1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 42 #include <sys/capsicum.h> 43 44 /* 45 * generally, I don't like #includes inside .h files, but it seems to 46 * be the easiest way to handle the port. 47 */ 48 #include <sys/fail.h> 49 #include <sys/hash.h> 50 #include <sys/sysctl.h> 51 #include <fs/nfs/nfsport.h> 52 #include <netinet/in_fib.h> 53 #include <netinet/if_ether.h> 54 #include <netinet6/ip6_var.h> 55 #include <net/if_types.h> 56 57 #include <fs/nfsclient/nfs_kdtrace.h> 58 59 #ifdef KDTRACE_HOOKS 60 dtrace_nfsclient_attrcache_flush_probe_func_t 61 dtrace_nfscl_attrcache_flush_done_probe; 62 uint32_t nfscl_attrcache_flush_done_id; 63 64 dtrace_nfsclient_attrcache_get_hit_probe_func_t 65 dtrace_nfscl_attrcache_get_hit_probe; 66 uint32_t nfscl_attrcache_get_hit_id; 67 68 dtrace_nfsclient_attrcache_get_miss_probe_func_t 69 dtrace_nfscl_attrcache_get_miss_probe; 70 uint32_t nfscl_attrcache_get_miss_id; 71 72 dtrace_nfsclient_attrcache_load_probe_func_t 73 dtrace_nfscl_attrcache_load_done_probe; 74 uint32_t nfscl_attrcache_load_done_id; 75 #endif /* !KDTRACE_HOOKS */ 76 77 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 78 extern struct vop_vector newnfs_vnodeops; 79 extern struct vop_vector newnfs_fifoops; 80 extern uma_zone_t newnfsnode_zone; 81 extern struct buf_ops buf_ops_newnfs; 82 extern int ncl_pbuf_freecnt; 83 extern short nfsv4_cbport; 84 extern int nfscl_enablecallb; 85 extern int nfs_numnfscbd; 86 extern int nfscl_inited; 87 struct mtx ncl_iod_mutex; 88 NFSDLOCKMUTEX; 89 90 extern void (*ncl_call_invalcaches)(struct vnode *); 91 92 SYSCTL_DECL(_vfs_nfs); 93 static int ncl_fileid_maxwarnings = 10; 94 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 95 &ncl_fileid_maxwarnings, 0, 96 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 97 static volatile int ncl_fileid_nwarnings; 98 99 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 100 struct nfsvattr *); 101 102 /* 103 * Comparison function for vfs_hash functions. 104 */ 105 int 106 newnfs_vncmpf(struct vnode *vp, void *arg) 107 { 108 struct nfsfh *nfhp = (struct nfsfh *)arg; 109 struct nfsnode *np = VTONFS(vp); 110 111 if (np->n_fhp->nfh_len != nfhp->nfh_len || 112 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 113 return (1); 114 return (0); 115 } 116 117 /* 118 * Look up a vnode/nfsnode by file handle. 119 * Callers must check for mount points!! 120 * In all cases, a pointer to a 121 * nfsnode structure is returned. 122 * This variant takes a "struct nfsfh *" as second argument and uses 123 * that structure up, either by hanging off the nfsnode or FREEing it. 124 */ 125 int 126 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 127 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 128 void *stuff, int lkflags) 129 { 130 struct nfsnode *np, *dnp; 131 struct vnode *vp, *nvp; 132 struct nfsv4node *newd, *oldd; 133 int error; 134 u_int hash; 135 struct nfsmount *nmp; 136 137 nmp = VFSTONFS(mntp); 138 dnp = VTONFS(dvp); 139 *npp = NULL; 140 141 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 142 143 error = vfs_hash_get(mntp, hash, lkflags, 144 td, &nvp, newnfs_vncmpf, nfhp); 145 if (error == 0 && nvp != NULL) { 146 /* 147 * I believe there is a slight chance that vgonel() could 148 * get called on this vnode between when NFSVOPLOCK() drops 149 * the VI_LOCK() and vget() acquires it again, so that it 150 * hasn't yet had v_usecount incremented. If this were to 151 * happen, the VI_DOOMED flag would be set, so check for 152 * that here. Since we now have the v_usecount incremented, 153 * we should be ok until we vrele() it, if the VI_DOOMED 154 * flag isn't set now. 155 */ 156 VI_LOCK(nvp); 157 if ((nvp->v_iflag & VI_DOOMED)) { 158 VI_UNLOCK(nvp); 159 vrele(nvp); 160 error = ENOENT; 161 } else { 162 VI_UNLOCK(nvp); 163 } 164 } 165 if (error) { 166 FREE((caddr_t)nfhp, M_NFSFH); 167 return (error); 168 } 169 if (nvp != NULL) { 170 np = VTONFS(nvp); 171 /* 172 * For NFSv4, check to see if it is the same name and 173 * replace the name, if it is different. 174 */ 175 oldd = newd = NULL; 176 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 177 nvp->v_type == VREG && 178 (np->n_v4->n4_namelen != cnp->cn_namelen || 179 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 180 cnp->cn_namelen) || 181 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 182 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 183 dnp->n_fhp->nfh_len))) { 184 MALLOC(newd, struct nfsv4node *, 185 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 186 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 187 NFSLOCKNODE(np); 188 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 189 && (np->n_v4->n4_namelen != cnp->cn_namelen || 190 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 191 cnp->cn_namelen) || 192 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 193 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 194 dnp->n_fhp->nfh_len))) { 195 oldd = np->n_v4; 196 np->n_v4 = newd; 197 newd = NULL; 198 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 199 np->n_v4->n4_namelen = cnp->cn_namelen; 200 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 201 dnp->n_fhp->nfh_len); 202 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 203 cnp->cn_namelen); 204 } 205 NFSUNLOCKNODE(np); 206 } 207 if (newd != NULL) 208 FREE((caddr_t)newd, M_NFSV4NODE); 209 if (oldd != NULL) 210 FREE((caddr_t)oldd, M_NFSV4NODE); 211 *npp = np; 212 FREE((caddr_t)nfhp, M_NFSFH); 213 return (0); 214 } 215 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 216 217 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 218 if (error) { 219 uma_zfree(newnfsnode_zone, np); 220 FREE((caddr_t)nfhp, M_NFSFH); 221 return (error); 222 } 223 vp = nvp; 224 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 225 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 226 vp->v_data = np; 227 np->n_vnode = vp; 228 /* 229 * Initialize the mutex even if the vnode is going to be a loser. 