1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet6.h" 38 #include "opt_kdtrace.h" 39 40 #include <sys/capability.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/hash.h> 47 #include <fs/nfs/nfsport.h> 48 #include <netinet/if_ether.h> 49 #include <net/if_types.h> 50 51 #include <fs/nfsclient/nfs_kdtrace.h> 52 53 #ifdef KDTRACE_HOOKS 54 dtrace_nfsclient_attrcache_flush_probe_func_t 55 dtrace_nfscl_attrcache_flush_done_probe; 56 uint32_t nfscl_attrcache_flush_done_id; 57 58 dtrace_nfsclient_attrcache_get_hit_probe_func_t 59 dtrace_nfscl_attrcache_get_hit_probe; 60 uint32_t nfscl_attrcache_get_hit_id; 61 62 dtrace_nfsclient_attrcache_get_miss_probe_func_t 63 dtrace_nfscl_attrcache_get_miss_probe; 64 uint32_t nfscl_attrcache_get_miss_id; 65 66 dtrace_nfsclient_attrcache_load_probe_func_t 67 dtrace_nfscl_attrcache_load_done_probe; 68 uint32_t nfscl_attrcache_load_done_id; 69 #endif /* !KDTRACE_HOOKS */ 70 71 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 72 extern struct vop_vector newnfs_vnodeops; 73 extern struct vop_vector newnfs_fifoops; 74 extern uma_zone_t newnfsnode_zone; 75 extern struct buf_ops buf_ops_newnfs; 76 extern int ncl_pbuf_freecnt; 77 extern short nfsv4_cbport; 78 extern int nfscl_enablecallb; 79 extern int nfs_numnfscbd; 80 extern int nfscl_inited; 81 struct mtx nfs_clstate_mutex; 82 struct mtx ncl_iod_mutex; 83 NFSDLOCKMUTEX; 84 85 extern void (*ncl_call_invalcaches)(struct vnode *); 86 87 /* 88 * Comparison function for vfs_hash functions. 89 */ 90 int 91 newnfs_vncmpf(struct vnode *vp, void *arg) 92 { 93 struct nfsfh *nfhp = (struct nfsfh *)arg; 94 struct nfsnode *np = VTONFS(vp); 95 96 if (np->n_fhp->nfh_len != nfhp->nfh_len || 97 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 98 return (1); 99 return (0); 100 } 101 102 /* 103 * Look up a vnode/nfsnode by file handle. 104 * Callers must check for mount points!! 105 * In all cases, a pointer to a 106 * nfsnode structure is returned. 107 * This variant takes a "struct nfsfh *" as second argument and uses 108 * that structure up, either by hanging off the nfsnode or FREEing it. 109 */ 110 int 111 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 112 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 113 void *stuff, int lkflags) 114 { 115 struct nfsnode *np, *dnp; 116 struct vnode *vp, *nvp; 117 struct nfsv4node *newd, *oldd; 118 int error; 119 u_int hash; 120 struct nfsmount *nmp; 121 122 nmp = VFSTONFS(mntp); 123 dnp = VTONFS(dvp); 124 *npp = NULL; 125 126 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 127 128 error = vfs_hash_get(mntp, hash, lkflags, 129 td, &nvp, newnfs_vncmpf, nfhp); 130 if (error == 0 && nvp != NULL) { 131 /* 132 * I believe there is a slight chance that vgonel() could 133 * get called on this vnode between when NFSVOPLOCK() drops 134 * the VI_LOCK() and vget() acquires it again, so that it 135 * hasn't yet had v_usecount incremented. If this were to 136 * happen, the VI_DOOMED flag would be set, so check for 137 * that here. Since we now have the v_usecount incremented, 138 * we should be ok until we vrele() it, if the VI_DOOMED 139 * flag isn't set now. 140 */ 141 VI_LOCK(nvp); 142 if ((nvp->v_iflag & VI_DOOMED)) { 143 VI_UNLOCK(nvp); 144 vrele(nvp); 145 error = ENOENT; 146 } else { 147 VI_UNLOCK(nvp); 148 } 149 } 150 if (error) { 151 FREE((caddr_t)nfhp, M_NFSFH); 152 return (error); 153 } 154 if (nvp != NULL) { 155 np = VTONFS(nvp); 156 /* 157 * For NFSv4, check to see if it is the same name and 158 * replace the name, if it is different. 159 */ 160 oldd = newd = NULL; 161 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 162 nvp->v_type == VREG && 163 (np->n_v4->n4_namelen != cnp->cn_namelen || 164 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 165 cnp->cn_namelen) || 166 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 167 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 168 dnp->n_fhp->nfh_len))) { 169 MALLOC(newd, struct nfsv4node *, 170 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 171 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 172 NFSLOCKNODE(np); 173 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 174 && (np->n_v4->n4_namelen != cnp->cn_namelen || 175 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 176 cnp->cn_namelen) || 177 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 178 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 179 dnp->n_fhp->nfh_len))) { 180 oldd = np->n_v4; 181 np->n_v4 = newd; 182 newd = NULL; 183 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 184 np->n_v4->n4_namelen = cnp->cn_namelen; 185 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 186 dnp->n_fhp->nfh_len); 187 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 188 cnp->cn_namelen); 189 } 190 NFSUNLOCKNODE(np); 191 } 192 if (newd != NULL) 193 FREE((caddr_t)newd, M_NFSV4NODE); 194 if (oldd != NULL) 195 FREE((caddr_t)oldd, M_NFSV4NODE); 196 *npp = np; 197 FREE((caddr_t)nfhp, M_NFSFH); 198 return (0); 199 } 200 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 201 202 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 203 if (error) { 204 uma_zfree(newnfsnode_zone, np); 205 FREE((caddr_t)nfhp, M_NFSFH); 206 return (error); 207 } 208 vp = nvp; 209 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 210 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 211 vp->v_data = np; 212 np->n_vnode = vp; 213 /* 214 * Initialize the mutex even if the vnode is going to be a loser. 