1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 42 #include <sys/capsicum.h> 43 44 /* 45 * generally, I don't like #includes inside .h files, but it seems to 46 * be the easiest way to handle the port. 47 */ 48 #include <sys/fail.h> 49 #include <sys/hash.h> 50 #include <sys/sysctl.h> 51 #include <fs/nfs/nfsport.h> 52 #include <netinet/in_fib.h> 53 #include <netinet/if_ether.h> 54 #include <netinet6/ip6_var.h> 55 #include <net/if_types.h> 56 #include <net/route/nhop.h> 57 58 #include <fs/nfsclient/nfs_kdtrace.h> 59 60 #ifdef KDTRACE_HOOKS 61 dtrace_nfsclient_attrcache_flush_probe_func_t 62 dtrace_nfscl_attrcache_flush_done_probe; 63 uint32_t nfscl_attrcache_flush_done_id; 64 65 dtrace_nfsclient_attrcache_get_hit_probe_func_t 66 dtrace_nfscl_attrcache_get_hit_probe; 67 uint32_t nfscl_attrcache_get_hit_id; 68 69 dtrace_nfsclient_attrcache_get_miss_probe_func_t 70 dtrace_nfscl_attrcache_get_miss_probe; 71 uint32_t nfscl_attrcache_get_miss_id; 72 73 dtrace_nfsclient_attrcache_load_probe_func_t 74 dtrace_nfscl_attrcache_load_done_probe; 75 uint32_t nfscl_attrcache_load_done_id; 76 #endif /* !KDTRACE_HOOKS */ 77 78 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 79 extern struct vop_vector newnfs_vnodeops; 80 extern struct vop_vector newnfs_fifoops; 81 extern uma_zone_t newnfsnode_zone; 82 extern struct buf_ops buf_ops_newnfs; 83 extern uma_zone_t ncl_pbuf_zone; 84 extern short nfsv4_cbport; 85 extern int nfscl_enablecallb; 86 extern int nfs_numnfscbd; 87 extern int nfscl_inited; 88 struct mtx ncl_iod_mutex; 89 NFSDLOCKMUTEX; 90 extern struct mtx nfsrv_dslock_mtx; 91 92 extern void (*ncl_call_invalcaches)(struct vnode *); 93 94 SYSCTL_DECL(_vfs_nfs); 95 static int ncl_fileid_maxwarnings = 10; 96 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 97 &ncl_fileid_maxwarnings, 0, 98 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 99 static volatile int ncl_fileid_nwarnings; 100 101 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 102 struct nfsvattr *); 103 104 /* 105 * Comparison function for vfs_hash functions. 106 */ 107 int 108 newnfs_vncmpf(struct vnode *vp, void *arg) 109 { 110 struct nfsfh *nfhp = (struct nfsfh *)arg; 111 struct nfsnode *np = VTONFS(vp); 112 113 if (np->n_fhp->nfh_len != nfhp->nfh_len || 114 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 115 return (1); 116 return (0); 117 } 118 119 /* 120 * Look up a vnode/nfsnode by file handle. 121 * Callers must check for mount points!! 122 * In all cases, a pointer to a 123 * nfsnode structure is returned. 124 * This variant takes a "struct nfsfh *" as second argument and uses 125 * that structure up, either by hanging off the nfsnode or FREEing it. 126 */ 127 int 128 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 129 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 130 void *stuff, int lkflags) 131 { 132 struct nfsnode *np, *dnp; 133 struct vnode *vp, *nvp; 134 struct nfsv4node *newd, *oldd; 135 int error; 136 u_int hash; 137 struct nfsmount *nmp; 138 139 nmp = VFSTONFS(mntp); 140 dnp = VTONFS(dvp); 141 *npp = NULL; 142 143 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 144 145 error = vfs_hash_get(mntp, hash, lkflags, 146 td, &nvp, newnfs_vncmpf, nfhp); 147 if (error == 0 && nvp != NULL) { 148 /* 149 * I believe there is a slight chance that vgonel() could 150 * get called on this vnode between when NFSVOPLOCK() drops 151 * the VI_LOCK() and vget() acquires it again, so that it 152 * hasn't yet had v_usecount incremented. If this were to 153 * happen, the VIRF_DOOMED flag would be set, so check for 154 * that here. Since we now have the v_usecount incremented, 155 * we should be ok until we vrele() it, if the VIRF_DOOMED 156 * flag isn't set now. 157 */ 158 VI_LOCK(nvp); 159 if (VN_IS_DOOMED(nvp)) { 160 VI_UNLOCK(nvp); 161 vrele(nvp); 162 error = ENOENT; 163 } else { 164 VI_UNLOCK(nvp); 165 } 166 } 167 if (error) { 168 free(nfhp, M_NFSFH); 169 return (error); 170 } 171 if (nvp != NULL) { 172 np = VTONFS(nvp); 173 /* 174 * For NFSv4, check to see if it is the same name and 175 * replace the name, if it is different. 176 */ 177 oldd = newd = NULL; 178 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 179 nvp->v_type == VREG && 180 (np->n_v4->n4_namelen != cnp->cn_namelen || 181 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 182 cnp->cn_namelen) || 183 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 184 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 185 dnp->n_fhp->nfh_len))) { 186 newd = malloc( 187 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 188 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 189 NFSLOCKNODE(np); 190 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 191 && (np->n_v4->n4_namelen != cnp->cn_namelen || 192 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 193 cnp->cn_namelen) || 194 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 195 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 196 dnp->n_fhp->nfh_len))) { 197 oldd = np->n_v4; 198 np->n_v4 = newd; 199 newd = NULL; 200 