230 * This simplifies the logic in reclaim, which can then unconditionally 231 * destroy the mutex (in the case of the loser, or if hash_insert 232 * happened to return an error no special casing is needed). 233 */ 234 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 235 lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE | 236 LK_CANRECURSE); 237 238 /* 239 * Are we getting the root? If so, make sure the vnode flags 240 * are correct 241 */ 242 if ((nfhp->nfh_len == nmp->nm_fhsize) && 243 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 244 if (vp->v_type == VNON) 245 vp->v_type = VDIR; 246 vp->v_vflag |= VV_ROOT; 247 } 248 249 np->n_fhp = nfhp; 250 /* 251 * For NFSv4, we have to attach the directory file handle and 252 * file name, so that Open Ops can be done later. 253 */ 254 if (nmp->nm_flag & NFSMNT_NFSV4) { 255 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 256 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 257 M_WAITOK); 258 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 259 np->n_v4->n4_namelen = cnp->cn_namelen; 260 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 261 dnp->n_fhp->nfh_len); 262 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 263 cnp->cn_namelen); 264 } else { 265 np->n_v4 = NULL; 266 } 267 268 /* 269 * NFS supports recursive and shared locking. 270 */ 271 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 272 VN_LOCK_AREC(vp); 273 VN_LOCK_ASHARE(vp); 274 error = insmntque(vp, mntp); 275 if (error != 0) { 276 *npp = NULL; 277 mtx_destroy(&np->n_mtx); 278 lockdestroy(&np->n_excl); 279 FREE((caddr_t)nfhp, M_NFSFH); 280 if (np->n_v4 != NULL) 281 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 282 uma_zfree(newnfsnode_zone, np); 283 return (error); 284 } 285 error = vfs_hash_insert(vp, hash, lkflags, 286 td, &nvp, newnfs_vncmpf, nfhp); 287 if (error) 288 return (error); 289 if (nvp != NULL) { 290 *npp = VTONFS(nvp); 291 /* vfs_hash_insert() vput()'s the losing vnode */ 292 return (0); 293 } 294 *npp = np; 295 296 return (0); 297 } 298 299 /* 300 * Another variant of nfs_nget(). This one is only used by reopen. It 301 * takes almost the same args as nfs_nget(), but only succeeds if an entry 302 * exists in the cache. (Since files should already be "open" with a 303 * vnode ref cnt on the node when reopen calls this, it should always 304 * succeed.) 305 * Also, don't get a vnode lock, since it may already be locked by some 306 * other process that is handling it. This is ok, since all other threads 307 * on the client are blocked by the nfsc_lock being exclusively held by the 308 * caller of this function. 309 */ 310 int 311 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 312 struct thread *td, struct nfsnode **npp) 313 { 314 struct vnode *nvp; 315 u_int hash; 316 struct nfsfh *nfhp; 317 int error; 318 319 *npp = NULL; 320 /* For forced dismounts, just return error. */ 321 if (NFSCL_FORCEDISM(mntp)) 322 return (EINTR); 323 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 324 M_NFSFH, M_WAITOK); 325 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 326 nfhp->nfh_len = fhsize; 327 328 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 329 330 /* 331 * First, try to get the vnode locked, but don't block for the lock. 332 */ 333 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 334 newnfs_vncmpf, nfhp); 335 if (error == 0 && nvp != NULL) { 336 NFSVOPUNLOCK(nvp, 0); 337 } else if (error == EBUSY) { 338 /* 339 * It is safe so long as a vflush() with 340 * FORCECLOSE has not been done. Since the Renew thread is 341 * stopped and the MNTK_UNMOUNTF flag is set before doing 342 * a vflush() with FORCECLOSE, we should be ok here. 343 */ 344 if (NFSCL_FORCEDISM(mntp)) 345 error = EINTR; 346 else { 347 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); 348 if (nvp == NULL) { 349 error = ENOENT; 350 } else if ((nvp->v_iflag & VI_DOOMED) != 0) { 351 error = ENOENT; 352 vrele(nvp); 353 } else { 354 error = 0; 355 } 356 } 357 } 358 FREE(nfhp, M_NFSFH); 359 if (error) 360 return (error); 361 if (nvp != NULL) { 362 *npp = VTONFS(nvp); 363 return (0); 364 } 365 return (EINVAL); 366 } 367 368 static void 369 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 370 struct nfsvattr *newnap) 371 { 372 int off; 373 374 if (ncl_fileid_maxwarnings >= 0 && 375 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 376 return; 377 off = 0; 378 if (ncl_fileid_maxwarnings >= 0) { 379 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 380 off = 1; 381 } 382 383 printf("newnfs: server '%s' error: fileid changed. " 384 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 385 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 386 nmp->nm_com.nmcom_hostname, 387 (uintmax_t)nmp->nm_fsid[0], 388 (uintmax_t)nmp->nm_fsid[1], 389 (uintmax_t)oldnap->na_fileid, 390 (uintmax_t)newnap->na_fileid); 391 392 if (off) 393 printf("newnfs: Logged %d times about fileid corruption; " 394 "going quiet to avoid spamming logs excessively. (Limit " 395 "is: %d).