1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * generally, I don't like #includes inside .h files, but it seems to 39 * be the easiest way to handle the port. 40 */ 41 #include <fs/nfs/nfsport.h> 42 #include <netinet/if_ether.h> 43 #include <net/if_types.h> 44 45 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 46 extern struct vop_vector newnfs_vnodeops; 47 extern struct vop_vector newnfs_fifoops; 48 extern uma_zone_t newnfsnode_zone; 49 extern struct buf_ops buf_ops_newnfs; 50 extern int ncl_pbuf_freecnt; 51 extern short nfsv4_cbport; 52 extern int nfscl_enablecallb; 53 extern int nfs_numnfscbd; 54 extern int nfscl_inited; 55 struct mtx nfs_clstate_mutex; 56 struct mtx ncl_iod_mutex; 57 NFSDLOCKMUTEX; 58 59 extern void (*ncl_call_invalcaches)(struct vnode *); 60 61 /* 62 * Comparison function for vfs_hash functions. 63 */ 64 int 65 newnfs_vncmpf(struct vnode *vp, void *arg) 66 { 67 struct nfsfh *nfhp = (struct nfsfh *)arg; 68 struct nfsnode *np = VTONFS(vp); 69 70 if (np->n_fhp->nfh_len != nfhp->nfh_len || 71 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 72 return (1); 73 return (0); 74 } 75 76 /* 77 * Look up a vnode/nfsnode by file handle. 78 * Callers must check for mount points!! 79 * In all cases, a pointer to a 80 * nfsnode structure is returned. 81 * This variant takes a "struct nfsfh *" as second argument and uses 82 * that structure up, either by hanging off the nfsnode or FREEing it. 83 */ 84 int 85 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 86 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 87 void *stuff) 88 { 89 struct nfsnode *np, *dnp; 90 struct vnode *vp, *nvp; 91 struct nfsv4node *newd, *oldd; 92 int error; 93 u_int hash; 94 struct nfsmount *nmp; 95 96 nmp = VFSTONFS(mntp); 97 dnp = VTONFS(dvp); 98 *npp = NULL; 99 100 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 101 102 error = vfs_hash_get(mntp, hash, LK_EXCLUSIVE, 103 td, &nvp, newnfs_vncmpf, nfhp); 104 if (error == 0 && nvp != NULL) { 105 /* 106 * I believe there is a slight chance that vgonel() could 107 * get called on this vnode between when vn_lock() drops 108 * the VI_LOCK() and vget() acquires it again, so that it 109 * hasn't yet had v_usecount incremented. If this were to 110 * happen, the VI_DOOMED flag would be set, so check for 111 * that here. Since we now have the v_usecount incremented, 112 * we should be ok until we vrele() it, if the VI_DOOMED 113 * flag isn't set now. 114 */ 115 VI_LOCK(nvp); 116 if ((nvp->v_iflag & VI_DOOMED)) { 117 VI_UNLOCK(nvp); 118 vrele(nvp); 119 error = ENOENT; 120 } else { 121 VI_UNLOCK(nvp); 122 } 123 } 124 if (error) { 125 FREE((caddr_t)nfhp, M_NFSFH); 126 return (error); 127 } 128 if (nvp != NULL) { 129 np = VTONFS(nvp); 130 /* 131 * For NFSv4, check to see if it is the same name and 132 * replace the name, if it is different. 133 */ 134 oldd = newd = NULL; 135 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 136 nvp->v_type == VREG && 137 (np->n_v4->n4_namelen != cnp->cn_namelen || 138 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 139 cnp->cn_namelen) || 140 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 141 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 142 dnp->n_fhp->nfh_len))) { 143 MALLOC(newd, struct nfsv4node *, 144 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 145 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 146 NFSLOCKNODE(np); 147 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 148 && (np->n_v4->n4_namelen != cnp->cn_namelen || 149 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 150 cnp->cn_namelen) || 151 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 152 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 153 dnp->n_fhp->nfh_len))) { 154 oldd = np->n_v4; 155 np->n_v4 = newd; 156 newd = NULL; 157 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 158 np->n_v4->n4_namelen = cnp->cn_namelen; 159 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 160 dnp->n_fhp->nfh_len); 161 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 162 cnp->cn_namelen); 163 } 164 NFSUNLOCKNODE(np); 165 } 166 if (newd != NULL) 167 FREE((caddr_t)newd, M_NFSV4NODE); 168 if (oldd != NULL) 169 FREE((caddr_t)oldd, M_NFSV4NODE); 170 *npp = np; 171 FREE((caddr_t)nfhp, M_NFSFH); 172 return (0); 173 } 174 175 /* 176 * Allocate before getnewvnode since doing so afterward 177 * might cause a bogus v_data pointer to get dereferenced 178 * elsewhere if zalloc should block. 