1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet6.h" 38 #include "opt_kdtrace.h" 39 40 #include <sys/capability.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/hash.h> 47 #include <fs/nfs/nfsport.h> 48 #include <netinet/if_ether.h> 49 #include <net/if_types.h> 50 51 #include <fs/nfsclient/nfs_kdtrace.h> 52 53 #ifdef KDTRACE_HOOKS 54 dtrace_nfsclient_attrcache_flush_probe_func_t 55 dtrace_nfscl_attrcache_flush_done_probe; 56 uint32_t nfscl_attrcache_flush_done_id; 57 58 dtrace_nfsclient_attrcache_get_hit_probe_func_t 59 dtrace_nfscl_attrcache_get_hit_probe; 60 uint32_t nfscl_attrcache_get_hit_id; 61 62 dtrace_nfsclient_attrcache_get_miss_probe_func_t 63 dtrace_nfscl_attrcache_get_miss_probe; 64 uint32_t nfscl_attrcache_get_miss_id; 65 66 dtrace_nfsclient_attrcache_load_probe_func_t 67 dtrace_nfscl_attrcache_load_done_probe; 68 uint32_t nfscl_attrcache_load_done_id; 69 #endif /* !KDTRACE_HOOKS */ 70 71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 72 extern struct vop_vector newnfs_vnodeops; 73 extern struct vop_vector newnfs_fifoops; 74 extern uma_zone_t newnfsnode_zone; 75 extern struct buf_ops buf_ops_newnfs; 76 extern int ncl_pbuf_freecnt; 77 extern short nfsv4_cbport; 78 extern int nfscl_enablecallb; 79 extern int nfs_numnfscbd; 80 extern int nfscl_inited; 81 struct mtx nfs_clstate_mutex; 82 struct mtx ncl_iod_mutex; 83 NFSDLOCKMUTEX; 84 85 extern void (*ncl_call_invalcaches)(struct vnode *); 86 87 /* 88 * Comparison function for vfs_hash functions. 89 */ 90 int 91 newnfs_vncmpf(struct vnode *vp, void *arg) 92 { 93 struct nfsfh *nfhp = (struct nfsfh *)arg; 94 struct nfsnode *np = VTONFS(vp); 95 96 if (np->n_fhp->nfh_len != nfhp->nfh_len || 97 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 98 return (1); 99 return (0); 100 } 101 102 /* 103 * Look up a vnode/nfsnode by file handle. 104 * Callers must check for mount points!! 105 * In all cases, a pointer to a 106 * nfsnode structure is returned. 107 * This variant takes a "struct nfsfh *" as second argument and uses 108 * that structure up, either by hanging off the nfsnode or FREEing it. 109 */ 110 int 111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 112 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 113 void *stuff, int lkflags) 114 { 115 struct nfsnode *np, *dnp; 116 struct vnode *vp, *nvp; 117 struct nfsv4node *newd, *oldd; 118 int error; 119 u_int hash; 120 struct nfsmount *nmp; 121 122 nmp = VFSTONFS(mntp); 123 dnp = VTONFS(dvp); 124 *npp = NULL; 125 126 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 127 128 error = vfs_hash_get(mntp, hash, lkflags, 129 td, &nvp, newnfs_vncmpf, nfhp); 130 if (error == 0 && nvp != NULL) { 131 /* 132 * I believe there is a slight chance that vgonel() could 133 * get called on this vnode between when NFSVOPLOCK() drops 134 * the VI_LOCK() and vget() acquires it again, so that it 135 * hasn't yet had v_usecount incremented. If this were to 136 * happen, the VI_DOOMED flag would be set, so check for 137 * that here. Since we now have the v_usecount incremented, 138 * we should be ok until we vrele() it, if the VI_DOOMED 139 * flag isn't set now. 140 */ 141 VI_LOCK(nvp); 142 if ((nvp->v_iflag & VI_DOOMED)) { 143 VI_UNLOCK(nvp); 144 vrele(nvp); 145 error = ENOENT; 146 } else { 147 VI_UNLOCK(nvp); 148 } 149 } 150 if (error) { 151 FREE((caddr_t)nfhp, M_NFSFH); 152 return (error); 153 } 154 if (nvp != NULL) { 155 np = VTONFS(nvp); 156 /* 157 * For NFSv4, check to see if it is the same name and 158 * replace the name, if it is different. 159 */ 160 oldd = newd = NULL; 161 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 162 nvp->v_type == VREG && 163 (np->n_v4->n4_namelen != cnp->cn_namelen || 164 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 165 cnp->cn_namelen) || 166 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 167 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 168 dnp->n_fhp->nfh_len))) { 169 MALLOC(newd, struct nfsv4node *, 170 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 171 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 172 NFSLOCKNODE(np); 173 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 174 && (np->n_v4->n4_namelen != cnp->cn_namelen || 175 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 176 cnp->cn_namelen) || 177 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 178 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 179 dnp->n_fhp->nfh_len))) { 180 oldd = np->n_v4; 181 np->n_v4 = newd; 182 newd = NULL; 183 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 184 np->n_v4->n4_namelen = cnp->cn_namelen; 185 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 186 dnp->n_fhp->nfh_len); 187 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 188 cnp->cn_namelen); 189 } 190 NFSUNLOCKNODE(np); 191 } 192 if (newd != NULL) 193 FREE((caddr_t)newd, M_NFSV4NODE); 194 if (oldd != NULL) 195 FREE((caddr_t)oldd, M_NFSV4NODE); 196 *npp = np; 197 FREE((caddr_t)nfhp, M_NFSFH); 198 return (0); 199 } 200 201 /* 202 * Allocate before getnewvnode since doing so afterward 203 * might cause a bogus v_data pointer to get dereferenced 204 * elsewhere if zalloc should block. 