1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet6.h" 38 #include "opt_kdtrace.h" 39 40 #include <sys/capability.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/hash.h> 47 #include <fs/nfs/nfsport.h> 48 #include <netinet/if_ether.h> 49 #include <net/if_types.h> 50 51 #include <fs/nfsclient/nfs_kdtrace.h> 52 53 #ifdef KDTRACE_HOOKS 54 dtrace_nfsclient_attrcache_flush_probe_func_t 55 dtrace_nfscl_attrcache_flush_done_probe; 56 uint32_t nfscl_attrcache_flush_done_id; 57 58 dtrace_nfsclient_attrcache_get_hit_probe_func_t 59 dtrace_nfscl_attrcache_get_hit_probe; 60 uint32_t nfscl_attrcache_get_hit_id; 61 62 dtrace_nfsclient_attrcache_get_miss_probe_func_t 63 dtrace_nfscl_attrcache_get_miss_probe; 64 uint32_t nfscl_attrcache_get_miss_id; 65 66 dtrace_nfsclient_attrcache_load_probe_func_t 67 dtrace_nfscl_attrcache_load_done_probe; 68 uint32_t nfscl_attrcache_load_done_id; 69 #endif /* !KDTRACE_HOOKS */ 70 71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 72 extern struct vop_vector newnfs_vnodeops; 73 extern struct vop_vector newnfs_fifoops; 74 extern uma_zone_t newnfsnode_zone; 75 extern struct buf_ops buf_ops_newnfs; 76 extern int ncl_pbuf_freecnt; 77 extern short nfsv4_cbport; 78 extern int nfscl_enablecallb; 79 extern int nfs_numnfscbd; 80 extern int nfscl_inited; 81 struct mtx nfs_clstate_mutex; 82 struct mtx ncl_iod_mutex; 83 NFSDLOCKMUTEX; 84 85 extern void (*ncl_call_invalcaches)(struct vnode *); 86 87 /* 88 * Comparison function for vfs_hash functions. 89 */ 90 int 91 newnfs_vncmpf(struct vnode *vp, void *arg) 92 { 93 struct nfsfh *nfhp = (struct nfsfh *)arg; 94 struct nfsnode *np = VTONFS(vp); 95 96 if (np->n_fhp->nfh_len != nfhp->nfh_len || 97 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 98 return (1); 99 return (0); 100 } 101 102 /* 103 * Look up a vnode/nfsnode by file handle. 104 * Callers must check for mount points!! 105 * In all cases, a pointer to a 106 * nfsnode structure is returned. 107 * This variant takes a "struct nfsfh *" as second argument and uses 108 * that structure up, either by hanging off the nfsnode or FREEing it. 109 */ 110 int 111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 112 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 113 void *stuff, int lkflags) 114 { 115 struct nfsnode *np, *dnp; 116 struct vnode *vp, *nvp; 117 struct nfsv4node *newd, *oldd; 118 int error; 119 u_int hash; 120 struct nfsmount *nmp; 121 122 nmp = VFSTONFS(mntp); 123 dnp = VTONFS(dvp); 124 *npp = NULL; 125 126 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 127 128 error = vfs_hash_get(mntp, hash, lkflags, 129 td, &nvp, newnfs_vncmpf, nfhp); 130 if (error == 0 && nvp != NULL) { 131 /* 132 * I believe there is a slight chance that vgonel() could 133 * get called on this vnode between when NFSVOPLOCK() drops 134 * the VI_LOCK() and vget() acquires it again, so that it 135 * hasn't yet had v_usecount incremented. If this were to 136 * happen, the VI_DOOMED flag would be set, so check for 137 * that here. Since we now have the v_usecount incremented, 138 * we should be ok until we vrele() it, if the VI_DOOMED 139 * flag isn't set now. 140 */ 141 VI_LOCK(nvp); 142 if ((nvp->v_iflag & VI_DOOMED)) { 143 VI_UNLOCK(nvp); 144 vrele(nvp); 145 error = ENOENT; 146 } else { 147 VI_UNLOCK(nvp); 148 } 149 } 150 if (error) { 151 FREE((caddr_t)nfhp, M_NFSFH); 152 return (error); 153 } 154 if (nvp != NULL) { 155 np = VTONFS(nvp); 156 /* 157 * For NFSv4, check to see if it is the same name and 158 * replace the name, if it is different. 159 */ 160 oldd = newd = NULL; 161 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 162 nvp->v_type == VREG && 163 (np->n_v4->n4_namelen != cnp->cn_namelen || 164 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 165 cnp->cn_namelen) || 166 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 167 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 168 dnp->n_fhp->nfh_len))) { 169 MALLOC(newd, struct nfsv4node *, 170 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 171 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 172 NFSLOCKNODE(np); 173 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 174 && (np->n_v4->n4_namelen != cnp->cn_namelen || 175 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 176 cnp->cn_namelen) || 177 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 178 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 179 dnp->n_fhp->nfh_len))) { 180 oldd = np->n_v4; 181 np->n_v4 = newd; 182 newd = NULL; 183 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 184 np->n_v4->n4_namelen = cnp->cn_namelen; 185 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 186 dnp->n_fhp->nfh_len); 187 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 188 cnp->cn_namelen); 189 } 190 NFSUNLOCKNODE(np); 191 } 192 if (newd != NULL) 193 FREE((caddr_t)newd, M_NFSV4NODE); 194 if (oldd != NULL) 195 FREE((caddr_t)oldd, M_NFSV4NODE); 196 *npp = np; 197 FREE((caddr_t)nfhp, M_NFSFH); 198 return (0); 199 } 200 201 /* 202 * Allocate before getnewvnode since doing so afterward 203 * might cause a bogus v_data pointer to get dereferenced 204 * elsewhere if zalloc should block. 