1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet6.h" 38 39 #include <sys/capsicum.h> 40 41 /* 42 * generally, I don't like #includes inside .h files, but it seems to 43 * be the easiest way to handle the port. 44 */ 45 #include <sys/fail.h> 46 #include <sys/hash.h> 47 #include <sys/sysctl.h> 48 #include <fs/nfs/nfsport.h> 49 #include <netinet/if_ether.h> 50 #include <net/if_types.h> 51 52 #include <fs/nfsclient/nfs_kdtrace.h> 53 54 #ifdef KDTRACE_HOOKS 55 dtrace_nfsclient_attrcache_flush_probe_func_t 56 dtrace_nfscl_attrcache_flush_done_probe; 57 uint32_t nfscl_attrcache_flush_done_id; 58 59 dtrace_nfsclient_attrcache_get_hit_probe_func_t 60 dtrace_nfscl_attrcache_get_hit_probe; 61 uint32_t nfscl_attrcache_get_hit_id; 62 63 dtrace_nfsclient_attrcache_get_miss_probe_func_t 64 dtrace_nfscl_attrcache_get_miss_probe; 65 uint32_t nfscl_attrcache_get_miss_id; 66 67 dtrace_nfsclient_attrcache_load_probe_func_t 68 dtrace_nfscl_attrcache_load_done_probe; 69 uint32_t nfscl_attrcache_load_done_id; 70 #endif /* !KDTRACE_HOOKS */ 71 72 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 73 extern struct vop_vector newnfs_vnodeops; 74 extern struct vop_vector newnfs_fifoops; 75 extern uma_zone_t newnfsnode_zone; 76 extern struct buf_ops buf_ops_newnfs; 77 extern int ncl_pbuf_freecnt; 78 extern short nfsv4_cbport; 79 extern int nfscl_enablecallb; 80 extern int nfs_numnfscbd; 81 extern int nfscl_inited; 82 struct mtx nfs_clstate_mutex; 83 struct mtx ncl_iod_mutex; 84 NFSDLOCKMUTEX; 85 86 extern void (*ncl_call_invalcaches)(struct vnode *); 87 88 SYSCTL_DECL(_vfs_nfs); 89 static int ncl_fileid_maxwarnings = 10; 90 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 91 &ncl_fileid_maxwarnings, 0, 92 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 93 static volatile int ncl_fileid_nwarnings; 94 95 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 96 struct nfsvattr *); 97 98 /* 99 * Comparison function for vfs_hash functions. 100 */ 101 int 102 newnfs_vncmpf(struct vnode *vp, void *arg) 103 { 104 struct nfsfh *nfhp = (struct nfsfh *)arg; 105 struct nfsnode *np = VTONFS(vp); 106 107 if (np->n_fhp->nfh_len != nfhp->nfh_len || 108 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 109 return (1); 110 return (0); 111 } 112 113 /* 114 * Look up a vnode/nfsnode by file handle. 115 * Callers must check for mount points!! 116 * In all cases, a pointer to a 117 * nfsnode structure is returned. 118 * This variant takes a "struct nfsfh *" as second argument and uses 119 * that structure up, either by hanging off the nfsnode or FREEing it. 120 */ 121 int 122 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 123 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 124 void *stuff, int lkflags) 125 { 126 struct nfsnode *np, *dnp; 127 struct vnode *vp, *nvp; 128 struct nfsv4node *newd, *oldd; 129 int error; 130 u_int hash; 131 struct nfsmount *nmp; 132 133 nmp = VFSTONFS(mntp); 134 dnp = VTONFS(dvp); 135 *npp = NULL; 136 137 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 138 139 error = vfs_hash_get(mntp, hash, lkflags, 140 td, &nvp, newnfs_vncmpf, nfhp); 141 if (error == 0 && nvp != NULL) { 142 /* 143 * I believe there is a slight chance that vgonel() could 144 * get called on this vnode between when NFSVOPLOCK() drops 145 * the VI_LOCK() and vget() acquires it again, so that it 146 * hasn't yet had v_usecount incremented. If this were to 147 * happen, the VI_DOOMED flag would be set, so check for 148 * that here. Since we now have the v_usecount incremented, 149 * we should be ok until we vrele() it, if the VI_DOOMED 150 * flag isn't set now. 151 */ 152 VI_LOCK(nvp); 153 if ((nvp->v_iflag & VI_DOOMED)) { 154 VI_UNLOCK(nvp); 155 vrele(nvp); 156 error = ENOENT; 157 } else { 158 VI_UNLOCK(nvp); 159 } 160 } 161 if (error) { 162 FREE((caddr_t)nfhp, M_NFSFH); 163 return (error); 164 } 165 if (nvp != NULL) { 166 np = VTONFS(nvp); 167 /* 168 * For NFSv4, check to see if it is the same name and 169 * replace the name, if it is different. 170 */ 171 oldd = newd = NULL; 172 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 173 nvp->v_type == VREG && 174 (np->n_v4->n4_namelen != cnp->cn_namelen || 175 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 176 cnp->cn_namelen) || 177 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 178 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 179 dnp->n_fhp->nfh_len))) { 180 MALLOC(newd, struct nfsv4node *, 181 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 182 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 183 NFSLOCKNODE(np); 184 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 185 && (np->n_v4->n4_namelen != cnp->cn_namelen || 186 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 187 cnp->cn_namelen) || 188 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 189 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 190 dnp->n_fhp->nfh_len))) { 191 oldd = np->n_v4; 192 np->n_v4 = newd; 193 newd = NULL; 194 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 195 np->n_v4->n4_namelen = cnp->cn_namelen; 196 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 197 dnp->n_fhp->nfh_len); 198 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 199 cnp->cn_namelen); 200 } 201 NFSUNLOCKNODE(np); 202 } 203 if (newd != NULL) 204 FREE((caddr_t)newd, M_NFSV4NODE); 205 if (oldd != NULL) 206 FREE((caddr_t)oldd, M_NFSV4NODE); 207 *npp = np; 208 FREE((caddr_t)nfhp, M_NFSFH); 209 return (0); 210 } 211 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 212 213 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 214 if (error) { 215 uma_zfree(newnfsnode_zone, np); 216 FREE((caddr_t)nfhp, M_NFSFH); 217 return (error); 218 } 219 vp = nvp; 220 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 221 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 222 vp->v_data = np; 223 np->n_vnode = vp; 224 /* 225 * Initialize the mutex even if the vnode is going to be a loser. 