1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_kdtrace.h" 38 39 #include <sys/capability.h> 40 41 /* 42 * generally, I don't like #includes inside .h files, but it seems to 43 * be the easiest way to handle the port. 44 */ 45 #include <sys/hash.h> 46 #include <fs/nfs/nfsport.h> 47 #include <netinet/if_ether.h> 48 #include <net/if_types.h> 49 50 #include <fs/nfsclient/nfs_kdtrace.h> 51 52 #ifdef KDTRACE_HOOKS 53 dtrace_nfsclient_attrcache_flush_probe_func_t 54 dtrace_nfscl_attrcache_flush_done_probe; 55 uint32_t nfscl_attrcache_flush_done_id; 56 57 dtrace_nfsclient_attrcache_get_hit_probe_func_t 58 dtrace_nfscl_attrcache_get_hit_probe; 59 uint32_t nfscl_attrcache_get_hit_id; 60 61 dtrace_nfsclient_attrcache_get_miss_probe_func_t 62 dtrace_nfscl_attrcache_get_miss_probe; 63 uint32_t nfscl_attrcache_get_miss_id; 64 65 dtrace_nfsclient_attrcache_load_probe_func_t 66 dtrace_nfscl_attrcache_load_done_probe; 67 uint32_t nfscl_attrcache_load_done_id; 68 #endif /* !KDTRACE_HOOKS */ 69 70 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 71 extern struct vop_vector newnfs_vnodeops; 72 extern struct vop_vector newnfs_fifoops; 73 extern uma_zone_t newnfsnode_zone; 74 extern struct buf_ops buf_ops_newnfs; 75 extern int ncl_pbuf_freecnt; 76 extern short nfsv4_cbport; 77 extern int nfscl_enablecallb; 78 extern int nfs_numnfscbd; 79 extern int nfscl_inited; 80 struct mtx nfs_clstate_mutex; 81 struct mtx ncl_iod_mutex; 82 NFSDLOCKMUTEX; 83 84 extern void (*ncl_call_invalcaches)(struct vnode *); 85 86 /* 87 * Comparison function for vfs_hash functions. 88 */ 89 int 90 newnfs_vncmpf(struct vnode *vp, void *arg) 91 { 92 struct nfsfh *nfhp = (struct nfsfh *)arg; 93 struct nfsnode *np = VTONFS(vp); 94 95 if (np->n_fhp->nfh_len != nfhp->nfh_len || 96 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 97 return (1); 98 return (0); 99 } 100 101 /* 102 * Look up a vnode/nfsnode by file handle. 103 * Callers must check for mount points!! 104 * In all cases, a pointer to a 105 * nfsnode structure is returned. 106 * This variant takes a "struct nfsfh *" as second argument and uses 107 * that structure up, either by hanging off the nfsnode or FREEing it. 108 */ 109 int 110 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 111 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 112 void *stuff, int lkflags) 113 { 114 struct nfsnode *np, *dnp; 115 struct vnode *vp, *nvp; 116 struct nfsv4node *newd, *oldd; 117 int error; 118 u_int hash; 119 struct nfsmount *nmp; 120 121 nmp = VFSTONFS(mntp); 122 dnp = VTONFS(dvp); 123 *npp = NULL; 124 125 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 126 127 error = vfs_hash_get(mntp, hash, lkflags, 128 td, &nvp, newnfs_vncmpf, nfhp); 129 if (error == 0 && nvp != NULL) { 130 /* 131 * I believe there is a slight chance that vgonel() could 132 * get called on this vnode between when NFSVOPLOCK() drops 133 * the VI_LOCK() and vget() acquires it again, so that it 134 * hasn't yet had v_usecount incremented. If this were to 135 * happen, the VI_DOOMED flag would be set, so check for 136 * that here. Since we now have the v_usecount incremented, 137 * we should be ok until we vrele() it, if the VI_DOOMED 138 * flag isn't set now. 139 */ 140 VI_LOCK(nvp); 141 if ((nvp->v_iflag & VI_DOOMED)) { 142 VI_UNLOCK(nvp); 143 vrele(nvp); 144 error = ENOENT; 145 } else { 146 VI_UNLOCK(nvp); 147 } 148 } 149 if (error) { 150 FREE((caddr_t)nfhp, M_NFSFH); 151 return (error); 152 } 153 if (nvp != NULL) { 154 np = VTONFS(nvp); 155 /* 156 * For NFSv4, check to see if it is the same name and 157 * replace the name, if it is different. 158 */ 159 oldd = newd = NULL; 160 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 161 nvp->v_type == VREG && 162 (np->n_v4->n4_namelen != cnp->cn_namelen || 163 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 164 cnp->cn_namelen) || 165 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 166 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 167 dnp->n_fhp->nfh_len))) { 168 MALLOC(newd, struct nfsv4node *, 169 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 170 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 171 NFSLOCKNODE(np); 172 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 173 && (np->n_v4->n4_namelen != cnp->cn_namelen || 174 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 175 cnp->cn_namelen) || 176 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 177 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 178 dnp->n_fhp->nfh_len))) { 179 oldd = np->n_v4; 180 np->n_v4 = newd; 181 newd = NULL; 182 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 183 np->n_v4->n4_namelen = cnp->cn_namelen; 184 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 185 dnp->n_fhp->nfh_len); 186 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 187 cnp->cn_namelen); 188 } 189 NFSUNLOCKNODE(np); 190 } 191 if (newd != NULL) 192 FREE((caddr_t)newd, M_NFSV4NODE); 193 if (oldd != NULL) 194 FREE((caddr_t)oldd, M_NFSV4NODE); 195 *npp = np; 196 FREE((caddr_t)nfhp, M_NFSFH); 197 return (0); 198 } 199 200 /* 201 * Allocate before getnewvnode since doing so afterward 202 * might cause a bogus v_data pointer to get dereferenced 203 * elsewhere if zalloc should block. 