205 */ 206 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 207 208 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 209 if (error) { 210 uma_zfree(newnfsnode_zone, np); 211 FREE((caddr_t)nfhp, M_NFSFH); 212 return (error); 213 } 214 vp = nvp; 215 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 216 vp->v_data = np; 217 np->n_vnode = vp; 218 /* 219 * Initialize the mutex even if the vnode is going to be a loser. 220 * This simplifies the logic in reclaim, which can then unconditionally 221 * destroy the mutex (in the case of the loser, or if hash_insert 222 * happened to return an error no special casing is needed). 223 */ 224 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 225 226 /* 227 * Are we getting the root? If so, make sure the vnode flags 228 * are correct 229 */ 230 if ((nfhp->nfh_len == nmp->nm_fhsize) && 231 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 232 if (vp->v_type == VNON) 233 vp->v_type = VDIR; 234 vp->v_vflag |= VV_ROOT; 235 } 236 237 np->n_fhp = nfhp; 238 /* 239 * For NFSv4, we have to attach the directory file handle and 240 * file name, so that Open Ops can be done later. 241 */ 242 if (nmp->nm_flag & NFSMNT_NFSV4) { 243 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 244 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 245 M_WAITOK); 246 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 247 np->n_v4->n4_namelen = cnp->cn_namelen; 248 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 249 dnp->n_fhp->nfh_len); 250 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 251 cnp->cn_namelen); 252 } else { 253 np->n_v4 = NULL; 254 } 255 256 /* 257 * NFS supports recursive and shared locking. 258 */ 259 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 260 VN_LOCK_AREC(vp); 261 VN_LOCK_ASHARE(vp); 262 error = insmntque(vp, mntp); 263 if (error != 0) { 264 *npp = NULL; 265 mtx_destroy(&np->n_mtx); 266 FREE((caddr_t)nfhp, M_NFSFH); 267 if (np->n_v4 != NULL) 268 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 269 uma_zfree(newnfsnode_zone, np); 270 return (error); 271 } 272 error = vfs_hash_insert(vp, hash, lkflags, 273 td, &nvp, newnfs_vncmpf, nfhp); 274 if (error) 275 return (error); 276 if (nvp != NULL) { 277 *npp = VTONFS(nvp); 278 /* vfs_hash_insert() vput()'s the losing vnode */ 279 return (0); 280 } 281 *npp = np; 282 283 return (0); 284 } 285 286 /* 287 * Anothe variant of nfs_nget(). This one is only used by reopen. It 288 * takes almost the same args as nfs_nget(), but only succeeds if an entry 289 * exists in the cache. (Since files should already be "open" with a 290 * vnode ref cnt on the node when reopen calls this, it should always 291 * succeed.) 292 * Also, don't get a vnode lock, since it may already be locked by some 293 * other process that is handling it. This is ok, since all other threads 294 * on the client are blocked by the nfsc_lock being exclusively held by the 295 * caller of this function. 296 */ 297 int 298 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 299 struct thread *td, struct nfsnode **npp) 300 { 301 struct vnode *nvp; 302 u_int hash; 303 struct nfsfh *nfhp; 304 int error; 305 306 *npp = NULL; 307 /* For forced dismounts, just return error. */ 308 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 309 return (EINTR); 310 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 311 M_NFSFH, M_WAITOK); 312 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 313 nfhp->nfh_len = fhsize; 314 315 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 316 317 /* 318 * First, try to get the vnode locked, but don't block for the lock. 319 */ 320 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 321 newnfs_vncmpf, nfhp); 322 if (error == 0 && nvp != NULL) { 323 NFSVOPUNLOCK(nvp, 0); 324 } else if (error == EBUSY) { 325 /* 326 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 327 * and lock the vnode, but just get a v_usecount on it. 328 * LK_NOWAIT is set so that when vget() returns ENOENT, 329 * vfs_hash_get() fails instead of looping. 