\n", ncl_fileid_nwarnings, 396 ncl_fileid_maxwarnings); 397 } 398 399 /* 400 * Load the attribute cache (that lives in the nfsnode entry) with 401 * the attributes of the second argument and 402 * Iff vaper not NULL 403 * copy the attributes to *vaper 404 * Similar to nfs_loadattrcache(), except the attributes are passed in 405 * instead of being parsed out of the mbuf list. 406 */ 407 int 408 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 409 void *stuff, int writeattr, int dontshrink) 410 { 411 struct vnode *vp = *vpp; 412 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 413 struct nfsnode *np; 414 struct nfsmount *nmp; 415 struct timespec mtime_save; 416 u_quad_t nsize; 417 int setnsize, error, force_fid_err; 418 419 error = 0; 420 setnsize = 0; 421 nsize = 0; 422 423 /* 424 * If v_type == VNON it is a new node, so fill in the v_type, 425 * n_mtime fields. Check to see if it represents a special 426 * device, and if so, check for a possible alias. Once the 427 * correct vnode has been obtained, fill in the rest of the 428 * information. 429 */ 430 np = VTONFS(vp); 431 NFSLOCKNODE(np); 432 if (vp->v_type != nvap->va_type) { 433 vp->v_type = nvap->va_type; 434 if (vp->v_type == VFIFO) 435 vp->v_op = &newnfs_fifoops; 436 np->n_mtime = nvap->va_mtime; 437 } 438 nmp = VFSTONFS(vp->v_mount); 439 vap = &np->n_vattr.na_vattr; 440 mtime_save = vap->va_mtime; 441 if (writeattr) { 442 np->n_vattr.na_filerev = nap->na_filerev; 443 np->n_vattr.na_size = nap->na_size; 444 np->n_vattr.na_mtime = nap->na_mtime; 445 np->n_vattr.na_ctime = nap->na_ctime; 446 np->n_vattr.na_fsid = nap->na_fsid; 447 np->n_vattr.na_mode = nap->na_mode; 448 } else { 449 force_fid_err = 0; 450 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 451 force_fid_err); 452 /* 453 * BROKEN NFS SERVER OR MIDDLEWARE 454 * 455 * Certain NFS servers (certain old proprietary filers ca. 456 * 2006) or broken middleboxes (e.g. WAN accelerator products) 457 * will respond to GETATTR requests with results for a 458 * different fileid. 459 * 460 * The WAN accelerator we've observed not only serves stale 461 * cache results for a given file, it also occasionally serves 462 * results for wholly different files. This causes surprising 463 * problems; for example the cached size attribute of a file 464 * may truncate down and then back up, resulting in zero 465 * regions in file contents read by applications. We observed 466 * this reliably with Clang and .c files during parallel build. 467 * A pcap revealed packet fragmentation and GETATTR RPC 468 * responses with wholly wrong fileids. 469 */ 470 if ((np->n_vattr.na_fileid != 0 && 471 np->n_vattr.na_fileid != nap->na_fileid) || 472 force_fid_err) { 473 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 474 error = EIDRM; 475 goto out; 476 } 477 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 478 sizeof (struct nfsvattr)); 479 } 480 481 /* 482 * For NFSv4, if the node's fsid is not equal to the mount point's 483 * fsid, return the low order 32bits of the node's fsid. This 484 * allows getcwd(3) to work. There is a chance that the fsid might 485 * be the same as a local fs, but since this is in an NFS mount 486 * point, I don't think that will cause any problems? 487 */ 488 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 489 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 490 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 491 /* 492 * va_fsid needs to be set to some value derived from 493 * np->n_vattr.na_filesid that is not equal 494 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 495 * from the value used for the top level server volume 496 * in the mounted subtree. 497 */ 498 vn_fsid(vp, vap); 499 if ((uint32_t)vap->va_fsid == np->n_vattr.na_filesid[0]) 500 vap->va_fsid = hash32_buf( 501 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 502 } else 503 vn_fsid(vp, vap); 504 np->n_attrstamp = time_second; 505 if (vap->va_size != np->n_size) { 506 if (vap->va_type == VREG) { 507 if (dontshrink && vap->va_size < np->n_size) { 508 /* 509 * We've been told not to shrink the file; 510 * zero np->n_attrstamp to indicate that 511 * the attributes are stale. 512 */ 513 vap->va_size = np->n_size; 514 np->n_attrstamp = 0; 515 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 516 vnode_pager_setsize(vp, np->n_size); 517 } else if (np->n_flag & NMODIFIED) { 518 /* 519 * We've modified the file: Use the larger 520 * of our size, and the server's size. 521 */ 522 if (vap->va_size < np->n_size) { 523 vap->va_size = np->n_size; 524 } else { 525 np->n_size = vap->va_size; 526 np->n_flag |= NSIZECHANGED; 527 } 528 vnode_pager_setsize(vp, np->n_size); 529 } else if (vap->va_size < np->n_size) { 530 /* 531 * When shrinking the size, the call to 532 * vnode_pager_setsize() cannot be done 533 * with the mutex held, so delay it until 534 * after the mtx_unlock call. 535 */ 536 nsize = np->n_size = vap->va_size; 537 np->n_flag |= NSIZECHANGED; 538 setnsize = 1; 539 } else { 540 np->n_size = vap->va_size; 541 np->n_flag |= NSIZECHANGED; 542 vnode_pager_setsize(vp, np->n_size); 543 } 544 } else { 545 np->n_size = vap->va_size; 546 } 547 } 548 /* 549 * The following checks are added to prevent a race between (say) 550 * a READDIR+ and a WRITE. 551 * READDIR+, WRITE requests sent out. 552 * READDIR+ resp, WRITE resp received on client. 