179 */ 180 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 181 182 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 183 if (error) { 184 uma_zfree(newnfsnode_zone, np); 185 FREE((caddr_t)nfhp, M_NFSFH); 186 return (error); 187 } 188 vp = nvp; 189 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 190 vp->v_data = np; 191 np->n_vnode = vp; 192 /* 193 * Initialize the mutex even if the vnode is going to be a loser. 194 * This simplifies the logic in reclaim, which can then unconditionally 195 * destroy the mutex (in the case of the loser, or if hash_insert 196 * happened to return an error no special casing is needed). 197 */ 198 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 199 200 /* 201 * Are we getting the root? If so, make sure the vnode flags 202 * are correct 203 */ 204 if ((nfhp->nfh_len == nmp->nm_fhsize) && 205 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 206 if (vp->v_type == VNON) 207 vp->v_type = VDIR; 208 vp->v_vflag |= VV_ROOT; 209 } 210 211 np->n_fhp = nfhp; 212 /* 213 * For NFSv4, we have to attach the directory file handle and 214 * file name, so that Open Ops can be done later. 215 */ 216 if (nmp->nm_flag & NFSMNT_NFSV4) { 217 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 218 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 219 M_WAITOK); 220 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 221 np->n_v4->n4_namelen = cnp->cn_namelen; 222 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 223 dnp->n_fhp->nfh_len); 224 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 225 cnp->cn_namelen); 226 } else { 227 np->n_v4 = NULL; 228 } 229 230 /* 231 * NFS supports recursive and shared locking. 232 */ 233 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 234 VN_LOCK_AREC(vp); 235 VN_LOCK_ASHARE(vp); 236 error = insmntque(vp, mntp); 237 if (error != 0) { 238 *npp = NULL; 239 mtx_destroy(&np->n_mtx); 240 FREE((caddr_t)nfhp, M_NFSFH); 241 if (np->n_v4 != NULL) 242 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 243 uma_zfree(newnfsnode_zone, np); 244 return (error); 245 } 246 error = vfs_hash_insert(vp, hash, LK_EXCLUSIVE, 247 td, &nvp, newnfs_vncmpf, nfhp); 248 if (error) 249 return (error); 250 if (nvp != NULL) { 251 *npp = VTONFS(nvp); 252 /* vfs_hash_insert() vput()'s the losing vnode */ 253 return (0); 254 } 255 *npp = np; 256 257 return (0); 258 } 259 260 /* 261 * Anothe variant of nfs_nget(). This one is only used by reopen. It 262 * takes almost the same args as nfs_nget(), but only succeeds if an entry 263 * exists in the cache. (Since files should already be "open" with a 264 * vnode ref cnt on the node when reopen calls this, it should always 265 * succeed.) 266 * Also, don't get a vnode lock, since it may already be locked by some 267 * other process that is handling it. This is ok, since all other threads 268 * on the client are blocked by the nfsc_lock being exclusively held by the 269 * caller of this function. 270 */ 271 int 272 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 273 struct thread *td, struct nfsnode **npp) 274 { 275 struct vnode *nvp; 276 u_int hash; 277 struct nfsfh *nfhp; 278 int error; 279 280 *npp = NULL; 281 /* For forced dismounts, just return error. */ 282 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 283 return (EINTR); 284 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 285 M_NFSFH, M_WAITOK); 286 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 287 nfhp->nfh_len = fhsize; 288 289 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 290 291 /* 292 * First, try to get the vnode locked, but don't block for the lock. 293 */ 294 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 295 newnfs_vncmpf, nfhp); 296 if (error == 0 && nvp != NULL) { 297 VOP_UNLOCK(nvp, 0); 298 } else if (error == EBUSY) { 299 /* 300 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 301 * and lock the vnode, but just get a v_usecount on it. 302 * LK_NOWAIT is set so that when vget() returns ENOENT, 303 * vfs_hash_get() fails instead of looping. 