330 * If this succeeds, it is safe so long as a vflush() with 331 * FORCECLOSE has not been done. Since the Renew thread is 332 * stopped and the MNTK_UNMOUNTF flag is set before doing 333 * a vflush() with FORCECLOSE, we should be ok here. 334 */ 335 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 336 error = EINTR; 337 else 338 error = vfs_hash_get(mntp, hash, 339 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 340 newnfs_vncmpf, nfhp); 341 } 342 FREE(nfhp, M_NFSFH); 343 if (error) 344 return (error); 345 if (nvp != NULL) { 346 *npp = VTONFS(nvp); 347 return (0); 348 } 349 return (EINVAL); 350 } 351 352 /* 353 * Load the attribute cache (that lives in the nfsnode entry) with 354 * the attributes of the second argument and 355 * Iff vaper not NULL 356 * copy the attributes to *vaper 357 * Similar to nfs_loadattrcache(), except the attributes are passed in 358 * instead of being parsed out of the mbuf list. 359 */ 360 int 361 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 362 void *stuff, int writeattr, int dontshrink) 363 { 364 struct vnode *vp = *vpp; 365 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 366 struct nfsnode *np; 367 struct nfsmount *nmp; 368 struct timespec mtime_save; 369 370 /* 371 * If v_type == VNON it is a new node, so fill in the v_type, 372 * n_mtime fields. Check to see if it represents a special 373 * device, and if so, check for a possible alias. Once the 374 * correct vnode has been obtained, fill in the rest of the 375 * information. 376 */ 377 np = VTONFS(vp); 378 NFSLOCKNODE(np); 379 if (vp->v_type != nvap->va_type) { 380 vp->v_type = nvap->va_type; 381 if (vp->v_type == VFIFO) 382 vp->v_op = &newnfs_fifoops; 383 np->n_mtime = nvap->va_mtime; 384 } 385 nmp = VFSTONFS(vp->v_mount); 386 vap = &np->n_vattr.na_vattr; 387 mtime_save = vap->va_mtime; 388 if (writeattr) { 389 np->n_vattr.na_filerev = nap->na_filerev; 390 np->n_vattr.na_size = nap->na_size; 391 np->n_vattr.na_mtime = nap->na_mtime; 392 np->n_vattr.na_ctime = nap->na_ctime; 393 np->n_vattr.na_fsid = nap->na_fsid; 394 np->n_vattr.na_mode = nap->na_mode; 395 } else { 396 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 397 sizeof (struct nfsvattr)); 398 } 399 400 /* 401 * For NFSv4, if the node's fsid is not equal to the mount point's 402 * fsid, return the low order 32bits of the node's fsid. This 403 * allows getcwd(3) to work. There is a chance that the fsid might 404 * be the same as a local fs, but since this is in an NFS mount 405 * point, I don't think that will cause any problems? 406 */ 407 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 408 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 409 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 410 /* 411 * va_fsid needs to be set to some value derived from 412 * np->n_vattr.na_filesid that is not equal 413 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 414 * from the value used for the top level server volume 415 * in the mounted subtree. 416 */ 417 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 418 (uint32_t)np->n_vattr.na_filesid[0]) 419 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 420 else 421 vap->va_fsid = (uint32_t)hash32_buf( 422 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 423 } else 424 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 425 np->n_attrstamp = time_second; 426 if (vap->va_size != np->n_size) { 427 if (vap->va_type == VREG) { 428 if (dontshrink && vap->va_size < np->n_size) { 429 /* 430 * We've been told not to shrink the file; 431 * zero np->n_attrstamp to indicate that 432 * the attributes are stale. 433 */ 434 vap->va_size = np->n_size; 435 np->n_attrstamp = 0; 436 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 437 } else if (np->n_flag & NMODIFIED) { 438 /* 439 * We've modified the file: Use the larger 440 * of our size, and the server's size. 441 */ 442 if (vap->va_size < np->n_size) { 443 vap->va_size = np->n_size; 444 } else { 445 np->n_size = vap->va_size; 446 np->n_flag |= NSIZECHANGED; 447 } 448 } else { 449 np->n_size = vap->va_size; 450 np->n_flag |= NSIZECHANGED; 451 } 452 vnode_pager_setsize(vp, np->n_size); 453 } else { 454 np->n_size = vap->va_size; 455 } 456 } 457 /* 458 * The following checks are added to prevent a race between (say) 459 * a READDIR+ and a WRITE. 460 * READDIR+, WRITE requests sent out. 461 * READDIR+ resp, WRITE resp received on client. 462 * However, the WRITE resp was handled before the READDIR+ resp 463 * causing the post op attrs from the write to be loaded first 464 * and the attrs from the READDIR+ to be loaded later. If this 465 * happens, we have stale attrs loaded into the attrcache. 466 * We detect this by for the mtime moving back. We invalidate the 467 * attrcache when this happens. 468 */ 469 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 470 /* Size changed or mtime went backwards */ 471 np->n_attrstamp = 0; 472 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 473 } 474 if (vaper != NULL) { 475 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 476 if (np->n_flag & NCHG) { 477 if (np->n_flag & NACC) 478 vaper->va_atime = np->n_atim; 479 if (np->n_flag & NUPD) 480 vaper->va_mtime = np->n_mtim; 481 } 482 } 483 #ifdef KDTRACE_HOOKS 484 if (np->n_attrstamp != 0) 485 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0); 486 #endif 487 NFSUNLOCKNODE(np); 488 return (0); 489 } 490 491 /* 492 * Fill in the client id name. For these bytes: 493 * 1 - they must be unique 494 * 2 - they should be persistent across client reboots 495 * 1 is more critical than 2 496 * Use the mount point's unique id plus either the uuid or, if that 497 * isn't set, random junk. 498 */ 499 void 500 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 501 { 502 int uuidlen; 503 504 /* 505 * First, put in the 64bit mount point identifier. 