553 * However, the WRITE resp was handled before the READDIR+ resp 554 * causing the post op attrs from the write to be loaded first 555 * and the attrs from the READDIR+ to be loaded later. If this 556 * happens, we have stale attrs loaded into the attrcache. 557 * We detect this by for the mtime moving back. We invalidate the 558 * attrcache when this happens. 559 */ 560 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 561 /* Size changed or mtime went backwards */ 562 np->n_attrstamp = 0; 563 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 564 } 565 if (vaper != NULL) { 566 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 567 if (np->n_flag & NCHG) { 568 if (np->n_flag & NACC) 569 vaper->va_atime = np->n_atim; 570 if (np->n_flag & NUPD) 571 vaper->va_mtime = np->n_mtim; 572 } 573 } 574 575 out: 576 #ifdef KDTRACE_HOOKS 577 if (np->n_attrstamp != 0) 578 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 579 #endif 580 NFSUNLOCKNODE(np); 581 if (setnsize) 582 vnode_pager_setsize(vp, nsize); 583 return (error); 584 } 585 586 /* 587 * Fill in the client id name. For these bytes: 588 * 1 - they must be unique 589 * 2 - they should be persistent across client reboots 590 * 1 is more critical than 2 591 * Use the mount point's unique id plus either the uuid or, if that 592 * isn't set, random junk. 593 */ 594 void 595 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 596 { 597 int uuidlen; 598 599 /* 600 * First, put in the 64bit mount point identifier. 601 */ 602 if (idlen >= sizeof (u_int64_t)) { 603 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 604 cp += sizeof (u_int64_t); 605 idlen -= sizeof (u_int64_t); 606 } 607 608 /* 609 * If uuid is non-zero length, use it. 610 */ 611 uuidlen = strlen(uuid); 612 if (uuidlen > 0 && idlen >= uuidlen) { 613 NFSBCOPY(uuid, cp, uuidlen); 614 cp += uuidlen; 615 idlen -= uuidlen; 616 } 617 618 /* 619 * This only normally happens if the uuid isn't set. 620 */ 621 while (idlen > 0) { 622 *cp++ = (u_int8_t)(arc4random() % 256); 623 idlen--; 624 } 625 } 626 627 /* 628 * Fill in a lock owner name. For now, pid + the process's creation time. 629 */ 630 void 631 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 632 { 633 union { 634 u_int32_t lval; 635 u_int8_t cval[4]; 636 } tl; 637 struct proc *p; 638 639 if (id == NULL) { 640 /* Return the single open_owner of all 0 bytes. */ 641 bzero(cp, NFSV4CL_LOCKNAMELEN); 642 return; 643 } 644 if ((flags & F_POSIX) != 0) { 645 p = (struct proc *)id; 646 tl.lval = p->p_pid; 647 *cp++ = tl.cval[0]; 648 *cp++ = tl.cval[1]; 649 *cp++ = tl.cval[2]; 650 *cp++ = tl.cval[3]; 651 tl.lval = p->p_stats->p_start.tv_sec; 652 *cp++ = tl.cval[0]; 653 *cp++ = tl.cval[1]; 654 *cp++ = tl.cval[2]; 655 *cp++ = tl.cval[3]; 656 tl.lval = p->p_stats->p_start.tv_usec; 657 *cp++ = tl.cval[0]; 658 *cp++ = tl.cval[1]; 659 *cp++ = tl.cval[2]; 660 *cp = tl.cval[3]; 661 } else if ((flags & F_FLOCK) != 0) { 662 bcopy(&id, cp, sizeof(id)); 663 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 664 } else { 665 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 666 bzero(cp, NFSV4CL_LOCKNAMELEN); 667 } 668 } 669 670 /* 671 * Find the parent process for the thread passed in as an argument. 672 * If none exists, return NULL, otherwise return a thread for the parent. 673 * (Can be any of the threads, since it is only used for td->td_proc.) 674 */ 675 NFSPROC_T * 676 nfscl_getparent(struct thread *td) 677 { 678 struct proc *p; 679 struct thread *ptd; 680 681 if (td == NULL) 682 return (NULL); 683 p = td->td_proc; 684 if (p->p_pid == 0) 685 return (NULL); 686 p = p->p_pptr; 687 if (p == NULL) 688 return (NULL); 689 ptd = TAILQ_FIRST(&p->p_threads); 690 return (ptd); 691 } 692 693 /* 694 * Start up the renew kernel thread. 695 */ 696 static void 697 start_nfscl(void *arg) 698 { 699 struct nfsclclient *clp; 700 struct thread *td; 701 702 clp = (struct nfsclclient *)arg; 703 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 704 nfscl_renewthread(clp, td); 705 kproc_exit(0); 706 } 707 708 void 709 nfscl_start_renewthread(struct nfsclclient *clp) 710 { 711 712 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 713 "nfscl"); 714 } 715 716 /* 717 * Handle wcc_data. 718 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 719 * as the first Op after PutFH. 720 * (For NFSv4, the postop attributes are after the Op, so they can't be 721 * parsed here. A separate call to nfscl_postop_attr() is required.) 722 */ 723 int 724 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 725 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 726 { 727 u_int32_t *tl; 728 struct nfsnode *np = VTONFS(vp); 729 struct nfsvattr nfsva; 730 int error = 0; 731 732 if (wccflagp != NULL) 733 *wccflagp = 0; 734 if (nd->nd_flag & ND_NFSV3) { 735 *flagp = 0; 736 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 737 if (*tl == newnfs_true) { 738 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 739 if (wccflagp != NULL) { 740 mtx_lock(&np->n_mtx); 741 *wccflagp = (np->n_mtime.tv_sec == 742 fxdr_unsigned(u_int32_t, *(tl + 2)) && 743 np->n_mtime.tv_nsec == 744 fxdr_unsigned(u_int32_t, *(tl + 3))); 745 mtx_unlock(&np->n_mtx); 746 } 747 } 748 error = nfscl_postop_attr(nd, nap, flagp, stuff); 749 if (wccflagp != NULL && *flagp == 0) 750 *wccflagp = 0; 751 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 752 == (ND_NFSV4 | ND_V4WCCATTR)) { 753 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 754 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 755 NULL, NULL, NULL, NULL, NULL); 756 if (error) 757 return (error); 758 /* 759 * Get rid of Op# and status for next op. 760 */ 761 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 762 if (*++tl) 763 nd->nd_flag |= ND_NOMOREDATA; 764 if (wccflagp != NULL && 765 nfsva.na_vattr.va_mtime.tv_sec != 0) { 766 mtx_lock(&np->n_mtx); 767 *wccflagp = (np->n_mtime.tv_sec == 768 nfsva.na_vattr.va_mtime.tv_sec && 769 np->n_mtime.tv_nsec == 770 nfsva.na_vattr.va_mtime.tv_sec); 771 mtx_unlock(&np->n_mtx); 772 } 773 } 774 nfsmout: 775 return (error); 776 } 777 778 /* 779 * Get postop attributes. 