1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet6.h" 38 #include "opt_kdtrace.h" 39 40 #include <sys/capability.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/hash.h> 47 #include <fs/nfs/nfsport.h> 48 #include <netinet/if_ether.h> 49 #include <net/if_types.h> 50 51 #include <fs/nfsclient/nfs_kdtrace.h> 52 53 #ifdef KDTRACE_HOOKS 54 dtrace_nfsclient_attrcache_flush_probe_func_t 55 dtrace_nfscl_attrcache_flush_done_probe; 56 uint32_t nfscl_attrcache_flush_done_id; 57 58 dtrace_nfsclient_attrcache_get_hit_probe_func_t 59 dtrace_nfscl_attrcache_get_hit_probe; 60 uint32_t nfscl_attrcache_get_hit_id; 61 62 dtrace_nfsclient_attrcache_get_miss_probe_func_t 63 dtrace_nfscl_attrcache_get_miss_probe; 64 uint32_t nfscl_attrcache_get_miss_id; 65 66 dtrace_nfsclient_attrcache_load_probe_func_t 67 dtrace_nfscl_attrcache_load_done_probe; 68 uint32_t nfscl_attrcache_load_done_id; 69 #endif /* !KDTRACE_HOOKS */ 70 71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 72 extern struct vop_vector newnfs_vnodeops; 73 extern struct vop_vector newnfs_fifoops; 74 extern uma_zone_t newnfsnode_zone; 75 extern struct buf_ops buf_ops_newnfs; 76 extern int ncl_pbuf_freecnt; 77 extern short nfsv4_cbport; 78 extern int nfscl_enablecallb; 79 extern int nfs_numnfscbd; 80 extern int nfscl_inited; 81 struct mtx nfs_clstate_mutex; 82 struct mtx ncl_iod_mutex; 83 NFSDLOCKMUTEX; 84 85 extern void (*ncl_call_invalcaches)(struct vnode *); 86 87 /* 88 * Comparison function for vfs_hash functions. 89 */ 90 int 91 newnfs_vncmpf(struct vnode *vp, void *arg) 92 { 93 struct nfsfh *nfhp = (struct nfsfh *)arg; 94 struct nfsnode *np = VTONFS(vp); 95 96 if (np->n_fhp->nfh_len != nfhp->nfh_len || 97 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 98 return (1); 99 return (0); 100 } 101 102 /* 103 * Look up a vnode/nfsnode by file handle. 104 * Callers must check for mount points!! 105 * In all cases, a pointer to a 106 * nfsnode structure is returned. 107 * This variant takes a "struct nfsfh *" as second argument and uses 108 * that structure up, either by hanging off the nfsnode or FREEing it. 109 */ 110 int 111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 112 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 113 void *stuff, int lkflags) 114 { 115 struct nfsnode *np, *dnp; 116 struct vnode *vp, *nvp; 117 struct nfsv4node *newd, *oldd; 118 int error; 119 u_int hash; 120 struct nfsmount *nmp; 121 122 nmp = VFSTONFS(mntp); 123 dnp = VTONFS(dvp); 124 *npp = NULL; 125 126 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 127 128 error = vfs_hash_get(mntp, hash, lkflags, 129 td, &nvp, newnfs_vncmpf, nfhp); 130 if (error == 0 && nvp != NULL) { 131 /* 132 * I believe there is a slight chance that vgonel() could 133 * get called on this vnode between when NFSVOPLOCK() drops 134 * the VI_LOCK() and vget() acquires it again, so that it 135 * hasn't yet had v_usecount incremented. If this were to 136 * happen, the VI_DOOMED flag would be set, so check for 137 * that here. Since we now have the v_usecount incremented, 138 * we should be ok until we vrele() it, if the VI_DOOMED 139 * flag isn't set now. 140 */ 141 VI_LOCK(nvp); 142 if ((nvp->v_iflag & VI_DOOMED)) { 143 VI_UNLOCK(nvp); 144 vrele(nvp); 145 error = ENOENT; 146 } else { 147 VI_UNLOCK(nvp); 148 } 149 } 150 if (error) { 151 FREE((caddr_t)nfhp, M_NFSFH); 152 return (error); 153 } 154 if (nvp != NULL) { 155 np = VTONFS(nvp); 156 /* 157 * For NFSv4, check to see if it is the same name and 158 * replace the name, if it is different. 159 */ 160 oldd = newd = NULL; 161 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 162 nvp->v_type == VREG && 163 (np->n_v4->n4_namelen != cnp->cn_namelen || 164 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 165 cnp->cn_namelen) || 166 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 167 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 168 dnp->n_fhp->nfh_len))) { 169 MALLOC(newd, struct nfsv4node *, 170 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 171 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 172 NFSLOCKNODE(np); 173 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 174 && (np->n_v4->n4_namelen != cnp->cn_namelen || 175 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 176 cnp->cn_namelen) || 177 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 178 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 179 dnp->n_fhp->nfh_len))) { 180 oldd = np->n_v4; 181 np->n_v4 = newd; 182 newd = NULL; 183 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 184 np->n_v4->n4_namelen = cnp->cn_namelen; 185 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 186 dnp->n_fhp->nfh_len); 187 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 188 cnp->cn_namelen); 189 } 190 NFSUNLOCKNODE(np); 191 } 192 if (newd != NULL) 193 FREE((caddr_t)newd, M_NFSV4NODE); 194 if (oldd != NULL) 195 FREE((caddr_t)oldd, M_NFSV4NODE); 196 *npp = np; 197 FREE((caddr_t)nfhp, M_NFSFH); 198 return (0); 199 } 200 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 201 202 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 203 if (error) { 204 uma_zfree(newnfsnode_zone, np); 205 FREE((caddr_t)nfhp, M_NFSFH); 206 return (error); 207 } 208 vp = nvp; 209 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 210 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 211 vp->v_data = np; 212 np->n_vnode = vp; 213 /* 214 * Initialize the mutex even if the vnode is going to be a loser. 