205 */ 206 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 207 208 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 209 if (error) { 210 uma_zfree(newnfsnode_zone, np); 211 FREE((caddr_t)nfhp, M_NFSFH); 212 return (error); 213 } 214 vp = nvp; 215 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 216 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 217 vp->v_data = np; 218 np->n_vnode = vp; 219 /* 220 * Initialize the mutex even if the vnode is going to be a loser. 221 * This simplifies the logic in reclaim, which can then unconditionally 222 * destroy the mutex (in the case of the loser, or if hash_insert 223 * happened to return an error no special casing is needed). 224 */ 225 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 226 227 /* 228 * Are we getting the root? If so, make sure the vnode flags 229 * are correct 230 */ 231 if ((nfhp->nfh_len == nmp->nm_fhsize) && 232 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 233 if (vp->v_type == VNON) 234 vp->v_type = VDIR; 235 vp->v_vflag |= VV_ROOT; 236 } 237 238 np->n_fhp = nfhp; 239 /* 240 * For NFSv4, we have to attach the directory file handle and 241 * file name, so that Open Ops can be done later. 242 */ 243 if (nmp->nm_flag & NFSMNT_NFSV4) { 244 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 245 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 246 M_WAITOK); 247 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 248 np->n_v4->n4_namelen = cnp->cn_namelen; 249 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 250 dnp->n_fhp->nfh_len); 251 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 252 cnp->cn_namelen); 253 } else { 254 np->n_v4 = NULL; 255 } 256 257 /* 258 * NFS supports recursive and shared locking. 259 */ 260 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 261 VN_LOCK_AREC(vp); 262 VN_LOCK_ASHARE(vp); 263 error = insmntque(vp, mntp); 264 if (error != 0) { 265 *npp = NULL; 266 mtx_destroy(&np->n_mtx); 267 FREE((caddr_t)nfhp, M_NFSFH); 268 if (np->n_v4 != NULL) 269 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 270 uma_zfree(newnfsnode_zone, np); 271 return (error); 272 } 273 error = vfs_hash_insert(vp, hash, lkflags, 274 td, &nvp, newnfs_vncmpf, nfhp); 275 if (error) 276 return (error); 277 if (nvp != NULL) { 278 *npp = VTONFS(nvp); 279 /* vfs_hash_insert() vput()'s the losing vnode */ 280 return (0); 281 } 282 *npp = np; 283 284 return (0); 285 } 286 287 /* 288 * Anothe variant of nfs_nget(). This one is only used by reopen. It 289 * takes almost the same args as nfs_nget(), but only succeeds if an entry 290 * exists in the cache. (Since files should already be "open" with a 291 * vnode ref cnt on the node when reopen calls this, it should always 292 * succeed.) 293 * Also, don't get a vnode lock, since it may already be locked by some 294 * other process that is handling it. This is ok, since all other threads 295 * on the client are blocked by the nfsc_lock being exclusively held by the 296 * caller of this function. 297 */ 298 int 299 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 300 struct thread *td, struct nfsnode **npp) 301 { 302 struct vnode *nvp; 303 u_int hash; 304 struct nfsfh *nfhp; 305 int error; 306 307 *npp = NULL; 308 /* For forced dismounts, just return error. */ 309 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 310 return (EINTR); 311 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 312 M_NFSFH, M_WAITOK); 313 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 314 nfhp->nfh_len = fhsize; 315 316 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 317 318 /* 319 * First, try to get the vnode locked, but don't block for the lock. 320 */ 321 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 322 newnfs_vncmpf, nfhp); 323 if (error == 0 && nvp != NULL) { 324 NFSVOPUNLOCK(nvp, 0); 325 } else if (error == EBUSY) { 326 /* 327 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 328 * and lock the vnode, but just get a v_usecount on it. 329 * LK_NOWAIT is set so that when vget() returns ENOENT, 330 * vfs_hash_get() fails instead of looping. 