1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/capsicum.h> 41 42 /* 43 * generally, I don't like #includes inside .h files, but it seems to 44 * be the easiest way to handle the port. 45 */ 46 #include <sys/fail.h> 47 #include <sys/hash.h> 48 #include <sys/sysctl.h> 49 #include <fs/nfs/nfsport.h> 50 #include <netinet/in_fib.h> 51 #include <netinet/if_ether.h> 52 #include <netinet6/ip6_var.h> 53 #include <net/if_types.h> 54 55 #include <fs/nfsclient/nfs_kdtrace.h> 56 57 #ifdef KDTRACE_HOOKS 58 dtrace_nfsclient_attrcache_flush_probe_func_t 59 dtrace_nfscl_attrcache_flush_done_probe; 60 uint32_t nfscl_attrcache_flush_done_id; 61 62 dtrace_nfsclient_attrcache_get_hit_probe_func_t 63 dtrace_nfscl_attrcache_get_hit_probe; 64 uint32_t nfscl_attrcache_get_hit_id; 65 66 dtrace_nfsclient_attrcache_get_miss_probe_func_t 67 dtrace_nfscl_attrcache_get_miss_probe; 68 uint32_t nfscl_attrcache_get_miss_id; 69 70 dtrace_nfsclient_attrcache_load_probe_func_t 71 dtrace_nfscl_attrcache_load_done_probe; 72 uint32_t nfscl_attrcache_load_done_id; 73 #endif /* !KDTRACE_HOOKS */ 74 75 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 76 extern struct vop_vector newnfs_vnodeops; 77 extern struct vop_vector newnfs_fifoops; 78 extern uma_zone_t newnfsnode_zone; 79 extern struct buf_ops buf_ops_newnfs; 80 extern int ncl_pbuf_freecnt; 81 extern short nfsv4_cbport; 82 extern int nfscl_enablecallb; 83 extern int nfs_numnfscbd; 84 extern int nfscl_inited; 85 struct mtx nfs_clstate_mutex; 86 struct mtx ncl_iod_mutex; 87 NFSDLOCKMUTEX; 88 89 extern void (*ncl_call_invalcaches)(struct vnode *); 90 91 SYSCTL_DECL(_vfs_nfs); 92 static int ncl_fileid_maxwarnings = 10; 93 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 94 &ncl_fileid_maxwarnings, 0, 95 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 96 static volatile int ncl_fileid_nwarnings; 97 98 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 99 struct nfsvattr *); 100 101 /* 102 * Comparison function for vfs_hash functions. 103 */ 104 int 105 newnfs_vncmpf(struct vnode *vp, void *arg) 106 { 107 struct nfsfh *nfhp = (struct nfsfh *)arg; 108 struct nfsnode *np = VTONFS(vp); 109 110 if (np->n_fhp->nfh_len != nfhp->nfh_len || 111 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 112 return (1); 113 return (0); 114 } 115 116 /* 117 * Look up a vnode/nfsnode by file handle. 118 * Callers must check for mount points!! 119 * In all cases, a pointer to a 120 * nfsnode structure is returned. 121 * This variant takes a "struct nfsfh *" as second argument and uses 122 * that structure up, either by hanging off the nfsnode or FREEing it. 123 */ 124 int 125 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 126 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 127 void *stuff, int lkflags) 128 { 129 struct nfsnode *np, *dnp; 130 struct vnode *vp, *nvp; 131 struct nfsv4node *newd, *oldd; 132 int error; 133 u_int hash; 134 struct nfsmount *nmp; 135 136 nmp = VFSTONFS(mntp); 137 dnp = VTONFS(dvp); 138 *npp = NULL; 139 140 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 141 142 error = vfs_hash_get(mntp, hash, lkflags, 143 td, &nvp, newnfs_vncmpf, nfhp); 144 if (error == 0 && nvp != NULL) { 145 /* 146 * I believe there is a slight chance that vgonel() could 147 * get called on this vnode between when NFSVOPLOCK() drops 148 * the VI_LOCK() and vget() acquires it again, so that it 149 * hasn't yet had v_usecount incremented. If this were to 150 * happen, the VI_DOOMED flag would be set, so check for 151 * that here. Since we now have the v_usecount incremented, 152 * we should be ok until we vrele() it, if the VI_DOOMED 153 * flag isn't set now. 154 */ 155 VI_LOCK(nvp); 156 if ((nvp->v_iflag & VI_DOOMED)) { 157 VI_UNLOCK(nvp); 158 vrele(nvp); 159 error = ENOENT; 160 } else { 161 VI_UNLOCK(nvp); 162 } 163 } 164 if (error) { 165 FREE((caddr_t)nfhp, M_NFSFH); 166 return (error); 167 } 168 if (nvp != NULL) { 169 np = VTONFS(nvp); 170 /* 171 * For NFSv4, check to see if it is the same name and 172 * replace the name, if it is different. 173 */ 174 oldd = newd = NULL; 175 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 176 nvp->v_type == VREG && 177 (np->n_v4->n4_namelen != cnp->cn_namelen || 178 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 179 cnp->cn_namelen) || 180 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 181 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 182 dnp->n_fhp->nfh_len))) { 183 MALLOC(newd, struct nfsv4node *, 184 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 185 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 186 NFSLOCKNODE(np); 187 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 188 && (np->n_v4->n4_namelen != cnp->cn_namelen || 189 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 190 cnp->cn_namelen) || 191 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 192 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 193 dnp->n_fhp->nfh_len))) { 194 oldd = np->n_v4; 195 np->n_v4 = newd; 196 newd = NULL; 197 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 198 np->n_v4->n4_namelen = cnp->cn_namelen; 199 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 200 dnp->n_fhp->nfh_len); 201 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 202 cnp->cn_namelen); 203 } 204 NFSUNLOCKNODE(np); 205 } 206 if (newd != NULL) 207 FREE((caddr_t)newd, M_NFSV4NODE); 208 if (oldd != NULL) 209 FREE((caddr_t)oldd, M_NFSV4NODE); 210 *npp = np; 211 FREE((caddr_t)nfhp, M_NFSFH); 212 return (0); 213 } 214 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 215 216 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 217 if (error) { 218 uma_zfree(newnfsnode_zone, np); 219 FREE((caddr_t)nfhp, M_NFSFH); 220 return (error); 221 } 222 vp = nvp; 223 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 224 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 225 vp->v_data = np; 226 np->n_vnode = vp; 227 /* 228 * Initialize the mutex even if the vnode is going to be a loser. 