204 */ 205 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 206 207 error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp); 208 if (error) { 209 uma_zfree(newnfsnode_zone, np); 210 FREE((caddr_t)nfhp, M_NFSFH); 211 return (error); 212 } 213 vp = nvp; 214 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 215 vp->v_data = np; 216 np->n_vnode = vp; 217 /* 218 * Initialize the mutex even if the vnode is going to be a loser. 219 * This simplifies the logic in reclaim, which can then unconditionally 220 * destroy the mutex (in the case of the loser, or if hash_insert 221 * happened to return an error no special casing is needed). 222 */ 223 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 224 225 /* 226 * Are we getting the root? If so, make sure the vnode flags 227 * are correct 228 */ 229 if ((nfhp->nfh_len == nmp->nm_fhsize) && 230 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 231 if (vp->v_type == VNON) 232 vp->v_type = VDIR; 233 vp->v_vflag |= VV_ROOT; 234 } 235 236 np->n_fhp = nfhp; 237 /* 238 * For NFSv4, we have to attach the directory file handle and 239 * file name, so that Open Ops can be done later. 240 */ 241 if (nmp->nm_flag & NFSMNT_NFSV4) { 242 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node) 243 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 244 M_WAITOK); 245 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 246 np->n_v4->n4_namelen = cnp->cn_namelen; 247 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 248 dnp->n_fhp->nfh_len); 249 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 250 cnp->cn_namelen); 251 } else { 252 np->n_v4 = NULL; 253 } 254 255 /* 256 * NFS supports recursive and shared locking. 257 */ 258 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 259 VN_LOCK_AREC(vp); 260 VN_LOCK_ASHARE(vp); 261 error = insmntque(vp, mntp); 262 if (error != 0) { 263 *npp = NULL; 264 mtx_destroy(&np->n_mtx); 265 FREE((caddr_t)nfhp, M_NFSFH); 266 if (np->n_v4 != NULL) 267 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 268 uma_zfree(newnfsnode_zone, np); 269 return (error); 270 } 271 error = vfs_hash_insert(vp, hash, lkflags, 272 td, &nvp, newnfs_vncmpf, nfhp); 273 if (error) 274 return (error); 275 if (nvp != NULL) { 276 *npp = VTONFS(nvp); 277 /* vfs_hash_insert() vput()'s the losing vnode */ 278 return (0); 279 } 280 *npp = np; 281 282 return (0); 283 } 284 285 /* 286 * Anothe variant of nfs_nget(). This one is only used by reopen. It 287 * takes almost the same args as nfs_nget(), but only succeeds if an entry 288 * exists in the cache. (Since files should already be "open" with a 289 * vnode ref cnt on the node when reopen calls this, it should always 290 * succeed.) 291 * Also, don't get a vnode lock, since it may already be locked by some 292 * other process that is handling it. This is ok, since all other threads 293 * on the client are blocked by the nfsc_lock being exclusively held by the 294 * caller of this function. 295 */ 296 int 297 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 298 struct thread *td, struct nfsnode **npp) 299 { 300 struct vnode *nvp; 301 u_int hash; 302 struct nfsfh *nfhp; 303 int error; 304 305 *npp = NULL; 306 /* For forced dismounts, just return error. */ 307 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 308 return (EINTR); 309 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize, 310 M_NFSFH, M_WAITOK); 311 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 312 nfhp->nfh_len = fhsize; 313 314 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 315 316 /* 317 * First, try to get the vnode locked, but don't block for the lock. 318 */ 319 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 320 newnfs_vncmpf, nfhp); 321 if (error == 0 && nvp != NULL) { 322 NFSVOPUNLOCK(nvp, 0); 323 } else if (error == EBUSY) { 324 /* 325 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try 326 * and lock the vnode, but just get a v_usecount on it. 327 * LK_NOWAIT is set so that when vget() returns ENOENT, 328 * vfs_hash_get() fails instead of looping. 