215 * This simplifies the logic in reclaim, which can then unconditionally 216 * destroy the mutex (in the case of the loser, or if hash_insert 217 * happened to return an error no special casing is needed). 218 */ 219 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 220 221 /* 222 * Are we getting the root? If so, make sure the vnode flags 223 * are correct 224 */ 225 if ((nfhp->nfh_len == nmp->nm_fhsize) && 226 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 227 if (vp->v_type == VNON) 228 vp->v_type = VDIR; 229 vp->v_vflag |= VV_ROOT; 230 } 231 232 np->n_fhp = nfhp; 233 /* 234 * For NFSv4, we have to attach the directory file handle and 235 * file name, so that Open Ops can be done later. 236 */ 237 if (nmp->nm_flag & NFSMNT_NFSV4) { 238 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 239 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 240 M_WAITOK); 241 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 242 np->n_v4->n4_namelen = cnp->cn_namelen; 243 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 244 dnp->n_fhp->nfh_len); 245 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 246 cnp->cn_namelen); 247 } else { 248 np->n_v4 = NULL; 249 } 250 251 /* 252 * NFS supports recursive and shared locking. 253 */ 254 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 255 VN_LOCK_AREC(vp); 256 VN_LOCK_ASHARE(vp); 257 error = insmntque(vp, mntp); 258 if (error != 0) { 259 *npp = NULL; 260 mtx_destroy(&np->n_mtx); 261 FREE((caddr_t)nfhp, M_NFSFH); 262 if (np->n_v4 != NULL) 263 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 264 uma_zfree(newnfsnode_zone, np); 265 return (error); 266 } 267 error = vfs_hash_insert(vp, hash, lkflags, 268 td, &nvp, newnfs_vncmpf, nfhp); 269 if (error) 270 return (error); 271 if (nvp != NULL) { 272 *npp = VTONFS(nvp); 273 /* vfs_hash_insert() vput()'s the losing vnode */ 274 return (0); 275 } 276 *npp = np; 277 278 return (0); 279 } 280 281 /* 282 * Anothe variant of nfs_nget(). This one is only used by reopen. It 283 * takes almost the same args as nfs_nget(), but only succeeds if an entry 284 * exists in the cache. (Since files should already be "open" with a 285 * vnode ref cnt on the node when reopen calls this, it should always 286 * succeed.) 287 * Also, don't get a vnode lock, since it may already be locked by some 288 * other process that is handling it. This is ok, since all other threads 289 * on the client are blocked by the nfsc_lock being exclusively held by the 290 * caller of this function. 291 */ 292 int 293 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 294 struct thread *td, struct nfsnode **npp) 295 { 296 struct vnode *nvp; 297 u_int hash; 298 struct nfsfh *nfhp; 299 int error; 300 301 *npp = NULL; 302 /* For forced dismounts, just return error. */ 303 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 304 return (EINTR); 305 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 306 M_NFSFH, M_WAITOK); 307 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 308 nfhp->nfh_len = fhsize; 309 310 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 311 312 /* 313 * First, try to get the vnode locked, but don't block for the lock. 314 */ 315 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 316 newnfs_vncmpf, nfhp); 317 if (error == 0 && nvp != NULL) { 318 NFSVOPUNLOCK(nvp, 0); 319 } else if (error == EBUSY) { 320 /* 321 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 322 * and lock the vnode, but just get a v_usecount on it. 323 * LK_NOWAIT is set so that when vget() returns ENOENT, 324 * vfs_hash_get() fails instead of looping. 