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 201 np->n_v4->n4_namelen = cnp->cn_namelen; 202 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 203 dnp->n_fhp->nfh_len); 204 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 205 cnp->cn_namelen); 206 } 207 NFSUNLOCKNODE(np); 208 } 209 if (newd != NULL) 210 free(newd, M_NFSV4NODE); 211 if (oldd != NULL) 212 free(oldd, M_NFSV4NODE); 213 *npp = np; 214 free(nfhp, M_NFSFH); 215 return (0); 216 } 217 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 218 219 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 220 if (error) { 221 uma_zfree(newnfsnode_zone, np); 222 free(nfhp, M_NFSFH); 223 return (error); 224 } 225 vp = nvp; 226 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 227 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 228 vp->v_data = np; 229 np->n_vnode = vp; 230 /* 231 * Initialize the mutex even if the vnode is going to be a loser. 232 * This simplifies the logic in reclaim, which can then unconditionally 233 * destroy the mutex (in the case of the loser, or if hash_insert 234 * happened to return an error no special casing is needed). 235 */ 236 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 237 lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE | 238 LK_CANRECURSE); 239 240 /* 241 * Are we getting the root? If so, make sure the vnode flags 242 * are correct 243 */ 244 if ((nfhp->nfh_len == nmp->nm_fhsize) && 245 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 246 if (vp->v_type == VNON) 247 vp->v_type = VDIR; 248 vp->v_vflag |= VV_ROOT; 249 } 250 251 vp->v_vflag |= VV_VMSIZEVNLOCK; 252 253 np->n_fhp = nfhp; 254 /* 255 * For NFSv4, we have to attach the directory file handle and 256 * file name, so that Open Ops can be done later. 257 */ 258 if (nmp->nm_flag & NFSMNT_NFSV4) { 259 np->n_v4 = malloc(sizeof (struct nfsv4node) 260 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 261 M_WAITOK); 262 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 263 np->n_v4->n4_namelen = cnp->cn_namelen; 264 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 265 dnp->n_fhp->nfh_len); 266 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 267 cnp->cn_namelen); 268 } else { 269 np->n_v4 = NULL; 270 } 271 272 /* 273 * NFS supports recursive and shared locking. 274 */ 275 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 276 VN_LOCK_AREC(vp); 277 VN_LOCK_ASHARE(vp); 278 error = insmntque(vp, mntp); 279 if (error != 0) { 280 *npp = NULL; 281 mtx_destroy(&np->n_mtx); 282 lockdestroy(&np->n_excl); 283 free(nfhp, M_NFSFH); 284 if (np->n_v4 != NULL) 285 free(np->n_v4, M_NFSV4NODE); 286 uma_zfree(newnfsnode_zone, np); 287 return (error); 288 } 289 error = vfs_hash_insert(vp, hash, lkflags, 290 td, &nvp, newnfs_vncmpf, nfhp); 291 if (error) 292 return (error); 293 if (nvp != NULL) { 294 *npp = VTONFS(nvp); 295 /* vfs_hash_insert() vput()'s the losing vnode */ 296 return (0); 297 } 298 *npp = np; 299 300 return (0); 301 } 302 303 /* 304 * Another variant of nfs_nget(). This one is only used by reopen. It 305 * takes almost the same args as nfs_nget(), but only succeeds if an entry 306 * exists in the cache. (Since files should already be "open" with a 307 * vnode ref cnt on the node when reopen calls this, it should always 308 * succeed.) 309 * Also, don't get a vnode lock, since it may already be locked by some 310 * other process that is handling it. This is ok, since all other threads 311 * on the client are blocked by the nfsc_lock being exclusively held by the 312 * caller of this function. 313 */ 314 int 315 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 316 struct thread *td, struct nfsnode **npp) 317 { 318 struct vnode *nvp; 319 u_int hash; 320 struct nfsfh *nfhp; 321 int error; 322 323 *npp = NULL; 324 /* For forced dismounts, just return error. */ 325 if (NFSCL_FORCEDISM(mntp)) 326 return (EINTR); 327 nfhp = malloc(sizeof (struct nfsfh) + fhsize, 328 M_NFSFH, M_WAITOK); 329 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 330 nfhp->nfh_len = fhsize; 331 332 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 333 334 /* 335 * First, try to get the vnode locked, but don't block for the lock. 336 */ 337 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 338 newnfs_vncmpf, nfhp); 339 if (error == 0 && nvp != NULL) { 340 NFSVOPUNLOCK(nvp); 341 } else if (error == EBUSY) { 342 /* 343 * It is safe so long as a vflush() with 344 * FORCECLOSE has not been done. Since the Renew thread is 345 * stopped and the MNTK_UNMOUNTF flag is set before doing 346 * a vflush() with FORCECLOSE, we should be ok here. 347 */ 348 if (NFSCL_FORCEDISM(mntp)) 349 error = EINTR; 350 else { 351 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); 352 if (nvp == NULL) { 353 error = ENOENT; 354 } else if (VN_IS_DOOMED(nvp)) { 355 error = ENOENT; 356 vrele(nvp); 357 } else { 358 error = 0; 359 } 360 } 361 } 362 free(nfhp, M_NFSFH); 363 if (error) 364 return (error); 365 if (nvp != NULL) { 366 *npp = VTONFS(nvp); 367 return (0); 368 } 369 return (EINVAL); 370 } 371 372 static void 373 