229 * This simplifies the logic in reclaim, which can then unconditionally 230 * destroy the mutex (in the case of the loser, or if hash_insert 231 * happened to return an error no special casing is needed). 232 */ 233 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 234 235 /* 236 * Are we getting the root? If so, make sure the vnode flags 237 * are correct 238 */ 239 if ((nfhp->nfh_len == nmp->nm_fhsize) && 240 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 241 if (vp->v_type == VNON) 242 vp->v_type = VDIR; 243 vp->v_vflag |= VV_ROOT; 244 } 245 246 np->n_fhp = nfhp; 247 /* 248 * For NFSv4, we have to attach the directory file handle and 249 * file name, so that Open Ops can be done later. 250 */ 251 if (nmp->nm_flag & NFSMNT_NFSV4) { 252 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 253 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 254 M_WAITOK); 255 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 256 np->n_v4->n4_namelen = cnp->cn_namelen; 257 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 258 dnp->n_fhp->nfh_len); 259 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 260 cnp->cn_namelen); 261 } else { 262 np->n_v4 = NULL; 263 } 264 265 /* 266 * NFS supports recursive and shared locking. 267 */ 268 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 269 VN_LOCK_AREC(vp); 270 VN_LOCK_ASHARE(vp); 271 error = insmntque(vp, mntp); 272 if (error != 0) { 273 *npp = NULL; 274 mtx_destroy(&np->n_mtx); 275 FREE((caddr_t)nfhp, M_NFSFH); 276 if (np->n_v4 != NULL) 277 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 278 uma_zfree(newnfsnode_zone, np); 279 return (error); 280 } 281 error = vfs_hash_insert(vp, hash, lkflags, 282 td, &nvp, newnfs_vncmpf, nfhp); 283 if (error) 284 return (error); 285 if (nvp != NULL) { 286 *npp = VTONFS(nvp); 287 /* vfs_hash_insert() vput()'s the losing vnode */ 288 return (0); 289 } 290 *npp = np; 291 292 return (0); 293 } 294 295 /* 296 * Another variant of nfs_nget(). This one is only used by reopen. It 297 * takes almost the same args as nfs_nget(), but only succeeds if an entry 298 * exists in the cache. (Since files should already be "open" with a 299 * vnode ref cnt on the node when reopen calls this, it should always 300 * succeed.) 301 * Also, don't get a vnode lock, since it may already be locked by some 302 * other process that is handling it. This is ok, since all other threads 303 * on the client are blocked by the nfsc_lock being exclusively held by the 304 * caller of this function. 305 */ 306 int 307 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 308 struct thread *td, struct nfsnode **npp) 309 { 310 struct vnode *nvp; 311 u_int hash; 312 struct nfsfh *nfhp; 313 int error; 314 315 *npp = NULL; 316 /* For forced dismounts, just return error. */ 317 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 318 return (EINTR); 319 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 320 M_NFSFH, M_WAITOK); 321 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 322 nfhp->nfh_len = fhsize; 323 324 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 325 326 /* 327 * First, try to get the vnode locked, but don't block for the lock. 328 */ 329 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 330 newnfs_vncmpf, nfhp); 331 if (error == 0 && nvp != NULL) { 332 NFSVOPUNLOCK(nvp, 0); 333 } else if (error == EBUSY) { 334 /* 335 * It is safe so long as a vflush() with 336 * FORCECLOSE has not been done. Since the Renew thread is 337 * stopped and the MNTK_UNMOUNTF flag is set before doing 338 * a vflush() with FORCECLOSE, we should be ok here. 339 */ 340 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 341 error = EINTR; 342 else { 343 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); 344 if (nvp == NULL) { 345 error = ENOENT; 346 } else if ((nvp->v_iflag & VI_DOOMED) != 0) { 347 error = ENOENT; 348 vrele(nvp); 349 } else { 350 error = 0; 351 } 352 } 353 } 354 FREE(nfhp, M_NFSFH); 355 if (error) 356 return (error); 357 if (nvp != NULL) { 358 *npp = VTONFS(nvp); 359 return (0); 360 } 361 return (EINVAL); 362 } 363 364 static void 365 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 366 struct nfsvattr *newnap) 367 { 368 int off; 369 370 if (ncl_fileid_maxwarnings >= 0 && 371 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 372 return; 373 off = 0; 374 if (ncl_fileid_maxwarnings >= 0) { 375 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 376 off = 1; 377 } 378 379 printf("newnfs: server '%s' error: fileid changed. " 380 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 381 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 382 nmp->nm_com.nmcom_hostname, 383 (uintmax_t)nmp->nm_fsid[0], 384 (uintmax_t)nmp->nm_fsid[1], 385 (uintmax_t)oldnap->na_fileid, 386 (uintmax_t)newnap->na_fileid); 387 388 if (off) 389 printf("newnfs: Logged %d times about fileid corruption; " 390 "going quiet to avoid spamming logs excessively. (Limit " 391 "is: %d).