329 * If this succeeds, it is safe so long as a vflush() with 330 * FORCECLOSE has not been done. Since the Renew thread is 331 * stopped and the MNTK_UNMOUNTF flag is set before doing 332 * a vflush() with FORCECLOSE, we should be ok here. 333 */ 334 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF)) 335 error = EINTR; 336 else 337 error = vfs_hash_get(mntp, hash, 338 (LK_EXCLOTHER | LK_NOWAIT), td, &nvp, 339 newnfs_vncmpf, nfhp); 340 } 341 FREE(nfhp, M_NFSFH); 342 if (error) 343 return (error); 344 if (nvp != NULL) { 345 *npp = VTONFS(nvp); 346 return (0); 347 } 348 return (EINVAL); 349 } 350 351 /* 352 * Load the attribute cache (that lives in the nfsnode entry) with 353 * the attributes of the second argument and 354 * Iff vaper not NULL 355 * copy the attributes to *vaper 356 * Similar to nfs_loadattrcache(), except the attributes are passed in 357 * instead of being parsed out of the mbuf list. 358 */ 359 int 360 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 361 void *stuff, int writeattr, int dontshrink) 362 { 363 struct vnode *vp = *vpp; 364 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 365 struct nfsnode *np; 366 struct nfsmount *nmp; 367 struct timespec mtime_save; 368 369 /* 370 * If v_type == VNON it is a new node, so fill in the v_type, 371 * n_mtime fields. Check to see if it represents a special 372 * device, and if so, check for a possible alias. Once the 373 * correct vnode has been obtained, fill in the rest of the 374 * information. 375 */ 376 np = VTONFS(vp); 377 NFSLOCKNODE(np); 378 if (vp->v_type != nvap->va_type) { 379 vp->v_type = nvap->va_type; 380 if (vp->v_type == VFIFO) 381 vp->v_op = &newnfs_fifoops; 382 np->n_mtime = nvap->va_mtime; 383 } 384 nmp = VFSTONFS(vp->v_mount); 385 vap = &np->n_vattr.na_vattr; 386 mtime_save = vap->va_mtime; 387 if (writeattr) { 388 np->n_vattr.na_filerev = nap->na_filerev; 389 np->n_vattr.na_size = nap->na_size; 390 np->n_vattr.na_mtime = nap->na_mtime; 391 np->n_vattr.na_ctime = nap->na_ctime; 392 np->n_vattr.na_fsid = nap->na_fsid; 393 np->n_vattr.na_mode = nap->na_mode; 394 } else { 395 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 396 sizeof (struct nfsvattr)); 397 } 398 399 /* 400 * For NFSv4, if the node's fsid is not equal to the mount point's 401 * fsid, return the low order 32bits of the node's fsid. This 402 * allows getcwd(3) to work. There is a chance that the fsid might 403 * be the same as a local fs, but since this is in an NFS mount 404 * point, I don't think that will cause any problems? 405 */ 406 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 407 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 408 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 409 /* 410 * va_fsid needs to be set to some value derived from 411 * np->n_vattr.na_filesid that is not equal 412 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 413 * from the value used for the top level server volume 414 * in the mounted subtree. 415 */ 416 if (vp->v_mount->mnt_stat.f_fsid.val[0] != 417 (uint32_t)np->n_vattr.na_filesid[0]) 418 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0]; 419 else 420 vap->va_fsid = (uint32_t)hash32_buf( 421 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 422 } else 423 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 424 np->n_attrstamp = time_second; 425 if (vap->va_size != np->n_size) { 426 if (vap->va_type == VREG) { 427 if (dontshrink && vap->va_size < np->n_size) { 428 /* 429 * We've been told not to shrink the file; 430 * zero np->n_attrstamp to indicate that 431 * the attributes are stale. 432 */ 433 vap->va_size = np->n_size; 434 np->n_attrstamp = 0; 435 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 436 } else if (np->n_flag & NMODIFIED) { 437 /* 438 * We've modified the file: Use the larger 439 * of our size, and the server's size. 440 */ 441 if (vap->va_size < np->n_size) { 442 vap->va_size = np->n_size; 443 } else { 444 np->n_size = vap->va_size; 445 np->n_flag |= NSIZECHANGED; 446 } 447 } else { 448 np->n_size = vap->va_size; 449 np->n_flag |= NSIZECHANGED; 450 } 451 vnode_pager_setsize(vp, np->n_size); 452 } else { 453 np->n_size = vap->va_size; 454 } 455 } 456 /* 457 * The following checks are added to prevent a race between (say) 458 * a READDIR+ and a WRITE. 459 * READDIR+, WRITE requests sent out. 460 * READDIR+ resp, WRITE resp received on client. 461 * However, the WRITE resp was handled before the READDIR+ resp 462 * causing the post op attrs from the write to be loaded first 463 * and the attrs from the READDIR+ to be loaded later. If this 464 * happens, we have stale attrs loaded into the attrcache. 465 * We detect this by for the mtime moving back. We invalidate the 466 * attrcache when this happens. 467 */ 468 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 469 /* Size changed or mtime went backwards */ 470 np->n_attrstamp = 0; 471 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 472 } 473 if (vaper != NULL) { 474 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 475 if (np->n_flag & NCHG) { 476 if (np->n_flag & NACC) 477 vaper->va_atime = np->n_atim; 478 if (np->n_flag & NUPD) 479 vaper->va_mtime = np->n_mtim; 480 } 481 } 482 #ifdef KDTRACE_HOOKS 483 if (np->n_attrstamp != 0) 484 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0); 485 #endif 486 NFSUNLOCKNODE(np); 487 return (0); 488 } 489 490 /* 491 * Fill in the client id name. For these bytes: 492 * 1 - they must be unique 493 * 2 - they should be persistent across client reboots 494 * 1 is more critical than 2 495 * Use the mount point's unique id plus either the uuid or, if that 496 * isn't set, random junk. 497 */ 498 void 499 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 500 { 501 int uuidlen; 502 503 /* 504 * First, put in the 64bit mount point identifier. 