSV3) {
708 		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
709 		*retp = fxdr_unsigned(int, *tl);
710 	} else if (nd->nd_flag & ND_NFSV4) {
711 		/*
712 		 * For NFSv4, the postop attr are at the end, so no point
713 		 * in looking if nd_repstat != 0.
714 		 */
715 		if (!nd->nd_repstat) {
716 			NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
717 			if (*(tl + 1))
718 				/* should never happen since nd_repstat != 0 */
719 				nd->nd_flag |= ND_NOMOREDATA;
720 			else
721 				*retp = 1;
722 		}
723 	} else if (!nd->nd_repstat) {
724 		/* For NFSv2, the attributes are here iff nd_repstat == 0 */
725 		*retp = 1;
726 	}
727 	if (*retp) {
728 		error = nfsm_loadattr(nd, nap);
729 		if (error)
730 			*retp = 0;
731 	}
732 nfsmout:
733 	return (error);
734 }
735 
736 /*
737  * Fill in the setable attributes. The full argument indicates whether
738  * to fill in them all or just mode and time.
739  */
740 void
741 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
742     struct vnode *vp, int flags, u_int32_t rdev)
743 {
744 	u_int32_t *tl;
745 	struct nfsv2_sattr *sp;
746 	nfsattrbit_t attrbits;
747 
748 	switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
749 	case ND_NFSV2:
750 		NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
751 		if (vap->va_mode == (mode_t)VNOVAL)
752 			sp->sa_mode = newnfs_xdrneg1;
753 		else
754 			sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
755 		if (vap->va_uid == (uid_t)VNOVAL)
756 			sp->sa_uid = newnfs_xdrneg1;
757 		else
758 			sp->sa_uid = txdr_unsigned(vap->va_uid);
759 		if (vap->va_gid == (gid_t)VNOVAL)
760 			sp->sa_gid = newnfs_xdrneg1;
761 		else
762 			sp->sa_gid = txdr_unsigned(vap->va_gid);
763 		if (flags & NFSSATTR_SIZE0)
764 			sp->sa_size = 0;
765 		else if (flags & NFSSATTR_SIZENEG1)
766 			sp->sa_size = newnfs_xdrneg1;
767 		else if (flags & NFSSATTR_SIZERDEV)
768 			sp->sa_size = txdr_unsigned(rdev);
769 		else
770 			sp->sa_size = txdr_unsigned(vap->va_size);
771 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
772 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
773 		break;
774 	case ND_NFSV3:
775 		if (vap->va_mode != (mode_t)VNOVAL) {
776 			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
777 			*tl++ = newnfs_true;
778 			*tl = txdr_unsigned(vap->va_mode);
779 		} else {
780 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
781 			*tl = newnfs_false;
782 		}
783 		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
784 			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
785 			*tl++ = newnfs_true;
786 			*tl = txdr_unsigned(vap->va_uid);
787 		} else {
788 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
789 			*tl = newnfs_false;
790 		}
791 		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
792 			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
793 			*tl++ = newnfs_true;
794 			*tl = txdr_unsigned(vap->va_gid);
795 		} else {
796 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
797 			*tl = newnfs_false;
798 		}
799 		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
800 			NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
801 			*tl++ = newnfs_true;
802 			txdr_hyper(vap->va_size, tl);
803 		} else {
804 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
805 			*tl = newnfs_false;
806 		}
807 		if (vap->va_atime.tv_sec != VNOVAL) {
808 			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
809 				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
810 				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
811 				txdr_nfsv3time(&vap->va_atime, tl);
812 			} else {
813 				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
814 				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
815 			}
816 		} else {
817 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
818 			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
819 		}
820 		if (vap->va_mtime.tv_sec != VNOVAL) {
821 			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
822 				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
823 				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
824 				txdr_nfsv3time(&vap->va_mtime, tl);
825 			} else {
826 				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
827 				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
828 			}
829 		} else {
830 			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
831 			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
832 		}
833 		break;
834 	case ND_NFSV4:
835 		NFSZERO_ATTRBIT(&attrbits);
836 		if (vap->va_mode != (mode_t)VNOVAL)
837 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
838 		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
839 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
840 		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
841 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
842 		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
843 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
844 		if (vap->va_atime.tv_sec != VNOVAL)
845 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
846 		if (vap->va_mtime.tv_sec != VNOVAL)
847 			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
848 		(void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
849 		    &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
850 		break;
851 	};
852 }
853 
854 /*
855  * nfscl_request() - mostly a wrapper for newnfs_request().