215 * This simplifies the logic in reclaim, which can then unconditionally 216 * destroy the mutex (in the case of the loser, or if hash_insert 217 * happened to return an error no special casing is needed). 218 */ 219 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 220 221 /* 222 * Are we getting the root? If so, make sure the vnode flags 223 * are correct 224 */ 225 if ((nfhp->nfh_len == nmp->nm_fhsize) && 226 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 227 if (vp->v_type == VNON) 228 vp->v_type = VDIR; 229 vp->v_vflag |= VV_ROOT; 230 } 231 232 np->n_fhp = nfhp; 233 /* 234 * For NFSv4, we have to attach the directory file handle and 235 * file name, so that Open Ops can be done later. 236 */ 237 if (nmp->nm_flag & NFSMNT_NFSV4) { 238 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 239 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 240 M_WAITOK); 241 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 242 np->n_v4->n4_namelen = cnp->cn_namelen; 243 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 244 dnp->n_fhp->nfh_len); 245 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 246 cnp->cn_namelen); 247 } else { 248 np->n_v4 = NULL; 249 } 250 251 /* 252 * NFS supports recursive and shared locking. 253 */ 254 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 255 VN_LOCK_AREC(vp); 256 VN_LOCK_ASHARE(vp); 257 error = insmntque(vp, mntp); 258 if (error != 0) { 259 *npp = NULL; 260 mtx_destroy(&np->n_mtx); 261 FREE((caddr_t)nfhp, M_NFSFH); 262 if (np->n_v4 != NULL) 263 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 264 uma_zfree(newnfsnode_zone, np); 265 return (error); 266 } 267 error = vfs_hash_insert(vp, hash, lkflags, 268 td, &nvp, newnfs_vncmpf, nfhp); 269 if (error) 270 return (error); 271 if (nvp != NULL) { 272 *npp = VTONFS(nvp); 273 /* vfs_hash_insert() vput()'s the losing vnode */ 274 return (0); 275 } 276 *npp = np; 277 278 return (0); 279 } 280 281 /* 282 * Anothe variant of nfs_nget(). This one is only used by reopen. It 283 * takes almost the same args as nfs_nget(), but only succeeds if an entry 284 * exists in the cache. (Since files should already be "open" with a 285 * vnode ref cnt on the node when reopen calls this, it should always 286 * succeed.) 287 * Also, don't get a vnode lock, since it may already be locked by some 288 * other process that is handling it. This is ok, since all other threads 289 * on the client are blocked by the nfsc_lock being exclusively held by the 290 * caller of this function. 291 */ 292 int 293 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 294 struct thread *td, struct nfsnode **npp) 295 { 296 struct vnode *nvp; 297 u_int hash; 298 struct nfsfh *nfhp; 299 int error; 300 301 *npp = NULL; 302 /* For forced dismounts, just return error. */ 303 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 304 return (EINTR); 305 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 306 M_NFSFH, M_WAITOK); 307 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 308 nfhp->nfh_len = fhsize; 309 310 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 311 312 /* 313 * First, try to get the vnode locked, but don't block for the lock. 314 */ 315 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 316 newnfs_vncmpf, nfhp); 317 if (error == 0 && nvp != NULL) { 318 NFSVOPUNLOCK(nvp, 0); 319 } else if (error == EBUSY) { 320 /* 321 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 322 * and lock the vnode, but just get a v_usecount on it. 323 * LK_NOWAIT is set so that when vget() returns ENOENT, 324 * vfs_hash_get() fails instead of looping. 325 * If this succeeds, it is safe so long as a vflush() with 326 * FORCECLOSE has not been done. Since the Renew thread is 327 * stopped and the MNTK_UNMOUNTF flag is set before doing 328 * a vflush() with FORCECLOSE, we should be ok here. 329 */ 330 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 331 error = EINTR; 332 else 333 error = vfs_hash_get(mntp, hash, 334 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 335 newnfs_vncmpf, nfhp); 336 } 337 FREE(nfhp, M_NFSFH); 338 if (error) 339 return (error); 340 if (nvp != NULL) { 341 *npp = VTONFS(nvp); 342 return (0); 343 } 344 return (EINVAL); 345 } 346 347 /* 348 * Load the attribute cache (that lives in the nfsnode entry) with 349 * the attributes of the second argument and 350 * Iff vaper not NULL 351 * copy the attributes to *vaper 352 * Similar to nfs_loadattrcache(), except the attributes are passed in 353 * instead of being parsed out of the mbuf list. 354 */ 355 int 356 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 357 void *stuff, int writeattr, int dontshrink) 358 { 359 struct vnode *vp = *vpp; 360 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 361 struct nfsnode *np; 362 struct nfsmount *nmp; 363 struct timespec mtime_save; 364 u_quad_t nsize; 365 int setnsize; 366 367 /* 368 * If v_type == VNON it is a new node, so fill in the v_type, 369 * n_mtime fields. Check to see if it represents a special 370 * device, and if so, check for a possible alias. Once the 371 * correct vnode has been obtained, fill in the rest of the 372 * information. 373 */ 374 np = VTONFS(vp); 375 NFSLOCKNODE(np); 376 if (vp->v_type != nvap->va_type) { 377 vp->v_type = nvap->va_type; 378 if (vp->v_type == VFIFO) 379 vp->v_op = &newnfs_fifoops; 380 np->n_mtime = nvap->va_mtime; 381 } 382 nmp = VFSTONFS(vp->v_mount); 383 vap = &np->n_vattr.na_vattr; 384 mtime_save = vap->va_mtime; 385 if (writeattr) { 386 np->n_vattr.na_filerev = nap->na_filerev; 387 np->n_vattr.na_size = nap->na_size; 388 np->n_vattr.na_mtime = nap->na_mtime; 389 np->n_vattr.na_ctime = nap->na_ctime; 390 np->n_vattr.na_fsid = nap->na_fsid; 391 np->n_vattr.na_mode = nap->na_mode; 392 } else { 393 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 394 sizeof (struct nfsvattr)); 395 } 396 397 /* 398 * For NFSv4, if the node's fsid is not equal to the mount point's 399 * fsid, return the low order 32bits of the node's fsid. This 400 * allows getcwd(3) to work. There is a chance that the fsid might 401 * be the same as a local fs, but since this is in an NFS mount 402 * point, I don't think that will cause any problems? 403 */ 404 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 405 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 406 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 407 /* 408 * va_fsid needs to be set to some value derived from 409 * np->n_vattr.na_filesid that is not equal 410 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 411 * from the value used for the top level server volume 412 * in the mounted subtree. 413 */ 414 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 415 (uint32_t)np->n_vattr.na_filesid[0]) 416 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 417 else 418 vap->va_fsid = (uint32_t)hash32_buf( 419 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 420 } else 421 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 422 np->n_attrstamp = time_second; 423 setnsize = 0; 424 nsize = 0; 425 if (vap->va_size != np->n_size) { 426 if (vap->va_type == VREG) { 427 if (dontshrink && vap->va_size < np->n_size) { 428 /* 429 * We've been told not to shrink the file; 430 * zero np->n_attrstamp to indicate that 431 * the attributes are stale. 432 */ 433 vap->va_size = np->n_size; 434 np->n_attrstamp = 0; 435 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 436 } else if (np->n_flag & NMODIFIED) { 437 /* 438 * We've modified the file: Use the larger 439 * of our size, and the server's size. 440 */ 441 if (vap->va_size < np->n_size) { 442 vap->va_size = np->n_size; 443 } else { 444 np->n_size = vap->va_size; 445 np->n_flag |= NSIZECHANGED; 446 } 447 } else { 448 np->n_size = vap->va_size; 449 np->n_flag |= NSIZECHANGED; 450 } 451 setnsize = 1; 452 nsize = vap->va_size; 453 } else { 454 np->n_size = vap->va_size; 455 } 456 } 457 /* 458 * The following checks are added to prevent a race between (say) 459 * a READDIR+ and a WRITE. 460 * READDIR+, WRITE requests sent out. 461 * READDIR+ resp, WRITE resp received on client. 462 * However, the WRITE resp was handled before the READDIR+ resp 463 * causing the post op attrs from the write to be loaded first 464 * and the attrs from the READDIR+ to be loaded later. If this 465 * happens, we have stale attrs loaded into the attrcache. 466 * We detect this by for the mtime moving back. We invalidate the 467 * attrcache when this happens. 468 */ 469 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 470 /* Size changed or mtime went backwards */ 471 np->n_attrstamp = 0; 472 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 473 } 474 if (vaper != NULL) { 475 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 476 if (np->n_flag & NCHG) { 477 if (np->n_flag & NACC) 478 vaper->va_atime = np->n_atim; 479 if (np->n_flag & NUPD) 480 vaper->va_mtime = np->n_mtim; 481 } 482 } 483 #ifdef KDTRACE_HOOKS 484 if (np->n_attrstamp != 0) 485 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0); 486 #endif 487 NFSUNLOCKNODE(np); 488 if (setnsize) 489 vnode_pager_setsize(vp, nsize); 490 return (0); 491 } 492 493 /* 494 * Fill in the client id name. For these bytes: 495 * 1 - they must be unique 496 * 2 - they should be persistent across client reboots 497 * 1 is more critical than 2 498 * Use the mount point's unique id plus either the uuid or, if that 499 * isn't set, random junk. 500 */ 501 void 502 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 503 { 504 int uuidlen; 505 506 /* 507 * First, put in the 64bit mount point identifier. 