331 * If this succeeds, it is safe so long as a vflush() with 332 * FORCECLOSE has not been done. Since the Renew thread is 333 * stopped and the MNTK_UNMOUNTF flag is set before doing 334 * a vflush() with FORCECLOSE, we should be ok here. 335 */ 336 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 337 error = EINTR; 338 else 339 error = vfs_hash_get(mntp, hash, 340 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 341 newnfs_vncmpf, nfhp); 342 } 343 FREE(nfhp, M_NFSFH); 344 if (error) 345 return (error); 346 if (nvp != NULL) { 347 *npp = VTONFS(nvp); 348 return (0); 349 } 350 return (EINVAL); 351 } 352 353 /* 354 * Load the attribute cache (that lives in the nfsnode entry) with 355 * the attributes of the second argument and 356 * Iff vaper not NULL 357 * copy the attributes to *vaper 358 * Similar to nfs_loadattrcache(), except the attributes are passed in 359 * instead of being parsed out of the mbuf list. 360 */ 361 int 362 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 363 void *stuff, int writeattr, int dontshrink) 364 { 365 struct vnode *vp = *vpp; 366 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 367 struct nfsnode *np; 368 struct nfsmount *nmp; 369 struct timespec mtime_save; 370 371 /* 372 * If v_type == VNON it is a new node, so fill in the v_type, 373 * n_mtime fields. Check to see if it represents a special 374 * device, and if so, check for a possible alias. Once the 375 * correct vnode has been obtained, fill in the rest of the 376 * information. 377 */ 378 np = VTONFS(vp); 379 NFSLOCKNODE(np); 380 if (vp->v_type != nvap->va_type) { 381 vp->v_type = nvap->va_type; 382 if (vp->v_type == VFIFO) 383 vp->v_op = &newnfs_fifoops; 384 np->n_mtime = nvap->va_mtime; 385 } 386 nmp = VFSTONFS(vp->v_mount); 387 vap = &np->n_vattr.na_vattr; 388 mtime_save = vap->va_mtime; 389 if (writeattr) { 390 np->n_vattr.na_filerev = nap->na_filerev; 391 np->n_vattr.na_size = nap->na_size; 392 np->n_vattr.na_mtime = nap->na_mtime; 393 np->n_vattr.na_ctime = nap->na_ctime; 394 np->n_vattr.na_fsid = nap->na_fsid; 395 np->n_vattr.na_mode = nap->na_mode; 396 } else { 397 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 398 sizeof (struct nfsvattr)); 399 } 400 401 /* 402 * For NFSv4, if the node's fsid is not equal to the mount point's 403 * fsid, return the low order 32bits of the node's fsid. This 404 * allows getcwd(3) to work. There is a chance that the fsid might 405 * be the same as a local fs, but since this is in an NFS mount 406 * point, I don't think that will cause any problems? 407 */ 408 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 409 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 410 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 411 /* 412 * va_fsid needs to be set to some value derived from 413 * np->n_vattr.na_filesid that is not equal 414 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 415 * from the value used for the top level server volume 416 * in the mounted subtree. 417 */ 418 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 419 (uint32_t)np->n_vattr.na_filesid[0]) 420 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 421 else 422 vap->va_fsid = (uint32_t)hash32_buf( 423 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 424 } else 425 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 426 np->n_attrstamp = time_second; 427 if (vap->va_size != np->n_size) { 428 if (vap->va_type == VREG) { 429 if (dontshrink && vap->va_size < np->n_size) { 430 /* 431 * We've been told not to shrink the file; 432 * zero np->n_attrstamp to indicate that 433 * the attributes are stale. 434 */ 435 vap->va_size = np->n_size; 436 np->n_attrstamp = 0; 437 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 438 } else if (np->n_flag & NMODIFIED) { 439 /* 440 * We've modified the file: Use the larger 441 * of our size, and the server's size. 442 */ 443 if (vap->va_size < np->n_size) { 444 vap->va_size = np->n_size; 445 } else { 446 np->n_size = vap->va_size; 447 np->n_flag |= NSIZECHANGED; 448 } 449 } else { 450 np->n_size = vap->va_size; 451 np->n_flag |= NSIZECHANGED; 452 } 453 vnode_pager_setsize(vp, np->n_size); 454 } else { 455 np->n_size = vap->va_size; 456 } 457 } 458 /* 459 * The following checks are added to prevent a race between (say) 460 * a READDIR+ and a WRITE. 461 * READDIR+, WRITE requests sent out. 462 * READDIR+ resp, WRITE resp received on client. 463 * However, the WRITE resp was handled before the READDIR+ resp 464 * causing the post op attrs from the write to be loaded first 465 * and the attrs from the READDIR+ to be loaded later. If this 466 * happens, we have stale attrs loaded into the attrcache. 467 * We detect this by for the mtime moving back. We invalidate the 468 * attrcache when this happens. 469 */ 470 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 471 /* Size changed or mtime went backwards */ 472 np->n_attrstamp = 0; 473 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 474 } 475 if (vaper != NULL) { 476 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 477 if (np->n_flag & NCHG) { 478 if (np->n_flag & NACC) 479 vaper->va_atime = np->n_atim; 480 if (np->n_flag & NUPD) 481 vaper->va_mtime = np->n_mtim; 482 } 483 } 484 #ifdef KDTRACE_HOOKS 485 if (np->n_attrstamp != 0) 486 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0); 487 #endif 488 NFSUNLOCKNODE(np); 489 return (0); 490 } 491 492 /* 493 * Fill in the client id name. For these bytes: 494 * 1 - they must be unique 495 * 2 - they should be persistent across client reboots 496 * 1 is more critical than 2 497 * Use the mount point's unique id plus either the uuid or, if that 498 * isn't set, random junk. 499 */ 500 void 501 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 502 { 503 int uuidlen; 504 505 /* 506 * First, put in the 64bit mount point identifier. 