226 * This simplifies the logic in reclaim, which can then unconditionally 227 * destroy the mutex (in the case of the loser, or if hash_insert 228 * happened to return an error no special casing is needed). 229 */ 230 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 231 232 /* 233 * Are we getting the root? If so, make sure the vnode flags 234 * are correct 235 */ 236 if ((nfhp->nfh_len == nmp->nm_fhsize) && 237 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 238 if (vp->v_type == VNON) 239 vp->v_type = VDIR; 240 vp->v_vflag |= VV_ROOT; 241 } 242 243 np->n_fhp = nfhp; 244 /* 245 * For NFSv4, we have to attach the directory file handle and 246 * file name, so that Open Ops can be done later. 247 */ 248 if (nmp->nm_flag & NFSMNT_NFSV4) { 249 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 250 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 251 M_WAITOK); 252 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 253 np->n_v4->n4_namelen = cnp->cn_namelen; 254 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 255 dnp->n_fhp->nfh_len); 256 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 257 cnp->cn_namelen); 258 } else { 259 np->n_v4 = NULL; 260 } 261 262 /* 263 * NFS supports recursive and shared locking. 264 */ 265 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 266 VN_LOCK_AREC(vp); 267 VN_LOCK_ASHARE(vp); 268 error = insmntque(vp, mntp); 269 if (error != 0) { 270 *npp = NULL; 271 mtx_destroy(&np->n_mtx); 272 FREE((caddr_t)nfhp, M_NFSFH); 273 if (np->n_v4 != NULL) 274 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 275 uma_zfree(newnfsnode_zone, np); 276 return (error); 277 } 278 error = vfs_hash_insert(vp, hash, lkflags, 279 td, &nvp, newnfs_vncmpf, nfhp); 280 if (error) 281 return (error); 282 if (nvp != NULL) { 283 *npp = VTONFS(nvp); 284 /* vfs_hash_insert() vput()'s the losing vnode */ 285 return (0); 286 } 287 *npp = np; 288 289 return (0); 290 } 291 292 /* 293 * Anothe variant of nfs_nget(). This one is only used by reopen. It 294 * takes almost the same args as nfs_nget(), but only succeeds if an entry 295 * exists in the cache. (Since files should already be "open" with a 296 * vnode ref cnt on the node when reopen calls this, it should always 297 * succeed.) 298 * Also, don't get a vnode lock, since it may already be locked by some 299 * other process that is handling it. This is ok, since all other threads 300 * on the client are blocked by the nfsc_lock being exclusively held by the 301 * caller of this function. 302 */ 303 int 304 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 305 struct thread *td, struct nfsnode **npp) 306 { 307 struct vnode *nvp; 308 u_int hash; 309 struct nfsfh *nfhp; 310 int error; 311 312 *npp = NULL; 313 /* For forced dismounts, just return error. */ 314 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 315 return (EINTR); 316 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 317 M_NFSFH, M_WAITOK); 318 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 319 nfhp->nfh_len = fhsize; 320 321 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 322 323 /* 324 * First, try to get the vnode locked, but don't block for the lock. 325 */ 326 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 327 newnfs_vncmpf, nfhp); 328 if (error == 0 && nvp != NULL) { 329 NFSVOPUNLOCK(nvp, 0); 330 } else if (error == EBUSY) { 331 /* 332 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 333 * and lock the vnode, but just get a v_usecount on it. 334 * LK_NOWAIT is set so that when vget() returns ENOENT, 335 * vfs_hash_get() fails instead of looping. 336 * If this succeeds, it is safe so long as a vflush() with 337 * FORCECLOSE has not been done. Since the Renew thread is 338 * stopped and the MNTK_UNMOUNTF flag is set before doing 339 * a vflush() with FORCECLOSE, we should be ok here. 340 */ 341 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 342 error = EINTR; 343 else 344 error = vfs_hash_get(mntp, hash, 345 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 346 newnfs_vncmpf, nfhp); 347 } 348 FREE(nfhp, M_NFSFH); 349 if (error) 350 return (error); 351 if (nvp != NULL) { 352 *npp = VTONFS(nvp); 353 return (0); 354 } 355 return (EINVAL); 356 } 357 358 static void 359 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 360 struct nfsvattr *newnap) 361 { 362 int off; 363 364 if (ncl_fileid_maxwarnings >= 0 && 365 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 366 return; 367 off = 0; 368 if (ncl_fileid_maxwarnings >= 0) { 369 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 370 off = 1; 371 } 372 373 printf("newnfs: server '%s' error: fileid changed. " 374 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 375 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 376 nmp->nm_com.nmcom_hostname, 377 (uintmax_t)nmp->nm_fsid[0], 378 (uintmax_t)nmp->nm_fsid[1], 379 (uintmax_t)oldnap->na_fileid, 380 (uintmax_t)newnap->na_fileid); 381 382 if (off) 383 printf("newnfs: Logged %d times about fileid corruption; " 384 "going quiet to avoid spamming logs excessively. (Limit " 385 "is: %d).