304 * If this succeeds, it is safe so long as a vflush() with 305 * FORCECLOSE has not been done. Since the Renew thread is 306 * stopped and the MNTK_UNMOUNTF flag is set before doing 307 * a vflush() with FORCECLOSE, we should be ok here. 308 */ 309 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 310 error = EINTR; 311 else 312 error = vfs_hash_get(mntp, hash, 313 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 314 newnfs_vncmpf, nfhp); 315 } 316 FREE(nfhp, M_NFSFH); 317 if (error) 318 return (error); 319 if (nvp != NULL) { 320 *npp = VTONFS(nvp); 321 return (0); 322 } 323 return (EINVAL); 324 } 325 326 /* 327 * Load the attribute cache (that lives in the nfsnode entry) with 328 * the attributes of the second argument and 329 * Iff vaper not NULL 330 * copy the attributes to *vaper 331 * Similar to nfs_loadattrcache(), except the attributes are passed in 332 * instead of being parsed out of the mbuf list. 333 */ 334 int 335 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 336 void *stuff, int writeattr, int dontshrink) 337 { 338 struct vnode *vp = *vpp; 339 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 340 struct nfsnode *np; 341 struct nfsmount *nmp; 342 struct timespec mtime_save; 343 344 /* 345 * If v_type == VNON it is a new node, so fill in the v_type, 346 * n_mtime fields. Check to see if it represents a special 347 * device, and if so, check for a possible alias. Once the 348 * correct vnode has been obtained, fill in the rest of the 349 * information. 350 */ 351 np = VTONFS(vp); 352 NFSLOCKNODE(np); 353 if (vp->v_type != nvap->va_type) { 354 vp->v_type = nvap->va_type; 355 if (vp->v_type == VFIFO) 356 vp->v_op = &newnfs_fifoops; 357 np->n_mtime = nvap->va_mtime; 358 } 359 nmp = VFSTONFS(vp->v_mount); 360 vap = &np->n_vattr.na_vattr; 361 mtime_save = vap->va_mtime; 362 if (writeattr) { 363 np->n_vattr.na_filerev = nap->na_filerev; 364 np->n_vattr.na_size = nap->na_size; 365 np->n_vattr.na_mtime = nap->na_mtime; 366 np->n_vattr.na_ctime = nap->na_ctime; 367 np->n_vattr.na_fsid = nap->na_fsid; 368 } else { 369 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 370 sizeof (struct nfsvattr)); 371 } 372 373 /* 374 * For NFSv4, if the node's fsid is not equal to the mount point's 375 * fsid, return the low order 32bits of the node's fsid. This 376 * allows getcwd(3) to work. There is a chance that the fsid might 377 * be the same as a local fs, but since this is in an NFS mount 378 * point, I don't think that will cause any problems? 379 */ 380 if ((nmp->nm_flag & (NFSMNT_NFSV4 | NFSMNT_HASSETFSID)) == 381 (NFSMNT_NFSV4 | NFSMNT_HASSETFSID) && 382 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 383 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) 384 vap->va_fsid = np->n_vattr.na_filesid[0]; 385 else 386 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 387 np->n_attrstamp = time_second; 388 if (vap->va_size != np->n_size) { 389 if (vap->va_type == VREG) { 390 if (dontshrink && vap->va_size < np->n_size) { 391 /* 392 * We've been told not to shrink the file; 393 * zero np->n_attrstamp to indicate that 394 * the attributes are stale. 395 */ 396 vap->va_size = np->n_size; 397 np->n_attrstamp = 0; 398 } else if (np->n_flag & NMODIFIED) { 399 /* 400 * We've modified the file: Use the larger 401 * of our size, and the server's size. 402 */ 403 if (vap->va_size < np->n_size) { 404 vap->va_size = np->n_size; 405 } else { 406 np->n_size = vap->va_size; 407 np->n_flag |= NSIZECHANGED; 408 } 409 } else { 410 np->n_size = vap->va_size; 411 np->n_flag |= NSIZECHANGED; 412 } 413 vnode_pager_setsize(vp, np->n_size); 414 } else { 415 np->n_size = vap->va_size; 416 } 417 } 418 /* 419 * The following checks are added to prevent a race between (say) 420 * a READDIR+ and a WRITE. 421 * READDIR+, WRITE requests sent out. 422 * READDIR+ resp, WRITE resp received on client. 423 * However, the WRITE resp was handled before the READDIR+ resp 424 * causing the post op attrs from the write to be loaded first 425 * and the attrs from the READDIR+ to be loaded later. If this 426 * happens, we have stale attrs loaded into the attrcache. 427 * We detect this by for the mtime moving back. We invalidate the 428 * attrcache when this happens. 429 */ 430 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) 431 /* Size changed or mtime went backwards */ 432 np->n_attrstamp = 0; 433 if (vaper != NULL) { 434 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 435 if (np->n_flag & NCHG) { 436 if (np->n_flag & NACC) 437 vaper->va_atime = np->n_atim; 438 if (np->n_flag & NUPD) 439 vaper->va_mtime = np->n_mtim; 440 } 441 } 442 NFSUNLOCKNODE(np); 443 return (0); 444 } 445 446 /* 447 * Fill in the client id name. For these bytes: 448 * 1 - they must be unique 449 * 2 - they should be persistent across client reboots 450 * 1 is more critical than 2 451 * Use the mount point's unique id plus either the uuid or, if that 452 * isn't set, random junk. 453 */ 454 void 455 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 456 { 457 int uuidlen; 458 459 /* 460 * First, put in the 64bit mount point identifier. 