506 */ 507 if (idlen >= sizeof (u_int64_t)) { 508 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 509 cp += sizeof (u_int64_t); 510 idlen -= sizeof (u_int64_t); 511 } 512 513 /* 514 * If uuid is non-zero length, use it. 515 */ 516 uuidlen = strlen(uuid); 517 if (uuidlen > 0 && idlen >= uuidlen) { 518 NFSBCOPY(uuid, cp, uuidlen); 519 cp += uuidlen; 520 idlen -= uuidlen; 521 } 522 523 /* 524 * This only normally happens if the uuid isn't set. 525 */ 526 while (idlen > 0) { 527 *cp++ = (u_int8_t)(arc4random() % 256); 528 idlen--; 529 } 530 } 531 532 /* 533 * Fill in a lock owner name. For now, pid + the process's creation time. 534 */ 535 void 536 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 537 { 538 union { 539 u_int32_t lval; 540 u_int8_t cval[4]; 541 } tl; 542 struct proc *p; 543 544 if (id == NULL) { 545 printf("NULL id\n"); 546 bzero(cp, NFSV4CL_LOCKNAMELEN); 547 return; 548 } 549 if ((flags & F_POSIX) != 0) { 550 p = (struct proc *)id; 551 tl.lval = p->p_pid; 552 *cp++ = tl.cval[0]; 553 *cp++ = tl.cval[1]; 554 *cp++ = tl.cval[2]; 555 *cp++ = tl.cval[3]; 556 tl.lval = p->p_stats->p_start.tv_sec; 557 *cp++ = tl.cval[0]; 558 *cp++ = tl.cval[1]; 559 *cp++ = tl.cval[2]; 560 *cp++ = tl.cval[3]; 561 tl.lval = p->p_stats->p_start.tv_usec; 562 *cp++ = tl.cval[0]; 563 *cp++ = tl.cval[1]; 564 *cp++ = tl.cval[2]; 565 *cp = tl.cval[3]; 566 } else if ((flags & F_FLOCK) != 0) { 567 bcopy(&id, cp, sizeof(id)); 568 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 569 } else { 570 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 571 bzero(cp, NFSV4CL_LOCKNAMELEN); 572 } 573 } 574 575 /* 576 * Find the parent process for the thread passed in as an argument. 577 * If none exists, return NULL, otherwise return a thread for the parent. 578 * (Can be any of the threads, since it is only used for td->td_proc.) 579 */ 580 NFSPROC_T * 581 nfscl_getparent(struct thread *td) 582 { 583 struct proc *p; 584 struct thread *ptd; 585 586 if (td == NULL) 587 return (NULL); 588 p = td->td_proc; 589 if (p->p_pid == 0) 590 return (NULL); 591 p = p->p_pptr; 592 if (p == NULL) 593 return (NULL); 594 ptd = TAILQ_FIRST(&p->p_threads); 595 return (ptd); 596 } 597 598 /* 599 * Start up the renew kernel thread. 600 */ 601 static void 602 start_nfscl(void *arg) 603 { 604 struct nfsclclient *clp; 605 struct thread *td; 606 607 clp = (struct nfsclclient *)arg; 608 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 609 nfscl_renewthread(clp, td); 610 kproc_exit(0); 611 } 612 613 void 614 nfscl_start_renewthread(struct nfsclclient *clp) 615 { 616 617 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 618 "nfscl"); 619 } 620 621 /* 622 * Handle wcc_data. 623 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 624 * as the first Op after PutFH. 625 * (For NFSv4, the postop attributes are after the Op, so they can't be 626 * parsed here. A separate call to nfscl_postop_attr() is required.) 627 */ 628 int 629 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 630 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 631 { 632 u_int32_t *tl; 633 struct nfsnode *np = VTONFS(vp); 634 struct nfsvattr nfsva; 635 int error = 0; 636 637 if (wccflagp != NULL) 638 *wccflagp = 0; 639 if (nd->nd_flag & ND_NFSV3) { 640 *flagp = 0; 641 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 642 if (*tl == newnfs_true) { 643 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 644 if (wccflagp != NULL) { 645 mtx_lock(&np->n_mtx); 646 *wccflagp = (np->n_mtime.tv_sec == 647 fxdr_unsigned(u_int32_t, *(tl + 2)) && 648 np->n_mtime.tv_nsec == 649 fxdr_unsigned(u_int32_t, *(tl + 3))); 650 mtx_unlock(&np->n_mtx); 651 } 652 } 653 error = nfscl_postop_attr(nd, nap, flagp, stuff); 654 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 655 == (ND_NFSV4 | ND_V4WCCATTR)) { 656 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 657 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 658 NULL, NULL, NULL, NULL, NULL); 659 if (error) 660 return (error); 661 /* 662 * Get rid of Op# and status for next op. 663 */ 664 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 665 if (*++tl) 666 nd->nd_flag |= ND_NOMOREDATA; 667 if (wccflagp != NULL && 668 nfsva.na_vattr.va_mtime.tv_sec != 0) { 669 mtx_lock(&np->n_mtx); 670 *wccflagp = (np->n_mtime.tv_sec == 671 nfsva.na_vattr.va_mtime.tv_sec && 672 np->n_mtime.tv_nsec == 673 nfsva.na_vattr.va_mtime.tv_sec); 674 mtx_unlock(&np->n_mtx); 675 } 676 } 677 nfsmout: 678 return (error); 679 } 680 681 /* 682 * Get postop attributes. 