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 374 struct nfsvattr *newnap) 375 { 376 int off; 377 378 if (ncl_fileid_maxwarnings >= 0 && 379 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 380 return; 381 off = 0; 382 if (ncl_fileid_maxwarnings >= 0) { 383 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 384 off = 1; 385 } 386 387 printf("newnfs: server '%s' error: fileid changed. " 388 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 389 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 390 nmp->nm_com.nmcom_hostname, 391 (uintmax_t)nmp->nm_fsid[0], 392 (uintmax_t)nmp->nm_fsid[1], 393 (uintmax_t)oldnap->na_fileid, 394 (uintmax_t)newnap->na_fileid); 395 396 if (off) 397 printf("newnfs: Logged %d times about fileid corruption; " 398 "going quiet to avoid spamming logs excessively. (Limit " 399 "is: %d).\n", ncl_fileid_nwarnings, 400 ncl_fileid_maxwarnings); 401 } 402 403 /* 404 * Load the attribute cache (that lives in the nfsnode entry) with 405 * the attributes of the second argument and 406 * Iff vaper not NULL 407 * copy the attributes to *vaper 408 * Similar to nfs_loadattrcache(), except the attributes are passed in 409 * instead of being parsed out of the mbuf list. 410 */ 411 int 412 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 413 void *stuff, int writeattr, int dontshrink) 414 { 415 struct vnode *vp = *vpp; 416 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 417 struct nfsnode *np; 418 struct nfsmount *nmp; 419 struct timespec mtime_save; 420 int error, force_fid_err; 421 422 error = 0; 423 424 /* 425 * If v_type == VNON it is a new node, so fill in the v_type, 426 * n_mtime fields. Check to see if it represents a special 427 * device, and if so, check for a possible alias. Once the 428 * correct vnode has been obtained, fill in the rest of the 429 * information. 430 */ 431 np = VTONFS(vp); 432 NFSLOCKNODE(np); 433 if (vp->v_type != nvap->va_type) { 434 vp->v_type = nvap->va_type; 435 if (vp->v_type == VFIFO) 436 vp->v_op = &newnfs_fifoops; 437 np->n_mtime = nvap->va_mtime; 438 } 439 nmp = VFSTONFS(vp->v_mount); 440 vap = &np->n_vattr.na_vattr; 441 mtime_save = vap->va_mtime; 442 if (writeattr) { 443 np->n_vattr.na_filerev = nap->na_filerev; 444 np->n_vattr.na_size = nap->na_size; 445 np->n_vattr.na_mtime = nap->na_mtime; 446 np->n_vattr.na_ctime = nap->na_ctime; 447 np->n_vattr.na_fsid = nap->na_fsid; 448 np->n_vattr.na_mode = nap->na_mode; 449 } else { 450 force_fid_err = 0; 451 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 452 force_fid_err); 453 /* 454 * BROKEN NFS SERVER OR MIDDLEWARE 455 * 456 * Certain NFS servers (certain old proprietary filers ca. 457 * 2006) or broken middleboxes (e.g. WAN accelerator products) 458 * will respond to GETATTR requests with results for a 459 * different fileid. 460 * 461 * The WAN accelerator we've observed not only serves stale 462 * cache results for a given file, it also occasionally serves 463 * results for wholly different files. This causes surprising 464 * problems; for example the cached size attribute of a file 465 * may truncate down and then back up, resulting in zero 466 * regions in file contents read by applications. We observed 467 * this reliably with Clang and .c files during parallel build. 468 * A pcap revealed packet fragmentation and GETATTR RPC 469 * responses with wholly wrong fileids. 470 */ 471 if ((np->n_vattr.na_fileid != 0 && 472 np->n_vattr.na_fileid != nap->na_fileid) || 473 force_fid_err) { 474 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 475 error = EIDRM; 476 goto out; 477 } 478 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 479 sizeof (struct nfsvattr)); 480 } 481 482 /* 483 * For NFSv4, if the node's fsid is not equal to the mount point's 484 * fsid, return the low order 32bits of the node's fsid. This 485 * allows getcwd(3) to work. There is a chance that the fsid might 486 * be the same as a local fs, but since this is in an NFS mount 487 * point, I don't think that will cause any problems? 488 */ 489 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 490 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 491 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 492 /* 493 * va_fsid needs to be set to some value derived from 494 * np->n_vattr.na_filesid that is not equal 495 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 496 * from the value used for the top level server volume 497 * in the mounted subtree. 498 */ 499 vn_fsid(vp, vap); 500 if ((uint32_t)vap->va_fsid == np->n_vattr.na_filesid[0]) 501 vap->va_fsid = hash32_buf( 502 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 503 } else 504 vn_fsid(vp, vap); 505 np->n_attrstamp = time_second; 506 if (vap->va_size != np->n_size) { 507 if (vap->va_type == VREG) { 508 if (dontshrink && vap->va_size < np->n_size) { 509 /* 510 * We've been told not to shrink the file; 511 * zero np->n_attrstamp to indicate that 512 * the attributes are stale. 