461 */ 462 if (idlen >= sizeof (u_int64_t)) { 463 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 464 cp += sizeof (u_int64_t); 465 idlen -= sizeof (u_int64_t); 466 } 467 468 /* 469 * If uuid is non-zero length, use it. 470 */ 471 uuidlen = strlen(uuid); 472 if (uuidlen > 0 && idlen >= uuidlen) { 473 NFSBCOPY(uuid, cp, uuidlen); 474 cp += uuidlen; 475 idlen -= uuidlen; 476 } 477 478 /* 479 * This only normally happens if the uuid isn't set. 480 */ 481 while (idlen > 0) { 482 *cp++ = (u_int8_t)(arc4random() % 256); 483 idlen--; 484 } 485 } 486 487 /* 488 * Fill in a lock owner name. For now, pid + the process's creation time. 489 */ 490 void 491 nfscl_filllockowner(struct thread *td, u_int8_t *cp) 492 { 493 union { 494 u_int32_t lval; 495 u_int8_t cval[4]; 496 } tl; 497 struct proc *p; 498 499 if (td == NULL) { 500 printf("NULL td\n"); 501 bzero(cp, 12); 502 return; 503 } 504 p = td->td_proc; 505 if (p == NULL) { 506 printf("NULL pid\n"); 507 bzero(cp, 12); 508 return; 509 } 510 tl.lval = p->p_pid; 511 *cp++ = tl.cval[0]; 512 *cp++ = tl.cval[1]; 513 *cp++ = tl.cval[2]; 514 *cp++ = tl.cval[3]; 515 if (p->p_stats == NULL) { 516 printf("pstats null\n"); 517 bzero(cp, 8); 518 return; 519 } 520 tl.lval = p->p_stats->p_start.tv_sec; 521 *cp++ = tl.cval[0]; 522 *cp++ = tl.cval[1]; 523 *cp++ = tl.cval[2]; 524 *cp++ = tl.cval[3]; 525 tl.lval = p->p_stats->p_start.tv_usec; 526 *cp++ = tl.cval[0]; 527 *cp++ = tl.cval[1]; 528 *cp++ = tl.cval[2]; 529 *cp = tl.cval[3]; 530 } 531 532 /* 533 * Find the parent process for the thread passed in as an argument. 534 * If none exists, return NULL, otherwise return a thread for the parent. 535 * (Can be any of the threads, since it is only used for td->td_proc.) 536 */ 537 NFSPROC_T * 538 nfscl_getparent(struct thread *td) 539 { 540 struct proc *p; 541 struct thread *ptd; 542 543 if (td == NULL) 544 return (NULL); 545 p = td->td_proc; 546 if (p->p_pid == 0) 547 return (NULL); 548 p = p->p_pptr; 549 if (p == NULL) 550 return (NULL); 551 ptd = TAILQ_FIRST(&p->p_threads); 552 return (ptd); 553 } 554 555 /* 556 * Start up the renew kernel thread. 557 */ 558 static void 559 start_nfscl(void *arg) 560 { 561 struct nfsclclient *clp; 562 struct thread *td; 563 564 clp = (struct nfsclclient *)arg; 565 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 566 nfscl_renewthread(clp, td); 567 kproc_exit(0); 568 } 569 570 void 571 nfscl_start_renewthread(struct nfsclclient *clp) 572 { 573 574 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 575 "nfscl"); 576 } 577 578 /* 579 * Handle wcc_data. 580 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 581 * as the first Op after PutFH. 582 * (For NFSv4, the postop attributes are after the Op, so they can't be 583 * parsed here. A separate call to nfscl_postop_attr() is required.) 584 */ 585 int 586 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 587 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 588 { 589 u_int32_t *tl; 590 struct nfsnode *np = VTONFS(vp); 591 struct nfsvattr nfsva; 592 int error = 0; 593 594 if (wccflagp != NULL) 595 *wccflagp = 0; 596 if (nd->nd_flag & ND_NFSV3) { 597 *flagp = 0; 598 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 599 if (*tl == newnfs_true) { 600 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 601 if (wccflagp != NULL) { 602 mtx_lock(&np->n_mtx); 603 *wccflagp = (np->n_mtime.tv_sec == 604 fxdr_unsigned(u_int32_t, *(tl + 2)) && 605 np->n_mtime.tv_nsec == 606 fxdr_unsigned(u_int32_t, *(tl + 3))); 607 mtx_unlock(&np->n_mtx); 608 } 609 } 610 error = nfscl_postop_attr(nd, nap, flagp, stuff); 611 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 612 == (ND_NFSV4 | ND_V4WCCATTR)) { 613 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 614 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 615 NULL, NULL, NULL, NULL, NULL); 616 if (error) 617 return (error); 618 /* 619 * Get rid of Op# and status for next op. 620 */ 621 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 622 if (*++tl) 623 nd->nd_flag |= ND_NOMOREDATA; 624 if (wccflagp != NULL && 625 nfsva.na_vattr.va_mtime.tv_sec != 0) { 626 mtx_lock(&np->n_mtx); 627 *wccflagp = (np->n_mtime.tv_sec == 628 nfsva.na_vattr.va_mtime.tv_sec && 629 np->n_mtime.tv_nsec == 630 nfsva.na_vattr.va_mtime.tv_sec); 631 mtx_unlock(&np->n_mtx); 632 } 633 } 634 nfsmout: 635 return (error); 636 } 637 638 /* 639 * Get postop attributes. 640 */ 641 int 642 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 643 void *stuff) 644 { 645 u_int32_t *tl; 646 int error = 0; 647 648 *retp = 0; 649 if (nd->nd_flag & ND_NOMOREDATA) 650 return (error); 651 if (nd->nd_flag & ND_NFSV3) { 652 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 653 *retp = fxdr_unsigned(int, *tl); 654 } else if (nd->nd_flag & ND_NFSV4) { 655 /* 656 * For NFSv4, the postop attr are at the end, so no point 657 * in looking if nd_repstat != 0. 