325 * If this succeeds, it is safe so long as a vflush() with 326 * FORCECLOSE has not been done. Since the Renew thread is 327 * stopped and the MNTK_UNMOUNTF flag is set before doing 328 * a vflush() with FORCECLOSE, we should be ok here. 329 */ 330 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 331 error = EINTR; 332 else 333 error = vfs_hash_get(mntp, hash, 334 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 335 newnfs_vncmpf, nfhp); 336 } 337 FREE(nfhp, M_NFSFH); 338 if (error) 339 return (error); 340 if (nvp != NULL) { 341 *npp = VTONFS(nvp); 342 return (0); 343 } 344 return (EINVAL); 345 } 346 347 /* 348 * Load the attribute cache (that lives in the nfsnode entry) with 349 * the attributes of the second argument and 350 * Iff vaper not NULL 351 * copy the attributes to *vaper 352 * Similar to nfs_loadattrcache(), except the attributes are passed in 353 * instead of being parsed out of the mbuf list. 354 */ 355 int 356 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 357 void *stuff, int writeattr, int dontshrink) 358 { 359 struct vnode *vp = *vpp; 360 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 361 struct nfsnode *np; 362 struct nfsmount *nmp; 363 struct timespec mtime_save; 364 365 /* 366 * If v_type == VNON it is a new node, so fill in the v_type, 367 * n_mtime fields. Check to see if it represents a special 368 * device, and if so, check for a possible alias. Once the 369 * correct vnode has been obtained, fill in the rest of the 370 * information. 371 */ 372 np = VTONFS(vp); 373 NFSLOCKNODE(np); 374 if (vp->v_type != nvap->va_type) { 375 vp->v_type = nvap->va_type; 376 if (vp->v_type == VFIFO) 377 vp->v_op = &newnfs_fifoops; 378 np->n_mtime = nvap->va_mtime; 379 } 380 nmp = VFSTONFS(vp->v_mount); 381 vap = &np->n_vattr.na_vattr; 382 mtime_save = vap->va_mtime; 383 if (writeattr) { 384 np->n_vattr.na_filerev = nap->na_filerev; 385 np->n_vattr.na_size = nap->na_size; 386 np->n_vattr.na_mtime = nap->na_mtime; 387 np->n_vattr.na_ctime = nap->na_ctime; 388 np->n_vattr.na_fsid = nap->na_fsid; 389 np->n_vattr.na_mode = nap->na_mode; 390 } else { 391 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 392 sizeof (struct nfsvattr)); 393 } 394 395 /* 396 * For NFSv4, if the node's fsid is not equal to the mount point's 397 * fsid, return the low order 32bits of the node's fsid. This 398 * allows getcwd(3) to work. There is a chance that the fsid might 399 * be the same as a local fs, but since this is in an NFS mount 400 * point, I don't think that will cause any problems? 401 */ 402 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 403 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 404 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 405 /* 406 * va_fsid needs to be set to some value derived from 407 * np->n_vattr.na_filesid that is not equal 408 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 409 * from the value used for the top level server volume 410 * in the mounted subtree. 411 */ 412 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 413 (uint32_t)np->n_vattr.na_filesid[0]) 414 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 415 else 416 vap->va_fsid = (uint32_t)hash32_buf( 417 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 418 } else 419 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 420 np->n_attrstamp = time_second; 421 if (vap->va_size != np->n_size) { 422 if (vap->va_type == VREG) { 423 if (dontshrink && vap->va_size < np->n_size) { 424 /* 425 * We've been told not to shrink the file; 426 * zero np->n_attrstamp to indicate that 427 * the attributes are stale. 428 */ 429 vap->va_size = np->n_size; 430 np->n_attrstamp = 0; 431 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 432 } else if (np->n_flag & NMODIFIED) { 433 /* 434 * We've modified the file: Use the larger 435 * of our size, and the server's size. 436 */ 437 if (vap->va_size < np->n_size) { 438 vap->va_size = np->n_size; 439 } else { 440 np->n_size = vap->va_size; 441 np->n_flag |= NSIZECHANGED; 442 } 443 } else { 444 np->n_size = vap->va_size; 445 np->n_flag |= NSIZECHANGED; 446 } 447 vnode_pager_setsize(vp, np->n_size); 448 } else { 449 np->n_size = vap->va_size; 450 } 451 } 452 /* 453 * The following checks are added to prevent a race between (say) 454 * a READDIR+ and a WRITE. 455 * READDIR+, WRITE requests sent out. 456 * READDIR+ resp, WRITE resp received on client. 457 * However, the WRITE resp was handled before the READDIR+ resp 458 * causing the post op attrs from the write to be loaded first 459 * and the attrs from the READDIR+ to be loaded later. If this 460 * happens, we have stale attrs loaded into the attrcache. 461 * We detect this by for the mtime moving back. We invalidate the 462 * attrcache when this happens. 463 */ 464 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 465 /* Size changed or mtime went backwards */ 466 np->n_attrstamp = 0; 467 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 468 } 469 if (vaper != NULL) { 470 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 471 if (np->n_flag & NCHG) { 472 if (np->n_flag & NACC) 473 vaper->va_atime = np->n_atim; 474 if (np->n_flag & NUPD) 475 vaper->va_mtime = np->n_mtim; 476 } 477 } 478 #ifdef KDTRACE_HOOKS 479 if (np->n_attrstamp != 0) 480 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0); 481 #endif 482 NFSUNLOCKNODE(np); 483 return (0); 484 } 485 486 /* 487 * Fill in the client id name. For these bytes: 488 * 1 - they must be unique 489 * 2 - they should be persistent across client reboots 490 * 1 is more critical than 2 491 * Use the mount point's unique id plus either the uuid or, if that 492 * isn't set, random junk. 493 */ 494 void 495 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 496 { 497 int uuidlen; 498 499 /* 500 * First, put in the 64bit mount point identifier. 