856  */
857 int
858 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
859     struct ucred *cred, void *stuff)
860 {
861 	int ret, vers;
862 	struct nfsmount *nmp;
863 
864 	nmp = VFSTONFS(vp->v_mount);
865 	if (nd->nd_flag & ND_NFSV4)
866 		vers = NFS_VER4;
867 	else if (nd->nd_flag & ND_NFSV3)
868 		vers = NFS_VER3;
869 	else
870 		vers = NFS_VER2;
871 	ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
872 		NFS_PROG, vers, NULL, 1, NULL, NULL);
873 	return (ret);
874 }
875 
876 /*
877  * fill in this bsden's variant of statfs using nfsstatfs.
878  */
879 void
880 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
881 {
882 	struct statfs *sbp = (struct statfs *)statfs;
883 
884 	if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
885 		sbp->f_bsize = NFS_FABLKSIZE;
886 		sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
887 		sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
888 		/*
889 		 * Although sf_abytes is uint64_t and f_bavail is int64_t,
890 		 * the value after dividing by NFS_FABLKSIZE is small
891 		 * enough that it will fit in 63bits, so it is ok to
892 		 * assign it to f_bavail without fear that it will become
893 		 * negative.
894 		 */
895 		sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
896 		sbp->f_files = sfp->sf_tfiles;
897 		/* Since f_ffree is int64_t, clip it to 63bits. */
898 		if (sfp->sf_ffiles > INT64_MAX)
899 			sbp->f_ffree = INT64_MAX;
900 		else
901 			sbp->f_ffree = sfp->sf_ffiles;
902 	} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
903 		/*
904 		 * The type casts to (int32_t) ensure that this code is
905 		 * compatible with the old NFS client, in that it will
906 		 * propagate bit31 to the high order bits. This may or may
907 		 * not be correct for NFSv2, but since it is a legacy
908 		 * environment, I'd rather retain backwards compatibility.
909 		 */
910 		sbp->f_bsize = (int32_t)sfp->sf_bsize;
911 		sbp->f_blocks = (int32_t)sfp->sf_blocks;
912 		sbp->f_bfree = (int32_t)sfp->sf_bfree;
913 		sbp->f_bavail = (int32_t)sfp->sf_bavail;
914 		sbp->f_files = 0;
915 		sbp->f_ffree = 0;
916 	}
917 }
918 
919 /*
920  * Use the fsinfo stuff to update the mount point.
921  */
922 void
923 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
924 {
925 
926 	if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
927 	    fsp->fs_wtpref >= NFS_FABLKSIZE)
928 		nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
929 		    ~(NFS_FABLKSIZE - 1);
930 	if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
931 		nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
932 		if (nmp->nm_wsize == 0)
933 			nmp->nm_wsize = fsp->fs_wtmax;
934 	}
935 	if (nmp->nm_wsize < NFS_FABLKSIZE)
936 		nmp->nm_wsize = NFS_FABLKSIZE;
937 	if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
938 	    fsp->fs_rtpref >= NFS_FABLKSIZE)
939 		nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
940 		    ~(NFS_FABLKSIZE - 1);
941 	if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
942 		nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
943 		if (nmp->nm_rsize == 0)
944 			nmp->nm_rsize = fsp->fs_rtmax;
945 	}
946 	if (nmp->nm_rsize < NFS_FABLKSIZE)
947 		nmp->nm_rsize = NFS_FABLKSIZE;
948 	if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
949 	    && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
950 		nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
951 		    ~(NFS_DIRBLKSIZ - 1);
952 	if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
953 		nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
954 		if (nmp->nm_readdirsize == 0)
955 			nmp->nm_readdirsize = fsp->fs_rtmax;
956 	}
957 	if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
958 		nmp->nm_readdirsize = NFS_DIRBLKSIZ;
959 	if (fsp->fs_maxfilesize > 0 &&
960 	    fsp->fs_maxfilesize < nmp->nm_maxfilesize)
961 		nmp->nm_maxfilesize = fsp->fs_maxfilesize;
962 	nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
963 	nmp->nm_state |= NFSSTA_GOTFSINFO;
964 }
965 
966 /*
967  * Get a pointer to my IP addrress and return it.
968  * Return NULL if you can't find one.
969  */
970 u_int8_t *
971 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
972 {
973 	struct sockaddr_in sad, *sin;
974 	struct rtentry *rt;
975 	u_int8_t *retp = NULL;
976 	static struct in_addr laddr;
977 
978 	*isinet6p = 0;
979 	/*
980 	 * Loop up a route for the destination address.