658 */ 659 if (!nd->nd_repstat) { 660 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 661 if (*(tl + 1)) 662 /* should never happen since nd_repstat != 0 */ 663 nd->nd_flag |= ND_NOMOREDATA; 664 else 665 *retp = 1; 666 } 667 } else if (!nd->nd_repstat) { 668 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 669 *retp = 1; 670 } 671 if (*retp) { 672 error = nfsm_loadattr(nd, nap); 673 if (error) 674 *retp = 0; 675 } 676 nfsmout: 677 return (error); 678 } 679 680 /* 681 * Fill in the setable attributes. The full argument indicates whether 682 * to fill in them all or just mode and time. 683 */ 684 void 685 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 686 struct vnode *vp, int flags, u_int32_t rdev) 687 { 688 u_int32_t *tl; 689 struct nfsv2_sattr *sp; 690 nfsattrbit_t attrbits; 691 struct timeval curtime; 692 693 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 694 case ND_NFSV2: 695 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 696 if (vap->va_mode == (mode_t)VNOVAL) 697 sp->sa_mode = newnfs_xdrneg1; 698 else 699 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 700 if (vap->va_uid == (uid_t)VNOVAL) 701 sp->sa_uid = newnfs_xdrneg1; 702 else 703 sp->sa_uid = txdr_unsigned(vap->va_uid); 704 if (vap->va_gid == (gid_t)VNOVAL) 705 sp->sa_gid = newnfs_xdrneg1; 706 else 707 sp->sa_gid = txdr_unsigned(vap->va_gid); 708 if (flags & NFSSATTR_SIZE0) 709 sp->sa_size = 0; 710 else if (flags & NFSSATTR_SIZENEG1) 711 sp->sa_size = newnfs_xdrneg1; 712 else if (flags & NFSSATTR_SIZERDEV) 713 sp->sa_size = txdr_unsigned(rdev); 714 else 715 sp->sa_size = txdr_unsigned(vap->va_size); 716 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 717 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 718 break; 719 case ND_NFSV3: 720 getmicrotime(&curtime); 721 if (vap->va_mode != (mode_t)VNOVAL) { 722 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 723 *tl++ = newnfs_true; 724 *tl = txdr_unsigned(vap->va_mode); 725 } else { 726 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 727 *tl = newnfs_false; 728 } 729 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 730 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 731 *tl++ = newnfs_true; 732 *tl = txdr_unsigned(vap->va_uid); 733 } else { 734 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 735 *tl = newnfs_false; 736 } 737 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 738 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 739 *tl++ = newnfs_true; 740 *tl = txdr_unsigned(vap->va_gid); 741 } else { 742 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 743 *tl = newnfs_false; 744 } 745 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 746 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 747 *tl++ = newnfs_true; 748 txdr_hyper(vap->va_size, tl); 749 } else { 750 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 751 *tl = newnfs_false; 752 } 753 if (vap->va_atime.tv_sec != VNOVAL) { 754 if (vap->va_atime.tv_sec != curtime.tv_sec) { 755 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 756 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 757 txdr_nfsv3time(&vap->va_atime, tl); 758 } else { 759 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 760 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 761 } 762 } else { 763 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 764 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 765 } 766 if (vap->va_mtime.tv_sec != VNOVAL) { 767 if (vap->va_mtime.tv_sec != curtime.tv_sec) { 768 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 769 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 770 txdr_nfsv3time(&vap->va_mtime, tl); 771 } else { 772 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 773 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 774 } 775 } else { 776 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 777 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 778 } 779 break; 780 case ND_NFSV4: 781 NFSZERO_ATTRBIT(&attrbits); 782 if (vap->va_mode != (mode_t)VNOVAL) 783 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 784 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 785 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 786 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 787 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 788 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 789 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 790 if (vap->va_atime.tv_sec != VNOVAL) 791 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 792 if (vap->va_mtime.tv_sec != VNOVAL) 793 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 794 (void) nfsv4_fillattr(nd, vp, NULL, vap, NULL, 0, &attrbits, 795 NULL, NULL, 0, 0); 796 break; 797 }; 798 } 799 800 /* 801 * nfscl_request() - mostly a wrapper for newnfs_request(). 