\n", ncl_fileid_nwarnings, 386 ncl_fileid_maxwarnings); 387 } 388 389 /* 390 * Load the attribute cache (that lives in the nfsnode entry) with 391 * the attributes of the second argument and 392 * Iff vaper not NULL 393 * copy the attributes to *vaper 394 * Similar to nfs_loadattrcache(), except the attributes are passed in 395 * instead of being parsed out of the mbuf list. 396 */ 397 int 398 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 399 void *stuff, int writeattr, int dontshrink) 400 { 401 struct vnode *vp = *vpp; 402 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 403 struct nfsnode *np; 404 struct nfsmount *nmp; 405 struct timespec mtime_save; 406 u_quad_t nsize; 407 int setnsize, error, force_fid_err; 408 409 error = 0; 410 setnsize = 0; 411 nsize = 0; 412 413 /* 414 * If v_type == VNON it is a new node, so fill in the v_type, 415 * n_mtime fields. Check to see if it represents a special 416 * device, and if so, check for a possible alias. Once the 417 * correct vnode has been obtained, fill in the rest of the 418 * information. 419 */ 420 np = VTONFS(vp); 421 NFSLOCKNODE(np); 422 if (vp->v_type != nvap->va_type) { 423 vp->v_type = nvap->va_type; 424 if (vp->v_type == VFIFO) 425 vp->v_op = &newnfs_fifoops; 426 np->n_mtime = nvap->va_mtime; 427 } 428 nmp = VFSTONFS(vp->v_mount); 429 vap = &np->n_vattr.na_vattr; 430 mtime_save = vap->va_mtime; 431 if (writeattr) { 432 np->n_vattr.na_filerev = nap->na_filerev; 433 np->n_vattr.na_size = nap->na_size; 434 np->n_vattr.na_mtime = nap->na_mtime; 435 np->n_vattr.na_ctime = nap->na_ctime; 436 np->n_vattr.na_fsid = nap->na_fsid; 437 np->n_vattr.na_mode = nap->na_mode; 438 } else { 439 force_fid_err = 0; 440 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 441 force_fid_err); 442 /* 443 * BROKEN NFS SERVER OR MIDDLEWARE 444 * 445 * Certain NFS servers (certain old proprietary filers ca. 446 * 2006) or broken middleboxes (e.g. WAN accelerator products) 447 * will respond to GETATTR requests with results for a 448 * different fileid. 449 * 450 * The WAN accelerator we've observed not only serves stale 451 * cache results for a given file, it also occasionally serves 452 * results for wholly different files. This causes surprising 453 * problems; for example the cached size attribute of a file 454 * may truncate down and then back up, resulting in zero 455 * regions in file contents read by applications. We observed 456 * this reliably with Clang and .c files during parallel build. 457 * A pcap revealed packet fragmentation and GETATTR RPC 458 * responses with wholly wrong fileids. 459 */ 460 if ((np->n_vattr.na_fileid != 0 && 461 np->n_vattr.na_fileid != nap->na_fileid) || 462 force_fid_err) { 463 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 464 error = EIDRM; 465 goto out; 466 } 467 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 468 sizeof (struct nfsvattr)); 469 } 470 471 /* 472 * For NFSv4, if the node's fsid is not equal to the mount point's 473 * fsid, return the low order 32bits of the node's fsid. This 474 * allows getcwd(3) to work. There is a chance that the fsid might 475 * be the same as a local fs, but since this is in an NFS mount 476 * point, I don't think that will cause any problems? 477 */ 478 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 479 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 480 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 481 /* 482 * va_fsid needs to be set to some value derived from 483 * np->n_vattr.na_filesid that is not equal 484 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 485 * from the value used for the top level server volume 486 * in the mounted subtree. 487 */ 488 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 489 (uint32_t)np->n_vattr.na_filesid[0]) 490 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 491 else 492 vap->va_fsid = (uint32_t)hash32_buf( 493 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 494 } else 495 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 496 np->n_attrstamp = time_second; 497 if (vap->va_size != np->n_size) { 498 if (vap->va_type == VREG) { 499 if (dontshrink && vap->va_size < np->n_size) { 500 /* 501 * We've been told not to shrink the file; 502 * zero np->n_attrstamp to indicate that 503 * the attributes are stale. 504 */ 505 vap->va_size = np->n_size; 506 np->n_attrstamp = 0; 507 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 508 vnode_pager_setsize(vp, np->n_size); 509 } else if (np->n_flag & NMODIFIED) { 510 /* 511 * We've modified the file: Use the larger 512 * of our size, and the server's size. 513 */ 514 if (vap->va_size < np->n_size) { 515 vap->va_size = np->n_size; 516 } else { 517 np->n_size = vap->va_size; 518 np->n_flag |= NSIZECHANGED; 519 } 520 vnode_pager_setsize(vp, np->n_size); 521 } else if (vap->va_size < np->n_size) { 522 /* 523 * When shrinking the size, the call to 524 * vnode_pager_setsize() cannot be done 525 * with the mutex held, so delay it until 526 * after the mtx_unlock call. 527 */ 528 nsize = np->n_size = vap->va_size; 529 np->n_flag |= NSIZECHANGED; 530 setnsize = 1; 531 } else { 532 np->n_size = vap->va_size; 533 np->n_flag |= NSIZECHANGED; 534 vnode_pager_setsize(vp, np->n_size); 535 } 536 } else { 537 np->n_size = vap->va_size; 538 } 539 } 540 /* 541 * The following checks are added to prevent a race between (say) 542 * a READDIR+ and a WRITE. 