981 	 */
982 	if (nmp->nm_nam->sa_family == AF_INET) {
983 		bzero(&sad, sizeof (sad));
984 		sin = (struct sockaddr_in *)nmp->nm_nam;
985 		sad.sin_family = AF_INET;
986 		sad.sin_len = sizeof (struct sockaddr_in);
987 		sad.sin_addr.s_addr = sin->sin_addr.s_addr;
988 		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
989 		rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
990 		     curthread->td_proc->p_fibnum);
991 		if (rt != NULL) {
992 			if (rt->rt_ifp != NULL &&
993 			    rt->rt_ifa != NULL &&
994 			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
995 			    rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
996 				sin = (struct sockaddr_in *)
997 				    rt->rt_ifa->ifa_addr;
998 				laddr.s_addr = sin->sin_addr.s_addr;
999 				retp = (u_int8_t *)&laddr;
1000 			}
1001 			RTFREE_LOCKED(rt);
1002 		}
1003 		CURVNET_RESTORE();
1004 #ifdef INET6
1005 	} else if (nmp->nm_nam->sa_family == AF_INET6) {
1006 		struct sockaddr_in6 sad6, *sin6;
1007 		static struct in6_addr laddr6;
1008 
1009 		bzero(&sad6, sizeof (sad6));
1010 		sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
1011 		sad6.sin6_family = AF_INET6;
1012 		sad6.sin6_len = sizeof (struct sockaddr_in6);
1013 		sad6.sin6_addr = sin6->sin6_addr;
1014 		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1015 		rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
1016 		     curthread->td_proc->p_fibnum);
1017 		if (rt != NULL) {
1018 			if (rt->rt_ifp != NULL &&
1019 			    rt->rt_ifa != NULL &&
1020 			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
1021 			    rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
1022 				sin6 = (struct sockaddr_in6 *)
1023 				    rt->rt_ifa->ifa_addr;
1024 				laddr6 = sin6->sin6_addr;
1025 				retp = (u_int8_t *)&laddr6;
1026 				*isinet6p = 1;
1027 			}
1028 			RTFREE_LOCKED(rt);
1029 		}
1030 		CURVNET_RESTORE();
1031 #endif
1032 	}
1033 	return (retp);
1034 }
1035 
1036 /*
1037  * Copy NFS uid, gids from the cred structure.
1038  */
1039 void
1040 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
1041 {
1042 	int i;
1043 
1044 	KASSERT(cr->cr_ngroups >= 0,
1045 	    ("newnfs_copyincred: negative cr_ngroups"));
1046 	nfscr->nfsc_uid = cr->cr_uid;
1047 	nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
1048 	for (i = 0; i < nfscr->nfsc_ngroups; i++)
1049 		nfscr->nfsc_groups[i] = cr->cr_groups[i];
1050 }
1051 
1052 
1053 /*
1054  * Do any client specific initialization.
1055  */
1056 void
1057 nfscl_init(void)
1058 {
1059 	static int inited = 0;
1060 
1061 	if (inited)
1062 		return;
1063 	inited = 1;
1064 	nfscl_inited = 1;
1065 	ncl_pbuf_freecnt = nswbuf / 2 + 1;
1066 }
1067 
1068 /*
1069  * Check each of the attributes to be set, to ensure they aren't already
1070  * the correct value. Disable setting ones already correct.
1071  */
1072 int
1073 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1074 {
1075 
1076 	if (vap->va_mode != (mode_t)VNOVAL) {
1077 		if (vap->va_mode == nvap->na_mode)
1078 			vap->va_mode = (mode_t)VNOVAL;
1079 	}
1080 	if (vap->va_uid != (uid_t)VNOVAL) {
1081 		if (vap->va_uid == nvap->na_uid)
1082 			vap->va_uid = (uid_t)VNOVAL;
1083 	}
1084 	if (vap->va_gid != (gid_t)VNOVAL) {
1085 		if (vap->va_gid == nvap->na_gid)
1086 			vap->va_gid = (gid_t)VNOVAL;
1087 	}
1088 	if (vap->va_size != VNOVAL) {
1089 		if (vap->va_size == nvap->na_size)
1090 			vap->va_size = VNOVAL;
1091 	}
1092 
1093 	/*
1094 	 * We are normally called with only a partially initialized
1095 	 * VAP.  Since the NFSv3 spec says that server may use the
1096 	 * file attributes to store the verifier, the spec requires
1097 	 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1098 	 * in atime, but we can't really assume that all servers will
1099 	 * so we ensure that our SETATTR sets both atime and mtime.