\n", ncl_fileid_nwarnings, 392 ncl_fileid_maxwarnings); 393 } 394 395 /* 396 * Load the attribute cache (that lives in the nfsnode entry) with 397 * the attributes of the second argument and 398 * Iff vaper not NULL 399 * copy the attributes to *vaper 400 * Similar to nfs_loadattrcache(), except the attributes are passed in 401 * instead of being parsed out of the mbuf list. 402 */ 403 int 404 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 405 void *stuff, int writeattr, int dontshrink) 406 { 407 struct vnode *vp = *vpp; 408 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 409 struct nfsnode *np; 410 struct nfsmount *nmp; 411 struct timespec mtime_save; 412 u_quad_t nsize; 413 int setnsize, error, force_fid_err; 414 415 error = 0; 416 setnsize = 0; 417 nsize = 0; 418 419 /* 420 * If v_type == VNON it is a new node, so fill in the v_type, 421 * n_mtime fields. Check to see if it represents a special 422 * device, and if so, check for a possible alias. Once the 423 * correct vnode has been obtained, fill in the rest of the 424 * information. 425 */ 426 np = VTONFS(vp); 427 NFSLOCKNODE(np); 428 if (vp->v_type != nvap->va_type) { 429 vp->v_type = nvap->va_type; 430 if (vp->v_type == VFIFO) 431 vp->v_op = &newnfs_fifoops; 432 np->n_mtime = nvap->va_mtime; 433 } 434 nmp = VFSTONFS(vp->v_mount); 435 vap = &np->n_vattr.na_vattr; 436 mtime_save = vap->va_mtime; 437 if (writeattr) { 438 np->n_vattr.na_filerev = nap->na_filerev; 439 np->n_vattr.na_size = nap->na_size; 440 np->n_vattr.na_mtime = nap->na_mtime; 441 np->n_vattr.na_ctime = nap->na_ctime; 442 np->n_vattr.na_fsid = nap->na_fsid; 443 np->n_vattr.na_mode = nap->na_mode; 444 } else { 445 force_fid_err = 0; 446 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 447 force_fid_err); 448 /* 449 * BROKEN NFS SERVER OR MIDDLEWARE 450 * 451 * Certain NFS servers (certain old proprietary filers ca. 452 * 2006) or broken middleboxes (e.g. WAN accelerator products) 453 * will respond to GETATTR requests with results for a 454 * different fileid. 455 * 456 * The WAN accelerator we've observed not only serves stale 457 * cache results for a given file, it also occasionally serves 458 * results for wholly different files. This causes surprising 459 * problems; for example the cached size attribute of a file 460 * may truncate down and then back up, resulting in zero 461 * regions in file contents read by applications. We observed 462 * this reliably with Clang and .c files during parallel build. 463 * A pcap revealed packet fragmentation and GETATTR RPC 464 * responses with wholly wrong fileids. 465 */ 466 if ((np->n_vattr.na_fileid != 0 && 467 np->n_vattr.na_fileid != nap->na_fileid) || 468 force_fid_err) { 469 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 470 error = EIDRM; 471 goto out; 472 } 473 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 474 sizeof (struct nfsvattr)); 475 } 476 477 /* 478 * For NFSv4, if the node's fsid is not equal to the mount point's 479 * fsid, return the low order 32bits of the node's fsid. This 480 * allows getcwd(3) to work. There is a chance that the fsid might 481 * be the same as a local fs, but since this is in an NFS mount 482 * point, I don't think that will cause any problems? 483 */ 484 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 485 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 486 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 487 /* 488 * va_fsid needs to be set to some value derived from 489 * np->n_vattr.na_filesid that is not equal 490 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 491 * from the value used for the top level server volume 492 * in the mounted subtree. 493 */ 494 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 495 (uint32_t)np->n_vattr.na_filesid[0]) 496 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 497 else 498 vap->va_fsid = (uint32_t)hash32_buf( 499 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 500 } else 501 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 502 np->n_attrstamp = time_second; 503 if (vap->va_size != np->n_size) { 504 if (vap->va_type == VREG) { 505 if (dontshrink && vap->va_size < np->n_size) { 506 /* 507 * We've been told not to shrink the file; 508 * zero np->n_attrstamp to indicate that 509 * the attributes are stale. 