505 */ 506 if (idlen >= sizeof (u_int64_t)) { 507 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 508 cp += sizeof (u_int64_t); 509 idlen -= sizeof (u_int64_t); 510 } 511 512 /* 513 * If uuid is non-zero length, use it. 514 */ 515 uuidlen = strlen(uuid); 516 if (uuidlen > 0 && idlen >= uuidlen) { 517 NFSBCOPY(uuid, cp, uuidlen); 518 cp += uuidlen; 519 idlen -= uuidlen; 520 } 521 522 /* 523 * This only normally happens if the uuid isn't set. 524 */ 525 while (idlen > 0) { 526 *cp++ = (u_int8_t)(arc4random() % 256); 527 idlen--; 528 } 529 } 530 531 /* 532 * Fill in a lock owner name. For now, pid + the process's creation time. 533 */ 534 void 535 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 536 { 537 union { 538 u_int32_t lval; 539 u_int8_t cval[4]; 540 } tl; 541 struct proc *p; 542 543 if (id == NULL) { 544 printf("NULL id\n"); 545 bzero(cp, NFSV4CL_LOCKNAMELEN); 546 return; 547 } 548 if ((flags & F_POSIX) != 0) { 549 p = (struct proc *)id; 550 tl.lval = p->p_pid; 551 *cp++ = tl.cval[0]; 552 *cp++ = tl.cval[1]; 553 *cp++ = tl.cval[2]; 554 *cp++ = tl.cval[3]; 555 tl.lval = p->p_stats->p_start.tv_sec; 556 *cp++ = tl.cval[0]; 557 *cp++ = tl.cval[1]; 558 *cp++ = tl.cval[2]; 559 *cp++ = tl.cval[3]; 560 tl.lval = p->p_stats->p_start.tv_usec; 561 *cp++ = tl.cval[0]; 562 *cp++ = tl.cval[1]; 563 *cp++ = tl.cval[2]; 564 *cp = tl.cval[3]; 565 } else if ((flags & F_FLOCK) != 0) { 566 bcopy(&id, cp, sizeof(id)); 567 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 568 } else { 569 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 570 bzero(cp, NFSV4CL_LOCKNAMELEN); 571 } 572 } 573 574 /* 575 * Find the parent process for the thread passed in as an argument. 576 * If none exists, return NULL, otherwise return a thread for the parent. 577 * (Can be any of the threads, since it is only used for td->td_proc.) 578 */ 579 NFSPROC_T * 580 nfscl_getparent(struct thread *td) 581 { 582 struct proc *p; 583 struct thread *ptd; 584 585 if (td == NULL) 586 return (NULL); 587 p = td->td_proc; 588 if (p->p_pid == 0) 589 return (NULL); 590 p = p->p_pptr; 591 if (p == NULL) 592 return (NULL); 593 ptd = TAILQ_FIRST(&p->p_threads); 594 return (ptd); 595 } 596 597 /* 598 * Start up the renew kernel thread. 599 */ 600 static void 601 start_nfscl(void *arg) 602 { 603 struct nfsclclient *clp; 604 struct thread *td; 605 606 clp = (struct nfsclclient *)arg; 607 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 608 nfscl_renewthread(clp, td); 609 kproc_exit(0); 610 } 611 612 void 613 nfscl_start_renewthread(struct nfsclclient *clp) 614 { 615 616 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 617 "nfscl"); 618 } 619 620 /* 621 * Handle wcc_data. 622 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 623 * as the first Op after PutFH. 624 * (For NFSv4, the postop attributes are after the Op, so they can't be 625 * parsed here. A separate call to nfscl_postop_attr() is required.) 626 */ 627 int 628 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 629 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 630 { 631 u_int32_t *tl; 632 struct nfsnode *np = VTONFS(vp); 633 struct nfsvattr nfsva; 634 int error = 0; 635 636 if (wccflagp != NULL) 637 *wccflagp = 0; 638 if (nd->nd_flag & ND_NFSV3) { 639 *flagp = 0; 640 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 641 if (*tl == newnfs_true) { 642 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 643 if (wccflagp != NULL) { 644 mtx_lock(&np->n_mtx); 645 *wccflagp = (np->n_mtime.tv_sec == 646 fxdr_unsigned(u_int32_t, *(tl + 2)) && 647 np->n_mtime.tv_nsec == 648 fxdr_unsigned(u_int32_t, *(tl + 3))); 649 mtx_unlock(&np->n_mtx); 650 } 651 } 652 error = nfscl_postop_attr(nd, nap, flagp, stuff); 653 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 654 == (ND_NFSV4 | ND_V4WCCATTR)) { 655 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 656 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 657 NULL, NULL, NULL, NULL, NULL); 658 if (error) 659 return (error); 660 /* 661 * Get rid of Op# and status for next op. 662 */ 663 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 664 if (*++tl) 665 nd->nd_flag |= ND_NOMOREDATA; 666 if (wccflagp != NULL && 667 nfsva.na_vattr.va_mtime.tv_sec != 0) { 668 mtx_lock(&np->n_mtx); 669 *wccflagp = (np->n_mtime.tv_sec == 670 nfsva.na_vattr.va_mtime.tv_sec && 671 np->n_mtime.tv_nsec == 672 nfsva.na_vattr.va_mtime.tv_sec); 673 mtx_unlock(&np->n_mtx); 674 } 675 } 676 nfsmout: 677 return (error); 678 } 679 680 /* 681 * Get postop attributes. 