1100 	 */
1101 	if (vap->va_mtime.tv_sec == VNOVAL)
1102 		vfs_timestamp(&vap->va_mtime);
1103 	if (vap->va_atime.tv_sec == VNOVAL)
1104 		vap->va_atime = vap->va_mtime;
1105 	return (1);
1106 }
1107 
1108 /*
1109  * Map nfsv4 errors to errno.h errors.
1110  * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1111  * error should only be returned for the Open, Create and Setattr Ops.
1112  * As such, most calls can just pass in 0 for those arguments.
1113  */
1114 APPLESTATIC int
1115 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1116 {
1117 	struct proc *p;
1118 
1119 	if (error < 10000)
1120 		return (error);
1121 	if (td != NULL)
1122 		p = td->td_proc;
1123 	else
1124 		p = NULL;
1125 	switch (error) {
1126 	case NFSERR_BADOWNER:
1127 		tprintf(p, LOG_INFO,
1128 		    "No name and/or group mapping for uid,gid:(%d,%d)\n",
1129 		    uid, gid);
1130 		return (EPERM);
1131 	case NFSERR_BADNAME:
1132 	case NFSERR_BADCHAR:
1133 		printf("nfsv4 char/name not handled by server\n");
1134 		return (ENOENT);
1135 	case NFSERR_STALECLIENTID:
1136 	case NFSERR_STALESTATEID:
1137 	case NFSERR_EXPIRED:
1138 	case NFSERR_BADSTATEID:
1139 	case NFSERR_BADSESSION:
1140 		printf("nfsv4 recover err returned %d\n", error);
1141 		return (EIO);
1142 	case NFSERR_BADHANDLE:
1143 	case NFSERR_SERVERFAULT:
1144 	case NFSERR_BADTYPE:
1145 	case NFSERR_FHEXPIRED:
1146 	case NFSERR_RESOURCE:
1147 	case NFSERR_MOVED:
1148 	case NFSERR_NOFILEHANDLE:
1149 	case NFSERR_MINORVERMISMATCH:
1150 	case NFSERR_OLDSTATEID:
1151 	case NFSERR_BADSEQID:
1152 	case NFSERR_LEASEMOVED:
1153 	case NFSERR_RECLAIMBAD:
1154 	case NFSERR_BADXDR:
1155 	case NFSERR_OPILLEGAL:
1156 		printf("nfsv4 client/server protocol prob err=%d\n",
1157 		    error);
1158 		return (EIO);
1159 	default:
1160 		tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1161 		return (EIO);
1162 	};
1163 }
1164 
1165 /*
1166  * Check to see if the process for this owner exists. Return 1 if it doesn't
1167  * and 0 otherwise.
1168  */
1169 int
1170 nfscl_procdoesntexist(u_int8_t *own)
1171 {
1172 	union {
1173 		u_int32_t	lval;
1174 		u_int8_t	cval[4];
1175 	} tl;
1176 	struct proc *p;
1177 	pid_t pid;
1178 	int ret = 0;
1179 
1180 	tl.cval[0] = *own++;
1181 	tl.cval[1] = *own++;
1182 	tl.cval[2] = *own++;
1183 	tl.cval[3] = *own++;
1184 	pid = tl.lval;
1185 	p = pfind_locked(pid);
1186 	if (p == NULL)
1187 		return (1);
1188 	if (p->p_stats == NULL) {
1189 		PROC_UNLOCK(p);
1190 		return (0);
1191 	}
1192 	tl.cval[0] = *own++;
1193 	tl.cval[1] = *own++;
1194 	tl.cval[2] = *own++;
1195 	tl.cval[3] = *own++;
1196 	if (tl.lval != p->p_stats->p_start.tv_sec) {
1197 		ret = 1;
1198 	} else {
1199 		tl.cval[0] = *own++;
1200 		tl.cval[1] = *own++;
1201 		tl.cval[2] = *own++;
1202 		tl.cval[3] = *own;
1203 		if (tl.lval != p->p_stats->p_start.tv_usec)
1204 			ret = 1;
1205 	}
1206 	PROC_UNLOCK(p);
1207 	return (ret);
1208 }
1209 
1210 /*
1211  * - nfs pseudo system call for the client
1212  */
1213 /*
1214  * MPSAFE
1215  */
1216 static int
1217 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1218 {
1219 	struct file *fp;
1220 	struct nfscbd_args nfscbdarg;
1221 	struct nfsd_nfscbd_args nfscbdarg2;
1222 	struct nameidata nd;
1223 	struct nfscl_dumpmntopts dumpmntopts;
1224 	cap_rights_t rights;
1225 	char *buf;
1226 	int error;
1227 
1228 	if (uap->flag & NFSSVC_CBADDSOCK) {
1229 		error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1230 		if (error)
1231 			return (error);
1232 		/*
1233 		 * Since we don't know what rights might be required,
1234 		 * pretend that we need them all. It is better to be too
1235 		 * careful than too reckless.