543 * READDIR+, WRITE requests sent out. 544 * READDIR+ resp, WRITE resp received on client. 545 * However, the WRITE resp was handled before the READDIR+ resp 546 * causing the post op attrs from the write to be loaded first 547 * and the attrs from the READDIR+ to be loaded later. If this 548 * happens, we have stale attrs loaded into the attrcache. 549 * We detect this by for the mtime moving back. We invalidate the 550 * attrcache when this happens. 551 */ 552 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 553 /* Size changed or mtime went backwards */ 554 np->n_attrstamp = 0; 555 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 556 } 557 if (vaper != NULL) { 558 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 559 if (np->n_flag & NCHG) { 560 if (np->n_flag & NACC) 561 vaper->va_atime = np->n_atim; 562 if (np->n_flag & NUPD) 563 vaper->va_mtime = np->n_mtim; 564 } 565 } 566 567 out: 568 #ifdef KDTRACE_HOOKS 569 if (np->n_attrstamp != 0) 570 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 571 #endif 572 NFSUNLOCKNODE(np); 573 if (setnsize) 574 vnode_pager_setsize(vp, nsize); 575 return (error); 576 } 577 578 /* 579 * Fill in the client id name. For these bytes: 580 * 1 - they must be unique 581 * 2 - they should be persistent across client reboots 582 * 1 is more critical than 2 583 * Use the mount point's unique id plus either the uuid or, if that 584 * isn't set, random junk. 585 */ 586 void 587 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 588 { 589 int uuidlen; 590 591 /* 592 * First, put in the 64bit mount point identifier. 593 */ 594 if (idlen >= sizeof (u_int64_t)) { 595 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 596 cp += sizeof (u_int64_t); 597 idlen -= sizeof (u_int64_t); 598 } 599 600 /* 601 * If uuid is non-zero length, use it. 602 */ 603 uuidlen = strlen(uuid); 604 if (uuidlen > 0 && idlen >= uuidlen) { 605 NFSBCOPY(uuid, cp, uuidlen); 606 cp += uuidlen; 607 idlen -= uuidlen; 608 } 609 610 /* 611 * This only normally happens if the uuid isn't set. 612 */ 613 while (idlen > 0) { 614 *cp++ = (u_int8_t)(arc4random() % 256); 615 idlen--; 616 } 617 } 618 619 /* 620 * Fill in a lock owner name. For now, pid + the process's creation time. 621 */ 622 void 623 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 624 { 625 union { 626 u_int32_t lval; 627 u_int8_t cval[4]; 628 } tl; 629 struct proc *p; 630 631 if (id == NULL) { 632 printf("NULL id\n"); 633 bzero(cp, NFSV4CL_LOCKNAMELEN); 634 return; 635 } 636 if ((flags & F_POSIX) != 0) { 637 p = (struct proc *)id; 638 tl.lval = p->p_pid; 639 *cp++ = tl.cval[0]; 640 *cp++ = tl.cval[1]; 641 *cp++ = tl.cval[2]; 642 *cp++ = tl.cval[3]; 643 tl.lval = p->p_stats->p_start.tv_sec; 644 *cp++ = tl.cval[0]; 645 *cp++ = tl.cval[1]; 646 *cp++ = tl.cval[2]; 647 *cp++ = tl.cval[3]; 648 tl.lval = p->p_stats->p_start.tv_usec; 649 *cp++ = tl.cval[0]; 650 *cp++ = tl.cval[1]; 651 *cp++ = tl.cval[2]; 652 *cp = tl.cval[3]; 653 } else if ((flags & F_FLOCK) != 0) { 654 bcopy(&id, cp, sizeof(id)); 655 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 656 } else { 657 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 658 bzero(cp, NFSV4CL_LOCKNAMELEN); 659 } 660 } 661 662 /* 663 * Find the parent process for the thread passed in as an argument. 664 * If none exists, return NULL, otherwise return a thread for the parent. 665 * (Can be any of the threads, since it is only used for td->td_proc.) 666 */ 667 NFSPROC_T * 668 nfscl_getparent(struct thread *td) 669 { 670 struct proc *p; 671 struct thread *ptd; 672 673 if (td == NULL) 674 return (NULL); 675 p = td->td_proc; 676 if (p->p_pid == 0) 677 return (NULL); 678 p = p->p_pptr; 679 if (p == NULL) 680 return (NULL); 681 ptd = TAILQ_FIRST(&p->p_threads); 682 return (ptd); 683 } 684 685 /* 686 * Start up the renew kernel thread. 687 */ 688 static void 689 start_nfscl(void *arg) 690 { 691 struct nfsclclient *clp; 692 struct thread *td; 693 694 clp = (struct nfsclclient *)arg; 695 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 696 nfscl_renewthread(clp, td); 697 kproc_exit(0); 698 } 699 700 void 701 nfscl_start_renewthread(struct nfsclclient *clp) 702 { 703 704 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 705 "nfscl"); 706 } 707 708 /* 709 * Handle wcc_data. 710 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 711 * as the first Op after PutFH. 712 * (For NFSv4, the postop attributes are after the Op, so they can't be 713 * parsed here. A separate call to nfscl_postop_attr() is required.) 