510 */ 511 vap->va_size = np->n_size; 512 np->n_attrstamp = 0; 513 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 514 vnode_pager_setsize(vp, np->n_size); 515 } else if (np->n_flag & NMODIFIED) { 516 /* 517 * We've modified the file: Use the larger 518 * of our size, and the server's size. 519 */ 520 if (vap->va_size < np->n_size) { 521 vap->va_size = np->n_size; 522 } else { 523 np->n_size = vap->va_size; 524 np->n_flag |= NSIZECHANGED; 525 } 526 vnode_pager_setsize(vp, np->n_size); 527 } else if (vap->va_size < np->n_size) { 528 /* 529 * When shrinking the size, the call to 530 * vnode_pager_setsize() cannot be done 531 * with the mutex held, so delay it until 532 * after the mtx_unlock call. 533 */ 534 nsize = np->n_size = vap->va_size; 535 np->n_flag |= NSIZECHANGED; 536 setnsize = 1; 537 } else { 538 np->n_size = vap->va_size; 539 np->n_flag |= NSIZECHANGED; 540 vnode_pager_setsize(vp, np->n_size); 541 } 542 } else { 543 np->n_size = vap->va_size; 544 } 545 } 546 /* 547 * The following checks are added to prevent a race between (say) 548 * a READDIR+ and a WRITE. 549 * READDIR+, WRITE requests sent out. 550 * READDIR+ resp, WRITE resp received on client. 551 * However, the WRITE resp was handled before the READDIR+ resp 552 * causing the post op attrs from the write to be loaded first 553 * and the attrs from the READDIR+ to be loaded later. If this 554 * happens, we have stale attrs loaded into the attrcache. 555 * We detect this by for the mtime moving back. We invalidate the 556 * attrcache when this happens. 557 */ 558 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 559 /* Size changed or mtime went backwards */ 560 np->n_attrstamp = 0; 561 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 562 } 563 if (vaper != NULL) { 564 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 565 if (np->n_flag & NCHG) { 566 if (np->n_flag & NACC) 567 vaper->va_atime = np->n_atim; 568 if (np->n_flag & NUPD) 569 vaper->va_mtime = np->n_mtim; 570 } 571 } 572 573 out: 574 #ifdef KDTRACE_HOOKS 575 if (np->n_attrstamp != 0) 576 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 577 #endif 578 NFSUNLOCKNODE(np); 579 if (setnsize) 580 vnode_pager_setsize(vp, nsize); 581 return (error); 582 } 583 584 /* 585 * Fill in the client id name. For these bytes: 586 * 1 - they must be unique 587 * 2 - they should be persistent across client reboots 588 * 1 is more critical than 2 589 * Use the mount point's unique id plus either the uuid or, if that 590 * isn't set, random junk. 591 */ 592 void 593 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 594 { 595 int uuidlen; 596 597 /* 598 * First, put in the 64bit mount point identifier. 599 */ 600 if (idlen >= sizeof (u_int64_t)) { 601 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 602 cp += sizeof (u_int64_t); 603 idlen -= sizeof (u_int64_t); 604 } 605 606 /* 607 * If uuid is non-zero length, use it. 608 */ 609 uuidlen = strlen(uuid); 610 if (uuidlen > 0 && idlen >= uuidlen) { 611 NFSBCOPY(uuid, cp, uuidlen); 612 cp += uuidlen; 613 idlen -= uuidlen; 614 } 615 616 /* 617 * This only normally happens if the uuid isn't set. 618 */ 619 while (idlen > 0) { 620 *cp++ = (u_int8_t)(arc4random() % 256); 621 idlen--; 622 } 623 } 624 625 /* 626 * Fill in a lock owner name. For now, pid + the process's creation time. 627 */ 628 void 629 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 630 { 631 union { 632 u_int32_t lval; 633 u_int8_t cval[4]; 634 } tl; 635 struct proc *p; 636 637 if (id == NULL) { 638 printf("NULL id\n"); 639 bzero(cp, NFSV4CL_LOCKNAMELEN); 640 return; 641 } 642 if ((flags & F_POSIX) != 0) { 643 p = (struct proc *)id; 644 tl.lval = p->p_pid; 645 *cp++ = tl.cval[0]; 646 *cp++ = tl.cval[1]; 647 *cp++ = tl.cval[2]; 648 *cp++ = tl.cval[3]; 649 tl.lval = p->p_stats->p_start.tv_sec; 650 *cp++ = tl.cval[0]; 651 *cp++ = tl.cval[1]; 652 *cp++ = tl.cval[2]; 653 *cp++ = tl.cval[3]; 654 tl.lval = p->p_stats->p_start.tv_usec; 655 *cp++ = tl.cval[0]; 656 *cp++ = tl.cval[1]; 657 *cp++ = tl.cval[2]; 658 *cp = tl.cval[3]; 659 } else if ((flags & F_FLOCK) != 0) { 660 bcopy(&id, cp, sizeof(id)); 661 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 662 } else { 663 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 664 bzero(cp, NFSV4CL_LOCKNAMELEN); 665 } 666 } 667 668 /* 669 * Find the parent process for the thread passed in as an argument. 670 * If none exists, return NULL, otherwise return a thread for the parent. 671 * (Can be any of the threads, since it is only used for td->td_proc.) 672 */ 673 NFSPROC_T * 674 nfscl_getparent(struct thread *td) 675 { 676 struct proc *p; 677 struct thread *ptd; 678 679 if (td == NULL) 680 return (NULL); 681 p = td->td_proc; 682 if (p->p_pid == 0) 683 return (NULL); 684 p = p->p_pptr; 685 if (p == NULL) 686 return (NULL); 687 ptd = TAILQ_FIRST(&p->p_threads); 688 return (ptd); 689 } 690 691 /* 692 * Start up the renew kernel thread. 693 */ 694 static void 695 start_nfscl(void *arg) 696 { 697 struct nfsclclient *clp; 698 struct thread *td; 699 700 clp = (struct nfsclclient *)arg; 701 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 702 nfscl_renewthread(clp, td); 703 kproc_exit(0); 704 } 705 706 void 707 nfscl_start_renewthread(struct nfsclclient *clp) 708 { 709 710 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 711 "nfscl"); 712 } 713 714 /* 715 * Handle wcc_data. 716 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 717 * as the first Op after PutFH. 718 * (For NFSv4, the postop attributes are after the Op, so they can't be 719 * parsed here. A separate call to nfscl_postop_attr() is required.) 