780 */ 781 int 782 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 783 void *stuff) 784 { 785 u_int32_t *tl; 786 int error = 0; 787 788 *retp = 0; 789 if (nd->nd_flag & ND_NOMOREDATA) 790 return (error); 791 if (nd->nd_flag & ND_NFSV3) { 792 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 793 *retp = fxdr_unsigned(int, *tl); 794 } else if (nd->nd_flag & ND_NFSV4) { 795 /* 796 * For NFSv4, the postop attr are at the end, so no point 797 * in looking if nd_repstat != 0. 798 */ 799 if (!nd->nd_repstat) { 800 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 801 if (*(tl + 1)) 802 /* should never happen since nd_repstat != 0 */ 803 nd->nd_flag |= ND_NOMOREDATA; 804 else 805 *retp = 1; 806 } 807 } else if (!nd->nd_repstat) { 808 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 809 *retp = 1; 810 } 811 if (*retp) { 812 error = nfsm_loadattr(nd, nap); 813 if (error) 814 *retp = 0; 815 } 816 nfsmout: 817 return (error); 818 } 819 820 /* 821 * Fill in the setable attributes. The full argument indicates whether 822 * to fill in them all or just mode and time. 823 */ 824 void 825 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 826 struct vnode *vp, int flags, u_int32_t rdev) 827 { 828 u_int32_t *tl; 829 struct nfsv2_sattr *sp; 830 nfsattrbit_t attrbits; 831 832 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 833 case ND_NFSV2: 834 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 835 if (vap->va_mode == (mode_t)VNOVAL) 836 sp->sa_mode = newnfs_xdrneg1; 837 else 838 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 839 if (vap->va_uid == (uid_t)VNOVAL) 840 sp->sa_uid = newnfs_xdrneg1; 841 else 842 sp->sa_uid = txdr_unsigned(vap->va_uid); 843 if (vap->va_gid == (gid_t)VNOVAL) 844 sp->sa_gid = newnfs_xdrneg1; 845 else 846 sp->sa_gid = txdr_unsigned(vap->va_gid); 847 if (flags & NFSSATTR_SIZE0) 848 sp->sa_size = 0; 849 else if (flags & NFSSATTR_SIZENEG1) 850 sp->sa_size = newnfs_xdrneg1; 851 else if (flags & NFSSATTR_SIZERDEV) 852 sp->sa_size = txdr_unsigned(rdev); 853 else 854 sp->sa_size = txdr_unsigned(vap->va_size); 855 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 856 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 857 break; 858 case ND_NFSV3: 859 if (vap->va_mode != (mode_t)VNOVAL) { 860 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 861 *tl++ = newnfs_true; 862 *tl = txdr_unsigned(vap->va_mode); 863 } else { 864 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 865 *tl = newnfs_false; 866 } 867 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 868 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 869 *tl++ = newnfs_true; 870 *tl = txdr_unsigned(vap->va_uid); 871 } else { 872 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 873 *tl = newnfs_false; 874 } 875 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 876 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 877 *tl++ = newnfs_true; 878 *tl = txdr_unsigned(vap->va_gid); 879 } else { 880 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 881 *tl = newnfs_false; 882 } 883 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 884 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 885 *tl++ = newnfs_true; 886 txdr_hyper(vap->va_size, tl); 887 } else { 888 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 889 *tl = newnfs_false; 890 } 891 if (vap->va_atime.tv_sec != VNOVAL) { 892 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 893 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 894 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 895 txdr_nfsv3time(&vap->va_atime, tl); 896 } else { 897 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 898 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 899 } 900 } else { 901 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 902 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 903 } 904 if (vap->va_mtime.tv_sec != VNOVAL) { 905 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 906 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 907 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 908 txdr_nfsv3time(&vap->va_mtime, tl); 909 } else { 910 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 911 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 912 } 913 } else { 914 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 915 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 916 } 917 break; 918 case ND_NFSV4: 919 NFSZERO_ATTRBIT(&attrbits); 920 if (vap->va_mode != (mode_t)VNOVAL) 921 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 922 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 923 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 924 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 925 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 926 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 927 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 928 if (vap->va_atime.tv_sec != VNOVAL) 929 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 930 if (vap->va_mtime.tv_sec != VNOVAL) 931 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 932 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 933 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 934 break; 935 } 936 } 937 938 /* 939 * nfscl_request() - mostly a wrapper for newnfs_request(). 