802 */ 803 int 804 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 805 struct ucred *cred, void *stuff) 806 { 807 int ret, vers; 808 struct nfsmount *nmp; 809 810 nmp = VFSTONFS(vp->v_mount); 811 if (nd->nd_flag & ND_NFSV4) 812 vers = NFS_VER4; 813 else if (nd->nd_flag & ND_NFSV3) 814 vers = NFS_VER3; 815 else 816 vers = NFS_VER2; 817 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 818 NFS_PROG, vers, NULL, 1, NULL); 819 return (ret); 820 } 821 822 /* 823 * fill in this bsden's variant of statfs using nfsstatfs. 824 */ 825 void 826 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 827 { 828 struct statfs *sbp = (struct statfs *)statfs; 829 nfsquad_t tquad; 830 831 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 832 sbp->f_bsize = NFS_FABLKSIZE; 833 tquad.qval = sfp->sf_tbytes; 834 sbp->f_blocks = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE)); 835 tquad.qval = sfp->sf_fbytes; 836 sbp->f_bfree = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE)); 837 tquad.qval = sfp->sf_abytes; 838 sbp->f_bavail = (long)(tquad.qval / ((u_quad_t)NFS_FABLKSIZE)); 839 tquad.qval = sfp->sf_tfiles; 840 sbp->f_files = (tquad.lval[0] & 0x7fffffff); 841 tquad.qval = sfp->sf_ffiles; 842 sbp->f_ffree = (tquad.lval[0] & 0x7fffffff); 843 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 844 sbp->f_bsize = (int32_t)sfp->sf_bsize; 845 sbp->f_blocks = (int32_t)sfp->sf_blocks; 846 sbp->f_bfree = (int32_t)sfp->sf_bfree; 847 sbp->f_bavail = (int32_t)sfp->sf_bavail; 848 sbp->f_files = 0; 849 sbp->f_ffree = 0; 850 } 851 } 852 853 /* 854 * Use the fsinfo stuff to update the mount point. 855 */ 856 void 857 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 858 { 859 860 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 861 fsp->fs_wtpref >= NFS_FABLKSIZE) 862 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 863 ~(NFS_FABLKSIZE - 1); 864 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 865 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 866 if (nmp->nm_wsize == 0) 867 nmp->nm_wsize = fsp->fs_wtmax; 868 } 869 if (nmp->nm_wsize < NFS_FABLKSIZE) 870 nmp->nm_wsize = NFS_FABLKSIZE; 871 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 872 fsp->fs_rtpref >= NFS_FABLKSIZE) 873 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 874 ~(NFS_FABLKSIZE - 1); 875 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 876 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 877 if (nmp->nm_rsize == 0) 878 nmp->nm_rsize = fsp->fs_rtmax; 879 } 880 if (nmp->nm_rsize < NFS_FABLKSIZE) 881 nmp->nm_rsize = NFS_FABLKSIZE; 882 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 883 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 884 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 885 ~(NFS_DIRBLKSIZ - 1); 886 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 887 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 888 if (nmp->nm_readdirsize == 0) 889 nmp->nm_readdirsize = fsp->fs_rtmax; 890 } 891 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 892 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 893 if (fsp->fs_maxfilesize > 0 && 894 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 895 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 896 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 897 nmp->nm_state |= NFSSTA_GOTFSINFO; 898 } 899 900 /* 901 * Get a pointer to my IP addrress and return it. 902 * Return NULL if you can't find one. 903 */ 904 u_int8_t * 905 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 906 { 907 struct sockaddr_in sad, *sin; 908 struct rtentry *rt; 909 u_int8_t *retp = NULL; 910 static struct in_addr laddr; 911 912 *isinet6p = 0; 913 /* 914 * Loop up a route for the destination address. 