720 */ 721 int 722 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 723 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 724 { 725 u_int32_t *tl; 726 struct nfsnode *np = VTONFS(vp); 727 struct nfsvattr nfsva; 728 int error = 0; 729 730 if (wccflagp != NULL) 731 *wccflagp = 0; 732 if (nd->nd_flag & ND_NFSV3) { 733 *flagp = 0; 734 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 735 if (*tl == newnfs_true) { 736 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 737 if (wccflagp != NULL) { 738 mtx_lock(&np->n_mtx); 739 *wccflagp = (np->n_mtime.tv_sec == 740 fxdr_unsigned(u_int32_t, *(tl + 2)) && 741 np->n_mtime.tv_nsec == 742 fxdr_unsigned(u_int32_t, *(tl + 3))); 743 mtx_unlock(&np->n_mtx); 744 } 745 } 746 error = nfscl_postop_attr(nd, nap, flagp, stuff); 747 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 748 == (ND_NFSV4 | ND_V4WCCATTR)) { 749 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 750 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 751 NULL, NULL, NULL, NULL, NULL); 752 if (error) 753 return (error); 754 /* 755 * Get rid of Op# and status for next op. 756 */ 757 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 758 if (*++tl) 759 nd->nd_flag |= ND_NOMOREDATA; 760 if (wccflagp != NULL && 761 nfsva.na_vattr.va_mtime.tv_sec != 0) { 762 mtx_lock(&np->n_mtx); 763 *wccflagp = (np->n_mtime.tv_sec == 764 nfsva.na_vattr.va_mtime.tv_sec && 765 np->n_mtime.tv_nsec == 766 nfsva.na_vattr.va_mtime.tv_sec); 767 mtx_unlock(&np->n_mtx); 768 } 769 } 770 nfsmout: 771 return (error); 772 } 773 774 /* 775 * Get postop attributes. 776 */ 777 int 778 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 779 void *stuff) 780 { 781 u_int32_t *tl; 782 int error = 0; 783 784 *retp = 0; 785 if (nd->nd_flag & ND_NOMOREDATA) 786 return (error); 787 if (nd->nd_flag & ND_NFSV3) { 788 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 789 *retp = fxdr_unsigned(int, *tl); 790 } else if (nd->nd_flag & ND_NFSV4) { 791 /* 792 * For NFSv4, the postop attr are at the end, so no point 793 * in looking if nd_repstat != 0. 794 */ 795 if (!nd->nd_repstat) { 796 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 797 if (*(tl + 1)) 798 /* should never happen since nd_repstat != 0 */ 799 nd->nd_flag |= ND_NOMOREDATA; 800 else 801 *retp = 1; 802 } 803 } else if (!nd->nd_repstat) { 804 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 805 *retp = 1; 806 } 807 if (*retp) { 808 error = nfsm_loadattr(nd, nap); 809 if (error) 810 *retp = 0; 811 } 812 nfsmout: 813 return (error); 814 } 815 816 /* 817 * Fill in the setable attributes. The full argument indicates whether 818 * to fill in them all or just mode and time. 819 */ 820 void 821 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 822 struct vnode *vp, int flags, u_int32_t rdev) 823 { 824 u_int32_t *tl; 825 struct nfsv2_sattr *sp; 826 nfsattrbit_t attrbits; 827 828 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 829 case ND_NFSV2: 830 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 831 if (vap->va_mode == (mode_t)VNOVAL) 832 sp->sa_mode = newnfs_xdrneg1; 833 else 834 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 835 if (vap->va_uid == (uid_t)VNOVAL) 836 sp->sa_uid = newnfs_xdrneg1; 837 else 838 sp->sa_uid = txdr_unsigned(vap->va_uid); 839 if (vap->va_gid == (gid_t)VNOVAL) 840 sp->sa_gid = newnfs_xdrneg1; 841 else 842 sp->sa_gid = txdr_unsigned(vap->va_gid); 843 if (flags & NFSSATTR_SIZE0) 844 sp->sa_size = 0; 845 else if (flags & NFSSATTR_SIZENEG1) 846 sp->sa_size = newnfs_xdrneg1; 847 else if (flags & NFSSATTR_SIZERDEV) 848 sp->sa_size = txdr_unsigned(rdev); 849 else 850 sp->sa_size = txdr_unsigned(vap->va_size); 851 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 852 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 853 break; 854 case ND_NFSV3: 855 if (vap->va_mode != (mode_t)VNOVAL) { 856 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 857 *tl++ = newnfs_true; 858 *tl = txdr_unsigned(vap->va_mode); 859 } else { 860 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 861 *tl = newnfs_false; 862 } 863 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 864 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 865 *tl++ = newnfs_true; 866 *tl = txdr_unsigned(vap->va_uid); 867 } else { 868 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 869 *tl = newnfs_false; 870 } 871 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 872 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 873 *tl++ = newnfs_true; 874 *tl = txdr_unsigned(vap->va_gid); 875 } else { 876 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 877 *tl = newnfs_false; 878 } 879 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 880 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 881 *tl++ = newnfs_true; 882 txdr_hyper(vap->va_size, tl); 883 } else { 884 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 885 *tl = newnfs_false; 886 } 887 if (vap->va_atime.tv_sec != VNOVAL) { 888 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 889 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 890 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 891 txdr_nfsv3time(&vap->va_atime, tl); 892 } else { 893 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 894 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 895 } 896 } else { 897 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 898 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 