513 */ 514 vap->va_size = np->n_size; 515 np->n_attrstamp = 0; 516 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 517 } else if (np->n_flag & NMODIFIED) { 518 /* 519 * We've modified the file: Use the larger 520 * of our size, and the server's size. 521 */ 522 if (vap->va_size < np->n_size) { 523 vap->va_size = np->n_size; 524 } else { 525 np->n_size = vap->va_size; 526 np->n_flag |= NSIZECHANGED; 527 } 528 } else { 529 np->n_size = vap->va_size; 530 np->n_flag |= NSIZECHANGED; 531 } 532 } else { 533 np->n_size = vap->va_size; 534 } 535 } 536 /* 537 * The following checks are added to prevent a race between (say) 538 * a READDIR+ and a WRITE. 539 * READDIR+, WRITE requests sent out. 540 * READDIR+ resp, WRITE resp received on client. 541 * However, the WRITE resp was handled before the READDIR+ resp 542 * causing the post op attrs from the write to be loaded first 543 * and the attrs from the READDIR+ to be loaded later. If this 544 * happens, we have stale attrs loaded into the attrcache. 545 * We detect this by for the mtime moving back. We invalidate the 546 * attrcache when this happens. 547 */ 548 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 549 /* Size changed or mtime went backwards */ 550 np->n_attrstamp = 0; 551 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 552 } 553 if (vaper != NULL) { 554 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 555 if (np->n_flag & NCHG) { 556 if (np->n_flag & NACC) 557 vaper->va_atime = np->n_atim; 558 if (np->n_flag & NUPD) 559 vaper->va_mtime = np->n_mtim; 560 } 561 } 562 563 out: 564 #ifdef KDTRACE_HOOKS 565 if (np->n_attrstamp != 0) 566 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 567 #endif 568 (void)ncl_pager_setsize(vp, NULL); 569 return (error); 570 } 571 572 /* 573 * Call vnode_pager_setsize() if the size of the node changed, as 574 * recorded in nfsnode vs. v_object, or delay the call if notifying 575 * the pager is not possible at the moment. 576 * 577 * If nsizep is non-NULL, the call is delayed and the new node size is 578 * provided. Caller should itself call vnode_pager_setsize() if 579 * function returned true. If nsizep is NULL, function tries to call 580 * vnode_pager_setsize() itself if needed and possible, and the nfs 581 * node is unlocked unconditionally, the return value is not useful. 582 */ 583 bool 584 ncl_pager_setsize(struct vnode *vp, u_quad_t *nsizep) 585 { 586 struct nfsnode *np; 587 vm_object_t object; 588 struct vattr *vap; 589 u_quad_t nsize; 590 bool setnsize; 591 592 np = VTONFS(vp); 593 NFSASSERTNODE(np); 594 595 vap = &np->n_vattr.na_vattr; 596 nsize = vap->va_size; 597 object = vp->v_object; 598 setnsize = false; 599 600 if (object != NULL && nsize != object->un_pager.vnp.vnp_size) { 601 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 602 (curthread->td_pflags2 & TDP2_SBPAGES) == 0) 603 setnsize = true; 604 else 605 np->n_flag |= NVNSETSZSKIP; 606 } 607 if (nsizep == NULL) { 608 NFSUNLOCKNODE(np); 609 if (setnsize) 610 vnode_pager_setsize(vp, nsize); 611 setnsize = false; 612 } else { 613 *nsizep = nsize; 614 } 615 return (setnsize); 616 } 617 618 /* 619 * Fill in the client id name. For these bytes: 620 * 1 - they must be unique 621 * 2 - they should be persistent across client reboots 622 * 1 is more critical than 2 623 * Use the mount point's unique id plus either the uuid or, if that 624 * isn't set, random junk. 625 */ 626 void 627 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 628 { 629 int uuidlen; 630 631 /* 632 * First, put in the 64bit mount point identifier. 633 */ 634 if (idlen >= sizeof (u_int64_t)) { 635 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 636 cp += sizeof (u_int64_t); 637 idlen -= sizeof (u_int64_t); 638 } 639 640 /* 641 * If uuid is non-zero length, use it. 642 */ 643 uuidlen = strlen(uuid); 644 if (uuidlen > 0 && idlen >= uuidlen) { 645 NFSBCOPY(uuid, cp, uuidlen); 646 cp += uuidlen; 647 idlen -= uuidlen; 648 } 649 650 /* 651 * This only normally happens if the uuid isn't set. 652 */ 653 while (idlen > 0) { 654 *cp++ = (u_int8_t)(arc4random() % 256); 655 idlen--; 656 } 657 } 658 659 /* 660 * Fill in a lock owner name. For now, pid + the process's creation time. 661 */ 662 void 663 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 664 { 665 union { 666 u_int32_t lval; 667 u_int8_t cval[4]; 668 } tl; 669 struct proc *p; 670 671 if (id == NULL) { 672 /* Return the single open_owner of all 0 bytes. */ 673 bzero(cp, NFSV4CL_LOCKNAMELEN); 674 return; 675 } 676 if ((flags & F_POSIX) != 0) { 677 p = (struct proc *)id; 678 tl.lval = p->p_pid; 679 *cp++ = tl.cval[0]; 680 *cp++ = tl.cval[1]; 681 *cp++ = tl.cval[2]; 682 *cp++ = tl.cval[3]; 683 tl.lval = p->p_stats->p_start.tv_sec; 684 *cp++ = tl.cval[0]; 685 *cp++ = tl.cval[1]; 686 *cp++ = tl.cval[2]; 687 *cp++ = tl.cval[3]; 688 tl.lval = p->p_stats->p_start.tv_usec; 689 *cp++ = tl.cval[0]; 690 *cp++ = tl.cval[1]; 691 *cp++ = tl.cval[2]; 692 *cp = tl.cval[3]; 693 } else if ((flags & F_FLOCK) != 0) { 694 bcopy(&id, cp, sizeof(id)); 695 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 696 } else { 697 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 698 bzero(cp, NFSV4CL_LOCKNAMELEN); 699 } 700 } 701 702 /* 703 * Find the parent process for the thread passed in as an argument. 