501 */ 502 if (idlen >= sizeof (u_int64_t)) { 503 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 504 cp += sizeof (u_int64_t); 505 idlen -= sizeof (u_int64_t); 506 } 507 508 /* 509 * If uuid is non-zero length, use it. 510 */ 511 uuidlen = strlen(uuid); 512 if (uuidlen > 0 && idlen >= uuidlen) { 513 NFSBCOPY(uuid, cp, uuidlen); 514 cp += uuidlen; 515 idlen -= uuidlen; 516 } 517 518 /* 519 * This only normally happens if the uuid isn't set. 520 */ 521 while (idlen > 0) { 522 *cp++ = (u_int8_t)(arc4random() % 256); 523 idlen--; 524 } 525 } 526 527 /* 528 * Fill in a lock owner name. For now, pid + the process's creation time. 529 */ 530 void 531 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 532 { 533 union { 534 u_int32_t lval; 535 u_int8_t cval[4]; 536 } tl; 537 struct proc *p; 538 539 if (id == NULL) { 540 printf("NULL id\n"); 541 bzero(cp, NFSV4CL_LOCKNAMELEN); 542 return; 543 } 544 if ((flags & F_POSIX) != 0) { 545 p = (struct proc *)id; 546 tl.lval = p->p_pid; 547 *cp++ = tl.cval[0]; 548 *cp++ = tl.cval[1]; 549 *cp++ = tl.cval[2]; 550 *cp++ = tl.cval[3]; 551 tl.lval = p->p_stats->p_start.tv_sec; 552 *cp++ = tl.cval[0]; 553 *cp++ = tl.cval[1]; 554 *cp++ = tl.cval[2]; 555 *cp++ = tl.cval[3]; 556 tl.lval = p->p_stats->p_start.tv_usec; 557 *cp++ = tl.cval[0]; 558 *cp++ = tl.cval[1]; 559 *cp++ = tl.cval[2]; 560 *cp = tl.cval[3]; 561 } else if ((flags & F_FLOCK) != 0) { 562 bcopy(&id, cp, sizeof(id)); 563 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 564 } else { 565 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 566 bzero(cp, NFSV4CL_LOCKNAMELEN); 567 } 568 } 569 570 /* 571 * Find the parent process for the thread passed in as an argument. 572 * If none exists, return NULL, otherwise return a thread for the parent. 573 * (Can be any of the threads, since it is only used for td->td_proc.) 574 */ 575 NFSPROC_T * 576 nfscl_getparent(struct thread *td) 577 { 578 struct proc *p; 579 struct thread *ptd; 580 581 if (td == NULL) 582 return (NULL); 583 p = td->td_proc; 584 if (p->p_pid == 0) 585 return (NULL); 586 p = p->p_pptr; 587 if (p == NULL) 588 return (NULL); 589 ptd = TAILQ_FIRST(&p->p_threads); 590 return (ptd); 591 } 592 593 /* 594 * Start up the renew kernel thread. 595 */ 596 static void 597 start_nfscl(void *arg) 598 { 599 struct nfsclclient *clp; 600 struct thread *td; 601 602 clp = (struct nfsclclient *)arg; 603 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 604 nfscl_renewthread(clp, td); 605 kproc_exit(0); 606 } 607 608 void 609 nfscl_start_renewthread(struct nfsclclient *clp) 610 { 611 612 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 613 "nfscl"); 614 } 615 616 /* 617 * Handle wcc_data. 618 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 619 * as the first Op after PutFH. 620 * (For NFSv4, the postop attributes are after the Op, so they can't be 621 * parsed here. A separate call to nfscl_postop_attr() is required.) 622 */ 623 int 624 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 625 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 626 { 627 u_int32_t *tl; 628 struct nfsnode *np = VTONFS(vp); 629 struct nfsvattr nfsva; 630 int error = 0; 631 632 if (wccflagp != NULL) 633 *wccflagp = 0; 634 if (nd->nd_flag & ND_NFSV3) { 635 *flagp = 0; 636 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 637 if (*tl == newnfs_true) { 638 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 639 if (wccflagp != NULL) { 640 mtx_lock(&np->n_mtx); 641 *wccflagp = (np->n_mtime.tv_sec == 642 fxdr_unsigned(u_int32_t, *(tl + 2)) && 643 np->n_mtime.tv_nsec == 644 fxdr_unsigned(u_int32_t, *(tl + 3))); 645 mtx_unlock(&np->n_mtx); 646 } 647 } 648 error = nfscl_postop_attr(nd, nap, flagp, stuff); 649 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 650 == (ND_NFSV4 | ND_V4WCCATTR)) { 651 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 652 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 653 NULL, NULL, NULL, NULL, NULL); 654 if (error) 655 return (error); 656 /* 657 * Get rid of Op# and status for next op. 658 */ 659 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 660 if (*++tl) 661 nd->nd_flag |= ND_NOMOREDATA; 662 if (wccflagp != NULL && 663 nfsva.na_vattr.va_mtime.tv_sec != 0) { 664 mtx_lock(&np->n_mtx); 665 *wccflagp = (np->n_mtime.tv_sec == 666 nfsva.na_vattr.va_mtime.tv_sec && 667 np->n_mtime.tv_nsec == 668 nfsva.na_vattr.va_mtime.tv_sec); 669 mtx_unlock(&np->n_mtx); 670 } 671 } 672 nfsmout: 673 return (error); 674 } 675 676 /* 677 * Get postop attributes. 