683 */ 684 int 685 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 686 void *stuff) 687 { 688 u_int32_t *tl; 689 int error = 0; 690 691 *retp = 0; 692 if (nd->nd_flag & ND_NOMOREDATA) 693 return (error); 694 if (nd->nd_flag & ND_NFSV3) { 695 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 696 *retp = fxdr_unsigned(int, *tl); 697 } else if (nd->nd_flag & ND_NFSV4) { 698 /* 699 * For NFSv4, the postop attr are at the end, so no point 700 * in looking if nd_repstat != 0. 701 */ 702 if (!nd->nd_repstat) { 703 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 704 if (*(tl + 1)) 705 /* should never happen since nd_repstat != 0 */ 706 nd->nd_flag |= ND_NOMOREDATA; 707 else 708 *retp = 1; 709 } 710 } else if (!nd->nd_repstat) { 711 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 712 *retp = 1; 713 } 714 if (*retp) { 715 error = nfsm_loadattr(nd, nap); 716 if (error) 717 *retp = 0; 718 } 719 nfsmout: 720 return (error); 721 } 722 723 /* 724 * Fill in the setable attributes. The full argument indicates whether 725 * to fill in them all or just mode and time. 726 */ 727 void 728 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 729 struct vnode *vp, int flags, u_int32_t rdev) 730 { 731 u_int32_t *tl; 732 struct nfsv2_sattr *sp; 733 nfsattrbit_t attrbits; 734 struct timeval curtime; 735 736 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 737 case ND_NFSV2: 738 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 739 if (vap->va_mode == (mode_t)VNOVAL) 740 sp->sa_mode = newnfs_xdrneg1; 741 else 742 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 743 if (vap->va_uid == (uid_t)VNOVAL) 744 sp->sa_uid = newnfs_xdrneg1; 745 else 746 sp->sa_uid = txdr_unsigned(vap->va_uid); 747 if (vap->va_gid == (gid_t)VNOVAL) 748 sp->sa_gid = newnfs_xdrneg1; 749 else 750 sp->sa_gid = txdr_unsigned(vap->va_gid); 751 if (flags & NFSSATTR_SIZE0) 752 sp->sa_size = 0; 753 else if (flags & NFSSATTR_SIZENEG1) 754 sp->sa_size = newnfs_xdrneg1; 755 else if (flags & NFSSATTR_SIZERDEV) 756 sp->sa_size = txdr_unsigned(rdev); 757 else 758 sp->sa_size = txdr_unsigned(vap->va_size); 759 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 760 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 761 break; 762 case ND_NFSV3: 763 getmicrotime(&curtime); 764 if (vap->va_mode != (mode_t)VNOVAL) { 765 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 766 *tl++ = newnfs_true; 767 *tl = txdr_unsigned(vap->va_mode); 768 } else { 769 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 770 *tl = newnfs_false; 771 } 772 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 773 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 774 *tl++ = newnfs_true; 775 *tl = txdr_unsigned(vap->va_uid); 776 } else { 777 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 778 *tl = newnfs_false; 779 } 780 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 781 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 782 *tl++ = newnfs_true; 783 *tl = txdr_unsigned(vap->va_gid); 784 } else { 785 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 786 *tl = newnfs_false; 787 } 788 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 789 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 790 *tl++ = newnfs_true; 791 txdr_hyper(vap->va_size, tl); 792 } else { 793 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 794 *tl = newnfs_false; 795 } 796 if (vap->va_atime.tv_sec != VNOVAL) { 797 if (vap->va_atime.tv_sec != curtime.tv_sec) { 798 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 799 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 800 txdr_nfsv3time(&vap->va_atime, tl); 801 } else { 802 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 803 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 804 } 805 } else { 806 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 807 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 808 } 809 if (vap->va_mtime.tv_sec != VNOVAL) { 810 if (vap->va_mtime.tv_sec != curtime.tv_sec) { 811 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 812 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 813 txdr_nfsv3time(&vap->va_mtime, tl); 814 } else { 815 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 816 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 817 } 818 } else { 819 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 820 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 821 } 822 break; 823 case ND_NFSV4: 824 NFSZERO_ATTRBIT(&attrbits); 825 if (vap->va_mode != (mode_t)VNOVAL) 826 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 827 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 828 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 829 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 830 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 831 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 832 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 833 if (vap->va_atime.tv_sec != VNOVAL) 834 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 835 if (vap->va_mtime.tv_sec != VNOVAL) 836 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 837 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 838 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 839 break; 840 }; 841 } 842 843 /* 844 * nfscl_request() - mostly a wrapper for newnfs_request(). 