507 */ 508 if (idlen >= sizeof (u_int64_t)) { 509 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 510 cp += sizeof (u_int64_t); 511 idlen -= sizeof (u_int64_t); 512 } 513 514 /* 515 * If uuid is non-zero length, use it. 516 */ 517 uuidlen = strlen(uuid); 518 if (uuidlen > 0 && idlen >= uuidlen) { 519 NFSBCOPY(uuid, cp, uuidlen); 520 cp += uuidlen; 521 idlen -= uuidlen; 522 } 523 524 /* 525 * This only normally happens if the uuid isn't set. 526 */ 527 while (idlen > 0) { 528 *cp++ = (u_int8_t)(arc4random() % 256); 529 idlen--; 530 } 531 } 532 533 /* 534 * Fill in a lock owner name. For now, pid + the process's creation time. 535 */ 536 void 537 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 538 { 539 union { 540 u_int32_t lval; 541 u_int8_t cval[4]; 542 } tl; 543 struct proc *p; 544 545 if (id == NULL) { 546 printf("NULL id\n"); 547 bzero(cp, NFSV4CL_LOCKNAMELEN); 548 return; 549 } 550 if ((flags & F_POSIX) != 0) { 551 p = (struct proc *)id; 552 tl.lval = p->p_pid; 553 *cp++ = tl.cval[0]; 554 *cp++ = tl.cval[1]; 555 *cp++ = tl.cval[2]; 556 *cp++ = tl.cval[3]; 557 tl.lval = p->p_stats->p_start.tv_sec; 558 *cp++ = tl.cval[0]; 559 *cp++ = tl.cval[1]; 560 *cp++ = tl.cval[2]; 561 *cp++ = tl.cval[3]; 562 tl.lval = p->p_stats->p_start.tv_usec; 563 *cp++ = tl.cval[0]; 564 *cp++ = tl.cval[1]; 565 *cp++ = tl.cval[2]; 566 *cp = tl.cval[3]; 567 } else if ((flags & F_FLOCK) != 0) { 568 bcopy(&id, cp, sizeof(id)); 569 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 570 } else { 571 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 572 bzero(cp, NFSV4CL_LOCKNAMELEN); 573 } 574 } 575 576 /* 577 * Find the parent process for the thread passed in as an argument. 578 * If none exists, return NULL, otherwise return a thread for the parent. 579 * (Can be any of the threads, since it is only used for td->td_proc.) 580 */ 581 NFSPROC_T * 582 nfscl_getparent(struct thread *td) 583 { 584 struct proc *p; 585 struct thread *ptd; 586 587 if (td == NULL) 588 return (NULL); 589 p = td->td_proc; 590 if (p->p_pid == 0) 591 return (NULL); 592 p = p->p_pptr; 593 if (p == NULL) 594 return (NULL); 595 ptd = TAILQ_FIRST(&p->p_threads); 596 return (ptd); 597 } 598 599 /* 600 * Start up the renew kernel thread. 601 */ 602 static void 603 start_nfscl(void *arg) 604 { 605 struct nfsclclient *clp; 606 struct thread *td; 607 608 clp = (struct nfsclclient *)arg; 609 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 610 nfscl_renewthread(clp, td); 611 kproc_exit(0); 612 } 613 614 void 615 nfscl_start_renewthread(struct nfsclclient *clp) 616 { 617 618 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 619 "nfscl"); 620 } 621 622 /* 623 * Handle wcc_data. 624 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 625 * as the first Op after PutFH. 626 * (For NFSv4, the postop attributes are after the Op, so they can't be 627 * parsed here. A separate call to nfscl_postop_attr() is required.) 628 */ 629 int 630 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 631 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 632 { 633 u_int32_t *tl; 634 struct nfsnode *np = VTONFS(vp); 635 struct nfsvattr nfsva; 636 int error = 0; 637 638 if (wccflagp != NULL) 639 *wccflagp = 0; 640 if (nd->nd_flag & ND_NFSV3) { 641 *flagp = 0; 642 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 643 if (*tl == newnfs_true) { 644 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 645 if (wccflagp != NULL) { 646 mtx_lock(&np->n_mtx); 647 *wccflagp = (np->n_mtime.tv_sec == 648 fxdr_unsigned(u_int32_t, *(tl + 2)) && 649 np->n_mtime.tv_nsec == 650 fxdr_unsigned(u_int32_t, *(tl + 3))); 651 mtx_unlock(&np->n_mtx); 652 } 653 } 654 error = nfscl_postop_attr(nd, nap, flagp, stuff); 655 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 656 == (ND_NFSV4 | ND_V4WCCATTR)) { 657 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 658 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 659 NULL, NULL, NULL, NULL, NULL); 660 if (error) 661 return (error); 662 /* 663 * Get rid of Op# and status for next op. 664 */ 665 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 666 if (*++tl) 667 nd->nd_flag |= ND_NOMOREDATA; 668 if (wccflagp != NULL && 669 nfsva.na_vattr.va_mtime.tv_sec != 0) { 670 mtx_lock(&np->n_mtx); 671 *wccflagp = (np->n_mtime.tv_sec == 672 nfsva.na_vattr.va_mtime.tv_sec && 673 np->n_mtime.tv_nsec == 674 nfsva.na_vattr.va_mtime.tv_sec); 675 mtx_unlock(&np->n_mtx); 676 } 677 } 678 nfsmout: 679 return (error); 680 } 681 682 /* 683 * Get postop attributes. 