508 */ 509 if (idlen >= sizeof (u_int64_t)) { 510 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 511 cp += sizeof (u_int64_t); 512 idlen -= sizeof (u_int64_t); 513 } 514 515 /* 516 * If uuid is non-zero length, use it. 517 */ 518 uuidlen = strlen(uuid); 519 if (uuidlen > 0 && idlen >= uuidlen) { 520 NFSBCOPY(uuid, cp, uuidlen); 521 cp += uuidlen; 522 idlen -= uuidlen; 523 } 524 525 /* 526 * This only normally happens if the uuid isn't set. 527 */ 528 while (idlen > 0) { 529 *cp++ = (u_int8_t)(arc4random() % 256); 530 idlen--; 531 } 532 } 533 534 /* 535 * Fill in a lock owner name. For now, pid + the process's creation time. 536 */ 537 void 538 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 539 { 540 union { 541 u_int32_t lval; 542 u_int8_t cval[4]; 543 } tl; 544 struct proc *p; 545 546 if (id == NULL) { 547 printf("NULL id\n"); 548 bzero(cp, NFSV4CL_LOCKNAMELEN); 549 return; 550 } 551 if ((flags & F_POSIX) != 0) { 552 p = (struct proc *)id; 553 tl.lval = p->p_pid; 554 *cp++ = tl.cval[0]; 555 *cp++ = tl.cval[1]; 556 *cp++ = tl.cval[2]; 557 *cp++ = tl.cval[3]; 558 tl.lval = p->p_stats->p_start.tv_sec; 559 *cp++ = tl.cval[0]; 560 *cp++ = tl.cval[1]; 561 *cp++ = tl.cval[2]; 562 *cp++ = tl.cval[3]; 563 tl.lval = p->p_stats->p_start.tv_usec; 564 *cp++ = tl.cval[0]; 565 *cp++ = tl.cval[1]; 566 *cp++ = tl.cval[2]; 567 *cp = tl.cval[3]; 568 } else if ((flags & F_FLOCK) != 0) { 569 bcopy(&id, cp, sizeof(id)); 570 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 571 } else { 572 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 573 bzero(cp, NFSV4CL_LOCKNAMELEN); 574 } 575 } 576 577 /* 578 * Find the parent process for the thread passed in as an argument. 579 * If none exists, return NULL, otherwise return a thread for the parent. 580 * (Can be any of the threads, since it is only used for td->td_proc.) 581 */ 582 NFSPROC_T * 583 nfscl_getparent(struct thread *td) 584 { 585 struct proc *p; 586 struct thread *ptd; 587 588 if (td == NULL) 589 return (NULL); 590 p = td->td_proc; 591 if (p->p_pid == 0) 592 return (NULL); 593 p = p->p_pptr; 594 if (p == NULL) 595 return (NULL); 596 ptd = TAILQ_FIRST(&p->p_threads); 597 return (ptd); 598 } 599 600 /* 601 * Start up the renew kernel thread. 602 */ 603 static void 604 start_nfscl(void *arg) 605 { 606 struct nfsclclient *clp; 607 struct thread *td; 608 609 clp = (struct nfsclclient *)arg; 610 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 611 nfscl_renewthread(clp, td); 612 kproc_exit(0); 613 } 614 615 void 616 nfscl_start_renewthread(struct nfsclclient *clp) 617 { 618 619 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 620 "nfscl"); 621 } 622 623 /* 624 * Handle wcc_data. 625 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 626 * as the first Op after PutFH. 627 * (For NFSv4, the postop attributes are after the Op, so they can't be 628 * parsed here. A separate call to nfscl_postop_attr() is required.) 629 */ 630 int 631 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 632 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 633 { 634 u_int32_t *tl; 635 struct nfsnode *np = VTONFS(vp); 636 struct nfsvattr nfsva; 637 int error = 0; 638 639 if (wccflagp != NULL) 640 *wccflagp = 0; 641 if (nd->nd_flag & ND_NFSV3) { 642 *flagp = 0; 643 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 644 if (*tl == newnfs_true) { 645 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 646 if (wccflagp != NULL) { 647 mtx_lock(&np->n_mtx); 648 *wccflagp = (np->n_mtime.tv_sec == 649 fxdr_unsigned(u_int32_t, *(tl + 2)) && 650 np->n_mtime.tv_nsec == 651 fxdr_unsigned(u_int32_t, *(tl + 3))); 652 mtx_unlock(&np->n_mtx); 653 } 654 } 655 error = nfscl_postop_attr(nd, nap, flagp, stuff); 656 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 657 == (ND_NFSV4 | ND_V4WCCATTR)) { 658 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 659 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 660 NULL, NULL, NULL, NULL, NULL); 661 if (error) 662 return (error); 663 /* 664 * Get rid of Op# and status for next op. 665 */ 666 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 667 if (*++tl) 668 nd->nd_flag |= ND_NOMOREDATA; 669 if (wccflagp != NULL && 670 nfsva.na_vattr.va_mtime.tv_sec != 0) { 671 mtx_lock(&np->n_mtx); 672 *wccflagp = (np->n_mtime.tv_sec == 673 nfsva.na_vattr.va_mtime.tv_sec && 674 np->n_mtime.tv_nsec == 675 nfsva.na_vattr.va_mtime.tv_sec); 676 mtx_unlock(&np->n_mtx); 677 } 678 } 679 nfsmout: 680 return (error); 681 } 682 683 /* 684 * Get postop attributes. 