714 */ 715 int 716 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 717 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 718 { 719 u_int32_t *tl; 720 struct nfsnode *np = VTONFS(vp); 721 struct nfsvattr nfsva; 722 int error = 0; 723 724 if (wccflagp != NULL) 725 *wccflagp = 0; 726 if (nd->nd_flag & ND_NFSV3) { 727 *flagp = 0; 728 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 729 if (*tl == newnfs_true) { 730 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 731 if (wccflagp != NULL) { 732 mtx_lock(&np->n_mtx); 733 *wccflagp = (np->n_mtime.tv_sec == 734 fxdr_unsigned(u_int32_t, *(tl + 2)) && 735 np->n_mtime.tv_nsec == 736 fxdr_unsigned(u_int32_t, *(tl + 3))); 737 mtx_unlock(&np->n_mtx); 738 } 739 } 740 error = nfscl_postop_attr(nd, nap, flagp, stuff); 741 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 742 == (ND_NFSV4 | ND_V4WCCATTR)) { 743 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 744 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 745 NULL, NULL, NULL, NULL, NULL); 746 if (error) 747 return (error); 748 /* 749 * Get rid of Op# and status for next op. 750 */ 751 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 752 if (*++tl) 753 nd->nd_flag |= ND_NOMOREDATA; 754 if (wccflagp != NULL && 755 nfsva.na_vattr.va_mtime.tv_sec != 0) { 756 mtx_lock(&np->n_mtx); 757 *wccflagp = (np->n_mtime.tv_sec == 758 nfsva.na_vattr.va_mtime.tv_sec && 759 np->n_mtime.tv_nsec == 760 nfsva.na_vattr.va_mtime.tv_sec); 761 mtx_unlock(&np->n_mtx); 762 } 763 } 764 nfsmout: 765 return (error); 766 } 767 768 /* 769 * Get postop attributes. 770 */ 771 int 772 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 773 void *stuff) 774 { 775 u_int32_t *tl; 776 int error = 0; 777 778 *retp = 0; 779 if (nd->nd_flag & ND_NOMOREDATA) 780 return (error); 781 if (nd->nd_flag & ND_NFSV3) { 782 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 783 *retp = fxdr_unsigned(int, *tl); 784 } else if (nd->nd_flag & ND_NFSV4) { 785 /* 786 * For NFSv4, the postop attr are at the end, so no point 787 * in looking if nd_repstat != 0. 788 */ 789 if (!nd->nd_repstat) { 790 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 791 if (*(tl + 1)) 792 /* should never happen since nd_repstat != 0 */ 793 nd->nd_flag |= ND_NOMOREDATA; 794 else 795 *retp = 1; 796 } 797 } else if (!nd->nd_repstat) { 798 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 799 *retp = 1; 800 } 801 if (*retp) { 802 error = nfsm_loadattr(nd, nap); 803 if (error) 804 *retp = 0; 805 } 806 nfsmout: 807 return (error); 808 } 809 810 /* 811 * Fill in the setable attributes. The full argument indicates whether 812 * to fill in them all or just mode and time. 813 */ 814 void 815 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 816 struct vnode *vp, int flags, u_int32_t rdev) 817 { 818 u_int32_t *tl; 819 struct nfsv2_sattr *sp; 820 nfsattrbit_t attrbits; 821 822 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 823 case ND_NFSV2: 824 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 825 if (vap->va_mode == (mode_t)VNOVAL) 826 sp->sa_mode = newnfs_xdrneg1; 827 else 828 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 829 if (vap->va_uid == (uid_t)VNOVAL) 830 sp->sa_uid = newnfs_xdrneg1; 831 else 832 sp->sa_uid = txdr_unsigned(vap->va_uid); 833 if (vap->va_gid == (gid_t)VNOVAL) 834 sp->sa_gid = newnfs_xdrneg1; 835 else 836 sp->sa_gid = txdr_unsigned(vap->va_gid); 837 if (flags & NFSSATTR_SIZE0) 838 sp->sa_size = 0; 839 else if (flags & NFSSATTR_SIZENEG1) 840 sp->sa_size = newnfs_xdrneg1; 841 else if (flags & NFSSATTR_SIZERDEV) 842 sp->sa_size = txdr_unsigned(rdev); 843 else 844 sp->sa_size = txdr_unsigned(vap->va_size); 845 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 846 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 847 break; 848 case ND_NFSV3: 849 if (vap->va_mode != (mode_t)VNOVAL) { 850 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 851 *tl++ = newnfs_true; 852 *tl = txdr_unsigned(vap->va_mode); 853 } else { 854 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 855 *tl = newnfs_false; 856 } 857 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 858 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 859 *tl++ = newnfs_true; 860 *tl = txdr_unsigned(vap->va_uid); 861 } else { 862 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 863 *tl = newnfs_false; 864 } 865 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 866 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 867 *tl++ = newnfs_true; 868 *tl = txdr_unsigned(vap->va_gid); 869 } else { 870 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 871 *tl = newnfs_false; 872 } 873 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 874 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 875 *tl++ = newnfs_true; 876 txdr_hyper(vap->va_size, tl); 877 } else { 878 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 879 *tl = newnfs_false; 880 } 881 if (vap->va_atime.tv_sec != VNOVAL) { 882 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 883 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 884 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 885 txdr_nfsv3time(&vap->va_atime, tl); 886 } else { 887 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 888 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 889 } 890 } else { 891 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 892 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 893 } 894 if (vap->va_mtime.tv_sec != VNOVAL) { 895 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 896 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 897 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 898 txdr_nfsv3time(&vap->va_mtime, tl); 899 } else { 900 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 