704 * If none exists, return NULL, otherwise return a thread for the parent. 705 * (Can be any of the threads, since it is only used for td->td_proc.) 706 */ 707 NFSPROC_T * 708 nfscl_getparent(struct thread *td) 709 { 710 struct proc *p; 711 struct thread *ptd; 712 713 if (td == NULL) 714 return (NULL); 715 p = td->td_proc; 716 if (p->p_pid == 0) 717 return (NULL); 718 p = p->p_pptr; 719 if (p == NULL) 720 return (NULL); 721 ptd = TAILQ_FIRST(&p->p_threads); 722 return (ptd); 723 } 724 725 /* 726 * Start up the renew kernel thread. 727 */ 728 static void 729 start_nfscl(void *arg) 730 { 731 struct nfsclclient *clp; 732 struct thread *td; 733 734 clp = (struct nfsclclient *)arg; 735 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 736 nfscl_renewthread(clp, td); 737 kproc_exit(0); 738 } 739 740 void 741 nfscl_start_renewthread(struct nfsclclient *clp) 742 { 743 744 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 745 "nfscl"); 746 } 747 748 /* 749 * Handle wcc_data. 750 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 751 * as the first Op after PutFH. 752 * (For NFSv4, the postop attributes are after the Op, so they can't be 753 * parsed here. A separate call to nfscl_postop_attr() is required.) 754 */ 755 int 756 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 757 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 758 { 759 u_int32_t *tl; 760 struct nfsnode *np = VTONFS(vp); 761 struct nfsvattr nfsva; 762 int error = 0; 763 764 if (wccflagp != NULL) 765 *wccflagp = 0; 766 if (nd->nd_flag & ND_NFSV3) { 767 *flagp = 0; 768 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 769 if (*tl == newnfs_true) { 770 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 771 if (wccflagp != NULL) { 772 NFSLOCKNODE(np); 773 *wccflagp = (np->n_mtime.tv_sec == 774 fxdr_unsigned(u_int32_t, *(tl + 2)) && 775 np->n_mtime.tv_nsec == 776 fxdr_unsigned(u_int32_t, *(tl + 3))); 777 NFSUNLOCKNODE(np); 778 } 779 } 780 error = nfscl_postop_attr(nd, nap, flagp, stuff); 781 if (wccflagp != NULL && *flagp == 0) 782 *wccflagp = 0; 783 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 784 == (ND_NFSV4 | ND_V4WCCATTR)) { 785 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 786 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 787 NULL, NULL, NULL, NULL, NULL); 788 if (error) 789 return (error); 790 /* 791 * Get rid of Op# and status for next op. 792 */ 793 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 794 if (*++tl) 795 nd->nd_flag |= ND_NOMOREDATA; 796 if (wccflagp != NULL && 797 nfsva.na_vattr.va_mtime.tv_sec != 0) { 798 NFSLOCKNODE(np); 799 *wccflagp = (np->n_mtime.tv_sec == 800 nfsva.na_vattr.va_mtime.tv_sec && 801 np->n_mtime.tv_nsec == 802 nfsva.na_vattr.va_mtime.tv_sec); 803 NFSUNLOCKNODE(np); 804 } 805 } 806 nfsmout: 807 return (error); 808 } 809 810 /* 811 * Get postop attributes. 812 */ 813 int 814 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 815 void *stuff) 816 { 817 u_int32_t *tl; 818 int error = 0; 819 820 *retp = 0; 821 if (nd->nd_flag & ND_NOMOREDATA) 822 return (error); 823 if (nd->nd_flag & ND_NFSV3) { 824 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 825 *retp = fxdr_unsigned(int, *tl); 826 } else if (nd->nd_flag & ND_NFSV4) { 827 /* 828 * For NFSv4, the postop attr are at the end, so no point 829 * in looking if nd_repstat != 0. 830 */ 831 if (!nd->nd_repstat) { 832 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 833 if (*(tl + 1)) 834 /* should never happen since nd_repstat != 0 */ 835 nd->nd_flag |= ND_NOMOREDATA; 836 else 837 *retp = 1; 838 } 839 } else if (!nd->nd_repstat) { 840 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 841 *retp = 1; 842 } 843 if (*retp) { 844 error = nfsm_loadattr(nd, nap); 845 if (error) 846 *retp = 0; 847 } 848 nfsmout: 849 return (error); 850 } 851 852 /* 853 * nfscl_request() - mostly a wrapper for newnfs_request(). 854 */ 855 int 856 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 857 struct ucred *cred, void *stuff) 858 { 859 int ret, vers; 860 struct nfsmount *nmp; 861 862 nmp = VFSTONFS(vp->v_mount); 863 if (nd->nd_flag & ND_NFSV4) 864 vers = NFS_VER4; 865 else if (nd->nd_flag & ND_NFSV3) 866 vers = NFS_VER3; 867 else 868 vers = NFS_VER2; 869 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 870 NFS_PROG, vers, NULL, 1, NULL, NULL); 871 return (ret); 872 } 873 874 /* 875 * fill in this bsden's variant of statfs using nfsstatfs. 876 */ 877 void 878 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 879 { 880 struct statfs *sbp = (struct statfs *)statfs; 881 882 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 883 sbp->f_bsize = NFS_FABLKSIZE; 884 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 885 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 886 /* 887 * Although sf_abytes is uint64_t and f_bavail is int64_t, 888 * the value after dividing by NFS_FABLKSIZE is small 889 * enough that it will fit in 63bits, so it is ok to 890 * assign it to f_bavail without fear that it will become 891 * negative. 