682 */ 683 int 684 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 685 void *stuff) 686 { 687 u_int32_t *tl; 688 int error = 0; 689 690 *retp = 0; 691 if (nd->nd_flag & ND_NOMOREDATA) 692 return (error); 693 if (nd->nd_flag & ND_NFSV3) { 694 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 695 *retp = fxdr_unsigned(int, *tl); 696 } else if (nd->nd_flag & ND_NFSV4) { 697 /* 698 * For NFSv4, the postop attr are at the end, so no point 699 * in looking if nd_repstat != 0. 700 */ 701 if (!nd->nd_repstat) { 702 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 703 if (*(tl + 1)) 704 /* should never happen since nd_repstat != 0 */ 705 nd->nd_flag |= ND_NOMOREDATA; 706 else 707 *retp = 1; 708 } 709 } else if (!nd->nd_repstat) { 710 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 711 *retp = 1; 712 } 713 if (*retp) { 714 error = nfsm_loadattr(nd, nap); 715 if (error) 716 *retp = 0; 717 } 718 nfsmout: 719 return (error); 720 } 721 722 /* 723 * Fill in the setable attributes. The full argument indicates whether 724 * to fill in them all or just mode and time. 725 */ 726 void 727 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap, 728 struct vnode *vp, int flags, u_int32_t rdev) 729 { 730 u_int32_t *tl; 731 struct nfsv2_sattr *sp; 732 nfsattrbit_t attrbits; 733 struct timeval curtime; 734 735 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) { 736 case ND_NFSV2: 737 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 738 if (vap->va_mode == (mode_t)VNOVAL) 739 sp->sa_mode = newnfs_xdrneg1; 740 else 741 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 742 if (vap->va_uid == (uid_t)VNOVAL) 743 sp->sa_uid = newnfs_xdrneg1; 744 else 745 sp->sa_uid = txdr_unsigned(vap->va_uid); 746 if (vap->va_gid == (gid_t)VNOVAL) 747 sp->sa_gid = newnfs_xdrneg1; 748 else 749 sp->sa_gid = txdr_unsigned(vap->va_gid); 750 if (flags & NFSSATTR_SIZE0) 751 sp->sa_size = 0; 752 else if (flags & NFSSATTR_SIZENEG1) 753 sp->sa_size = newnfs_xdrneg1; 754 else if (flags & NFSSATTR_SIZERDEV) 755 sp->sa_size = txdr_unsigned(rdev); 756 else 757 sp->sa_size = txdr_unsigned(vap->va_size); 758 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 759 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 760 break; 761 case ND_NFSV3: 762 getmicrotime(&curtime); 763 if (vap->va_mode != (mode_t)VNOVAL) { 764 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 765 *tl++ = newnfs_true; 766 *tl = txdr_unsigned(vap->va_mode); 767 } else { 768 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 769 *tl = newnfs_false; 770 } 771 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) { 772 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 773 *tl++ = newnfs_true; 774 *tl = txdr_unsigned(vap->va_uid); 775 } else { 776 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 777 *tl = newnfs_false; 778 } 779 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) { 780 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 781 *tl++ = newnfs_true; 782 *tl = txdr_unsigned(vap->va_gid); 783 } else { 784 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 785 *tl = newnfs_false; 786 } 787 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) { 788 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 789 *tl++ = newnfs_true; 790 txdr_hyper(vap->va_size, tl); 791 } else { 792 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 793 *tl = newnfs_false; 794 } 795 if (vap->va_atime.tv_sec != VNOVAL) { 796 if (vap->va_atime.tv_sec != curtime.tv_sec) { 797 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 798 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 799 txdr_nfsv3time(&vap->va_atime, tl); 800 } else { 801 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 802 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 803 } 804 } else { 805 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 806 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 807 } 808 if (vap->va_mtime.tv_sec != VNOVAL) { 809 if (vap->va_mtime.tv_sec != curtime.tv_sec) { 810 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 811 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); 812 txdr_nfsv3time(&vap->va_mtime, tl); 813 } else { 814 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 815 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); 816 } 817 } else { 818 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED); 819 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); 820 } 821 break; 822 case ND_NFSV4: 823 NFSZERO_ATTRBIT(&attrbits); 824 if (vap->va_mode != (mode_t)VNOVAL) 825 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE); 826 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) 827 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER); 828 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) 829 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP); 830 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) 831 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE); 832 if (vap->va_atime.tv_sec != VNOVAL) 833 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET); 834 if (vap->va_mtime.tv_sec != VNOVAL) 835 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET); 836 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0, 837 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0); 838 break; 839 }; 840 } 841 842 /* 843 * nfscl_request() - mostly a wrapper for newnfs_request(). 