684 */ 685 int 686 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 687 void *stuff) 688 { 689 u_int32_t *tl; 690 int error = 0; 691 692 *retp = 0; 693 if (nd->nd_flag & ND_NOMOREDATA) 694 return (error); 695 if (nd->nd_flag & ND_NFSV3) { 696 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 697 *retp = fxdr_unsigned(int, *tl); 698 } else if (nd->nd_flag & ND_NFSV4) { 699 /* 700 * For NFSv4, the postop attr are at the end, so no point 701 * in looking if nd_repstat != 0. 702 */ 703 if (!nd->nd_repstat) { 704 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 705 if (*(tl + 1)) 706 /* should never happen since nd_repstat != 0 */ 707 nd->nd_flag |= ND_NOMOREDATA; 708 else 709 *retp = 1; 710 } 711 } else if (!nd->nd_repstat) { 712 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 713 *retp = 1; 714 } 715 if (*retp) { 716 error = nfsm_loadattr(nd, nap); 717 if (error) 718 *retp = 0; 719 } 720 nfsmout: 721 return (error); 722 } 723 724 /* 725 * Fill in the setable attributes. The full argument indicates whether 726 * to fill in them all or just mode and time. 727 */ 728 void 729 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 730 struct vnode *vp, int flags, u_int32_t rdev) 731 { 732 u_int32_t *tl; 733 struct nfsv2_sattr *sp; 734 nfsattrbit_t attrbits; 735 struct timeval curtime; 736 737 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 738 case ND_NFSV2: 739 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 740 if (vap->va_mode == (mode_t)VNOVAL) 741 sp->sa_mode = newnfs_xdrneg1; 742 else 743 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 744 if (vap->va_uid == (uid_t)VNOVAL) 745 sp->sa_uid = newnfs_xdrneg1; 746 else 747 sp->sa_uid = txdr_unsigned(vap->va_uid); 748 if (vap->va_gid == (gid_t)VNOVAL) 749 sp->sa_gid = newnfs_xdrneg1; 750 else 751 sp->sa_gid = txdr_unsigned(vap->va_gid); 752 if (flags & NFSSATTR_SIZE0) 753 sp->sa_size = 0; 754 else if (flags & NFSSATTR_SIZENEG1) 755 sp->sa_size = newnfs_xdrneg1; 756 else if (flags & NFSSATTR_SIZERDEV) 757 sp->sa_size = txdr_unsigned(rdev); 758 else 759 sp->sa_size = txdr_unsigned(vap->va_size); 760 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 761 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 762 break; 763 case ND_NFSV3: 764 getmicrotime(&curtime); 765 if (vap->va_mode != (mode_t)VNOVAL) { 766 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 767 *tl++ = newnfs_true; 768 *tl = txdr_unsigned(vap->va_mode); 769 } else { 770 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 771 *tl = newnfs_false; 772 } 773 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 774 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 775 *tl++ = newnfs_true; 776 *tl = txdr_unsigned(vap->va_uid); 777 } else { 778 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 779 *tl = newnfs_false; 780 } 781 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 782 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 783 *tl++ = newnfs_true; 784 *tl = txdr_unsigned(vap->va_gid); 785 } else { 786 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 787 *tl = newnfs_false; 788 } 789 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 790 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 791 *tl++ = newnfs_true; 792 txdr_hyper(vap->va_size, tl); 793 } else { 794 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 795 *tl = newnfs_false; 796 } 797 if (vap->va_atime.tv_sec != VNOVAL) { 798 if (vap->va_atime.tv_sec != curtime.tv_sec) { 799 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 800 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 801 txdr_nfsv3time(&vap->va_atime, tl); 802 } else { 803 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 804 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 805 } 806 } else { 807 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 808 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 809 } 810 if (vap->va_mtime.tv_sec != VNOVAL) { 811 if (vap->va_mtime.tv_sec != curtime.tv_sec) { 812 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 813 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 814 txdr_nfsv3time(&vap->va_mtime, tl); 815 } else { 816 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 817 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 818 } 819 } else { 820 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 821 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 822 } 823 break; 824 case ND_NFSV4: 825 NFSZERO_ATTRBIT(&attrbits); 826 if (vap->va_mode != (mode_t)VNOVAL) 827 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 828 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 829 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 830 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 831 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 832 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 833 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 834 if (vap->va_atime.tv_sec != VNOVAL) 835 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 836 if (vap->va_mtime.tv_sec != VNOVAL) 837 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 838 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 839 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 840 break; 841 }; 842 } 843 844 /* 845 * nfscl_request() - mostly a wrapper for newnfs_request(). 