892 */ 893 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 894 sbp->f_files = sfp->sf_tfiles; 895 /* Since f_ffree is int64_t, clip it to 63bits. */ 896 if (sfp->sf_ffiles > INT64_MAX) 897 sbp->f_ffree = INT64_MAX; 898 else 899 sbp->f_ffree = sfp->sf_ffiles; 900 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 901 /* 902 * The type casts to (int32_t) ensure that this code is 903 * compatible with the old NFS client, in that it will 904 * propagate bit31 to the high order bits. This may or may 905 * not be correct for NFSv2, but since it is a legacy 906 * environment, I'd rather retain backwards compatibility. 907 */ 908 sbp->f_bsize = (int32_t)sfp->sf_bsize; 909 sbp->f_blocks = (int32_t)sfp->sf_blocks; 910 sbp->f_bfree = (int32_t)sfp->sf_bfree; 911 sbp->f_bavail = (int32_t)sfp->sf_bavail; 912 sbp->f_files = 0; 913 sbp->f_ffree = 0; 914 } 915 } 916 917 /* 918 * Use the fsinfo stuff to update the mount point. 919 */ 920 void 921 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 922 { 923 924 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 925 fsp->fs_wtpref >= NFS_FABLKSIZE) 926 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 927 ~(NFS_FABLKSIZE - 1); 928 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 929 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 930 if (nmp->nm_wsize == 0) 931 nmp->nm_wsize = fsp->fs_wtmax; 932 } 933 if (nmp->nm_wsize < NFS_FABLKSIZE) 934 nmp->nm_wsize = NFS_FABLKSIZE; 935 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 936 fsp->fs_rtpref >= NFS_FABLKSIZE) 937 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 938 ~(NFS_FABLKSIZE - 1); 939 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 940 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 941 if (nmp->nm_rsize == 0) 942 nmp->nm_rsize = fsp->fs_rtmax; 943 } 944 if (nmp->nm_rsize < NFS_FABLKSIZE) 945 nmp->nm_rsize = NFS_FABLKSIZE; 946 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 947 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 948 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 949 ~(NFS_DIRBLKSIZ - 1); 950 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 951 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 952 if (nmp->nm_readdirsize == 0) 953 nmp->nm_readdirsize = fsp->fs_rtmax; 954 } 955 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 956 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 957 if (fsp->fs_maxfilesize > 0 && 958 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 959 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 960 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 961 nmp->nm_state |= NFSSTA_GOTFSINFO; 962 } 963 964 /* 965 * Lookups source address which should be used to communicate with 966 * @nmp and stores it inside @pdst. 967 * 968 * Returns 0 on success. 969 */ 970 u_int8_t * 971 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) 972 { 973 #if defined(INET6) || defined(INET) 974 int fibnum; 975 976 fibnum = curthread->td_proc->p_fibnum; 977 #endif 978 #ifdef INET 979 if (nmp->nm_nam->sa_family == AF_INET) { 980 struct epoch_tracker et; 981 struct nhop_object *nh; 982 struct sockaddr_in *sin; 983 struct in_addr addr = {}; 984 985 sin = (struct sockaddr_in *)nmp->nm_nam; 986 NET_EPOCH_ENTER(et); 987 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 988 nh = fib4_lookup(fibnum, sin->sin_addr, 0, NHR_NONE, 0); 989 CURVNET_RESTORE(); 990 if (nh != NULL) 991 addr = IA_SIN(ifatoia(nh->nh_ifa))->sin_addr; 992 NET_EPOCH_EXIT(et); 993 if (nh == NULL) 994 return (NULL); 995 996 if (IN_LOOPBACK(ntohl(addr.s_addr))) { 997 /* Ignore loopback addresses */ 998 return (NULL); 999 } 1000 1001 *isinet6p = 0; 1002 *((struct in_addr *)paddr) = addr; 1003 1004 return (u_int8_t *)paddr; 1005 } 1006 #endif 1007 #ifdef INET6 1008 if (nmp->nm_nam->sa_family == AF_INET6) { 1009 struct sockaddr_in6 *sin6; 1010 int error; 1011 1012 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1013 1014 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1015 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, 1016 sin6->sin6_scope_id, NULL, paddr, NULL); 1017 CURVNET_RESTORE(); 1018 if (error != 0) 1019 return (NULL); 1020 1021 if (IN6_IS_ADDR_LOOPBACK(paddr)) 1022 return (NULL); 1023 1024 /* Scope is embedded in */ 1025 *isinet6p = 1; 1026 1027 return (u_int8_t *)paddr; 1028 } 1029 #endif 1030 return (NULL); 1031 } 1032 1033 /* 1034 * Copy NFS uid, gids from the cred structure. 1035 */ 1036 void 1037 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1038 { 1039 int i; 1040 1041 KASSERT(cr->cr_ngroups >= 0, 1042 ("newnfs_copyincred: negative cr_ngroups")); 1043 nfscr->nfsc_uid = cr->cr_uid; 1044 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1045 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1046 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1047 } 1048 1049 1050 /* 1051 * Do any client specific initialization. 