678 */ 679 int 680 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 681 void *stuff) 682 { 683 u_int32_t *tl; 684 int error = 0; 685 686 *retp = 0; 687 if (nd->nd_flag & ND_NOMOREDATA) 688 return (error); 689 if (nd->nd_flag & ND_NFSV3) { 690 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 691 *retp = fxdr_unsigned(int, *tl); 692 } else if (nd->nd_flag & ND_NFSV4) { 693 /* 694 * For NFSv4, the postop attr are at the end, so no point 695 * in looking if nd_repstat != 0. 696 */ 697 if (!nd->nd_repstat) { 698 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 699 if (*(tl + 1)) 700 /* should never happen since nd_repstat != 0 */ 701 nd->nd_flag |= ND_NOMOREDATA; 702 else 703 *retp = 1; 704 } 705 } else if (!nd->nd_repstat) { 706 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 707 *retp = 1; 708 } 709 if (*retp) { 710 error = nfsm_loadattr(nd, nap); 711 if (error) 712 *retp = 0; 713 } 714 nfsmout: 715 return (error); 716 } 717 718 /* 719 * Fill in the setable attributes. The full argument indicates whether 720 * to fill in them all or just mode and time. 721 */ 722 void 723 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 724 struct vnode *vp, int flags, u_int32_t rdev) 725 { 726 u_int32_t *tl; 727 struct nfsv2_sattr *sp; 728 nfsattrbit_t attrbits; 729 struct timeval curtime; 730 731 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 732 case ND_NFSV2: 733 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 734 if (vap->va_mode == (mode_t)VNOVAL) 735 sp->sa_mode = newnfs_xdrneg1; 736 else 737 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 738 if (vap->va_uid == (uid_t)VNOVAL) 739 sp->sa_uid = newnfs_xdrneg1; 740 else 741 sp->sa_uid = txdr_unsigned(vap->va_uid); 742 if (vap->va_gid == (gid_t)VNOVAL) 743 sp->sa_gid = newnfs_xdrneg1; 744 else 745 sp->sa_gid = txdr_unsigned(vap->va_gid); 746 if (flags & NFSSATTR_SIZE0) 747 sp->sa_size = 0; 748 else if (flags & NFSSATTR_SIZENEG1) 749 sp->sa_size = newnfs_xdrneg1; 750 else if (flags & NFSSATTR_SIZERDEV) 751 sp->sa_size = txdr_unsigned(rdev); 752 else 753 sp->sa_size = txdr_unsigned(vap->va_size); 754 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 755 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 756 break; 757 case ND_NFSV3: 758 getmicrotime(&curtime); 759 if (vap->va_mode != (mode_t)VNOVAL) { 760 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 761 *tl++ = newnfs_true; 762 *tl = txdr_unsigned(vap->va_mode); 763 } else { 764 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 765 *tl = newnfs_false; 766 } 767 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 768 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 769 *tl++ = newnfs_true; 770 *tl = txdr_unsigned(vap->va_uid); 771 } else { 772 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 773 *tl = newnfs_false; 774 } 775 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 776 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 777 *tl++ = newnfs_true; 778 *tl = txdr_unsigned(vap->va_gid); 779 } else { 780 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 781 *tl = newnfs_false; 782 } 783 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 784 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 785 *tl++ = newnfs_true; 786 txdr_hyper(vap->va_size, tl); 787 } else { 788 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 789 *tl = newnfs_false; 790 } 791 if (vap->va_atime.tv_sec != VNOVAL) { 792 if (vap->va_atime.tv_sec != curtime.tv_sec) { 793 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 794 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 795 txdr_nfsv3time(&vap->va_atime, tl); 796 } else { 797 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 798 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 799 } 800 } else { 801 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 802 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 803 } 804 if (vap->va_mtime.tv_sec != VNOVAL) { 805 if (vap->va_mtime.tv_sec != curtime.tv_sec) { 806 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 807 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 808 txdr_nfsv3time(&vap->va_mtime, tl); 809 } else { 810 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 811 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 812 } 813 } else { 814 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 815 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 816 } 817 break; 818 case ND_NFSV4: 819 NFSZERO_ATTRBIT(&attrbits); 820 if (vap->va_mode != (mode_t)VNOVAL) 821 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 822 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 823 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 824 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 825 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 826 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 827 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 828 if (vap->va_atime.tv_sec != VNOVAL) 829 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 830 if (vap->va_mtime.tv_sec != VNOVAL) 831 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 832 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 833 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 834 break; 835 }; 836 } 837 838 /* 839 * nfscl_request() - mostly a wrapper for newnfs_request(). 