845 */ 846 int 847 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 848 struct ucred *cred, void *stuff) 849 { 850 int ret, vers; 851 struct nfsmount *nmp; 852 853 nmp = VFSTONFS(vp->v_mount); 854 if (nd->nd_flag & ND_NFSV4) 855 vers = NFS_VER4; 856 else if (nd->nd_flag & ND_NFSV3) 857 vers = NFS_VER3; 858 else 859 vers = NFS_VER2; 860 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 861 NFS_PROG, vers, NULL, 1, NULL); 862 return (ret); 863 } 864 865 /* 866 * fill in this bsden's variant of statfs using nfsstatfs. 867 */ 868 void 869 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 870 { 871 struct statfs *sbp = (struct statfs *)statfs; 872 873 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 874 sbp->f_bsize = NFS_FABLKSIZE; 875 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 876 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 877 /* 878 * Although sf_abytes is uint64_t and f_bavail is int64_t, 879 * the value after dividing by NFS_FABLKSIZE is small 880 * enough that it will fit in 63bits, so it is ok to 881 * assign it to f_bavail without fear that it will become 882 * negative. 883 */ 884 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 885 sbp->f_files = sfp->sf_tfiles; 886 /* Since f_ffree is int64_t, clip it to 63bits. */ 887 if (sfp->sf_ffiles > INT64_MAX) 888 sbp->f_ffree = INT64_MAX; 889 else 890 sbp->f_ffree = sfp->sf_ffiles; 891 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 892 /* 893 * The type casts to (int32_t) ensure that this code is 894 * compatible with the old NFS client, in that it will 895 * propagate bit31 to the high order bits. This may or may 896 * not be correct for NFSv2, but since it is a legacy 897 * environment, I'd rather retain backwards compatibility. 898 */ 899 sbp->f_bsize = (int32_t)sfp->sf_bsize; 900 sbp->f_blocks = (int32_t)sfp->sf_blocks; 901 sbp->f_bfree = (int32_t)sfp->sf_bfree; 902 sbp->f_bavail = (int32_t)sfp->sf_bavail; 903 sbp->f_files = 0; 904 sbp->f_ffree = 0; 905 } 906 } 907 908 /* 909 * Use the fsinfo stuff to update the mount point. 910 */ 911 void 912 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 913 { 914 915 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 916 fsp->fs_wtpref >= NFS_FABLKSIZE) 917 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 918 ~(NFS_FABLKSIZE - 1); 919 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 920 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 921 if (nmp->nm_wsize == 0) 922 nmp->nm_wsize = fsp->fs_wtmax; 923 } 924 if (nmp->nm_wsize < NFS_FABLKSIZE) 925 nmp->nm_wsize = NFS_FABLKSIZE; 926 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 927 fsp->fs_rtpref >= NFS_FABLKSIZE) 928 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 929 ~(NFS_FABLKSIZE - 1); 930 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 931 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 932 if (nmp->nm_rsize == 0) 933 nmp->nm_rsize = fsp->fs_rtmax; 934 } 935 if (nmp->nm_rsize < NFS_FABLKSIZE) 936 nmp->nm_rsize = NFS_FABLKSIZE; 937 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 938 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 939 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 940 ~(NFS_DIRBLKSIZ - 1); 941 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 942 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 943 if (nmp->nm_readdirsize == 0) 944 nmp->nm_readdirsize = fsp->fs_rtmax; 945 } 946 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 947 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 948 if (fsp->fs_maxfilesize > 0 && 949 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 950 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 951 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 952 nmp->nm_state |= NFSSTA_GOTFSINFO; 953 } 954 955 /* 956 * Get a pointer to my IP addrress and return it. 957 * Return NULL if you can't find one. 958 */ 959 u_int8_t * 960 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 961 { 962 struct sockaddr_in sad, *sin; 963 struct rtentry *rt; 964 u_int8_t *retp = NULL; 965 static struct in_addr laddr; 966 967 *isinet6p = 0; 968 /* 969 * Loop up a route for the destination address. 