685 */ 686 int 687 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 688 void *stuff) 689 { 690 u_int32_t *tl; 691 int error = 0; 692 693 *retp = 0; 694 if (nd->nd_flag & ND_NOMOREDATA) 695 return (error); 696 if (nd->nd_flag & ND_NFSV3) { 697 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 698 *retp = fxdr_unsigned(int, *tl); 699 } else if (nd->nd_flag & ND_NFSV4) { 700 /* 701 * For NFSv4, the postop attr are at the end, so no point 702 * in looking if nd_repstat != 0. 703 */ 704 if (!nd->nd_repstat) { 705 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 706 if (*(tl + 1)) 707 /* should never happen since nd_repstat != 0 */ 708 nd->nd_flag |= ND_NOMOREDATA; 709 else 710 *retp = 1; 711 } 712 } else if (!nd->nd_repstat) { 713 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 714 *retp = 1; 715 } 716 if (*retp) { 717 error = nfsm_loadattr(nd, nap); 718 if (error) 719 *retp = 0; 720 } 721 nfsmout: 722 return (error); 723 } 724 725 /* 726 * Fill in the setable attributes. The full argument indicates whether 727 * to fill in them all or just mode and time. 728 */ 729 void 730 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 731 struct vnode *vp, int flags, u_int32_t rdev) 732 { 733 u_int32_t *tl; 734 struct nfsv2_sattr *sp; 735 nfsattrbit_t attrbits; 736 737 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 738 case ND_NFSV2: 739 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 740 if (vap->va_mode == (mode_t)VNOVAL) 741 sp->sa_mode = newnfs_xdrneg1; 742 else 743 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 744 if (vap->va_uid == (uid_t)VNOVAL) 745 sp->sa_uid = newnfs_xdrneg1; 746 else 747 sp->sa_uid = txdr_unsigned(vap->va_uid); 748 if (vap->va_gid == (gid_t)VNOVAL) 749 sp->sa_gid = newnfs_xdrneg1; 750 else 751 sp->sa_gid = txdr_unsigned(vap->va_gid); 752 if (flags & NFSSATTR_SIZE0) 753 sp->sa_size = 0; 754 else if (flags & NFSSATTR_SIZENEG1) 755 sp->sa_size = newnfs_xdrneg1; 756 else if (flags & NFSSATTR_SIZERDEV) 757 sp->sa_size = txdr_unsigned(rdev); 758 else 759 sp->sa_size = txdr_unsigned(vap->va_size); 760 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 761 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 762 break; 763 case ND_NFSV3: 764 if (vap->va_mode != (mode_t)VNOVAL) { 765 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 766 *tl++ = newnfs_true; 767 *tl = txdr_unsigned(vap->va_mode); 768 } else { 769 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 770 *tl = newnfs_false; 771 } 772 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 773 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 774 *tl++ = newnfs_true; 775 *tl = txdr_unsigned(vap->va_uid); 776 } else { 777 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 778 *tl = newnfs_false; 779 } 780 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 781 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 782 *tl++ = newnfs_true; 783 *tl = txdr_unsigned(vap->va_gid); 784 } else { 785 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 786 *tl = newnfs_false; 787 } 788 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 789 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 790 *tl++ = newnfs_true; 791 txdr_hyper(vap->va_size, tl); 792 } else { 793 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 794 *tl = newnfs_false; 795 } 796 if (vap->va_atime.tv_sec != VNOVAL) { 797 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 798 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 799 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 800 txdr_nfsv3time(&vap->va_atime, tl); 801 } else { 802 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 803 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 804 } 805 } else { 806 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 807 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 808 } 809 if (vap->va_mtime.tv_sec != VNOVAL) { 810 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 811 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 812 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 813 txdr_nfsv3time(&vap->va_mtime, tl); 814 } else { 815 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 816 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 817 } 818 } else { 819 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 820 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 821 } 822 break; 823 case ND_NFSV4: 824 NFSZERO_ATTRBIT(&attrbits); 825 if (vap->va_mode != (mode_t)VNOVAL) 826 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 827 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 828 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 829 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 830 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 831 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 832 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 833 if (vap->va_atime.tv_sec != VNOVAL) 834 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 835 if (vap->va_mtime.tv_sec != VNOVAL) 836 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 837 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 838 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 839 break; 840 }; 841 } 842 843 /* 844 * nfscl_request() - mostly a wrapper for newnfs_request(). 