840 */ 841 int 842 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 843 struct ucred *cred, void *stuff) 844 { 845 int ret, vers; 846 struct nfsmount *nmp; 847 848 nmp = VFSTONFS(vp->v_mount); 849 if (nd->nd_flag & ND_NFSV4) 850 vers = NFS_VER4; 851 else if (nd->nd_flag & ND_NFSV3) 852 vers = NFS_VER3; 853 else 854 vers = NFS_VER2; 855 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 856 NFS_PROG, vers, NULL, 1, NULL, NULL); 857 return (ret); 858 } 859 860 /* 861 * fill in this bsden's variant of statfs using nfsstatfs. 862 */ 863 void 864 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 865 { 866 struct statfs *sbp = (struct statfs *)statfs; 867 868 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 869 sbp->f_bsize = NFS_FABLKSIZE; 870 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 871 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 872 /* 873 * Although sf_abytes is uint64_t and f_bavail is int64_t, 874 * the value after dividing by NFS_FABLKSIZE is small 875 * enough that it will fit in 63bits, so it is ok to 876 * assign it to f_bavail without fear that it will become 877 * negative. 878 */ 879 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 880 sbp->f_files = sfp->sf_tfiles; 881 /* Since f_ffree is int64_t, clip it to 63bits. */ 882 if (sfp->sf_ffiles > INT64_MAX) 883 sbp->f_ffree = INT64_MAX; 884 else 885 sbp->f_ffree = sfp->sf_ffiles; 886 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 887 /* 888 * The type casts to (int32_t) ensure that this code is 889 * compatible with the old NFS client, in that it will 890 * propagate bit31 to the high order bits. This may or may 891 * not be correct for NFSv2, but since it is a legacy 892 * environment, I'd rather retain backwards compatibility. 893 */ 894 sbp->f_bsize = (int32_t)sfp->sf_bsize; 895 sbp->f_blocks = (int32_t)sfp->sf_blocks; 896 sbp->f_bfree = (int32_t)sfp->sf_bfree; 897 sbp->f_bavail = (int32_t)sfp->sf_bavail; 898 sbp->f_files = 0; 899 sbp->f_ffree = 0; 900 } 901 } 902 903 /* 904 * Use the fsinfo stuff to update the mount point. 905 */ 906 void 907 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 908 { 909 910 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 911 fsp->fs_wtpref >= NFS_FABLKSIZE) 912 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 913 ~(NFS_FABLKSIZE - 1); 914 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 915 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 916 if (nmp->nm_wsize == 0) 917 nmp->nm_wsize = fsp->fs_wtmax; 918 } 919 if (nmp->nm_wsize < NFS_FABLKSIZE) 920 nmp->nm_wsize = NFS_FABLKSIZE; 921 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 922 fsp->fs_rtpref >= NFS_FABLKSIZE) 923 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 924 ~(NFS_FABLKSIZE - 1); 925 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 926 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 927 if (nmp->nm_rsize == 0) 928 nmp->nm_rsize = fsp->fs_rtmax; 929 } 930 if (nmp->nm_rsize < NFS_FABLKSIZE) 931 nmp->nm_rsize = NFS_FABLKSIZE; 932 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 933 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 934 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 935 ~(NFS_DIRBLKSIZ - 1); 936 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 937 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 938 if (nmp->nm_readdirsize == 0) 939 nmp->nm_readdirsize = fsp->fs_rtmax; 940 } 941 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 942 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 943 if (fsp->fs_maxfilesize > 0 && 944 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 945 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 946 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 947 nmp->nm_state |= NFSSTA_GOTFSINFO; 948 } 949 950 /* 951 * Get a pointer to my IP addrress and return it. 952 * Return NULL if you can't find one. 953 */ 954 u_int8_t * 955 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 956 { 957 struct sockaddr_in sad, *sin; 958 struct rtentry *rt; 959 u_int8_t *retp = NULL; 960 static struct in_addr laddr; 961 962 *isinet6p = 0; 963 /* 964 * Loop up a route for the destination address. 