899 } 900 if (vap->va_mtime.tv_sec != VNOVAL) { 901 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) { 902 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 903 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 904 txdr_nfsv3time(&vap->va_mtime, tl); 905 } else { 906 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 907 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 908 } 909 } else { 910 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 911 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 912 } 913 break; 914 case ND_NFSV4: 915 NFSZERO_ATTRBIT(&attrbits); 916 if (vap->va_mode != (mode_t)VNOVAL) 917 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 918 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 919 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 920 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 921 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 922 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 923 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 924 if (vap->va_atime.tv_sec != VNOVAL) 925 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 926 if (vap->va_mtime.tv_sec != VNOVAL) 927 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 928 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 929 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 930 break; 931 } 932 } 933 934 /* 935 * nfscl_request() - mostly a wrapper for newnfs_request(). 936 */ 937 int 938 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 939 struct ucred *cred, void *stuff) 940 { 941 int ret, vers; 942 struct nfsmount *nmp; 943 944 nmp = VFSTONFS(vp->v_mount); 945 if (nd->nd_flag & ND_NFSV4) 946 vers = NFS_VER4; 947 else if (nd->nd_flag & ND_NFSV3) 948 vers = NFS_VER3; 949 else 950 vers = NFS_VER2; 951 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 952 NFS_PROG, vers, NULL, 1, NULL, NULL); 953 return (ret); 954 } 955 956 /* 957 * fill in this bsden's variant of statfs using nfsstatfs. 958 */ 959 void 960 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 961 { 962 struct statfs *sbp = (struct statfs *)statfs; 963 964 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 965 sbp->f_bsize = NFS_FABLKSIZE; 966 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 967 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 968 /* 969 * Although sf_abytes is uint64_t and f_bavail is int64_t, 970 * the value after dividing by NFS_FABLKSIZE is small 971 * enough that it will fit in 63bits, so it is ok to 972 * assign it to f_bavail without fear that it will become 973 * negative. 974 */ 975 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 976 sbp->f_files = sfp->sf_tfiles; 977 /* Since f_ffree is int64_t, clip it to 63bits. */ 978 if (sfp->sf_ffiles > INT64_MAX) 979 sbp->f_ffree = INT64_MAX; 980 else 981 sbp->f_ffree = sfp->sf_ffiles; 982 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 983 /* 984 * The type casts to (int32_t) ensure that this code is 985 * compatible with the old NFS client, in that it will 986 * propagate bit31 to the high order bits. This may or may 987 * not be correct for NFSv2, but since it is a legacy 988 * environment, I'd rather retain backwards compatibility. 989 */ 990 sbp->f_bsize = (int32_t)sfp->sf_bsize; 991 sbp->f_blocks = (int32_t)sfp->sf_blocks; 992 sbp->f_bfree = (int32_t)sfp->sf_bfree; 993 sbp->f_bavail = (int32_t)sfp->sf_bavail; 994 sbp->f_files = 0; 995 sbp->f_ffree = 0; 996 } 997 } 998 999 /* 1000 * Use the fsinfo stuff to update the mount point. 1001 */ 1002 void 1003 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 1004 { 1005 1006 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 1007 fsp->fs_wtpref >= NFS_FABLKSIZE) 1008 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 1009 ~(NFS_FABLKSIZE - 1); 1010 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 1011 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 1012 if (nmp->nm_wsize == 0) 1013 nmp->nm_wsize = fsp->fs_wtmax; 1014 } 1015 if (nmp->nm_wsize < NFS_FABLKSIZE) 1016 nmp->nm_wsize = NFS_FABLKSIZE; 1017 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 1018 fsp->fs_rtpref >= NFS_FABLKSIZE) 1019 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 1020 ~(NFS_FABLKSIZE - 1); 1021 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 1022 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 1023 if (nmp->nm_rsize == 0) 1024 nmp->nm_rsize = fsp->fs_rtmax; 1025 } 1026 if (nmp->nm_rsize < NFS_FABLKSIZE) 1027 nmp->nm_rsize = NFS_FABLKSIZE; 1028 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 1029 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 1030 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 1031 ~(NFS_DIRBLKSIZ - 1); 1032 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 1033 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 1034 if (nmp->nm_readdirsize == 0) 1035 nmp->nm_readdirsize = fsp->fs_rtmax; 1036 } 1037 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 1038 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 1039 if (fsp->fs_maxfilesize > 0 && 1040 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 1041 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 1042 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 1043 nmp->nm_state |= NFSSTA_GOTFSINFO; 1044 } 1045 1046 /* 1047 * Lookups source address which should be used to communicate with 1048 * @nmp and stores it inside @pdst. 1049 * 1050 * Returns 0 on success. 