940 */ 941 int 942 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 943 struct ucred *cred, void *stuff) 944 { 945 int ret, vers; 946 struct nfsmount *nmp; 947 948 nmp = VFSTONFS(vp->v_mount); 949 if (nd->nd_flag & ND_NFSV4) 950 vers = NFS_VER4; 951 else if (nd->nd_flag & ND_NFSV3) 952 vers = NFS_VER3; 953 else 954 vers = NFS_VER2; 955 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 956 NFS_PROG, vers, NULL, 1, NULL, NULL); 957 return (ret); 958 } 959 960 /* 961 * fill in this bsden's variant of statfs using nfsstatfs. 962 */ 963 void 964 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 965 { 966 struct statfs *sbp = (struct statfs *)statfs; 967 968 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 969 sbp->f_bsize = NFS_FABLKSIZE; 970 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 971 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 972 /* 973 * Although sf_abytes is uint64_t and f_bavail is int64_t, 974 * the value after dividing by NFS_FABLKSIZE is small 975 * enough that it will fit in 63bits, so it is ok to 976 * assign it to f_bavail without fear that it will become 977 * negative. 978 */ 979 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 980 sbp->f_files = sfp->sf_tfiles; 981 /* Since f_ffree is int64_t, clip it to 63bits. */ 982 if (sfp->sf_ffiles > INT64_MAX) 983 sbp->f_ffree = INT64_MAX; 984 else 985 sbp->f_ffree = sfp->sf_ffiles; 986 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 987 /* 988 * The type casts to (int32_t) ensure that this code is 989 * compatible with the old NFS client, in that it will 990 * propagate bit31 to the high order bits. This may or may 991 * not be correct for NFSv2, but since it is a legacy 992 * environment, I'd rather retain backwards compatibility. 993 */ 994 sbp->f_bsize = (int32_t)sfp->sf_bsize; 995 sbp->f_blocks = (int32_t)sfp->sf_blocks; 996 sbp->f_bfree = (int32_t)sfp->sf_bfree; 997 sbp->f_bavail = (int32_t)sfp->sf_bavail; 998 sbp->f_files = 0; 999 sbp->f_ffree = 0; 1000 } 1001 } 1002 1003 /* 1004 * Use the fsinfo stuff to update the mount point. 1005 */ 1006 void 1007 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 1008 { 1009 1010 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 1011 fsp->fs_wtpref >= NFS_FABLKSIZE) 1012 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 1013 ~(NFS_FABLKSIZE - 1); 1014 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 1015 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 1016 if (nmp->nm_wsize == 0) 1017 nmp->nm_wsize = fsp->fs_wtmax; 1018 } 1019 if (nmp->nm_wsize < NFS_FABLKSIZE) 1020 nmp->nm_wsize = NFS_FABLKSIZE; 1021 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 1022 fsp->fs_rtpref >= NFS_FABLKSIZE) 1023 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 1024 ~(NFS_FABLKSIZE - 1); 1025 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 1026 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 1027 if (nmp->nm_rsize == 0) 1028 nmp->nm_rsize = fsp->fs_rtmax; 1029 } 1030 if (nmp->nm_rsize < NFS_FABLKSIZE) 1031 nmp->nm_rsize = NFS_FABLKSIZE; 1032 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 1033 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 1034 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 1035 ~(NFS_DIRBLKSIZ - 1); 1036 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 1037 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 1038 if (nmp->nm_readdirsize == 0) 1039 nmp->nm_readdirsize = fsp->fs_rtmax; 1040 } 1041 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 1042 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 1043 if (fsp->fs_maxfilesize > 0 && 1044 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 1045 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 1046 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 1047 nmp->nm_state |= NFSSTA_GOTFSINFO; 1048 } 1049 1050 /* 1051 * Lookups source address which should be used to communicate with 1052 * @nmp and stores it inside @pdst. 1053 * 1054 * Returns 0 on success. 1055 */ 1056 u_int8_t * 1057 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) 1058 { 1059 #if defined(INET6) || defined(INET) 1060 int error, fibnum; 1061 1062 fibnum = curthread->td_proc->p_fibnum; 1063 #endif 1064 #ifdef INET 1065 if (nmp->nm_nam->sa_family == AF_INET) { 1066 struct sockaddr_in *sin; 1067 struct nhop4_extended nh_ext; 1068 1069 sin = (struct sockaddr_in *)nmp->nm_nam; 1070 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1071 error = fib4_lookup_nh_ext(fibnum, sin->sin_addr, 0, 0, 1072 &nh_ext); 1073 CURVNET_RESTORE(); 1074 if (error != 0) 1075 return (NULL); 1076 1077 if ((ntohl(nh_ext.nh_src.s_addr) >> IN_CLASSA_NSHIFT) == 1078 IN_LOOPBACKNET) { 1079 /* Ignore loopback addresses */ 1080 return (NULL); 1081 } 1082 1083 *isinet6p = 0; 1084 *((struct in_addr *)paddr) = nh_ext.nh_src; 1085 1086 return (u_int8_t *)paddr; 1087 } 1088 #endif 1089 #ifdef INET6 1090 if (nmp->nm_nam->sa_family == AF_INET6) { 1091 struct sockaddr_in6 *sin6; 1092 1093 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1094 1095 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1096 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, 1097 sin6->sin6_scope_id, NULL, paddr, NULL); 1098 CURVNET_RESTORE(); 1099 if (error != 0) 1100 return (NULL); 1101 1102 if (IN6_IS_ADDR_LOOPBACK(paddr)) 1103 return (NULL); 1104 1105 /* Scope is embedded in */ 1106 *isinet6p = 1; 1107 1108 return (u_int8_t *)paddr; 1109 } 1110 #endif 1111 return (NULL); 1112 } 1113 1114 /* 1115 * Copy NFS uid, gids from the cred structure. 