846 */ 847 int 848 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 849 struct ucred *cred, void *stuff) 850 { 851 int ret, vers; 852 struct nfsmount *nmp; 853 854 nmp = VFSTONFS(vp->v_mount); 855 if (nd->nd_flag & ND_NFSV4) 856 vers = NFS_VER4; 857 else if (nd->nd_flag & ND_NFSV3) 858 vers = NFS_VER3; 859 else 860 vers = NFS_VER2; 861 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 862 NFS_PROG, vers, NULL, 1, NULL); 863 return (ret); 864 } 865 866 /* 867 * fill in this bsden's variant of statfs using nfsstatfs. 868 */ 869 void 870 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 871 { 872 struct statfs *sbp = (struct statfs *)statfs; 873 874 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 875 sbp->f_bsize = NFS_FABLKSIZE; 876 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 877 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 878 /* 879 * Although sf_abytes is uint64_t and f_bavail is int64_t, 880 * the value after dividing by NFS_FABLKSIZE is small 881 * enough that it will fit in 63bits, so it is ok to 882 * assign it to f_bavail without fear that it will become 883 * negative. 884 */ 885 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 886 sbp->f_files = sfp->sf_tfiles; 887 /* Since f_ffree is int64_t, clip it to 63bits. */ 888 if (sfp->sf_ffiles > INT64_MAX) 889 sbp->f_ffree = INT64_MAX; 890 else 891 sbp->f_ffree = sfp->sf_ffiles; 892 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 893 /* 894 * The type casts to (int32_t) ensure that this code is 895 * compatible with the old NFS client, in that it will 896 * propagate bit31 to the high order bits. This may or may 897 * not be correct for NFSv2, but since it is a legacy 898 * environment, I'd rather retain backwards compatibility. 899 */ 900 sbp->f_bsize = (int32_t)sfp->sf_bsize; 901 sbp->f_blocks = (int32_t)sfp->sf_blocks; 902 sbp->f_bfree = (int32_t)sfp->sf_bfree; 903 sbp->f_bavail = (int32_t)sfp->sf_bavail; 904 sbp->f_files = 0; 905 sbp->f_ffree = 0; 906 } 907 } 908 909 /* 910 * Use the fsinfo stuff to update the mount point. 911 */ 912 void 913 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 914 { 915 916 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 917 fsp->fs_wtpref >= NFS_FABLKSIZE) 918 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 919 ~(NFS_FABLKSIZE - 1); 920 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 921 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 922 if (nmp->nm_wsize == 0) 923 nmp->nm_wsize = fsp->fs_wtmax; 924 } 925 if (nmp->nm_wsize < NFS_FABLKSIZE) 926 nmp->nm_wsize = NFS_FABLKSIZE; 927 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 928 fsp->fs_rtpref >= NFS_FABLKSIZE) 929 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 930 ~(NFS_FABLKSIZE - 1); 931 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 932 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 933 if (nmp->nm_rsize == 0) 934 nmp->nm_rsize = fsp->fs_rtmax; 935 } 936 if (nmp->nm_rsize < NFS_FABLKSIZE) 937 nmp->nm_rsize = NFS_FABLKSIZE; 938 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 939 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 940 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 941 ~(NFS_DIRBLKSIZ - 1); 942 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 943 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 944 if (nmp->nm_readdirsize == 0) 945 nmp->nm_readdirsize = fsp->fs_rtmax; 946 } 947 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 948 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 949 if (fsp->fs_maxfilesize > 0 && 950 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 951 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 952 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 953 nmp->nm_state |= NFSSTA_GOTFSINFO; 954 } 955 956 /* 957 * Get a pointer to my IP addrress and return it. 958 * Return NULL if you can't find one. 959 */ 960 u_int8_t * 961 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 962 { 963 struct sockaddr_in sad, *sin; 964 struct rtentry *rt; 965 u_int8_t *retp = NULL; 966 static struct in_addr laddr; 967 968 *isinet6p = 0; 969 /* 970 * Loop up a route for the destination address. 