1051 */ 1052 u_int8_t * 1053 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) 1054 { 1055 #if defined(INET6) || defined(INET) 1056 int error, fibnum; 1057 1058 fibnum = curthread->td_proc->p_fibnum; 1059 #endif 1060 #ifdef INET 1061 if (nmp->nm_nam->sa_family == AF_INET) { 1062 struct sockaddr_in *sin; 1063 struct nhop4_extended nh_ext; 1064 1065 sin = (struct sockaddr_in *)nmp->nm_nam; 1066 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1067 error = fib4_lookup_nh_ext(fibnum, sin->sin_addr, 0, 0, 1068 &nh_ext); 1069 CURVNET_RESTORE(); 1070 if (error != 0) 1071 return (NULL); 1072 1073 if ((ntohl(nh_ext.nh_src.s_addr) >> IN_CLASSA_NSHIFT) == 1074 IN_LOOPBACKNET) { 1075 /* Ignore loopback addresses */ 1076 return (NULL); 1077 } 1078 1079 *isinet6p = 0; 1080 *((struct in_addr *)paddr) = nh_ext.nh_src; 1081 1082 return (u_int8_t *)paddr; 1083 } 1084 #endif 1085 #ifdef INET6 1086 if (nmp->nm_nam->sa_family == AF_INET6) { 1087 struct sockaddr_in6 *sin6; 1088 1089 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1090 1091 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1092 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, 1093 sin6->sin6_scope_id, NULL, paddr, NULL); 1094 CURVNET_RESTORE(); 1095 if (error != 0) 1096 return (NULL); 1097 1098 if (IN6_IS_ADDR_LOOPBACK(paddr)) 1099 return (NULL); 1100 1101 /* Scope is embedded in */ 1102 *isinet6p = 1; 1103 1104 return (u_int8_t *)paddr; 1105 } 1106 #endif 1107 return (NULL); 1108 } 1109 1110 /* 1111 * Copy NFS uid, gids from the cred structure. 1112 */ 1113 void 1114 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1115 { 1116 int i; 1117 1118 KASSERT(cr->cr_ngroups >= 0, 1119 ("newnfs_copyincred: negative cr_ngroups")); 1120 nfscr->nfsc_uid = cr->cr_uid; 1121 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1122 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1123 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1124 } 1125 1126 1127 /* 1128 * Do any client specific initialization. 1129 */ 1130 void 1131 nfscl_init(void) 1132 { 1133 static int inited = 0; 1134 1135 if (inited) 1136 return; 1137 inited = 1; 1138 nfscl_inited = 1; 1139 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1140 } 1141 1142 /* 1143 * Check each of the attributes to be set, to ensure they aren't already 1144 * the correct value. Disable setting ones already correct. 1145 */ 1146 int 1147 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1148 { 1149 1150 if (vap->va_mode != (mode_t)VNOVAL) { 1151 if (vap->va_mode == nvap->na_mode) 1152 vap->va_mode = (mode_t)VNOVAL; 1153 } 1154 if (vap->va_uid != (uid_t)VNOVAL) { 1155 if (vap->va_uid == nvap->na_uid) 1156 vap->va_uid = (uid_t)VNOVAL; 1157 } 1158 if (vap->va_gid != (gid_t)VNOVAL) { 1159 if (vap->va_gid == nvap->na_gid) 1160 vap->va_gid = (gid_t)VNOVAL; 1161 } 1162 if (vap->va_size != VNOVAL) { 1163 if (vap->va_size == nvap->na_size) 1164 vap->va_size = VNOVAL; 1165 } 1166 1167 /* 1168 * We are normally called with only a partially initialized 1169 * VAP. Since the NFSv3 spec says that server may use the 1170 * file attributes to store the verifier, the spec requires 1171 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1172 * in atime, but we can't really assume that all servers will 1173 * so we ensure that our SETATTR sets both atime and mtime. 1174 * Set the VA_UTIMES_NULL flag for this case, so that 1175 * the server's time will be used. This is needed to 1176 * work around a bug in some Solaris servers, where 1177 * setting the time TOCLIENT causes the Setattr RPC 1178 * to return NFS_OK, but not set va_mode. 1179 */ 1180 if (vap->va_mtime.tv_sec == VNOVAL) { 1181 vfs_timestamp(&vap->va_mtime); 1182 vap->va_vaflags |= VA_UTIMES_NULL; 1183 } 1184 if (vap->va_atime.tv_sec == VNOVAL) 1185 vap->va_atime = vap->va_mtime; 1186 return (1); 1187 } 1188 1189 /* 1190 * Map nfsv4 errors to errno.h errors. 1191 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1192 * error should only be returned for the Open, Create and Setattr Ops. 1193 * As such, most calls can just pass in 0 for those arguments. 1194 */ 1195 APPLESTATIC int 1196 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1197 { 1198 struct proc *p; 1199 1200 if (error < 10000) 1201 return (error); 1202 if (td != NULL) 1203 p = td->td_proc; 1204 else 1205 p = NULL; 1206 switch (error) { 1207 case NFSERR_BADOWNER: 1208 tprintf(p, LOG_INFO, 1209 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1210 uid, gid); 1211 return (EPERM); 1212 case NFSERR_BADNAME: 1213 case NFSERR_BADCHAR: 1214 printf("nfsv4 char/name not handled by server\n"); 1215 return (ENOENT); 1216 case NFSERR_STALECLIENTID: 1217 case NFSERR_STALESTATEID: 1218 case NFSERR_EXPIRED: 1219 case NFSERR_BADSTATEID: 1220 case NFSERR_BADSESSION: 1221 printf("nfsv4 recover err returned %d\n", error); 1222 return (EIO); 1223 case NFSERR_BADHANDLE: 1224 case NFSERR_SERVERFAULT: 1225 case NFSERR_BADTYPE: 1226 case NFSERR_FHEXPIRED: 1227 case NFSERR_RESOURCE: 1228 case NFSERR_MOVED: 1229 case NFSERR_NOFILEHANDLE: 1230 case NFSERR_MINORVERMISMATCH: 1231 case NFSERR_OLDSTATEID: 1232 case NFSERR_BADSEQID: 1233 case NFSERR_LEASEMOVED: 1234 case NFSERR_RECLAIMBAD: 1235 case NFSERR_BADXDR: 1236 case NFSERR_OPILLEGAL: 1237 printf("nfsv4 client/server protocol prob err=%d\n", 1238 error); 1239 return (EIO); 1240 default: 1241 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1242 return (EIO); 1243 }; 1244 } 1245 1246 /* 1247 * Check to see if the process for this owner exists. Return 1 if it doesn't 1248 * and 0 otherwise. 