844 */ 845 int 846 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 847 struct ucred *cred, void *stuff) 848 { 849 int ret, vers; 850 struct nfsmount *nmp; 851 852 nmp = VFSTONFS(vp->v_mount); 853 if (nd->nd_flag & ND_NFSV4) 854 vers = NFS_VER4; 855 else if (nd->nd_flag & ND_NFSV3) 856 vers = NFS_VER3; 857 else 858 vers = NFS_VER2; 859 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 860 NFS_PROG, vers, NULL, 1, NULL); 861 return (ret); 862 } 863 864 /* 865 * fill in this bsden's variant of statfs using nfsstatfs. 866 */ 867 void 868 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 869 { 870 struct statfs *sbp = (struct statfs *)statfs; 871 872 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 873 sbp->f_bsize = NFS_FABLKSIZE; 874 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 875 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 876 /* 877 * Although sf_abytes is uint64_t and f_bavail is int64_t, 878 * the value after dividing by NFS_FABLKSIZE is small 879 * enough that it will fit in 63bits, so it is ok to 880 * assign it to f_bavail without fear that it will become 881 * negative. 882 */ 883 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 884 sbp->f_files = sfp->sf_tfiles; 885 /* Since f_ffree is int64_t, clip it to 63bits. */ 886 if (sfp->sf_ffiles > INT64_MAX) 887 sbp->f_ffree = INT64_MAX; 888 else 889 sbp->f_ffree = sfp->sf_ffiles; 890 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 891 /* 892 * The type casts to (int32_t) ensure that this code is 893 * compatible with the old NFS client, in that it will 894 * propagate bit31 to the high order bits. This may or may 895 * not be correct for NFSv2, but since it is a legacy 896 * environment, I'd rather retain backwards compatibility. 897 */ 898 sbp->f_bsize = (int32_t)sfp->sf_bsize; 899 sbp->f_blocks = (int32_t)sfp->sf_blocks; 900 sbp->f_bfree = (int32_t)sfp->sf_bfree; 901 sbp->f_bavail = (int32_t)sfp->sf_bavail; 902 sbp->f_files = 0; 903 sbp->f_ffree = 0; 904 } 905 } 906 907 /* 908 * Use the fsinfo stuff to update the mount point. 909 */ 910 void 911 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 912 { 913 914 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 915 fsp->fs_wtpref >= NFS_FABLKSIZE) 916 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 917 ~(NFS_FABLKSIZE - 1); 918 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 919 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 920 if (nmp->nm_wsize == 0) 921 nmp->nm_wsize = fsp->fs_wtmax; 922 } 923 if (nmp->nm_wsize < NFS_FABLKSIZE) 924 nmp->nm_wsize = NFS_FABLKSIZE; 925 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 926 fsp->fs_rtpref >= NFS_FABLKSIZE) 927 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 928 ~(NFS_FABLKSIZE - 1); 929 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 930 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 931 if (nmp->nm_rsize == 0) 932 nmp->nm_rsize = fsp->fs_rtmax; 933 } 934 if (nmp->nm_rsize < NFS_FABLKSIZE) 935 nmp->nm_rsize = NFS_FABLKSIZE; 936 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 937 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 938 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 939 ~(NFS_DIRBLKSIZ - 1); 940 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 941 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 942 if (nmp->nm_readdirsize == 0) 943 nmp->nm_readdirsize = fsp->fs_rtmax; 944 } 945 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 946 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 947 if (fsp->fs_maxfilesize > 0 && 948 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 949 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 950 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 951 nmp->nm_state |= NFSSTA_GOTFSINFO; 952 } 953 954 /* 955 * Get a pointer to my IP addrress and return it. 956 * Return NULL if you can't find one. 957 */ 958 u_int8_t * 959 nfscl_getmyip(struct nfsmount *nmp, int *isinet6p) 960 { 961 struct sockaddr_in sad, *sin; 962 struct rtentry *rt; 963 u_int8_t *retp = NULL; 964 static struct in_addr laddr; 965 966 *isinet6p = 0; 967 /* 968 * Loop up a route for the destination address. 