845 */ 846 int 847 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 848 struct ucred *cred, void *stuff) 849 { 850 int ret, vers; 851 struct nfsmount *nmp; 852 853 nmp = VFSTONFS(vp->v_mount); 854 if (nd->nd_flag & ND_NFSV4) 855 vers = NFS_VER4; 856 else if (nd->nd_flag & ND_NFSV3) 857 vers = NFS_VER3; 858 else 859 vers = NFS_VER2; 860 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 861 NFS_PROG, vers, NULL, 1, NULL, NULL); 862 return (ret); 863 } 864 865 /* 866 * fill in this bsden's variant of statfs using nfsstatfs. 867 */ 868 void 869 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 870 { 871 struct statfs *sbp = (struct statfs *)statfs; 872 873 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 874 sbp->f_bsize = NFS_FABLKSIZE; 875 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 876 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 877 /* 878 * Although sf_abytes is uint64_t and f_bavail is int64_t, 879 * the value after dividing by NFS_FABLKSIZE is small 880 * enough that it will fit in 63bits, so it is ok to 881 * assign it to f_bavail without fear that it will become 882 * negative. 883 */ 884 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 885 sbp->f_files = sfp->sf_tfiles; 886 /* Since f_ffree is int64_t, clip it to 63bits. */ 887 if (sfp->sf_ffiles > INT64_MAX) 888 sbp->f_ffree = INT64_MAX; 889 else 890 sbp->f_ffree = sfp->sf_ffiles; 891 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 892 /* 893 * The type casts to (int32_t) ensure that this code is 894 * compatible with the old NFS client, in that it will 895 * propagate bit31 to the high order bits. This may or may 896 * not be correct for NFSv2, but since it is a legacy 897 * environment, I'd rather retain backwards compatibility. 898 */ 899 sbp->f_bsize = (int32_t)sfp->sf_bsize; 900 sbp->f_blocks = (int32_t)sfp->sf_blocks; 901 sbp->f_bfree = (int32_t)sfp->sf_bfree; 902 sbp->f_bavail = (int32_t)sfp->sf_bavail; 903 sbp->f_files = 0; 904 sbp->f_ffree = 0; 905 } 906 } 907 908 /* 909 * Use the fsinfo stuff to update the mount point. 910 */ 911 void 912 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 913 { 914 915 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 916 fsp->fs_wtpref >= NFS_FABLKSIZE) 917 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 918 ~(NFS_FABLKSIZE - 1); 919 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 920 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 921 if (nmp->nm_wsize == 0) 922 nmp->nm_wsize = fsp->fs_wtmax; 923 } 924 if (nmp->nm_wsize < NFS_FABLKSIZE) 925 nmp->nm_wsize = NFS_FABLKSIZE; 926 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 927 fsp->fs_rtpref >= NFS_FABLKSIZE) 928 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 929 ~(NFS_FABLKSIZE - 1); 930 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 931 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 932 if (nmp->nm_rsize == 0) 933 nmp->nm_rsize = fsp->fs_rtmax; 934 } 935 if (nmp->nm_rsize < NFS_FABLKSIZE) 936 nmp->nm_rsize = NFS_FABLKSIZE; 937 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 938 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 939 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 940 ~(NFS_DIRBLKSIZ - 1); 941 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 942 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 943 if (nmp->nm_readdirsize == 0) 944 nmp->nm_readdirsize = fsp->fs_rtmax; 945 } 946 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 947 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 948 if (fsp->fs_maxfilesize > 0 && 949 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 950 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 951 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 952 nmp->nm_state |= NFSSTA_GOTFSINFO; 953 } 954 955 /* 956 * Get a pointer to my IP addrress and return it. 957 * Return NULL if you can't find one. 958 */ 959 u_int8_t * 960 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 961 { 962 struct sockaddr_in sad, *sin; 963 struct rtentry *rt; 964 u_int8_t *retp = NULL; 965 static struct in_addr laddr; 966 967 *isinet6p = 0; 968 /* 969 * Loop up a route for the destination address. 