1249 */ 1250 int 1251 nfscl_procdoesntexist(u_int8_t *own) 1252 { 1253 union { 1254 u_int32_t lval; 1255 u_int8_t cval[4]; 1256 } tl; 1257 struct proc *p; 1258 pid_t pid; 1259 int ret = 0; 1260 1261 tl.cval[0] = *own++; 1262 tl.cval[1] = *own++; 1263 tl.cval[2] = *own++; 1264 tl.cval[3] = *own++; 1265 pid = tl.lval; 1266 p = pfind_locked(pid); 1267 if (p == NULL) 1268 return (1); 1269 if (p->p_stats == NULL) { 1270 PROC_UNLOCK(p); 1271 return (0); 1272 } 1273 tl.cval[0] = *own++; 1274 tl.cval[1] = *own++; 1275 tl.cval[2] = *own++; 1276 tl.cval[3] = *own++; 1277 if (tl.lval != p->p_stats->p_start.tv_sec) { 1278 ret = 1; 1279 } else { 1280 tl.cval[0] = *own++; 1281 tl.cval[1] = *own++; 1282 tl.cval[2] = *own++; 1283 tl.cval[3] = *own; 1284 if (tl.lval != p->p_stats->p_start.tv_usec) 1285 ret = 1; 1286 } 1287 PROC_UNLOCK(p); 1288 return (ret); 1289 } 1290 1291 /* 1292 * - nfs pseudo system call for the client 1293 */ 1294 /* 1295 * MPSAFE 1296 */ 1297 static int 1298 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1299 { 1300 struct file *fp; 1301 struct nfscbd_args nfscbdarg; 1302 struct nfsd_nfscbd_args nfscbdarg2; 1303 struct nameidata nd; 1304 struct nfscl_dumpmntopts dumpmntopts; 1305 cap_rights_t rights; 1306 char *buf; 1307 int error; 1308 1309 if (uap->flag & NFSSVC_CBADDSOCK) { 1310 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1311 if (error) 1312 return (error); 1313 /* 1314 * Since we don't know what rights might be required, 1315 * pretend that we need them all. It is better to be too 1316 * careful than too reckless. 1317 */ 1318 error = fget(td, nfscbdarg.sock, 1319 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); 1320 if (error) 1321 return (error); 1322 if (fp->f_type != DTYPE_SOCKET) { 1323 fdrop(fp, td); 1324 return (EPERM); 1325 } 1326 error = nfscbd_addsock(fp); 1327 fdrop(fp, td); 1328 if (!error && nfscl_enablecallb == 0) { 1329 nfsv4_cbport = nfscbdarg.port; 1330 nfscl_enablecallb = 1; 1331 } 1332 } else if (uap->flag & NFSSVC_NFSCBD) { 1333 if (uap->argp == NULL) 1334 return (EINVAL); 1335 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1336 sizeof(nfscbdarg2)); 1337 if (error) 1338 return (error); 1339 error = nfscbd_nfsd(td, &nfscbdarg2); 1340 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1341 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1342 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1343 dumpmntopts.ndmnt_blen > 1024)) 1344 error = EINVAL; 1345 if (error == 0) 1346 error = nfsrv_lookupfilename(&nd, 1347 dumpmntopts.ndmnt_fname, td); 1348 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1349 "nfs") != 0) { 1350 vput(nd.ni_vp); 1351 error = EINVAL; 1352 } 1353 if (error == 0) { 1354 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1355 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1356 dumpmntopts.ndmnt_blen); 1357 vput(nd.ni_vp); 1358 error = copyout(buf, dumpmntopts.ndmnt_buf, 1359 dumpmntopts.ndmnt_blen); 1360 free(buf, M_TEMP); 1361 } 1362 } else { 1363 error = EINVAL; 1364 } 1365 return (error); 1366 } 1367 1368 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1369 1370 /* 1371 * Called once to initialize data structures... 1372 */ 1373 static int 1374 nfscl_modevent(module_t mod, int type, void *data) 1375 { 1376 int error = 0; 1377 static int loaded = 0; 1378 1379 switch (type) { 1380 case MOD_LOAD: 1381 if (loaded) 1382 return (0); 1383 newnfs_portinit(); 1384 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1385 MTX_DEF); 1386 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1387 nfscl_init(); 1388 NFSD_LOCK(); 1389 nfsrvd_cbinit(0); 1390 NFSD_UNLOCK(); 1391 ncl_call_invalcaches = ncl_invalcaches; 1392 nfsd_call_nfscl = nfssvc_nfscl; 1393 loaded = 1; 1394 break; 1395 1396 case MOD_UNLOAD: 1397 if (nfs_numnfscbd != 0) { 1398 error = EBUSY; 1399 break; 1400 } 1401 1402 /* 1403 * XXX: Unloading of nfscl module is unsupported. 1404 */ 1405 #if 0 1406 ncl_call_invalcaches = NULL; 1407 nfsd_call_nfscl = NULL; 1408 /* and get rid of the mutexes */ 1409 mtx_destroy(&nfs_clstate_mutex); 1410 mtx_destroy(&ncl_iod_mutex); 1411 loaded = 0; 1412 break; 1413 #else 1414 /* FALLTHROUGH */ 1415 #endif 1416 default: 1417 error = EOPNOTSUPP; 1418 break; 1419 } 1420 return error; 1421 } 1422 static moduledata_t nfscl_mod = { 1423 "nfscl", 1424 nfscl_modevent, 1425 NULL, 1426 }; 1427 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1428 1429 /* So that loader and kldload(2) can find us, wherever we are.. */ 1430 MODULE_VERSION(nfscl, 1); 1431 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1432 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1433 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1434 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1435 1436