969 */ 970 if (nmp->nm_nam->sa_family == AF_INET) { 971 bzero(&sad, sizeof (sad)); 972 sin = (struct sockaddr_in *)nmp->nm_nam; 973 sad.sin_family = AF_INET; 974 sad.sin_len = sizeof (struct sockaddr_in); 975 sad.sin_addr.s_addr = sin->sin_addr.s_addr; 976 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 977 rt = rtalloc1((struct sockaddr *)&sad, 0, 0UL); 978 if (rt != NULL) { 979 if (rt->rt_ifp != NULL && 980 rt->rt_ifa != NULL && 981 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 982 rt->rt_ifa->ifa_addr->sa_family == AF_INET) { 983 sin = (struct sockaddr_in *) 984 rt->rt_ifa->ifa_addr; 985 laddr.s_addr = sin->sin_addr.s_addr; 986 retp = (u_int8_t *)&laddr; 987 } 988 RTFREE_LOCKED(rt); 989 } 990 CURVNET_RESTORE(); 991 #ifdef INET6 992 } else if (nmp->nm_nam->sa_family == AF_INET6) { 993 struct sockaddr_in6 sad6, *sin6; 994 static struct in6_addr laddr6; 995 996 bzero(&sad6, sizeof (sad6)); 997 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 998 sad6.sin6_family = AF_INET6; 999 sad6.sin6_len = sizeof (struct sockaddr_in6); 1000 sad6.sin6_addr = sin6->sin6_addr; 1001 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1002 rt = rtalloc1((struct sockaddr *)&sad6, 0, 0UL); 1003 if (rt != NULL) { 1004 if (rt->rt_ifp != NULL && 1005 rt->rt_ifa != NULL && 1006 ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) && 1007 rt->rt_ifa->ifa_addr->sa_family == AF_INET6) { 1008 sin6 = (struct sockaddr_in6 *) 1009 rt->rt_ifa->ifa_addr; 1010 laddr6 = sin6->sin6_addr; 1011 retp = (u_int8_t *)&laddr6; 1012 *isinet6p = 1; 1013 } 1014 RTFREE_LOCKED(rt); 1015 } 1016 CURVNET_RESTORE(); 1017 #endif 1018 } 1019 return (retp); 1020 } 1021 1022 /* 1023 * Copy NFS uid, gids from the cred structure. 1024 */ 1025 void 1026 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1027 { 1028 int i; 1029 1030 KASSERT(cr->cr_ngroups >= 0, 1031 ("newnfs_copyincred: negative cr_ngroups")); 1032 nfscr->nfsc_uid = cr->cr_uid; 1033 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1034 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1035 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1036 } 1037 1038 1039 /* 1040 * Do any client specific initialization. 1041 */ 1042 void 1043 nfscl_init(void) 1044 { 1045 static int inited = 0; 1046 1047 if (inited) 1048 return; 1049 inited = 1; 1050 nfscl_inited = 1; 1051 ncl_pbuf_freecnt = nswbuf / 2 + 1; 1052 } 1053 1054 /* 1055 * Check each of the attributes to be set, to ensure they aren't already 1056 * the correct value. Disable setting ones already correct. 1057 */ 1058 int 1059 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1060 { 1061 1062 if (vap->va_mode != (mode_t)VNOVAL) { 1063 if (vap->va_mode == nvap->na_mode) 1064 vap->va_mode = (mode_t)VNOVAL; 1065 } 1066 if (vap->va_uid != (uid_t)VNOVAL) { 1067 if (vap->va_uid == nvap->na_uid) 1068 vap->va_uid = (uid_t)VNOVAL; 1069 } 1070 if (vap->va_gid != (gid_t)VNOVAL) { 1071 if (vap->va_gid == nvap->na_gid) 1072 vap->va_gid = (gid_t)VNOVAL; 1073 } 1074 if (vap->va_size != VNOVAL) { 1075 if (vap->va_size == nvap->na_size) 1076 vap->va_size = VNOVAL; 1077 } 1078 1079 /* 1080 * We are normally called with only a partially initialized 1081 * VAP. Since the NFSv3 spec says that server may use the 1082 * file attributes to store the verifier, the spec requires 1083 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1084 * in atime, but we can't really assume that all servers will 1085 * so we ensure that our SETATTR sets both atime and mtime. 1086 */ 1087 if (vap->va_mtime.tv_sec == VNOVAL) 1088 vfs_timestamp(&vap->va_mtime); 1089 if (vap->va_atime.tv_sec == VNOVAL) 1090 vap->va_atime = vap->va_mtime; 1091 return (1); 1092 } 1093 1094 /* 1095 * Map nfsv4 errors to errno.h errors. 1096 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1097 * error should only be returned for the Open, Create and Setattr Ops. 1098 * As such, most calls can just pass in 0 for those arguments. 1099 */ 1100 APPLESTATIC int 1101 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1102 { 1103 struct proc *p; 1104 1105 if (error < 10000) 1106 return (error); 1107 if (td != NULL) 1108 p = td->td_proc; 1109 else 1110 p = NULL; 1111 switch (error) { 1112 case NFSERR_BADOWNER: 1113 tprintf(p, LOG_INFO, 1114 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1115 uid, gid); 1116 return (EPERM); 1117 case NFSERR_STALECLIENTID: 1118 case NFSERR_STALESTATEID: 1119 case NFSERR_EXPIRED: 1120 case NFSERR_BADSTATEID: 1121 printf("nfsv4 recover err returned %d\n", error); 1122 return (EIO); 1123 case NFSERR_BADHANDLE: 1124 case NFSERR_SERVERFAULT: 1125 case NFSERR_BADTYPE: 1126 case NFSERR_FHEXPIRED: 1127 case NFSERR_RESOURCE: 1128 case NFSERR_MOVED: 1129 case NFSERR_NOFILEHANDLE: 1130 case NFSERR_MINORVERMISMATCH: 1131 case NFSERR_OLDSTATEID: 1132 case NFSERR_BADSEQID: 1133 case NFSERR_LEASEMOVED: 1134 case NFSERR_RECLAIMBAD: 1135 case NFSERR_BADXDR: 1136 case NFSERR_BADCHAR: 1137 case NFSERR_BADNAME: 1138 case NFSERR_OPILLEGAL: 1139 printf("nfsv4 client/server protocol prob err=%d\n", 1140 error); 1141 return (EIO); 1142 default: 1143 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1144 return (EIO); 1145 }; 1146 } 1147 1148 /* 1149 * Locate a process by number; return only "live" processes -- i.e., neither 1150 * zombies nor newly born but incompletely initialized processes. By not 1151 * returning processes in the PRS_NEW state, we allow callers to avoid 1152 * testing for that condition to avoid dereferencing p_ucred, et al. 1153 * Identical to pfind() in kern_proc.c, except it assume the list is 1154 * already locked. 