965 */ 966 if (nmp->nm_nam->sa_family == AF_INET) { 967 bzero(&sad, sizeof (sad)); 968 sin = (struct sockaddr_in *)nmp->nm_nam; 969 sad.sin_family = AF_INET; 970 sad.sin_len = sizeof (struct sockaddr_in); 971 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 972 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 973 rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL, 974 curthread->td_proc->p_fibnum); 975 if (rt != NULL) { 976 if (rt->rt_ifp != NULL && 977 rt->rt_ifa != NULL && 978 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 979 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 980 sin = (struct sockaddr_in *) 981 rt->rt_ifa->ifa_addr; 982 laddr.s_addr = sin->sin_addr.s_addr; 983 retp = (u_int8_t *)&laddr; 984 } 985 RTFREE_LOCKED(rt); 986 } 987 CURVNET_RESTORE(); 988 #ifdef INET6 989 } else if (nmp->nm_nam->sa_family == AF_INET6) { 990 struct sockaddr_in6 sad6, *sin6; 991 static struct in6_addr laddr6; 992 993 bzero(&sad6, sizeof (sad6)); 994 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 995 sad6.sin6_family = AF_INET6; 996 sad6.sin6_len = sizeof (struct sockaddr_in6); 997 sad6.sin6_addr = sin6->sin6_addr; 998 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 999 rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL, 1000 curthread->td_proc->p_fibnum); 1001 if (rt != NULL) { 1002 if (rt->rt_ifp != NULL && 1003 rt->rt_ifa != NULL && 1004 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1005 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1006 sin6 = (struct sockaddr_in6 *) 1007 rt->rt_ifa->ifa_addr; 1008 laddr6 = sin6->sin6_addr; 1009 retp = (u_int8_t *)&laddr6; 1010 *isinet6p = 1; 1011 } 1012 RTFREE_LOCKED(rt); 1013 } 1014 CURVNET_RESTORE(); 1015 #endif 1016 } 1017 return (retp); 1018 } 1019 1020 /* 1021 * Copy NFS uid, gids from the cred structure. 1022 */ 1023 void 1024 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1025 { 1026 int i; 1027 1028 KASSERT(cr->cr_ngroups >= 0, 1029 ("newnfs_copyincred: negative cr_ngroups")); 1030 nfscr->nfsc_uid = cr->cr_uid; 1031 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1032 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1033 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1034 } 1035 1036 1037 /* 1038 * Do any client specific initialization. 1039 */ 1040 void 1041 nfscl_init(void) 1042 { 1043 static int inited = 0; 1044 1045 if (inited) 1046 return; 1047 inited = 1; 1048 nfscl_inited = 1; 1049 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1050 } 1051 1052 /* 1053 * Check each of the attributes to be set, to ensure they aren't already 1054 * the correct value. Disable setting ones already correct. 1055 */ 1056 int 1057 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1058 { 1059 1060 if (vap->va_mode != (mode_t)VNOVAL) { 1061 if (vap->va_mode == nvap->na_mode) 1062 vap->va_mode = (mode_t)VNOVAL; 1063 } 1064 if (vap->va_uid != (uid_t)VNOVAL) { 1065 if (vap->va_uid == nvap->na_uid) 1066 vap->va_uid = (uid_t)VNOVAL; 1067 } 1068 if (vap->va_gid != (gid_t)VNOVAL) { 1069 if (vap->va_gid == nvap->na_gid) 1070 vap->va_gid = (gid_t)VNOVAL; 1071 } 1072 if (vap->va_size != VNOVAL) { 1073 if (vap->va_size == nvap->na_size) 1074 vap->va_size = VNOVAL; 1075 } 1076 1077 /* 1078 * We are normally called with only a partially initialized 1079 * VAP. Since the NFSv3 spec says that server may use the 1080 * file attributes to store the verifier, the spec requires 1081 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1082 * in atime, but we can't really assume that all servers will 1083 * so we ensure that our SETATTR sets both atime and mtime. 1084 */ 1085 if (vap->va_mtime.tv_sec == VNOVAL) 1086 vfs_timestamp(&vap->va_mtime); 1087 if (vap->va_atime.tv_sec == VNOVAL) 1088 vap->va_atime = vap->va_mtime; 1089 return (1); 1090 } 1091 1092 /* 1093 * Map nfsv4 errors to errno.h errors. 1094 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1095 * error should only be returned for the Open, Create and Setattr Ops. 1096 * As such, most calls can just pass in 0 for those arguments. 1097 */ 1098 APPLESTATIC int 1099 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1100 { 1101 struct proc *p; 1102 1103 if (error < 10000) 1104 return (error); 1105 if (td != NULL) 1106 p = td->td_proc; 1107 else 1108 p = NULL; 1109 switch (error) { 1110 case NFSERR_BADOWNER: 1111 tprintf(p, LOG_INFO, 1112 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1113 uid, gid); 1114 return (EPERM); 1115 case NFSERR_BADNAME: 1116 case NFSERR_BADCHAR: 1117 printf("nfsv4 char/name not handled by server\n"); 1118 return (ENOENT); 1119 case NFSERR_STALECLIENTID: 1120 case NFSERR_STALESTATEID: 1121 case NFSERR_EXPIRED: 1122 case NFSERR_BADSTATEID: 1123 case NFSERR_BADSESSION: 1124 printf("nfsv4 recover err returned %d\n", error); 1125 return (EIO); 1126 case NFSERR_BADHANDLE: 1127 case NFSERR_SERVERFAULT: 1128 case NFSERR_BADTYPE: 1129 case NFSERR_FHEXPIRED: 1130 case NFSERR_RESOURCE: 1131 case NFSERR_MOVED: 1132 case NFSERR_NOFILEHANDLE: 1133 case NFSERR_MINORVERMISMATCH: 1134 case NFSERR_OLDSTATEID: 1135 case NFSERR_BADSEQID: 1136 case NFSERR_LEASEMOVED: 1137 case NFSERR_RECLAIMBAD: 1138 case NFSERR_BADXDR: 1139 case NFSERR_OPILLEGAL: 1140 printf("nfsv4 client/server protocol prob err=%d\n", 1141 error); 1142 return (EIO); 1143 default: 1144 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1145 return (EIO); 1146 }; 1147 } 1148 1149 /* 1150 * Check to see if the process for this owner exists. Return 1 if it doesn't 1151 * and 0 otherwise. 