915 */ 916 if (nmp->nm_nam->sa_family == AF_INET) { 917 bzero(&sad, sizeof (sad)); 918 sin = (struct sockaddr_in *)nmp->nm_nam; 919 sad.sin_family = AF_INET; 920 sad.sin_len = sizeof (struct sockaddr_in); 921 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 922 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL); 923 if (rt != NULL) { 924 if (rt->rt_ifp != NULL && 925 rt->rt_ifa != NULL && 926 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 927 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 928 sin = (struct sockaddr_in *) 929 rt->rt_ifa->ifa_addr; 930 laddr.s_addr = sin->sin_addr.s_addr; 931 retp = (u_int8_t *)&laddr; 932 } 933 RTFREE_LOCKED(rt); 934 } 935 #ifdef INET6 936 } else if (nmp->nm_nam->sa_family == AF_INET6) { 937 struct sockaddr_in6 sad6, *sin6; 938 static struct in6_addr laddr6; 939 940 bzero(&sad6, sizeof (sad6)); 941 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 942 sad6.sin6_family = AF_INET6; 943 sad6.sin6_len = sizeof (struct sockaddr_in6); 944 sad6.sin6_addr = sin6->sin6_addr; 945 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL); 946 if (rt != NULL) { 947 if (rt->rt_ifp != NULL && 948 rt->rt_ifa != NULL && 949 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 950 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 951 sin6 = (struct sockaddr_in6 *) 952 rt->rt_ifa->ifa_addr; 953 laddr6 = sin6->sin6_addr; 954 retp = (u_int8_t *)&laddr6; 955 *isinet6p = 1; 956 } 957 RTFREE_LOCKED(rt); 958 } 959 #endif 960 } 961 return (retp); 962 } 963 964 /* 965 * Copy NFS uid, gids from the cred structure. 966 */ 967 void 968 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 969 { 970 int i; 971 972 KASSERT(cr->cr_ngroups >= 0, 973 ("newnfs_copyincred: negative cr_ngroups")); 974 nfscr->nfsc_uid = cr->cr_uid; 975 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 976 for (i = 0; i < nfscr->nfsc_ngroups; i++) 977 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 978 } 979 980 981 /* 982 * Do any client specific initialization. 983 */ 984 void 985 nfscl_init(void) 986 { 987 static int inited = 0; 988 989 if (inited) 990 return; 991 inited = 1; 992 nfscl_inited = 1; 993 ncl_pbuf_freecnt = nswbuf / 2 + 1; 994 } 995 996 /* 997 * Check each of the attributes to be set, to ensure they aren't already 998 * the correct value. Disable setting ones already correct. 999 */ 1000 int 1001 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1002 { 1003 1004 if (vap->va_mode != (mode_t)VNOVAL) { 1005 if (vap->va_mode == nvap->na_mode) 1006 vap->va_mode = (mode_t)VNOVAL; 1007 } 1008 if (vap->va_uid != (uid_t)VNOVAL) { 1009 if (vap->va_uid == nvap->na_uid) 1010 vap->va_uid = (uid_t)VNOVAL; 1011 } 1012 if (vap->va_gid != (gid_t)VNOVAL) { 1013 if (vap->va_gid == nvap->na_gid) 1014 vap->va_gid = (gid_t)VNOVAL; 1015 } 1016 if (vap->va_size != VNOVAL) { 1017 if (vap->va_size == nvap->na_size) 1018 vap->va_size = VNOVAL; 1019 } 1020 1021 /* 1022 * We are normally called with only a partially initialized 1023 * VAP. Since the NFSv3 spec says that server may use the 1024 * file attributes to store the verifier, the spec requires 1025 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1026 * in atime, but we can't really assume that all servers will 1027 * so we ensure that our SETATTR sets both atime and mtime. 1028 */ 1029 if (vap->va_mtime.tv_sec == VNOVAL) 1030 vfs_timestamp(&vap->va_mtime); 1031 if (vap->va_atime.tv_sec == VNOVAL) 1032 vap->va_atime = vap->va_mtime; 1033 return (1); 1034 } 1035 1036 /* 1037 * Map nfsv4 errors to errno.h errors. 1038 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1039 * error should only be returned for the Open, Create and Setattr Ops. 1040 * As such, most calls can just pass in 0 for those arguments. 1041 */ 1042 APPLESTATIC int 1043 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1044 { 1045 struct proc *p; 1046 1047 if (error < 10000) 1048 return (error); 1049 if (td != NULL) 1050 p = td->td_proc; 1051 else 1052 p = NULL; 1053 switch (error) { 1054 case NFSERR_BADOWNER: 1055 tprintf(p, LOG_INFO, 1056 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1057 uid, gid); 1058 return (EPERM); 1059 case NFSERR_STALECLIENTID: 1060 case NFSERR_STALESTATEID: 1061 case NFSERR_EXPIRED: 1062 case NFSERR_BADSTATEID: 1063 printf("nfsv4 recover err returned %d\n", error); 1064 return (EIO); 1065 case NFSERR_BADHANDLE: 1066 case NFSERR_SERVERFAULT: 1067 case NFSERR_BADTYPE: 1068 case NFSERR_FHEXPIRED: 1069 case NFSERR_RESOURCE: 1070 case NFSERR_MOVED: 1071 case NFSERR_NOFILEHANDLE: 1072 case NFSERR_MINORVERMISMATCH: 1073 case NFSERR_OLDSTATEID: 1074 case NFSERR_BADSEQID: 1075 case NFSERR_LEASEMOVED: 1076 case NFSERR_RECLAIMBAD: 1077 case NFSERR_BADXDR: 1078 case NFSERR_BADCHAR: 1079 case NFSERR_BADNAME: 1080 case NFSERR_OPILLEGAL: 1081 printf("nfsv4 client/server protocol prob err=%d\n", 1082 error); 1083 return (EIO); 1084 default: 1085 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1086 return (EIO); 1087 }; 1088 } 1089 1090 /* 1091 * Locate a process by number; return only "live" processes -- i.e., neither 1092 * zombies nor newly born but incompletely initialized processes. By not 1093 * returning processes in the PRS_NEW state, we allow callers to avoid 1094 * testing for that condition to avoid dereferencing p_ucred, et al. 1095 * Identical to pfind() in kern_proc.c, except it assume the list is 1096 * already locked. 