1052 */ 1053 void 1054 nfscl_init(void) 1055 { 1056 static int inited = 0; 1057 1058 if (inited) 1059 return; 1060 inited = 1; 1061 nfscl_inited = 1; 1062 ncl_pbuf_zone = pbuf_zsecond_create("nfspbuf", nswbuf / 2); 1063 } 1064 1065 /* 1066 * Check each of the attributes to be set, to ensure they aren't already 1067 * the correct value. Disable setting ones already correct. 1068 */ 1069 int 1070 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1071 { 1072 1073 if (vap->va_mode != (mode_t)VNOVAL) { 1074 if (vap->va_mode == nvap->na_mode) 1075 vap->va_mode = (mode_t)VNOVAL; 1076 } 1077 if (vap->va_uid != (uid_t)VNOVAL) { 1078 if (vap->va_uid == nvap->na_uid) 1079 vap->va_uid = (uid_t)VNOVAL; 1080 } 1081 if (vap->va_gid != (gid_t)VNOVAL) { 1082 if (vap->va_gid == nvap->na_gid) 1083 vap->va_gid = (gid_t)VNOVAL; 1084 } 1085 if (vap->va_size != VNOVAL) { 1086 if (vap->va_size == nvap->na_size) 1087 vap->va_size = VNOVAL; 1088 } 1089 1090 /* 1091 * We are normally called with only a partially initialized 1092 * VAP. Since the NFSv3 spec says that server may use the 1093 * file attributes to store the verifier, the spec requires 1094 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1095 * in atime, but we can't really assume that all servers will 1096 * so we ensure that our SETATTR sets both atime and mtime. 1097 * Set the VA_UTIMES_NULL flag for this case, so that 1098 * the server's time will be used. This is needed to 1099 * work around a bug in some Solaris servers, where 1100 * setting the time TOCLIENT causes the Setattr RPC 1101 * to return NFS_OK, but not set va_mode. 1102 */ 1103 if (vap->va_mtime.tv_sec == VNOVAL) { 1104 vfs_timestamp(&vap->va_mtime); 1105 vap->va_vaflags |= VA_UTIMES_NULL; 1106 } 1107 if (vap->va_atime.tv_sec == VNOVAL) 1108 vap->va_atime = vap->va_mtime; 1109 return (1); 1110 } 1111 1112 /* 1113 * Map nfsv4 errors to errno.h errors. 1114 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1115 * error should only be returned for the Open, Create and Setattr Ops. 1116 * As such, most calls can just pass in 0 for those arguments. 1117 */ 1118 int 1119 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1120 { 1121 struct proc *p; 1122 1123 if (error < 10000 || error >= NFSERR_STALEWRITEVERF) 1124 return (error); 1125 if (td != NULL) 1126 p = td->td_proc; 1127 else 1128 p = NULL; 1129 switch (error) { 1130 case NFSERR_BADOWNER: 1131 tprintf(p, LOG_INFO, 1132 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1133 uid, gid); 1134 return (EPERM); 1135 case NFSERR_BADNAME: 1136 case NFSERR_BADCHAR: 1137 printf("nfsv4 char/name not handled by server\n"); 1138 return (ENOENT); 1139 case NFSERR_STALECLIENTID: 1140 case NFSERR_STALESTATEID: 1141 case NFSERR_EXPIRED: 1142 case NFSERR_BADSTATEID: 1143 case NFSERR_BADSESSION: 1144 printf("nfsv4 recover err returned %d\n", error); 1145 return (EIO); 1146 case NFSERR_BADHANDLE: 1147 case NFSERR_SERVERFAULT: 1148 case NFSERR_BADTYPE: 1149 case NFSERR_FHEXPIRED: 1150 case NFSERR_RESOURCE: 1151 case NFSERR_MOVED: 1152 case NFSERR_NOFILEHANDLE: 1153 case NFSERR_MINORVERMISMATCH: 1154 case NFSERR_OLDSTATEID: 1155 case NFSERR_BADSEQID: 1156 case NFSERR_LEASEMOVED: 1157 case NFSERR_RECLAIMBAD: 1158 case NFSERR_BADXDR: 1159 case NFSERR_OPILLEGAL: 1160 printf("nfsv4 client/server protocol prob err=%d\n", 1161 error); 1162 return (EIO); 1163 default: 1164 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1165 return (EIO); 1166 }; 1167 } 1168 1169 /* 1170 * Check to see if the process for this owner exists. Return 1 if it doesn't 1171 * and 0 otherwise. 1172 */ 1173 int 1174 nfscl_procdoesntexist(u_int8_t *own) 1175 { 1176 union { 1177 u_int32_t lval; 1178 u_int8_t cval[4]; 1179 } tl; 1180 struct proc *p; 1181 pid_t pid; 1182 int i, ret = 0; 1183 1184 /* For the single open_owner of all 0 bytes, just return 0. */ 1185 for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++) 1186 if (own[i] != 0) 1187 break; 1188 if (i == NFSV4CL_LOCKNAMELEN) 1189 return (0); 1190 1191 tl.cval[0] = *own++; 1192 tl.cval[1] = *own++; 1193 tl.cval[2] = *own++; 1194 tl.cval[3] = *own++; 1195 pid = tl.lval; 1196 p = pfind_any_locked(pid); 1197 if (p == NULL) 1198 return (1); 1199 if (p->p_stats == NULL) { 1200 PROC_UNLOCK(p); 1201 return (0); 1202 } 1203 tl.cval[0] = *own++; 1204 tl.cval[1] = *own++; 1205 tl.cval[2] = *own++; 1206 tl.cval[3] = *own++; 1207 if (tl.lval != p->p_stats->p_start.tv_sec) { 1208 ret = 1; 1209 } else { 1210 tl.cval[0] = *own++; 1211 tl.cval[1] = *own++; 1212 tl.cval[2] = *own++; 1213 tl.cval[3] = *own; 1214 if (tl.lval != p->p_stats->p_start.tv_usec) 1215 ret = 1; 1216 } 1217 PROC_UNLOCK(p); 1218 return (ret); 1219 } 1220 1221 /* 1222 * - nfs pseudo system call for the client 1223 */ 1224 /* 1225 * MPSAFE 1226 */ 1227 static int 1228 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1229 { 1230 struct file *fp; 1231 struct nfscbd_args nfscbdarg; 1232 struct nfsd_nfscbd_args nfscbdarg2; 1233 struct nameidata nd; 1234 struct nfscl_dumpmntopts dumpmntopts; 1235 cap_rights_t rights; 1236 char *buf; 1237 int error; 1238 struct mount *mp; 1239 struct nfsmount *nmp; 1240 1241 if (uap->flag & NFSSVC_CBADDSOCK) { 1242 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1243 if (error) 1244 return (error); 1245 /* 1246 * Since we don't know what rights might be required, 1247 * pretend that we need them all. It is better to be too 1248 * careful than too reckless. 