1155 */ 1156 static struct proc * 1157 pfind_locked(pid_t pid) 1158 { 1159 struct proc *p; 1160 1161 LIST_FOREACH(p, PIDHASH(pid), p_hash) 1162 if (p->p_pid == pid) { 1163 PROC_LOCK(p); 1164 if (p->p_state == PRS_NEW) { 1165 PROC_UNLOCK(p); 1166 p = NULL; 1167 } 1168 break; 1169 } 1170 return (p); 1171 } 1172 1173 /* 1174 * Check to see if the process for this owner exists. Return 1 if it doesn't 1175 * and 0 otherwise. 1176 */ 1177 int 1178 nfscl_procdoesntexist(u_int8_t *own) 1179 { 1180 union { 1181 u_int32_t lval; 1182 u_int8_t cval[4]; 1183 } tl; 1184 struct proc *p; 1185 pid_t pid; 1186 int ret = 0; 1187 1188 tl.cval[0] = *own++; 1189 tl.cval[1] = *own++; 1190 tl.cval[2] = *own++; 1191 tl.cval[3] = *own++; 1192 pid = tl.lval; 1193 p = pfind_locked(pid); 1194 if (p == NULL) 1195 return (1); 1196 if (p->p_stats == NULL) { 1197 PROC_UNLOCK(p); 1198 return (0); 1199 } 1200 tl.cval[0] = *own++; 1201 tl.cval[1] = *own++; 1202 tl.cval[2] = *own++; 1203 tl.cval[3] = *own++; 1204 if (tl.lval != p->p_stats->p_start.tv_sec) { 1205 ret = 1; 1206 } else { 1207 tl.cval[0] = *own++; 1208 tl.cval[1] = *own++; 1209 tl.cval[2] = *own++; 1210 tl.cval[3] = *own; 1211 if (tl.lval != p->p_stats->p_start.tv_usec) 1212 ret = 1; 1213 } 1214 PROC_UNLOCK(p); 1215 return (ret); 1216 } 1217 1218 /* 1219 * - nfs pseudo system call for the client 1220 */ 1221 /* 1222 * MPSAFE 1223 */ 1224 static int 1225 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1226 { 1227 struct file *fp; 1228 struct nfscbd_args nfscbdarg; 1229 struct nfsd_nfscbd_args nfscbdarg2; 1230 int error; 1231 1232 if (uap->flag & NFSSVC_CBADDSOCK) { 1233 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1234 if (error) 1235 return (error); 1236 /* 1237 * Since we don't know what rights might be required, 1238 * pretend that we need them all. It is better to be too 1239 * careful than too reckless. 1240 */ 1241 if ((error = fget(td, nfscbdarg.sock, CAP_SOCK_ALL, &fp)) 1242 != 0) { 1243 return (error); 1244 } 1245 if (fp->f_type != DTYPE_SOCKET) { 1246 fdrop(fp, td); 1247 return (EPERM); 1248 } 1249 error = nfscbd_addsock(fp); 1250 fdrop(fp, td); 1251 if (!error && nfscl_enablecallb == 0) { 1252 nfsv4_cbport = nfscbdarg.port; 1253 nfscl_enablecallb = 1; 1254 } 1255 } else if (uap->flag & NFSSVC_NFSCBD) { 1256 if (uap->argp == NULL) 1257 return (EINVAL); 1258 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1259 sizeof(nfscbdarg2)); 1260 if (error) 1261 return (error); 1262 error = nfscbd_nfsd(td, &nfscbdarg2); 1263 } else { 1264 error = EINVAL; 1265 } 1266 return (error); 1267 } 1268 1269 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1270 1271 /* 1272 * Called once to initialize data structures... 1273 */ 1274 static int 1275 nfscl_modevent(module_t mod, int type, void *data) 1276 { 1277 int error = 0; 1278 static int loaded = 0; 1279 1280 switch (type) { 1281 case MOD_LOAD: 1282 if (loaded) 1283 return (0); 1284 newnfs_portinit(); 1285 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, 1286 MTX_DEF); 1287 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1288 nfscl_init(); 1289 NFSD_LOCK(); 1290 nfsrvd_cbinit(0); 1291 NFSD_UNLOCK(); 1292 ncl_call_invalcaches = ncl_invalcaches; 1293 nfsd_call_nfscl = nfssvc_nfscl; 1294 loaded = 1; 1295 break; 1296 1297 case MOD_UNLOAD: 1298 if (nfs_numnfscbd != 0) { 1299 error = EBUSY; 1300 break; 1301 } 1302 1303 /* 1304 * XXX: Unloading of nfscl module is unsupported. 1305 */ 1306 #if 0 1307 ncl_call_invalcaches = NULL; 1308 nfsd_call_nfscl = NULL; 1309 /* and get rid of the mutexes */ 1310 mtx_destroy(&nfs_clstate_mutex); 1311 mtx_destroy(&ncl_iod_mutex); 1312 loaded = 0; 1313 break; 1314 #else 1315 /* FALLTHROUGH */ 1316 #endif 1317 default: 1318 error = EOPNOTSUPP; 1319 break; 1320 } 1321 return error; 1322 } 1323 static moduledata_t nfscl_mod = { 1324 "nfscl", 1325 nfscl_modevent, 1326 NULL, 1327 }; 1328 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1329 1330 /* So that loader and kldload(2) can find us, wherever we are.. */ 1331 MODULE_VERSION(nfscl, 1); 1332 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1333 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1334 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1335 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1336 1337