901 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 902 } 903 } else { 904 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 905 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 906 } 907 break; 908 case ND_NFSV4: 909 NFSZERO_ATTRBIT(&attrbits); 910 if (vap->va_mode != (mode_t)VNOVAL) 911 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 912 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 913 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 914 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 915 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 916 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 917 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 918 if (vap->va_atime.tv_sec != VNOVAL) 919 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 920 if (vap->va_mtime.tv_sec != VNOVAL) 921 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 922 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 923 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 924 break; 925 }; 926 } 927 928 /* 929 * nfscl_request() - mostly a wrapper for newnfs_request(). 930 */ 931 int 932 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 933 struct ucred *cred, void *stuff) 934 { 935 int ret, vers; 936 struct nfsmount *nmp; 937 938 nmp = VFSTONFS(vp->v_mount); 939 if (nd->nd_flag & ND_NFSV4) 940 vers = NFS_VER4; 941 else if (nd->nd_flag & ND_NFSV3) 942 vers = NFS_VER3; 943 else 944 vers = NFS_VER2; 945 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 946 NFS_PROG, vers, NULL, 1, NULL, NULL); 947 return (ret); 948 } 949 950 /* 951 * fill in this bsden's variant of statfs using nfsstatfs. 952 */ 953 void 954 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 955 { 956 struct statfs *sbp = (struct statfs *)statfs; 957 958 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 959 sbp->f_bsize = NFS_FABLKSIZE; 960 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 961 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 962 /* 963 * Although sf_abytes is uint64_t and f_bavail is int64_t, 964 * the value after dividing by NFS_FABLKSIZE is small 965 * enough that it will fit in 63bits, so it is ok to 966 * assign it to f_bavail without fear that it will become 967 * negative. 968 */ 969 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 970 sbp->f_files = sfp->sf_tfiles; 971 /* Since f_ffree is int64_t, clip it to 63bits. */ 972 if (sfp->sf_ffiles > INT64_MAX) 973 sbp->f_ffree = INT64_MAX; 974 else 975 sbp->f_ffree = sfp->sf_ffiles; 976 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 977 /* 978 * The type casts to (int32_t) ensure that this code is 979 * compatible with the old NFS client, in that it will 980 * propagate bit31 to the high order bits. This may or may 981 * not be correct for NFSv2, but since it is a legacy 982 * environment, I'd rather retain backwards compatibility. 983 */ 984 sbp->f_bsize = (int32_t)sfp->sf_bsize; 985 sbp->f_blocks = (int32_t)sfp->sf_blocks; 986 sbp->f_bfree = (int32_t)sfp->sf_bfree; 987 sbp->f_bavail = (int32_t)sfp->sf_bavail; 988 sbp->f_files = 0; 989 sbp->f_ffree = 0; 990 } 991 } 992 993 /* 994 * Use the fsinfo stuff to update the mount point. 995 */ 996 void 997 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 998 { 999 1000 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 1001 fsp->fs_wtpref >= NFS_FABLKSIZE) 1002 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 1003 ~(NFS_FABLKSIZE - 1); 1004 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 1005 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 1006 if (nmp->nm_wsize == 0) 1007 nmp->nm_wsize = fsp->fs_wtmax; 1008 } 1009 if (nmp->nm_wsize < NFS_FABLKSIZE) 1010 nmp->nm_wsize = NFS_FABLKSIZE; 1011 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 1012 fsp->fs_rtpref >= NFS_FABLKSIZE) 1013 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 1014 ~(NFS_FABLKSIZE - 1); 1015 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 1016 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 1017 if (nmp->nm_rsize == 0) 1018 nmp->nm_rsize = fsp->fs_rtmax; 1019 } 1020 if (nmp->nm_rsize < NFS_FABLKSIZE) 1021 nmp->nm_rsize = NFS_FABLKSIZE; 1022 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 1023 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 1024 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 1025 ~(NFS_DIRBLKSIZ - 1); 1026 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 1027 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 1028 if (nmp->nm_readdirsize == 0) 1029 nmp->nm_readdirsize = fsp->fs_rtmax; 1030 } 1031 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 1032 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 1033 if (fsp->fs_maxfilesize > 0 && 1034 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 1035 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 1036 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 1037 nmp->nm_state |= NFSSTA_GOTFSINFO; 1038 } 1039 1040 /* 1041 * Get a pointer to my IP addrress and return it. 1042 * Return NULL if you can't find one. 1043 */ 1044 u_int8_t * 1045 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 1046 { 1047 struct sockaddr_in sad, *sin; 1048 struct rtentry *rt; 1049 u_int8_t *retp = NULL; 1050 static struct in_addr laddr; 1051 1052 *isinet6p = 0; 1053 /* 1054 * Loop up a route for the destination address. 