1236 		 */
1237 		error = fget(td, nfscbdarg.sock,
1238 		    cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
1239 		if (error)
1240 			return (error);
1241 		if (fp->f_type != DTYPE_SOCKET) {
1242 			fdrop(fp, td);
1243 			return (EPERM);
1244 		}
1245 		error = nfscbd_addsock(fp);
1246 		fdrop(fp, td);
1247 		if (!error && nfscl_enablecallb == 0) {
1248 			nfsv4_cbport = nfscbdarg.port;
1249 			nfscl_enablecallb = 1;
1250 		}
1251 	} else if (uap->flag & NFSSVC_NFSCBD) {
1252 		if (uap->argp == NULL)
1253 			return (EINVAL);
1254 		error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1255 		    sizeof(nfscbdarg2));
1256 		if (error)
1257 			return (error);
1258 		error = nfscbd_nfsd(td, &nfscbdarg2);
1259 	} else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
1260 		error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
1261 		if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
1262 		    dumpmntopts.ndmnt_blen > 1024))
1263 			error = EINVAL;
1264 		if (error == 0)
1265 			error = nfsrv_lookupfilename(&nd,
1266 			    dumpmntopts.ndmnt_fname, td);
1267 		if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
1268 		    "nfs") != 0) {
1269 			vput(nd.ni_vp);
1270 			error = EINVAL;
1271 		}
1272 		if (error == 0) {
1273 			buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
1274 			nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
1275 			    dumpmntopts.ndmnt_blen);
1276 			vput(nd.ni_vp);
1277 			error = copyout(buf, dumpmntopts.ndmnt_buf,
1278 			    dumpmntopts.ndmnt_blen);
1279 			free(buf, M_TEMP);
1280 		}
1281 	} else {
1282 		error = EINVAL;
1283 	}
1284 	return (error);
1285 }
1286 
1287 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1288 
1289 /*
1290  * Called once to initialize data structures...
1291  */
1292 static int
1293 nfscl_modevent(module_t mod, int type, void *data)
1294 {
1295 	int error = 0;
1296 	static int loaded = 0;
1297 
1298 	switch (type) {
1299 	case MOD_LOAD:
1300 		if (loaded)
1301 			return (0);
1302 		newnfs_portinit();
1303 		mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1304 		    MTX_DEF);
1305 		mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1306 		nfscl_init();
1307 		NFSD_LOCK();
1308 		nfsrvd_cbinit(0);
1309 		NFSD_UNLOCK();
1310 		ncl_call_invalcaches = ncl_invalcaches;
1311 		nfsd_call_nfscl = nfssvc_nfscl;
1312 		loaded = 1;
1313 		break;
1314 
1315 	case MOD_UNLOAD:
1316 		if (nfs_numnfscbd != 0) {
1317 			error = EBUSY;
1318 			break;
1319 		}
1320 
1321 		/*
1322 		 * XXX: Unloading of nfscl module is unsupported.
1323 		 */
1324 #if 0
1325 		ncl_call_invalcaches = NULL;
1326 		nfsd_call_nfscl = NULL;
1327 		/* and get rid of the mutexes */
1328 		mtx_destroy(&nfs_clstate_mutex);
1329 		mtx_destroy(&ncl_iod_mutex);
1330 		loaded = 0;
1331 		break;
1332 #else
1333 		/* FALLTHROUGH */
1334 #endif
1335 	default:
1336 		error = EOPNOTSUPP;
1337 		break;
1338 	}
1339 	return error;
1340 }
1341 static moduledata_t nfscl_mod = {
1342 	"nfscl",
1343 	nfscl_modevent,
1344 	NULL,
1345 };
1346 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
1347 
1348 /* So that loader and kldload(2) can find us, wherever we are.. */
1349 MODULE_VERSION(nfscl, 1);
1350 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1351 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
1352 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
1353 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
1354 
1355