1097 */ 1098 static struct proc * 1099 pfind_locked(pid_t pid) 1100 { 1101 struct proc *p; 1102 1103 LIST_FOREACH(p, PIDHASH(pid), p_hash) 1104 if (p->p_pid == pid) { 1105 if (p->p_state == PRS_NEW) { 1106 p = NULL; 1107 break; 1108 } 1109 PROC_LOCK(p); 1110 break; 1111 } 1112 return (p); 1113 } 1114 1115 /* 1116 * Check to see if the process for this owner exists. Return 1 if it doesn't 1117 * and 0 otherwise. 1118 */ 1119 int 1120 nfscl_procdoesntexist(u_int8_t *own) 1121 { 1122 union { 1123 u_int32_t lval; 1124 u_int8_t cval[4]; 1125 } tl; 1126 struct proc *p; 1127 pid_t pid; 1128 int ret = 0; 1129 1130 tl.cval[0] = *own++; 1131 tl.cval[1] = *own++; 1132 tl.cval[2] = *own++; 1133 tl.cval[3] = *own++; 1134 pid = tl.lval; 1135 p = pfind_locked(pid); 1136 if (p == NULL) 1137 return (1); 1138 if (p->p_stats == NULL) { 1139 PROC_UNLOCK(p); 1140 return (0); 1141 } 1142 tl.cval[0] = *own++; 1143 tl.cval[1] = *own++; 1144 tl.cval[2] = *own++; 1145 tl.cval[3] = *own++; 1146 if (tl.lval != p->p_stats->p_start.tv_sec) { 1147 ret = 1; 1148 } else { 1149 tl.cval[0] = *own++; 1150 tl.cval[1] = *own++; 1151 tl.cval[2] = *own++; 1152 tl.cval[3] = *own; 1153 if (tl.lval != p->p_stats->p_start.tv_usec) 1154 ret = 1; 1155 } 1156 PROC_UNLOCK(p); 1157 return (ret); 1158 } 1159 1160 /* 1161 * - nfs pseudo system call for the client 1162 */ 1163 /* 1164 * MPSAFE 1165 */ 1166 static int 1167 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1168 { 1169 struct file *fp; 1170 struct nfscbd_args nfscbdarg; 1171 struct nfsd_nfscbd_args nfscbdarg2; 1172 int error; 1173 1174 if (uap->flag & NFSSVC_CBADDSOCK) { 1175 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1176 if (error) 1177 return (error); 1178 if ((error = fget(td, nfscbdarg.sock, &fp)) != 0) { 1179 return (error); 1180 } 1181 if (fp->f_type != DTYPE_SOCKET) { 1182 fdrop(fp, td); 1183 return (EPERM); 1184 } 1185 error = nfscbd_addsock(fp); 1186 fdrop(fp, td); 1187 if (!error && nfscl_enablecallb == 0) { 1188 nfsv4_cbport = nfscbdarg.port; 1189 nfscl_enablecallb = 1; 1190 } 1191 } else if (uap->flag & NFSSVC_NFSCBD) { 1192 if (uap->argp == NULL) 1193 return (EINVAL); 1194 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1195 sizeof(nfscbdarg2)); 1196 if (error) 1197 return (error); 1198 error = nfscbd_nfsd(td, &nfscbdarg2); 1199 } else { 1200 error = EINVAL; 1201 } 1202 return (error); 1203 } 1204 1205 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1206 1207 /* 1208 * Called once to initialize data structures... 1209 */ 1210 static int 1211 nfscl_modevent(module_t mod, int type, void *data) 1212 { 1213 int error = 0; 1214 static int loaded = 0; 1215 1216 switch (type) { 1217 case MOD_LOAD: 1218 if (loaded) 1219 return (0); 1220 newnfs_portinit(); 1221 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1222 MTX_DEF); 1223 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1224 nfscl_init(); 1225 NFSD_LOCK(); 1226 nfsrvd_cbinit(0); 1227 NFSD_UNLOCK(); 1228 ncl_call_invalcaches = ncl_invalcaches; 1229 nfsd_call_nfscl = nfssvc_nfscl; 1230 loaded = 1; 1231 break; 1232 1233 case MOD_UNLOAD: 1234 if (nfs_numnfscbd != 0) { 1235 error = EBUSY; 1236 break; 1237 } 1238 1239 /* 1240 * XXX: Unloading of nfscl module is unsupported. 1241 */ 1242 #if 0 1243 ncl_call_invalcaches = NULL; 1244 nfsd_call_nfscl = NULL; 1245 /* and get rid of the mutexes */ 1246 mtx_destroy(&nfs_clstate_mutex); 1247 mtx_destroy(&ncl_iod_mutex); 1248 loaded = 0; 1249 break; 1250 #else 1251 /* FALLTHROUGH */ 1252 #endif 1253 default: 1254 error = EOPNOTSUPP; 1255 break; 1256 } 1257 return error; 1258 } 1259 static moduledata_t nfscl_mod = { 1260 "nfscl", 1261 nfscl_modevent, 1262 NULL, 1263 }; 1264 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1265 1266 /* So that loader and kldload(2) can find us, wherever we are.. */ 1267 MODULE_VERSION(nfscl, 1); 1268 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1269 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1270 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1271 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1272 1273