970 */ 971 if (nmp->nm_nam->sa_family == AF_INET) { 972 bzero(&sad, sizeof (sad)); 973 sin = (struct sockaddr_in *)nmp->nm_nam; 974 sad.sin_family = AF_INET; 975 sad.sin_len = sizeof (struct sockaddr_in); 976 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 977 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 978 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL, 979 curthread->td_proc->p_fibnum); 980 if (rt != NULL) { 981 if (rt->rt_ifp != NULL && 982 rt->rt_ifa != NULL && 983 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 984 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 985 sin = (struct sockaddr_in *) 986 rt->rt_ifa->ifa_addr; 987 laddr.s_addr = sin->sin_addr.s_addr; 988 retp = (u_int8_t *)&laddr; 989 } 990 RTFREE_LOCKED(rt); 991 } 992 CURVNET_RESTORE(); 993 #ifdef INET6 994 } else if (nmp->nm_nam->sa_family == AF_INET6) { 995 struct sockaddr_in6 sad6, *sin6; 996 static struct in6_addr laddr6; 997 998 bzero(&sad6, sizeof (sad6)); 999 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1000 sad6.sin6_family = AF_INET6; 1001 sad6.sin6_len = sizeof (struct sockaddr_in6); 1002 sad6.sin6_addr = sin6->sin6_addr; 1003 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1004 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL, 1005 curthread->td_proc->p_fibnum); 1006 if (rt != NULL) { 1007 if (rt->rt_ifp != NULL && 1008 rt->rt_ifa != NULL && 1009 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1010 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1011 sin6 = (struct sockaddr_in6 *) 1012 rt->rt_ifa->ifa_addr; 1013 laddr6 = sin6->sin6_addr; 1014 retp = (u_int8_t *)&laddr6; 1015 *isinet6p = 1; 1016 } 1017 RTFREE_LOCKED(rt); 1018 } 1019 CURVNET_RESTORE(); 1020 #endif 1021 } 1022 return (retp); 1023 } 1024 1025 /* 1026 * Copy NFS uid, gids from the cred structure. 1027 */ 1028 void 1029 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1030 { 1031 int i; 1032 1033 KASSERT(cr->cr_ngroups >= 0, 1034 ("newnfs_copyincred: negative cr_ngroups")); 1035 nfscr->nfsc_uid = cr->cr_uid; 1036 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1037 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1038 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1039 } 1040 1041 1042 /* 1043 * Do any client specific initialization. 1044 */ 1045 void 1046 nfscl_init(void) 1047 { 1048 static int inited = 0; 1049 1050 if (inited) 1051 return; 1052 inited = 1; 1053 nfscl_inited = 1; 1054 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1055 } 1056 1057 /* 1058 * Check each of the attributes to be set, to ensure they aren't already 1059 * the correct value. Disable setting ones already correct. 1060 */ 1061 int 1062 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1063 { 1064 1065 if (vap->va_mode != (mode_t)VNOVAL) { 1066 if (vap->va_mode == nvap->na_mode) 1067 vap->va_mode = (mode_t)VNOVAL; 1068 } 1069 if (vap->va_uid != (uid_t)VNOVAL) { 1070 if (vap->va_uid == nvap->na_uid) 1071 vap->va_uid = (uid_t)VNOVAL; 1072 } 1073 if (vap->va_gid != (gid_t)VNOVAL) { 1074 if (vap->va_gid == nvap->na_gid) 1075 vap->va_gid = (gid_t)VNOVAL; 1076 } 1077 if (vap->va_size != VNOVAL) { 1078 if (vap->va_size == nvap->na_size) 1079 vap->va_size = VNOVAL; 1080 } 1081 1082 /* 1083 * We are normally called with only a partially initialized 1084 * VAP. Since the NFSv3 spec says that server may use the 1085 * file attributes to store the verifier, the spec requires 1086 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1087 * in atime, but we can't really assume that all servers will 1088 * so we ensure that our SETATTR sets both atime and mtime. 1089 */ 1090 if (vap->va_mtime.tv_sec == VNOVAL) 1091 vfs_timestamp(&vap->va_mtime); 1092 if (vap->va_atime.tv_sec == VNOVAL) 1093 vap->va_atime = vap->va_mtime; 1094 return (1); 1095 } 1096 1097 /* 1098 * Map nfsv4 errors to errno.h errors. 1099 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1100 * error should only be returned for the Open, Create and Setattr Ops. 1101 * As such, most calls can just pass in 0 for those arguments. 1102 */ 1103 APPLESTATIC int 1104 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1105 { 1106 struct proc *p; 1107 1108 if (error < 10000) 1109 return (error); 1110 if (td != NULL) 1111 p = td->td_proc; 1112 else 1113 p = NULL; 1114 switch (error) { 1115 case NFSERR_BADOWNER: 1116 tprintf(p, LOG_INFO, 1117 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1118 uid, gid); 1119 return (EPERM); 1120 case NFSERR_BADNAME: 1121 case NFSERR_BADCHAR: 1122 printf("nfsv4 char/name not handled by server\n"); 1123 return (ENOENT); 1124 case NFSERR_STALECLIENTID: 1125 case NFSERR_STALESTATEID: 1126 case NFSERR_EXPIRED: 1127 case NFSERR_BADSTATEID: 1128 case NFSERR_BADSESSION: 1129 printf("nfsv4 recover err returned %d\n", error); 1130 return (EIO); 1131 case NFSERR_BADHANDLE: 1132 case NFSERR_SERVERFAULT: 1133 case NFSERR_BADTYPE: 1134 case NFSERR_FHEXPIRED: 1135 case NFSERR_RESOURCE: 1136 case NFSERR_MOVED: 1137 case NFSERR_NOFILEHANDLE: 1138 case NFSERR_MINORVERMISMATCH: 1139 case NFSERR_OLDSTATEID: 1140 case NFSERR_BADSEQID: 1141 case NFSERR_LEASEMOVED: 1142 case NFSERR_RECLAIMBAD: 1143 case NFSERR_BADXDR: 1144 case NFSERR_OPILLEGAL: 1145 printf("nfsv4 client/server protocol prob err=%d\n", 1146 error); 1147 return (EIO); 1148 default: 1149 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1150 return (EIO); 1151 }; 1152 } 1153 1154 /* 1155 * Check to see if the process for this owner exists. Return 1 if it doesn't 1156 * and 0 otherwise. 