971 */ 972 if (nmp->nm_nam->sa_family == AF_INET) { 973 bzero(&sad, sizeof (sad)); 974 sin = (struct sockaddr_in *)nmp->nm_nam; 975 sad.sin_family = AF_INET; 976 sad.sin_len = sizeof (struct sockaddr_in); 977 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 978 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 979 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL, 980 curthread->td_proc->p_fibnum); 981 if (rt != NULL) { 982 if (rt->rt_ifp != NULL && 983 rt->rt_ifa != NULL && 984 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 985 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 986 sin = (struct sockaddr_in *) 987 rt->rt_ifa->ifa_addr; 988 laddr.s_addr = sin->sin_addr.s_addr; 989 retp = (u_int8_t *)&laddr; 990 } 991 RTFREE_LOCKED(rt); 992 } 993 CURVNET_RESTORE(); 994 #ifdef INET6 995 } else if (nmp->nm_nam->sa_family == AF_INET6) { 996 struct sockaddr_in6 sad6, *sin6; 997 static struct in6_addr laddr6; 998 999 bzero(&sad6, sizeof (sad6)); 1000 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1001 sad6.sin6_family = AF_INET6; 1002 sad6.sin6_len = sizeof (struct sockaddr_in6); 1003 sad6.sin6_addr = sin6->sin6_addr; 1004 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1005 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL, 1006 curthread->td_proc->p_fibnum); 1007 if (rt != NULL) { 1008 if (rt->rt_ifp != NULL && 1009 rt->rt_ifa != NULL && 1010 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1011 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1012 sin6 = (struct sockaddr_in6 *) 1013 rt->rt_ifa->ifa_addr; 1014 laddr6 = sin6->sin6_addr; 1015 retp = (u_int8_t *)&laddr6; 1016 *isinet6p = 1; 1017 } 1018 RTFREE_LOCKED(rt); 1019 } 1020 CURVNET_RESTORE(); 1021 #endif 1022 } 1023 return (retp); 1024 } 1025 1026 /* 1027 * Copy NFS uid, gids from the cred structure. 1028 */ 1029 void 1030 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1031 { 1032 int i; 1033 1034 KASSERT(cr->cr_ngroups >= 0, 1035 ("newnfs_copyincred: negative cr_ngroups")); 1036 nfscr->nfsc_uid = cr->cr_uid; 1037 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1038 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1039 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1040 } 1041 1042 1043 /* 1044 * Do any client specific initialization. 1045 */ 1046 void 1047 nfscl_init(void) 1048 { 1049 static int inited = 0; 1050 1051 if (inited) 1052 return; 1053 inited = 1; 1054 nfscl_inited = 1; 1055 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1056 } 1057 1058 /* 1059 * Check each of the attributes to be set, to ensure they aren't already 1060 * the correct value. Disable setting ones already correct. 1061 */ 1062 int 1063 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1064 { 1065 1066 if (vap->va_mode != (mode_t)VNOVAL) { 1067 if (vap->va_mode == nvap->na_mode) 1068 vap->va_mode = (mode_t)VNOVAL; 1069 } 1070 if (vap->va_uid != (uid_t)VNOVAL) { 1071 if (vap->va_uid == nvap->na_uid) 1072 vap->va_uid = (uid_t)VNOVAL; 1073 } 1074 if (vap->va_gid != (gid_t)VNOVAL) { 1075 if (vap->va_gid == nvap->na_gid) 1076 vap->va_gid = (gid_t)VNOVAL; 1077 } 1078 if (vap->va_size != VNOVAL) { 1079 if (vap->va_size == nvap->na_size) 1080 vap->va_size = VNOVAL; 1081 } 1082 1083 /* 1084 * We are normally called with only a partially initialized 1085 * VAP. Since the NFSv3 spec says that server may use the 1086 * file attributes to store the verifier, the spec requires 1087 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1088 * in atime, but we can't really assume that all servers will 1089 * so we ensure that our SETATTR sets both atime and mtime. 1090 */ 1091 if (vap->va_mtime.tv_sec == VNOVAL) 1092 vfs_timestamp(&vap->va_mtime); 1093 if (vap->va_atime.tv_sec == VNOVAL) 1094 vap->va_atime = vap->va_mtime; 1095 return (1); 1096 } 1097 1098 /* 1099 * Map nfsv4 errors to errno.h errors. 1100 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1101 * error should only be returned for the Open, Create and Setattr Ops. 1102 * As such, most calls can just pass in 0 for those arguments. 1103 */ 1104 APPLESTATIC int 1105 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1106 { 1107 struct proc *p; 1108 1109 if (error < 10000) 1110 return (error); 1111 if (td != NULL) 1112 p = td->td_proc; 1113 else 1114 p = NULL; 1115 switch (error) { 1116 case NFSERR_BADOWNER: 1117 tprintf(p, LOG_INFO, 1118 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1119 uid, gid); 1120 return (EPERM); 1121 case NFSERR_STALECLIENTID: 1122 case NFSERR_STALESTATEID: 1123 case NFSERR_EXPIRED: 1124 case NFSERR_BADSTATEID: 1125 printf("nfsv4 recover err returned %d\n", error); 1126 return (EIO); 1127 case NFSERR_BADHANDLE: 1128 case NFSERR_SERVERFAULT: 1129 case NFSERR_BADTYPE: 1130 case NFSERR_FHEXPIRED: 1131 case NFSERR_RESOURCE: 1132 case NFSERR_MOVED: 1133 case NFSERR_NOFILEHANDLE: 1134 case NFSERR_MINORVERMISMATCH: 1135 case NFSERR_OLDSTATEID: 1136 case NFSERR_BADSEQID: 1137 case NFSERR_LEASEMOVED: 1138 case NFSERR_RECLAIMBAD: 1139 case NFSERR_BADXDR: 1140 case NFSERR_BADCHAR: 1141 case NFSERR_BADNAME: 1142 case NFSERR_OPILLEGAL: 1143 printf("nfsv4 client/server protocol prob err=%d\n", 1144 error); 1145 return (EIO); 1146 default: 1147 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1148 return (EIO); 1149 }; 1150 } 1151 1152 /* 1153 * Locate a process by number; return only "live" processes -- i.e., neither 1154 * zombies nor newly born but incompletely initialized processes. By not 1155 * returning processes in the PRS_NEW state, we allow callers to avoid 1156 * testing for that condition to avoid dereferencing p_ucred, et al. 1157 * Identical to pfind() in kern_proc.c, except it assume the list is 1158 * already locked. 