1116 */ 1117 void 1118 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1119 { 1120 int i; 1121 1122 KASSERT(cr->cr_ngroups >= 0, 1123 ("newnfs_copyincred: negative cr_ngroups")); 1124 nfscr->nfsc_uid = cr->cr_uid; 1125 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1126 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1127 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1128 } 1129 1130 1131 /* 1132 * Do any client specific initialization. 1133 */ 1134 void 1135 nfscl_init(void) 1136 { 1137 static int inited = 0; 1138 1139 if (inited) 1140 return; 1141 inited = 1; 1142 nfscl_inited = 1; 1143 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1144 } 1145 1146 /* 1147 * Check each of the attributes to be set, to ensure they aren't already 1148 * the correct value. Disable setting ones already correct. 1149 */ 1150 int 1151 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1152 { 1153 1154 if (vap->va_mode != (mode_t)VNOVAL) { 1155 if (vap->va_mode == nvap->na_mode) 1156 vap->va_mode = (mode_t)VNOVAL; 1157 } 1158 if (vap->va_uid != (uid_t)VNOVAL) { 1159 if (vap->va_uid == nvap->na_uid) 1160 vap->va_uid = (uid_t)VNOVAL; 1161 } 1162 if (vap->va_gid != (gid_t)VNOVAL) { 1163 if (vap->va_gid == nvap->na_gid) 1164 vap->va_gid = (gid_t)VNOVAL; 1165 } 1166 if (vap->va_size != VNOVAL) { 1167 if (vap->va_size == nvap->na_size) 1168 vap->va_size = VNOVAL; 1169 } 1170 1171 /* 1172 * We are normally called with only a partially initialized 1173 * VAP. Since the NFSv3 spec says that server may use the 1174 * file attributes to store the verifier, the spec requires 1175 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1176 * in atime, but we can't really assume that all servers will 1177 * so we ensure that our SETATTR sets both atime and mtime. 1178 * Set the VA_UTIMES_NULL flag for this case, so that 1179 * the server's time will be used. This is needed to 1180 * work around a bug in some Solaris servers, where 1181 * setting the time TOCLIENT causes the Setattr RPC 1182 * to return NFS_OK, but not set va_mode. 1183 */ 1184 if (vap->va_mtime.tv_sec == VNOVAL) { 1185 vfs_timestamp(&vap->va_mtime); 1186 vap->va_vaflags |= VA_UTIMES_NULL; 1187 } 1188 if (vap->va_atime.tv_sec == VNOVAL) 1189 vap->va_atime = vap->va_mtime; 1190 return (1); 1191 } 1192 1193 /* 1194 * Map nfsv4 errors to errno.h errors. 1195 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1196 * error should only be returned for the Open, Create and Setattr Ops. 1197 * As such, most calls can just pass in 0 for those arguments. 1198 */ 1199 APPLESTATIC int 1200 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1201 { 1202 struct proc *p; 1203 1204 if (error < 10000 || error >= NFSERR_STALEWRITEVERF) 1205 return (error); 1206 if (td != NULL) 1207 p = td->td_proc; 1208 else 1209 p = NULL; 1210 switch (error) { 1211 case NFSERR_BADOWNER: 1212 tprintf(p, LOG_INFO, 1213 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1214 uid, gid); 1215 return (EPERM); 1216 case NFSERR_BADNAME: 1217 case NFSERR_BADCHAR: 1218 printf("nfsv4 char/name not handled by server\n"); 1219 return (ENOENT); 1220 case NFSERR_STALECLIENTID: 1221 case NFSERR_STALESTATEID: 1222 case NFSERR_EXPIRED: 1223 case NFSERR_BADSTATEID: 1224 case NFSERR_BADSESSION: 1225 printf("nfsv4 recover err returned %d\n", error); 1226 return (EIO); 1227 case NFSERR_BADHANDLE: 1228 case NFSERR_SERVERFAULT: 1229 case NFSERR_BADTYPE: 1230 case NFSERR_FHEXPIRED: 1231 case NFSERR_RESOURCE: 1232 case NFSERR_MOVED: 1233 case NFSERR_NOFILEHANDLE: 1234 case NFSERR_MINORVERMISMATCH: 1235 case NFSERR_OLDSTATEID: 1236 case NFSERR_BADSEQID: 1237 case NFSERR_LEASEMOVED: 1238 case NFSERR_RECLAIMBAD: 1239 case NFSERR_BADXDR: 1240 case NFSERR_OPILLEGAL: 1241 printf("nfsv4 client/server protocol prob err=%d\n", 1242 error); 1243 return (EIO); 1244 default: 1245 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1246 return (EIO); 1247 }; 1248 } 1249 1250 /* 1251 * Check to see if the process for this owner exists. Return 1 if it doesn't 1252 * and 0 otherwise. 1253 */ 1254 int 1255 nfscl_procdoesntexist(u_int8_t *own) 1256 { 1257 union { 1258 u_int32_t lval; 1259 u_int8_t cval[4]; 1260 } tl; 1261 struct proc *p; 1262 pid_t pid; 1263 int i, ret = 0; 1264 1265 /* For the single open_owner of all 0 bytes, just return 0. */ 1266 for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++) 1267 if (own[i] != 0) 1268 break; 1269 if (i == NFSV4CL_LOCKNAMELEN) 1270 return (0); 1271 1272 tl.cval[0] = *own++; 1273 tl.cval[1] = *own++; 1274 tl.cval[2] = *own++; 1275 tl.cval[3] = *own++; 1276 pid = tl.lval; 1277 p = pfind_locked(pid); 1278 if (p == NULL) 1279 return (1); 1280 if (p->p_stats == NULL) { 1281 PROC_UNLOCK(p); 1282 return (0); 1283 } 1284 tl.cval[0] = *own++; 1285 tl.cval[1] = *own++; 1286 tl.cval[2] = *own++; 1287 tl.cval[3] = *own++; 1288 if (tl.lval != p->p_stats->p_start.tv_sec) { 1289 ret = 1; 1290 } else { 1291 tl.cval[0] = *own++; 1292 tl.cval[1] = *own++; 1293 tl.cval[2] = *own++; 1294 tl.cval[3] = *own; 1295 if (tl.lval != p->p_stats->p_start.tv_usec) 1296 ret = 1; 1297 } 1298 PROC_UNLOCK(p); 1299 return (ret); 1300 } 1301 1302 /* 1303 * - nfs pseudo system call for the client 1304 */ 1305 /* 1306 * MPSAFE 1307 */ 1308 static int 1309 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1310 { 1311 struct file *fp; 1312 struct nfscbd_args nfscbdarg; 1313 struct nfsd_nfscbd_args nfscbdarg2; 1314 struct nameidata nd; 1315 struct nfscl_dumpmntopts dumpmntopts; 1316 cap_rights_t rights; 1317 char *buf; 1318 int error; 1319 struct mount *mp; 1320 struct nfsmount *nmp; 1321 1322 if (uap->flag & NFSSVC_CBADDSOCK) { 1323 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1324 if (error) 1325 return (error); 1326 /* 1327 * Since we don't know what rights might be required, 1328 * pretend that we need them all. It is better to be too 1329 * careful than too reckless. 1330 */ 1331 error = fget(td, nfscbdarg.sock, 1332 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); 1333 if (error) 1334 return (error); 1335 if (fp->f_type != DTYPE_SOCKET) { 1336 fdrop(fp, td); 1337 return (EPERM); 1338 } 1339 error = nfscbd_addsock(fp); 1340 fdrop(fp, td); 1341 if (!error && nfscl_enablecallb == 0) { 1342 nfsv4_cbport = nfscbdarg.port; 1343 nfscl_enablecallb = 1; 1344 } 1345 } else if (uap->flag & NFSSVC_NFSCBD) { 1346 if (uap->argp == NULL) 1347 return (EINVAL); 1348 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1349 sizeof(nfscbdarg2)); 1350 if (error) 1351 return (error); 1352 error = nfscbd_nfsd(td, &nfscbdarg2); 1353 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1354 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1355 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1356 dumpmntopts.ndmnt_blen > 1024)) 1357 error = EINVAL; 1358 if (error == 0) 1359 error = nfsrv_lookupfilename(&nd, 1360 dumpmntopts.ndmnt_fname, td); 1361 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1362 "nfs") != 0) { 1363 vput(nd.ni_vp); 1364 error = EINVAL; 1365 } 1366 if (error == 0) { 1367 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1368 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1369 dumpmntopts.ndmnt_blen); 1370 vput(nd.ni_vp); 1371 error = copyout(buf, dumpmntopts.ndmnt_buf, 1372 dumpmntopts.ndmnt_blen); 1373 free(buf, M_TEMP); 1374 } 1375 } else if (uap->flag & NFSSVC_FORCEDISM) { 1376 buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); 1377 error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL); 1378 if (error == 0) { 1379 nmp = NULL; 1380 mtx_lock(&mountlist_mtx); 1381 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1382 if (strcmp(mp->mnt_stat.f_mntonname, buf) == 1383 0 && strcmp(mp->mnt_stat.f_fstypename, 1384 "nfs") == 0 && mp->mnt_data != NULL) { 1385 nmp = VFSTONFS(mp); 1386 mtx_lock(&nmp->nm_mtx); 1387 if ((nmp->nm_privflag & 1388 NFSMNTP_FORCEDISM) == 0) { 1389 nmp->nm_privflag |= 1390 (NFSMNTP_FORCEDISM | 1391 NFSMNTP_CANCELRPCS); 1392 mtx_unlock(&nmp->nm_mtx); 1393 } else { 1394 nmp = NULL; 1395 mtx_unlock(&nmp->nm_mtx); 1396 } 1397 break; 1398 } 1399 } 1400 mtx_unlock(&mountlist_mtx); 1401 1402 if (nmp != NULL) { 1403 /* 1404 * Call newnfs_nmcancelreqs() to cause 1405 * any RPCs in progress on the mount point to 1406 * fail. 1407 * This will cause any process waiting for an 1408 * RPC to complete while holding a vnode lock 1409 * on the mounted-on vnode (such as "df" or 1410 * a non-forced "umount") to fail. 1411 * This will unlock the mounted-on vnode so 1412 * a forced dismount can succeed. 1413 * Then clear NFSMNTP_CANCELRPCS and wakeup(), 1414 * so that nfs_unmount() can complete. 1415 */ 1416 newnfs_nmcancelreqs(nmp); 1417 mtx_lock(&nmp->nm_mtx); 1418 nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS; 1419 wakeup(nmp); 1420 mtx_unlock(&nmp->nm_mtx); 1421 } else 1422 error = EINVAL; 1423 } 1424 free(buf, M_TEMP); 1425 } else { 1426 error = EINVAL; 1427 } 1428 return (error); 1429 } 1430 1431 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1432 1433 /* 1434 * Called once to initialize data structures... 1435 */ 1436 static int 1437 nfscl_modevent(module_t mod, int type, void *data) 1438 { 1439 int error = 0; 1440 static int loaded = 0; 1441 1442 switch (type) { 1443 case MOD_LOAD: 1444 if (loaded) 1445 return (0); 1446 newnfs_portinit(); 1447 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1448 nfscl_init(); 1449 NFSD_LOCK(); 1450 nfsrvd_cbinit(0); 1451 NFSD_UNLOCK(); 1452 ncl_call_invalcaches = ncl_invalcaches; 1453 nfsd_call_nfscl = nfssvc_nfscl; 1454 loaded = 1; 1455 break; 1456 1457 case MOD_UNLOAD: 1458 if (nfs_numnfscbd != 0) { 1459 error = EBUSY; 1460 break; 1461 } 1462 1463 /* 1464 * XXX: Unloading of nfscl module is unsupported. 1465 */ 1466 #if 0 1467 ncl_call_invalcaches = NULL; 1468 nfsd_call_nfscl = NULL; 1469 /* and get rid of the mutexes */ 1470 mtx_destroy(&ncl_iod_mutex); 1471 loaded = 0; 1472 break; 1473 #else 1474 /* FALLTHROUGH */ 1475 #endif 1476 default: 1477 error = EOPNOTSUPP; 1478 break; 1479 } 1480 return error; 1481 } 1482 static moduledata_t nfscl_mod = { 1483 "nfscl", 1484 nfscl_modevent, 1485 NULL, 1486 }; 1487 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1488 1489 /* So that loader and kldload(2) can find us, wherever we are.. */ 1490 MODULE_VERSION(nfscl, 1); 1491 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1492 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1493 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1494 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1495 1496