1055 */ 1056 if (nmp->nm_nam->sa_family == AF_INET) { 1057 bzero(&sad, sizeof (sad)); 1058 sin = (struct sockaddr_in *)nmp->nm_nam; 1059 sad.sin_family = AF_INET; 1060 sad.sin_len = sizeof (struct sockaddr_in); 1061 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 1062 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1063 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL, 1064 curthread->td_proc->p_fibnum); 1065 if (rt != NULL) { 1066 if (rt->rt_ifp != NULL && 1067 rt->rt_ifa != NULL && 1068 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1069 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 1070 sin = (struct sockaddr_in *) 1071 rt->rt_ifa->ifa_addr; 1072 laddr.s_addr = sin->sin_addr.s_addr; 1073 retp = (u_int8_t *)&laddr; 1074 } 1075 RTFREE_LOCKED(rt); 1076 } 1077 CURVNET_RESTORE(); 1078 #ifdef INET6 1079 } else if (nmp->nm_nam->sa_family == AF_INET6) { 1080 struct sockaddr_in6 sad6, *sin6; 1081 static struct in6_addr laddr6; 1082 1083 bzero(&sad6, sizeof (sad6)); 1084 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1085 sad6.sin6_family = AF_INET6; 1086 sad6.sin6_len = sizeof (struct sockaddr_in6); 1087 sad6.sin6_addr = sin6->sin6_addr; 1088 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1089 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL, 1090 curthread->td_proc->p_fibnum); 1091 if (rt != NULL) { 1092 if (rt->rt_ifp != NULL && 1093 rt->rt_ifa != NULL && 1094 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1095 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1096 sin6 = (struct sockaddr_in6 *) 1097 rt->rt_ifa->ifa_addr; 1098 laddr6 = sin6->sin6_addr; 1099 retp = (u_int8_t *)&laddr6; 1100 *isinet6p = 1; 1101 } 1102 RTFREE_LOCKED(rt); 1103 } 1104 CURVNET_RESTORE(); 1105 #endif 1106 } 1107 return (retp); 1108 } 1109 1110 /* 1111 * Copy NFS uid, gids from the cred structure. 1112 */ 1113 void 1114 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1115 { 1116 int i; 1117 1118 KASSERT(cr->cr_ngroups >= 0, 1119 ("newnfs_copyincred: negative cr_ngroups")); 1120 nfscr->nfsc_uid = cr->cr_uid; 1121 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1122 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1123 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1124 } 1125 1126 1127 /* 1128 * Do any client specific initialization. 1129 */ 1130 void 1131 nfscl_init(void) 1132 { 1133 static int inited = 0; 1134 1135 if (inited) 1136 return; 1137 inited = 1; 1138 nfscl_inited = 1; 1139 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1140 } 1141 1142 /* 1143 * Check each of the attributes to be set, to ensure they aren't already 1144 * the correct value. Disable setting ones already correct. 1145 */ 1146 int 1147 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1148 { 1149 1150 if (vap->va_mode != (mode_t)VNOVAL) { 1151 if (vap->va_mode == nvap->na_mode) 1152 vap->va_mode = (mode_t)VNOVAL; 1153 } 1154 if (vap->va_uid != (uid_t)VNOVAL) { 1155 if (vap->va_uid == nvap->na_uid) 1156 vap->va_uid = (uid_t)VNOVAL; 1157 } 1158 if (vap->va_gid != (gid_t)VNOVAL) { 1159 if (vap->va_gid == nvap->na_gid) 1160 vap->va_gid = (gid_t)VNOVAL; 1161 } 1162 if (vap->va_size != VNOVAL) { 1163 if (vap->va_size == nvap->na_size) 1164 vap->va_size = VNOVAL; 1165 } 1166 1167 /* 1168 * We are normally called with only a partially initialized 1169 * VAP. Since the NFSv3 spec says that server may use the 1170 * file attributes to store the verifier, the spec requires 1171 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1172 * in atime, but we can't really assume that all servers will 1173 * so we ensure that our SETATTR sets both atime and mtime. 1174 * Set the VA_UTIMES_NULL flag for this case, so that 1175 * the server's time will be used. This is needed to 1176 * work around a bug in some Solaris servers, where 1177 * setting the time TOCLIENT causes the Setattr RPC 1178 * to return NFS_OK, but not set va_mode. 1179 */ 1180 if (vap->va_mtime.tv_sec == VNOVAL) { 1181 vfs_timestamp(&vap->va_mtime); 1182 vap->va_vaflags |= VA_UTIMES_NULL; 1183 } 1184 if (vap->va_atime.tv_sec == VNOVAL) 1185 vap->va_atime = vap->va_mtime; 1186 return (1); 1187 } 1188 1189 /* 1190 * Map nfsv4 errors to errno.h errors. 1191 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1192 * error should only be returned for the Open, Create and Setattr Ops. 1193 * As such, most calls can just pass in 0 for those arguments. 1194 */ 1195 APPLESTATIC int 1196 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1197 { 1198 struct proc *p; 1199 1200 if (error < 10000) 1201 return (error); 1202 if (td != NULL) 1203 p = td->td_proc; 1204 else 1205 p = NULL; 1206 switch (error) { 1207 case NFSERR_BADOWNER: 1208 tprintf(p, LOG_INFO, 1209 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1210 uid, gid); 1211 return (EPERM); 1212 case NFSERR_BADNAME: 1213 case NFSERR_BADCHAR: 1214 printf("nfsv4 char/name not handled by server\n"); 1215 return (ENOENT); 1216 case NFSERR_STALECLIENTID: 1217 case NFSERR_STALESTATEID: 1218 case NFSERR_EXPIRED: 1219 case NFSERR_BADSTATEID: 1220 case NFSERR_BADSESSION: 1221 printf("nfsv4 recover err returned %d\n", error); 1222 return (EIO); 1223 case NFSERR_BADHANDLE: 1224 case NFSERR_SERVERFAULT: 1225 case NFSERR_BADTYPE: 1226 case NFSERR_FHEXPIRED: 1227 case NFSERR_RESOURCE: 1228 case NFSERR_MOVED: 1229 case NFSERR_NOFILEHANDLE: 1230 case NFSERR_MINORVERMISMATCH: 1231 case NFSERR_OLDSTATEID: 1232 case NFSERR_BADSEQID: 1233 case NFSERR_LEASEMOVED: 1234 case NFSERR_RECLAIMBAD: 1235 case NFSERR_BADXDR: 1236 case NFSERR_OPILLEGAL: 1237 printf("nfsv4 client/server protocol prob err=%d\n", 1238 error); 1239 return (EIO); 1240 default: 1241 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1242 return (EIO); 1243 }; 1244 } 1245 1246 /* 1247 * Check to see if the process for this owner exists. Return 1 if it doesn't 1248 * and 0 otherwise. 