970 */ 971 if (nmp->nm_nam->sa_family == AF_INET) { 972 bzero(&sad, sizeof (sad)); 973 sin = (struct sockaddr_in *)nmp->nm_nam; 974 sad.sin_family = AF_INET; 975 sad.sin_len = sizeof (struct sockaddr_in); 976 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 977 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 978 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL); 979 if (rt != NULL) { 980 if (rt->rt_ifp != NULL && 981 rt->rt_ifa != NULL && 982 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 983 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 984 sin = (struct sockaddr_in *) 985 rt->rt_ifa->ifa_addr; 986 laddr.s_addr = sin->sin_addr.s_addr; 987 retp = (u_int8_t *)&laddr; 988 } 989 RTFREE_LOCKED(rt); 990 } 991 CURVNET_RESTORE(); 992 #ifdef INET6 993 } else if (nmp->nm_nam->sa_family == AF_INET6) { 994 struct sockaddr_in6 sad6, *sin6; 995 static struct in6_addr laddr6; 996 997 bzero(&sad6, sizeof (sad6)); 998 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 999 sad6.sin6_family = AF_INET6; 1000 sad6.sin6_len = sizeof (struct sockaddr_in6); 1001 sad6.sin6_addr = sin6->sin6_addr; 1002 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1003 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL); 1004 if (rt != NULL) { 1005 if (rt->rt_ifp != NULL && 1006 rt->rt_ifa != NULL && 1007 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1008 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1009 sin6 = (struct sockaddr_in6 *) 1010 rt->rt_ifa->ifa_addr; 1011 laddr6 = sin6->sin6_addr; 1012 retp = (u_int8_t *)&laddr6; 1013 *isinet6p = 1; 1014 } 1015 RTFREE_LOCKED(rt); 1016 } 1017 CURVNET_RESTORE(); 1018 #endif 1019 } 1020 return (retp); 1021 } 1022 1023 /* 1024 * Copy NFS uid, gids from the cred structure. 1025 */ 1026 void 1027 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1028 { 1029 int i; 1030 1031 KASSERT(cr->cr_ngroups >= 0, 1032 ("newnfs_copyincred: negative cr_ngroups")); 1033 nfscr->nfsc_uid = cr->cr_uid; 1034 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1035 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1036 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1037 } 1038 1039 1040 /* 1041 * Do any client specific initialization. 1042 */ 1043 void 1044 nfscl_init(void) 1045 { 1046 static int inited = 0; 1047 1048 if (inited) 1049 return; 1050 inited = 1; 1051 nfscl_inited = 1; 1052 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1053 } 1054 1055 /* 1056 * Check each of the attributes to be set, to ensure they aren't already 1057 * the correct value. Disable setting ones already correct. 1058 */ 1059 int 1060 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1061 { 1062 1063 if (vap->va_mode != (mode_t)VNOVAL) { 1064 if (vap->va_mode == nvap->na_mode) 1065 vap->va_mode = (mode_t)VNOVAL; 1066 } 1067 if (vap->va_uid != (uid_t)VNOVAL) { 1068 if (vap->va_uid == nvap->na_uid) 1069 vap->va_uid = (uid_t)VNOVAL; 1070 } 1071 if (vap->va_gid != (gid_t)VNOVAL) { 1072 if (vap->va_gid == nvap->na_gid) 1073 vap->va_gid = (gid_t)VNOVAL; 1074 } 1075 if (vap->va_size != VNOVAL) { 1076 if (vap->va_size == nvap->na_size) 1077 vap->va_size = VNOVAL; 1078 } 1079 1080 /* 1081 * We are normally called with only a partially initialized 1082 * VAP. Since the NFSv3 spec says that server may use the 1083 * file attributes to store the verifier, the spec requires 1084 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1085 * in atime, but we can't really assume that all servers will 1086 * so we ensure that our SETATTR sets both atime and mtime. 1087 */ 1088 if (vap->va_mtime.tv_sec == VNOVAL) 1089 vfs_timestamp(&vap->va_mtime); 1090 if (vap->va_atime.tv_sec == VNOVAL) 1091 vap->va_atime = vap->va_mtime; 1092 return (1); 1093 } 1094 1095 /* 1096 * Map nfsv4 errors to errno.h errors. 1097 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1098 * error should only be returned for the Open, Create and Setattr Ops. 1099 * As such, most calls can just pass in 0 for those arguments. 1100 */ 1101 APPLESTATIC int 1102 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1103 { 1104 struct proc *p; 1105 1106 if (error < 10000) 1107 return (error); 1108 if (td != NULL) 1109 p = td->td_proc; 1110 else 1111 p = NULL; 1112 switch (error) { 1113 case NFSERR_BADOWNER: 1114 tprintf(p, LOG_INFO, 1115 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1116 uid, gid); 1117 return (EPERM); 1118 case NFSERR_STALECLIENTID: 1119 case NFSERR_STALESTATEID: 1120 case NFSERR_EXPIRED: 1121 case NFSERR_BADSTATEID: 1122 printf("nfsv4 recover err returned %d\n", error); 1123 return (EIO); 1124 case NFSERR_BADHANDLE: 1125 case NFSERR_SERVERFAULT: 1126 case NFSERR_BADTYPE: 1127 case NFSERR_FHEXPIRED: 1128 case NFSERR_RESOURCE: 1129 case NFSERR_MOVED: 1130 case NFSERR_NOFILEHANDLE: 1131 case NFSERR_MINORVERMISMATCH: 1132 case NFSERR_OLDSTATEID: 1133 case NFSERR_BADSEQID: 1134 case NFSERR_LEASEMOVED: 1135 case NFSERR_RECLAIMBAD: 1136 case NFSERR_BADXDR: 1137 case NFSERR_BADCHAR: 1138 case NFSERR_BADNAME: 1139 case NFSERR_OPILLEGAL: 1140 printf("nfsv4 client/server protocol prob err=%d\n", 1141 error); 1142 return (EIO); 1143 default: 1144 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1145 return (EIO); 1146 }; 1147 } 1148 1149 /* 1150 * Locate a process by number; return only "live" processes -- i.e., neither 1151 * zombies nor newly born but incompletely initialized processes. By not 1152 * returning processes in the PRS_NEW state, we allow callers to avoid 1153 * testing for that condition to avoid dereferencing p_ucred, et al. 1154 * Identical to pfind() in kern_proc.c, except it assume the list is 1155 * already locked. 