1249 */ 1250 error = fget(td, nfscbdarg.sock, 1251 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); 1252 if (error) 1253 return (error); 1254 if (fp->f_type != DTYPE_SOCKET) { 1255 fdrop(fp, td); 1256 return (EPERM); 1257 } 1258 error = nfscbd_addsock(fp); 1259 fdrop(fp, td); 1260 if (!error && nfscl_enablecallb == 0) { 1261 nfsv4_cbport = nfscbdarg.port; 1262 nfscl_enablecallb = 1; 1263 } 1264 } else if (uap->flag & NFSSVC_NFSCBD) { 1265 if (uap->argp == NULL) 1266 return (EINVAL); 1267 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1268 sizeof(nfscbdarg2)); 1269 if (error) 1270 return (error); 1271 error = nfscbd_nfsd(td, &nfscbdarg2); 1272 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1273 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1274 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1275 dumpmntopts.ndmnt_blen > 1024)) 1276 error = EINVAL; 1277 if (error == 0) 1278 error = nfsrv_lookupfilename(&nd, 1279 dumpmntopts.ndmnt_fname, td); 1280 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1281 "nfs") != 0) { 1282 vput(nd.ni_vp); 1283 error = EINVAL; 1284 } 1285 if (error == 0) { 1286 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1287 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1288 dumpmntopts.ndmnt_blen); 1289 vput(nd.ni_vp); 1290 error = copyout(buf, dumpmntopts.ndmnt_buf, 1291 dumpmntopts.ndmnt_blen); 1292 free(buf, M_TEMP); 1293 } 1294 } else if (uap->flag & NFSSVC_FORCEDISM) { 1295 buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); 1296 error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL); 1297 if (error == 0) { 1298 nmp = NULL; 1299 mtx_lock(&mountlist_mtx); 1300 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1301 if (strcmp(mp->mnt_stat.f_mntonname, buf) == 1302 0 && strcmp(mp->mnt_stat.f_fstypename, 1303 "nfs") == 0 && mp->mnt_data != NULL) { 1304 nmp = VFSTONFS(mp); 1305 NFSDDSLOCK(); 1306 if (nfsv4_findmirror(nmp) != NULL) { 1307 NFSDDSUNLOCK(); 1308 error = ENXIO; 1309 nmp = NULL; 1310 break; 1311 } 1312 mtx_lock(&nmp->nm_mtx); 1313 if ((nmp->nm_privflag & 1314 NFSMNTP_FORCEDISM) == 0) { 1315 nmp->nm_privflag |= 1316 (NFSMNTP_FORCEDISM | 1317 NFSMNTP_CANCELRPCS); 1318 mtx_unlock(&nmp->nm_mtx); 1319 } else { 1320 mtx_unlock(&nmp->nm_mtx); 1321 nmp = NULL; 1322 } 1323 NFSDDSUNLOCK(); 1324 break; 1325 } 1326 } 1327 mtx_unlock(&mountlist_mtx); 1328 1329 if (nmp != NULL) { 1330 /* 1331 * Call newnfs_nmcancelreqs() to cause 1332 * any RPCs in progress on the mount point to 1333 * fail. 1334 * This will cause any process waiting for an 1335 * RPC to complete while holding a vnode lock 1336 * on the mounted-on vnode (such as "df" or 1337 * a non-forced "umount") to fail. 1338 * This will unlock the mounted-on vnode so 1339 * a forced dismount can succeed. 1340 * Then clear NFSMNTP_CANCELRPCS and wakeup(), 1341 * so that nfs_unmount() can complete. 1342 */ 1343 newnfs_nmcancelreqs(nmp); 1344 mtx_lock(&nmp->nm_mtx); 1345 nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS; 1346 wakeup(nmp); 1347 mtx_unlock(&nmp->nm_mtx); 1348 } else if (error == 0) 1349 error = EINVAL; 1350 } 1351 free(buf, M_TEMP); 1352 } else { 1353 error = EINVAL; 1354 } 1355 return (error); 1356 } 1357 1358 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1359 1360 /* 1361 * Called once to initialize data structures... 1362 */ 1363 static int 1364 nfscl_modevent(module_t mod, int type, void *data) 1365 { 1366 int error = 0; 1367 static int loaded = 0; 1368 1369 switch (type) { 1370 case MOD_LOAD: 1371 if (loaded) 1372 return (0); 1373 newnfs_portinit(); 1374 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1375 nfscl_init(); 1376 NFSD_LOCK(); 1377 nfsrvd_cbinit(0); 1378 NFSD_UNLOCK(); 1379 ncl_call_invalcaches = ncl_invalcaches; 1380 nfsd_call_nfscl = nfssvc_nfscl; 1381 loaded = 1; 1382 break; 1383 1384 case MOD_UNLOAD: 1385 if (nfs_numnfscbd != 0) { 1386 error = EBUSY; 1387 break; 1388 } 1389 1390 /* 1391 * XXX: Unloading of nfscl module is unsupported. 1392 */ 1393 #if 0 1394 ncl_call_invalcaches = NULL; 1395 nfsd_call_nfscl = NULL; 1396 uma_zdestroy(ncl_pbuf_zone); 1397 /* and get rid of the mutexes */ 1398 mtx_destroy(&ncl_iod_mutex); 1399 loaded = 0; 1400 break; 1401 #else 1402 /* FALLTHROUGH */ 1403 #endif 1404 default: 1405 error = EOPNOTSUPP; 1406 break; 1407 } 1408 return error; 1409 } 1410 static moduledata_t nfscl_mod = { 1411 "nfscl", 1412 nfscl_modevent, 1413 NULL, 1414 }; 1415 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1416 1417 /* So that loader and kldload(2) can find us, wherever we are.. */ 1418 MODULE_VERSION(nfscl, 1); 1419 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1420 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1421 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1422 1423