1249 */ 1250 int 1251 nfscl_procdoesntexist(u_int8_t *own) 1252 { 1253 union { 1254 u_int32_t lval; 1255 u_int8_t cval[4]; 1256 } tl; 1257 struct proc *p; 1258 pid_t pid; 1259 int ret = 0; 1260 1261 tl.cval[0] = *own++; 1262 tl.cval[1] = *own++; 1263 tl.cval[2] = *own++; 1264 tl.cval[3] = *own++; 1265 pid = tl.lval; 1266 p = pfind_locked(pid); 1267 if (p == NULL) 1268 return (1); 1269 if (p->p_stats == NULL) { 1270 PROC_UNLOCK(p); 1271 return (0); 1272 } 1273 tl.cval[0] = *own++; 1274 tl.cval[1] = *own++; 1275 tl.cval[2] = *own++; 1276 tl.cval[3] = *own++; 1277 if (tl.lval != p->p_stats->p_start.tv_sec) { 1278 ret = 1; 1279 } else { 1280 tl.cval[0] = *own++; 1281 tl.cval[1] = *own++; 1282 tl.cval[2] = *own++; 1283 tl.cval[3] = *own; 1284 if (tl.lval != p->p_stats->p_start.tv_usec) 1285 ret = 1; 1286 } 1287 PROC_UNLOCK(p); 1288 return (ret); 1289 } 1290 1291 /* 1292 * - nfs pseudo system call for the client 1293 */ 1294 /* 1295 * MPSAFE 1296 */ 1297 static int 1298 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1299 { 1300 struct file *fp; 1301 struct nfscbd_args nfscbdarg; 1302 struct nfsd_nfscbd_args nfscbdarg2; 1303 struct nameidata nd; 1304 struct nfscl_dumpmntopts dumpmntopts; 1305 cap_rights_t rights; 1306 char *buf; 1307 int error; 1308 1309 if (uap->flag & NFSSVC_CBADDSOCK) { 1310 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1311 if (error) 1312 return (error); 1313 /* 1314 * Since we don't know what rights might be required, 1315 * pretend that we need them all. It is better to be too 1316 * careful than too reckless. 1317 */ 1318 error = fget(td, nfscbdarg.sock, 1319 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); 1320 if (error) 1321 return (error); 1322 if (fp->f_type != DTYPE_SOCKET) { 1323 fdrop(fp, td); 1324 return (EPERM); 1325 } 1326 error = nfscbd_addsock(fp); 1327 fdrop(fp, td); 1328 if (!error && nfscl_enablecallb == 0) { 1329 nfsv4_cbport = nfscbdarg.port; 1330 nfscl_enablecallb = 1; 1331 } 1332 } else if (uap->flag & NFSSVC_NFSCBD) { 1333 if (uap->argp == NULL) 1334 return (EINVAL); 1335 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1336 sizeof(nfscbdarg2)); 1337 if (error) 1338 return (error); 1339 error = nfscbd_nfsd(td, &nfscbdarg2); 1340 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1341 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1342 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1343 dumpmntopts.ndmnt_blen > 1024)) 1344 error = EINVAL; 1345 if (error == 0) 1346 error = nfsrv_lookupfilename(&nd, 1347 dumpmntopts.ndmnt_fname, td); 1348 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1349 "nfs") != 0) { 1350 vput(nd.ni_vp); 1351 error = EINVAL; 1352 } 1353 if (error == 0) { 1354 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1355 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1356 dumpmntopts.ndmnt_blen); 1357 vput(nd.ni_vp); 1358 error = copyout(buf, dumpmntopts.ndmnt_buf, 1359 dumpmntopts.ndmnt_blen); 1360 free(buf, M_TEMP); 1361 } 1362 } else { 1363 error = EINVAL; 1364 } 1365 return (error); 1366 } 1367 1368 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1369 1370 /* 1371 * Called once to initialize data structures... 1372 */ 1373 static int 1374 nfscl_modevent(module_t mod, int type, void *data) 1375 { 1376 int error = 0; 1377 static int loaded = 0; 1378 1379 switch (type) { 1380 case MOD_LOAD: 1381 if (loaded) 1382 return (0); 1383 newnfs_portinit(); 1384 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1385 MTX_DEF); 1386 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1387 nfscl_init(); 1388 NFSD_LOCK(); 1389 nfsrvd_cbinit(0); 1390 NFSD_UNLOCK(); 1391 ncl_call_invalcaches = ncl_invalcaches; 1392 nfsd_call_nfscl = nfssvc_nfscl; 1393 loaded = 1; 1394 break; 1395 1396 case MOD_UNLOAD: 1397 if (nfs_numnfscbd != 0) { 1398 error = EBUSY; 1399 break; 1400 } 1401 1402 /* 1403 * XXX: Unloading of nfscl module is unsupported. 1404 */ 1405 #if 0 1406 ncl_call_invalcaches = NULL; 1407 nfsd_call_nfscl = NULL; 1408 /* and get rid of the mutexes */ 1409 mtx_destroy(&nfs_clstate_mutex); 1410 mtx_destroy(&ncl_iod_mutex); 1411 loaded = 0; 1412 break; 1413 #else 1414 /* FALLTHROUGH */ 1415 #endif 1416 default: 1417 error = EOPNOTSUPP; 1418 break; 1419 } 1420 return error; 1421 } 1422 static moduledata_t nfscl_mod = { 1423 "nfscl", 1424 nfscl_modevent, 1425 NULL, 1426 }; 1427 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1428 1429 /* So that loader and kldload(2) can find us, wherever we are.. */ 1430 MODULE_VERSION(nfscl, 1); 1431 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1432 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1433 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1434 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1435 1436