1152 */ 1153 int 1154 nfscl_procdoesntexist(u_int8_t *own) 1155 { 1156 union { 1157 u_int32_t lval; 1158 u_int8_t cval[4]; 1159 } tl; 1160 struct proc *p; 1161 pid_t pid; 1162 int ret = 0; 1163 1164 tl.cval[0] = *own++; 1165 tl.cval[1] = *own++; 1166 tl.cval[2] = *own++; 1167 tl.cval[3] = *own++; 1168 pid = tl.lval; 1169 p = pfind_locked(pid); 1170 if (p == NULL) 1171 return (1); 1172 if (p->p_stats == NULL) { 1173 PROC_UNLOCK(p); 1174 return (0); 1175 } 1176 tl.cval[0] = *own++; 1177 tl.cval[1] = *own++; 1178 tl.cval[2] = *own++; 1179 tl.cval[3] = *own++; 1180 if (tl.lval != p->p_stats->p_start.tv_sec) { 1181 ret = 1; 1182 } else { 1183 tl.cval[0] = *own++; 1184 tl.cval[1] = *own++; 1185 tl.cval[2] = *own++; 1186 tl.cval[3] = *own; 1187 if (tl.lval != p->p_stats->p_start.tv_usec) 1188 ret = 1; 1189 } 1190 PROC_UNLOCK(p); 1191 return (ret); 1192 } 1193 1194 /* 1195 * - nfs pseudo system call for the client 1196 */ 1197 /* 1198 * MPSAFE 1199 */ 1200 static int 1201 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1202 { 1203 struct file *fp; 1204 struct nfscbd_args nfscbdarg; 1205 struct nfsd_nfscbd_args nfscbdarg2; 1206 int error; 1207 struct nameidata nd; 1208 struct nfscl_dumpmntopts dumpmntopts; 1209 char *buf; 1210 1211 if (uap->flag & NFSSVC_CBADDSOCK) { 1212 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1213 if (error) 1214 return (error); 1215 /* 1216 * Since we don't know what rights might be required, 1217 * pretend that we need them all. It is better to be too 1218 * careful than too reckless. 1219 */ 1220 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp)) 1221 != 0) { 1222 return (error); 1223 } 1224 if (fp->f_type != DTYPE_SOCKET) { 1225 fdrop(fp, td); 1226 return (EPERM); 1227 } 1228 error = nfscbd_addsock(fp); 1229 fdrop(fp, td); 1230 if (!error && nfscl_enablecallb == 0) { 1231 nfsv4_cbport = nfscbdarg.port; 1232 nfscl_enablecallb = 1; 1233 } 1234 } else if (uap->flag & NFSSVC_NFSCBD) { 1235 if (uap->argp == NULL) 1236 return (EINVAL); 1237 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1238 sizeof(nfscbdarg2)); 1239 if (error) 1240 return (error); 1241 error = nfscbd_nfsd(td, &nfscbdarg2); 1242 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1243 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1244 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1245 dumpmntopts.ndmnt_blen > 1024)) 1246 error = EINVAL; 1247 if (error == 0) 1248 error = nfsrv_lookupfilename(&nd, 1249 dumpmntopts.ndmnt_fname, td); 1250 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1251 "nfs") != 0) { 1252 vput(nd.ni_vp); 1253 error = EINVAL; 1254 } 1255 if (error == 0) { 1256 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1257 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1258 dumpmntopts.ndmnt_blen); 1259 vput(nd.ni_vp); 1260 error = copyout(buf, dumpmntopts.ndmnt_buf, 1261 dumpmntopts.ndmnt_blen); 1262 free(buf, M_TEMP); 1263 } 1264 } else { 1265 error = EINVAL; 1266 } 1267 return (error); 1268 } 1269 1270 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1271 1272 /* 1273 * Called once to initialize data structures... 1274 */ 1275 static int 1276 nfscl_modevent(module_t mod, int type, void *data) 1277 { 1278 int error = 0; 1279 static int loaded = 0; 1280 1281 switch (type) { 1282 case MOD_LOAD: 1283 if (loaded) 1284 return (0); 1285 newnfs_portinit(); 1286 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1287 MTX_DEF); 1288 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1289 nfscl_init(); 1290 NFSD_LOCK(); 1291 nfsrvd_cbinit(0); 1292 NFSD_UNLOCK(); 1293 ncl_call_invalcaches = ncl_invalcaches; 1294 nfsd_call_nfscl = nfssvc_nfscl; 1295 loaded = 1; 1296 break; 1297 1298 case MOD_UNLOAD: 1299 if (nfs_numnfscbd != 0) { 1300 error = EBUSY; 1301 break; 1302 } 1303 1304 /* 1305 * XXX: Unloading of nfscl module is unsupported. 1306 */ 1307 #if 0 1308 ncl_call_invalcaches = NULL; 1309 nfsd_call_nfscl = NULL; 1310 /* and get rid of the mutexes */ 1311 mtx_destroy(&nfs_clstate_mutex); 1312 mtx_destroy(&ncl_iod_mutex); 1313 loaded = 0; 1314 break; 1315 #else 1316 /* FALLTHROUGH */ 1317 #endif 1318 default: 1319 error = EOPNOTSUPP; 1320 break; 1321 } 1322 return error; 1323 } 1324 static moduledata_t nfscl_mod = { 1325 "nfscl", 1326 nfscl_modevent, 1327 NULL, 1328 }; 1329 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1330 1331 /* So that loader and kldload(2) can find us, wherever we are.. */ 1332 MODULE_VERSION(nfscl, 1); 1333 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1334 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1335 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1336 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1337 1338