1159 */ 1160 static struct proc * 1161 pfind_locked(pid_t pid) 1162 { 1163 struct proc *p; 1164 1165 LIST_FOREACH(p, PIDHASH(pid), p_hash) 1166 if (p->p_pid == pid) { 1167 PROC_LOCK(p); 1168 if (p->p_state == PRS_NEW) { 1169 PROC_UNLOCK(p); 1170 p = NULL; 1171 } 1172 break; 1173 } 1174 return (p); 1175 } 1176 1177 /* 1178 * Check to see if the process for this owner exists. Return 1 if it doesn't 1179 * and 0 otherwise. 1180 */ 1181 int 1182 nfscl_procdoesntexist(u_int8_t *own) 1183 { 1184 union { 1185 u_int32_t lval; 1186 u_int8_t cval[4]; 1187 } tl; 1188 struct proc *p; 1189 pid_t pid; 1190 int ret = 0; 1191 1192 tl.cval[0] = *own++; 1193 tl.cval[1] = *own++; 1194 tl.cval[2] = *own++; 1195 tl.cval[3] = *own++; 1196 pid = tl.lval; 1197 p = pfind_locked(pid); 1198 if (p == NULL) 1199 return (1); 1200 if (p->p_stats == NULL) { 1201 PROC_UNLOCK(p); 1202 return (0); 1203 } 1204 tl.cval[0] = *own++; 1205 tl.cval[1] = *own++; 1206 tl.cval[2] = *own++; 1207 tl.cval[3] = *own++; 1208 if (tl.lval != p->p_stats->p_start.tv_sec) { 1209 ret = 1; 1210 } else { 1211 tl.cval[0] = *own++; 1212 tl.cval[1] = *own++; 1213 tl.cval[2] = *own++; 1214 tl.cval[3] = *own; 1215 if (tl.lval != p->p_stats->p_start.tv_usec) 1216 ret = 1; 1217 } 1218 PROC_UNLOCK(p); 1219 return (ret); 1220 } 1221 1222 /* 1223 * - nfs pseudo system call for the client 1224 */ 1225 /* 1226 * MPSAFE 1227 */ 1228 static int 1229 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1230 { 1231 struct file *fp; 1232 struct nfscbd_args nfscbdarg; 1233 struct nfsd_nfscbd_args nfscbdarg2; 1234 int error; 1235 1236 if (uap->flag & NFSSVC_CBADDSOCK) { 1237 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1238 if (error) 1239 return (error); 1240 /* 1241 * Since we don't know what rights might be required, 1242 * pretend that we need them all. It is better to be too 1243 * careful than too reckless. 1244 */ 1245 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp)) 1246 != 0) { 1247 return (error); 1248 } 1249 if (fp->f_type != DTYPE_SOCKET) { 1250 fdrop(fp, td); 1251 return (EPERM); 1252 } 1253 error = nfscbd_addsock(fp); 1254 fdrop(fp, td); 1255 if (!error && nfscl_enablecallb == 0) { 1256 nfsv4_cbport = nfscbdarg.port; 1257 nfscl_enablecallb = 1; 1258 } 1259 } else if (uap->flag & NFSSVC_NFSCBD) { 1260 if (uap->argp == NULL) 1261 return (EINVAL); 1262 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1263 sizeof(nfscbdarg2)); 1264 if (error) 1265 return (error); 1266 error = nfscbd_nfsd(td, &nfscbdarg2); 1267 } else { 1268 error = EINVAL; 1269 } 1270 return (error); 1271 } 1272 1273 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1274 1275 /* 1276 * Called once to initialize data structures... 1277 */ 1278 static int 1279 nfscl_modevent(module_t mod, int type, void *data) 1280 { 1281 int error = 0; 1282 static int loaded = 0; 1283 1284 switch (type) { 1285 case MOD_LOAD: 1286 if (loaded) 1287 return (0); 1288 newnfs_portinit(); 1289 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1290 MTX_DEF); 1291 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1292 nfscl_init(); 1293 NFSD_LOCK(); 1294 nfsrvd_cbinit(0); 1295 NFSD_UNLOCK(); 1296 ncl_call_invalcaches = ncl_invalcaches; 1297 nfsd_call_nfscl = nfssvc_nfscl; 1298 loaded = 1; 1299 break; 1300 1301 case MOD_UNLOAD: 1302 if (nfs_numnfscbd != 0) { 1303 error = EBUSY; 1304 break; 1305 } 1306 1307 /* 1308 * XXX: Unloading of nfscl module is unsupported. 1309 */ 1310 #if 0 1311 ncl_call_invalcaches = NULL; 1312 nfsd_call_nfscl = NULL; 1313 /* and get rid of the mutexes */ 1314 mtx_destroy(&nfs_clstate_mutex); 1315 mtx_destroy(&ncl_iod_mutex); 1316 loaded = 0; 1317 break; 1318 #else 1319 /* FALLTHROUGH */ 1320 #endif 1321 default: 1322 error = EOPNOTSUPP; 1323 break; 1324 } 1325 return error; 1326 } 1327 static moduledata_t nfscl_mod = { 1328 "nfscl", 1329 nfscl_modevent, 1330 NULL, 1331 }; 1332 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1333 1334 /* So that loader and kldload(2) can find us, wherever we are.. */ 1335 MODULE_VERSION(nfscl, 1); 1336 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1337 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1338 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1339 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1340 1341