1157 */ 1158 int 1159 nfscl_procdoesntexist(u_int8_t *own) 1160 { 1161 union { 1162 u_int32_t lval; 1163 u_int8_t cval[4]; 1164 } tl; 1165 struct proc *p; 1166 pid_t pid; 1167 int ret = 0; 1168 1169 tl.cval[0] = *own++; 1170 tl.cval[1] = *own++; 1171 tl.cval[2] = *own++; 1172 tl.cval[3] = *own++; 1173 pid = tl.lval; 1174 p = pfind_locked(pid); 1175 if (p == NULL) 1176 return (1); 1177 if (p->p_stats == NULL) { 1178 PROC_UNLOCK(p); 1179 return (0); 1180 } 1181 tl.cval[0] = *own++; 1182 tl.cval[1] = *own++; 1183 tl.cval[2] = *own++; 1184 tl.cval[3] = *own++; 1185 if (tl.lval != p->p_stats->p_start.tv_sec) { 1186 ret = 1; 1187 } else { 1188 tl.cval[0] = *own++; 1189 tl.cval[1] = *own++; 1190 tl.cval[2] = *own++; 1191 tl.cval[3] = *own; 1192 if (tl.lval != p->p_stats->p_start.tv_usec) 1193 ret = 1; 1194 } 1195 PROC_UNLOCK(p); 1196 return (ret); 1197 } 1198 1199 /* 1200 * - nfs pseudo system call for the client 1201 */ 1202 /* 1203 * MPSAFE 1204 */ 1205 static int 1206 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1207 { 1208 struct file *fp; 1209 struct nfscbd_args nfscbdarg; 1210 struct nfsd_nfscbd_args nfscbdarg2; 1211 int error; 1212 struct nameidata nd; 1213 struct nfscl_dumpmntopts dumpmntopts; 1214 char *buf; 1215 1216 if (uap->flag & NFSSVC_CBADDSOCK) { 1217 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1218 if (error) 1219 return (error); 1220 /* 1221 * Since we don't know what rights might be required, 1222 * pretend that we need them all. It is better to be too 1223 * careful than too reckless. 1224 */ 1225 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_CLIENT, &fp)) 1226 != 0) { 1227 return (error); 1228 } 1229 if (fp->f_type != DTYPE_SOCKET) { 1230 fdrop(fp, td); 1231 return (EPERM); 1232 } 1233 error = nfscbd_addsock(fp); 1234 fdrop(fp, td); 1235 if (!error && nfscl_enablecallb == 0) { 1236 nfsv4_cbport = nfscbdarg.port; 1237 nfscl_enablecallb = 1; 1238 } 1239 } else if (uap->flag & NFSSVC_NFSCBD) { 1240 if (uap->argp == NULL) 1241 return (EINVAL); 1242 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1243 sizeof(nfscbdarg2)); 1244 if (error) 1245 return (error); 1246 error = nfscbd_nfsd(td, &nfscbdarg2); 1247 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1248 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1249 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1250 dumpmntopts.ndmnt_blen > 1024)) 1251 error = EINVAL; 1252 if (error == 0) 1253 error = nfsrv_lookupfilename(&nd, 1254 dumpmntopts.ndmnt_fname, td); 1255 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1256 "nfs") != 0) { 1257 vput(nd.ni_vp); 1258 error = EINVAL; 1259 } 1260 if (error == 0) { 1261 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1262 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1263 dumpmntopts.ndmnt_blen); 1264 vput(nd.ni_vp); 1265 error = copyout(buf, dumpmntopts.ndmnt_buf, 1266 dumpmntopts.ndmnt_blen); 1267 free(buf, M_TEMP); 1268 } 1269 } else { 1270 error = EINVAL; 1271 } 1272 return (error); 1273 } 1274 1275 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1276 1277 /* 1278 * Called once to initialize data structures... 1279 */ 1280 static int 1281 nfscl_modevent(module_t mod, int type, void *data) 1282 { 1283 int error = 0; 1284 static int loaded = 0; 1285 1286 switch (type) { 1287 case MOD_LOAD: 1288 if (loaded) 1289 return (0); 1290 newnfs_portinit(); 1291 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1292 MTX_DEF); 1293 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1294 nfscl_init(); 1295 NFSD_LOCK(); 1296 nfsrvd_cbinit(0); 1297 NFSD_UNLOCK(); 1298 ncl_call_invalcaches = ncl_invalcaches; 1299 nfsd_call_nfscl = nfssvc_nfscl; 1300 loaded = 1; 1301 break; 1302 1303 case MOD_UNLOAD: 1304 if (nfs_numnfscbd != 0) { 1305 error = EBUSY; 1306 break; 1307 } 1308 1309 /* 1310 * XXX: Unloading of nfscl module is unsupported. 1311 */ 1312 #if 0 1313 ncl_call_invalcaches = NULL; 1314 nfsd_call_nfscl = NULL; 1315 /* and get rid of the mutexes */ 1316 mtx_destroy(&nfs_clstate_mutex); 1317 mtx_destroy(&ncl_iod_mutex); 1318 loaded = 0; 1319 break; 1320 #else 1321 /* FALLTHROUGH */ 1322 #endif 1323 default: 1324 error = EOPNOTSUPP; 1325 break; 1326 } 1327 return error; 1328 } 1329 static moduledata_t nfscl_mod = { 1330 "nfscl", 1331 nfscl_modevent, 1332 NULL, 1333 }; 1334 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1335 1336 /* So that loader and kldload(2) can find us, wherever we are.. */ 1337 MODULE_VERSION(nfscl, 1); 1338 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1339 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1340 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1341 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1342 1343