1156 */ 1157 static struct proc * 1158 pfind_locked(pid_t pid) 1159 { 1160 struct proc *p; 1161 1162 LIST_FOREACH(p, PIDHASH(pid), p_hash) 1163 if (p->p_pid == pid) { 1164 PROC_LOCK(p); 1165 if (p->p_state == PRS_NEW) { 1166 PROC_UNLOCK(p); 1167 p = NULL; 1168 } 1169 break; 1170 } 1171 return (p); 1172 } 1173 1174 /* 1175 * Check to see if the process for this owner exists. Return 1 if it doesn't 1176 * and 0 otherwise. 1177 */ 1178 int 1179 nfscl_procdoesntexist(u_int8_t *own) 1180 { 1181 union { 1182 u_int32_t lval; 1183 u_int8_t cval[4]; 1184 } tl; 1185 struct proc *p; 1186 pid_t pid; 1187 int ret = 0; 1188 1189 tl.cval[0] = *own++; 1190 tl.cval[1] = *own++; 1191 tl.cval[2] = *own++; 1192 tl.cval[3] = *own++; 1193 pid = tl.lval; 1194 p = pfind_locked(pid); 1195 if (p == NULL) 1196 return (1); 1197 if (p->p_stats == NULL) { 1198 PROC_UNLOCK(p); 1199 return (0); 1200 } 1201 tl.cval[0] = *own++; 1202 tl.cval[1] = *own++; 1203 tl.cval[2] = *own++; 1204 tl.cval[3] = *own++; 1205 if (tl.lval != p->p_stats->p_start.tv_sec) { 1206 ret = 1; 1207 } else { 1208 tl.cval[0] = *own++; 1209 tl.cval[1] = *own++; 1210 tl.cval[2] = *own++; 1211 tl.cval[3] = *own; 1212 if (tl.lval != p->p_stats->p_start.tv_usec) 1213 ret = 1; 1214 } 1215 PROC_UNLOCK(p); 1216 return (ret); 1217 } 1218 1219 /* 1220 * - nfs pseudo system call for the client 1221 */ 1222 /* 1223 * MPSAFE 1224 */ 1225 static int 1226 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1227 { 1228 struct file *fp; 1229 struct nfscbd_args nfscbdarg; 1230 struct nfsd_nfscbd_args nfscbdarg2; 1231 int error; 1232 1233 if (uap->flag & NFSSVC_CBADDSOCK) { 1234 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1235 if (error) 1236 return (error); 1237 /* 1238 * Since we don't know what rights might be required, 1239 * pretend that we need them all. It is better to be too 1240 * careful than too reckless. 1241 */ 1242 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp)) 1243 != 0) { 1244 return (error); 1245 } 1246 if (fp->f_type != DTYPE_SOCKET) { 1247 fdrop(fp, td); 1248 return (EPERM); 1249 } 1250 error = nfscbd_addsock(fp); 1251 fdrop(fp, td); 1252 if (!error && nfscl_enablecallb == 0) { 1253 nfsv4_cbport = nfscbdarg.port; 1254 nfscl_enablecallb = 1; 1255 } 1256 } else if (uap->flag & NFSSVC_NFSCBD) { 1257 if (uap->argp == NULL) 1258 return (EINVAL); 1259 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1260 sizeof(nfscbdarg2)); 1261 if (error) 1262 return (error); 1263 error = nfscbd_nfsd(td, &nfscbdarg2); 1264 } else { 1265 error = EINVAL; 1266 } 1267 return (error); 1268 } 1269 1270 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1271 1272 /* 1273 * Called once to initialize data structures... 1274 */ 1275 static int 1276 nfscl_modevent(module_t mod, int type, void *data) 1277 { 1278 int error = 0; 1279 static int loaded = 0; 1280 1281 switch (type) { 1282 case MOD_LOAD: 1283 if (loaded) 1284 return (0); 1285 newnfs_portinit(); 1286 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1287 MTX_DEF); 1288 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1289 nfscl_init(); 1290 NFSD_LOCK(); 1291 nfsrvd_cbinit(0); 1292 NFSD_UNLOCK(); 1293 ncl_call_invalcaches = ncl_invalcaches; 1294 nfsd_call_nfscl = nfssvc_nfscl; 1295 loaded = 1; 1296 break; 1297 1298 case MOD_UNLOAD: 1299 if (nfs_numnfscbd != 0) { 1300 error = EBUSY; 1301 break; 1302 } 1303 1304 /* 1305 * XXX: Unloading of nfscl module is unsupported. 1306 */ 1307 #if 0 1308 ncl_call_invalcaches = NULL; 1309 nfsd_call_nfscl = NULL; 1310 /* and get rid of the mutexes */ 1311 mtx_destroy(&nfs_clstate_mutex); 1312 mtx_destroy(&ncl_iod_mutex); 1313 loaded = 0; 1314 break; 1315 #else 1316 /* FALLTHROUGH */ 1317 #endif 1318 default: 1319 error = EOPNOTSUPP; 1320 break; 1321 } 1322 return error; 1323 } 1324 static moduledata_t nfscl_mod = { 1325 "nfscl", 1326 nfscl_modevent, 1327 NULL, 1328 }; 1329 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1330 1331 /* So that loader and kldload(2) can find us, wherever we are.. */ 1332 MODULE_VERSION(nfscl, 1); 1333 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1334 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1335 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1336 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1337 1338