1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/vmmeter.h> 48 #include <sys/vnode.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_pager.h> 55 #include <vm/vnode_pager.h> 56 57 #include <fs/nfs/nfsport.h> 58 #include <fs/nfsclient/nfsmount.h> 59 #include <fs/nfsclient/nfs.h> 60 #include <fs/nfsclient/nfsnode.h> 61 62 extern int newnfs_directio_allow_mmap; 63 extern struct nfsstats newnfsstats; 64 extern struct mtx ncl_iod_mutex; 65 extern int ncl_numasync; 66 extern struct proc *ncl_iodwant[NFS_MAXRAHEAD]; 67 extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD]; 68 extern int newnfs_directio_enable; 69 70 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 71 72 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 73 struct thread *td); 74 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 75 struct ucred *cred, int ioflag); 76 77 /* 78 * Any signal that can interrupt an NFS operation in an intr mount 79 * should be added to this set. SIGSTOP and SIGKILL cannot be masked. 80 */ 81 static int nfs_sig_set[] = { 82 SIGINT, 83 SIGTERM, 84 SIGHUP, 85 SIGKILL, 86 SIGSTOP, 87 SIGQUIT 88 }; 89 90 #ifdef notnow 91 /* 92 * Check to see if one of the signals in our subset is pending on 93 * the process (in an intr mount). 94 */ 95 int 96 ncl_sig_pending(sigset_t set) 97 { 98 int i; 99 100 for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) 101 if (SIGISMEMBER(set, nfs_sig_set[i])) 102 return (1); 103 return (0); 104 } 105 #endif 106 107 /* 108 * The set/restore sigmask functions are used to (temporarily) overwrite 109 * the process p_sigmask during an RPC call (for example). These are also 110 * used in other places in the NFS client that might tsleep(). 111 */ 112 static void 113 ncl_set_sigmask(struct thread *td, sigset_t *oldset) 114 { 115 sigset_t newset; 116 int i; 117 struct proc *p; 118 119 SIGFILLSET(newset); 120 if (td == NULL) 121 td = curthread; /* XXX */ 122 p = td->td_proc; 123 /* Remove the NFS set of signals from newset */ 124 PROC_LOCK(p); 125 mtx_lock(&p->p_sigacts->ps_mtx); 126 for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) { 127 /* 128 * But make sure we leave the ones already masked 129 * by the process, ie. remove the signal from the 130 * temporary signalmask only if it wasn't already 131 * in p_sigmask. 132 */ 133 if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) && 134 !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i])) 135 SIGDELSET(newset, nfs_sig_set[i]); 136 } 137 mtx_unlock(&p->p_sigacts->ps_mtx); 138 PROC_UNLOCK(p); 139 kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0); 140 } 141 142 static void 143 ncl_restore_sigmask(struct thread *td, sigset_t *set) 144 { 145 if (td == NULL) 146 td = curthread; /* XXX */ 147 kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0); 148 } 149 150 /* 151 * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the 152 * old one after msleep() returns. 153 */ 154 int 155 ncl_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo) 156 { 157 sigset_t oldset; 158 int error; 159 struct proc *p; 160 161 if ((priority & PCATCH) == 0) 162 return msleep(ident, mtx, priority, wmesg, timo); 163 if (td == NULL) 164 td = curthread; /* XXX */ 165 ncl_set_sigmask(td, &oldset); 166 error = msleep(ident, mtx, priority, wmesg, timo); 167 ncl_restore_sigmask(td, &oldset); 168 p = td->td_proc; 169 return (error); 170 } 171 172 /* 173 * Vnode op for VM getpages. 174 */ 175 int 176 ncl_getpages(struct vop_getpages_args *ap) 177 { 178 int i, error, nextoff, size, toff, count, npages; 179 struct uio uio; 180 struct iovec iov; 181 vm_offset_t kva; 182 struct buf *bp; 183 struct vnode *vp; 184 struct thread *td; 185 struct ucred *cred; 186 struct nfsmount *nmp; 187 vm_object_t object; 188 vm_page_t *pages; 189 struct nfsnode *np; 190 191 vp = ap->a_vp; 192 np = VTONFS(vp); 193 td = curthread; /* XXX */ 194 cred = curthread->td_ucred; /* XXX */ 195 nmp = VFSTONFS(vp->v_mount); 196 pages = ap->a_m; 197 count = ap->a_count; 198 199 if ((object = vp->v_object) == NULL) { 200 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 201 return VM_PAGER_ERROR; 202 } 203 204 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 205 mtx_lock(&np->n_mtx); 206 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 207 mtx_unlock(&np->n_mtx); 208 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 209 return VM_PAGER_ERROR; 210 } else 211 mtx_unlock(&np->n_mtx); 212 } 213 214 mtx_lock(&nmp->nm_mtx); 215 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 216 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 217 mtx_unlock(&nmp->nm_mtx); 218 /* We'll never get here for v4, because we always have fsinfo */ 219 (void)ncl_fsinfo(nmp, vp, cred, td); 220 } else 221 mtx_unlock(&nmp->nm_mtx); 222 223 npages = btoc(count); 224 225 /* 226 * If the requested page is partially valid, just return it and 227 * allow the pager to zero-out the blanks. Partially valid pages 228 * can only occur at the file EOF. 229 */ 230 231 { 232 vm_page_t m = pages[ap->a_reqpage]; 233 234 VM_OBJECT_LOCK(object); 235 vm_page_lock_queues(); 236 if (m->valid != 0) { 237 /* handled by vm_fault now */ 238 /* vm_page_zero_invalid(m, TRUE); */ 239 for (i = 0; i < npages; ++i) { 240 if (i != ap->a_reqpage) 241 vm_page_free(pages[i]); 242 } 243 vm_page_unlock_queues(); 244 VM_OBJECT_UNLOCK(object); 245 return(0); 246 } 247 vm_page_unlock_queues(); 248 VM_OBJECT_UNLOCK(object); 249 } 250 251 /* 252 * We use only the kva address for the buffer, but this is extremely 253 * convienient and fast. 254 */ 255 bp = getpbuf(&ncl_pbuf_freecnt); 256 257 kva = (vm_offset_t) bp->b_data; 258 pmap_qenter(kva, pages, npages); 259 PCPU_INC(cnt.v_vnodein); 260 PCPU_ADD(cnt.v_vnodepgsin, npages); 261 262 iov.iov_base = (caddr_t) kva; 263 iov.iov_len = count; 264 uio.uio_iov = &iov; 265 uio.uio_iovcnt = 1; 266 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 267 uio.uio_resid = count; 268 uio.uio_segflg = UIO_SYSSPACE; 269 uio.uio_rw = UIO_READ; 270 uio.uio_td = td; 271 272 error = ncl_readrpc(vp, &uio, cred); 273 pmap_qremove(kva, npages); 274 275 relpbuf(bp, &ncl_pbuf_freecnt); 276 277 if (error && (uio.uio_resid == count)) { 278 ncl_printf("nfs_getpages: error %d\n", error); 279 VM_OBJECT_LOCK(object); 280 vm_page_lock_queues(); 281 for (i = 0; i < npages; ++i) { 282 if (i != ap->a_reqpage) 283 vm_page_free(pages[i]); 284 } 285 vm_page_unlock_queues(); 286 VM_OBJECT_UNLOCK(object); 287 return VM_PAGER_ERROR; 288 } 289 290 /* 291 * Calculate the number of bytes read and validate only that number 292 * of bytes. Note that due to pending writes, size may be 0. This 293 * does not mean that the remaining data is invalid! 294 */ 295 296 size = count - uio.uio_resid; 297 VM_OBJECT_LOCK(object); 298 vm_page_lock_queues(); 299 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 300 vm_page_t m; 301 nextoff = toff + PAGE_SIZE; 302 m = pages[i]; 303 304 if (nextoff <= size) { 305 /* 306 * Read operation filled an entire page 307 */ 308 m->valid = VM_PAGE_BITS_ALL; 309 vm_page_undirty(m); 310 } else if (size > toff) { 311 /* 312 * Read operation filled a partial page. 313 */ 314 m->valid = 0; 315 vm_page_set_validclean(m, 0, size - toff); 316 /* handled by vm_fault now */ 317 /* vm_page_zero_invalid(m, TRUE); */ 318 } else { 319 /* 320 * Read operation was short. If no error occured 321 * we may have hit a zero-fill section. We simply 322 * leave valid set to 0. 323 */ 324 ; 325 } 326 if (i != ap->a_reqpage) { 327 /* 328 * Whether or not to leave the page activated is up in 329 * the air, but we should put the page on a page queue 330 * somewhere (it already is in the object). Result: 331 * It appears that emperical results show that 332 * deactivating pages is best. 333 */ 334 335 /* 336 * Just in case someone was asking for this page we 337 * now tell them that it is ok to use. 338 */ 339 if (!error) { 340 if (m->oflags & VPO_WANTED) 341 vm_page_activate(m); 342 else 343 vm_page_deactivate(m); 344 vm_page_wakeup(m); 345 } else { 346 vm_page_free(m); 347 } 348 } 349 } 350 vm_page_unlock_queues(); 351 VM_OBJECT_UNLOCK(object); 352 return 0; 353 } 354 355 /* 356 * Vnode op for VM putpages. 357 */ 358 int 359 ncl_putpages(struct vop_putpages_args *ap) 360 { 361 struct uio uio; 362 struct iovec iov; 363 vm_offset_t kva; 364 struct buf *bp; 365 int iomode, must_commit, i, error, npages, count; 366 off_t offset; 367 int *rtvals; 368 struct vnode *vp; 369 struct thread *td; 370 struct ucred *cred; 371 struct nfsmount *nmp; 372 struct nfsnode *np; 373 vm_page_t *pages; 374 375 vp = ap->a_vp; 376 np = VTONFS(vp); 377 td = curthread; /* XXX */ 378 cred = curthread->td_ucred; /* XXX */ 379 nmp = VFSTONFS(vp->v_mount); 380 pages = ap->a_m; 381 count = ap->a_count; 382 rtvals = ap->a_rtvals; 383 npages = btoc(count); 384 offset = IDX_TO_OFF(pages[0]->pindex); 385 386 mtx_lock(&nmp->nm_mtx); 387 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 388 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 389 mtx_unlock(&nmp->nm_mtx); 390 (void)ncl_fsinfo(nmp, vp, cred, td); 391 } else 392 mtx_unlock(&nmp->nm_mtx); 393 394 mtx_lock(&np->n_mtx); 395 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 396 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 397 mtx_unlock(&np->n_mtx); 398 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 399 mtx_lock(&np->n_mtx); 400 } 401 402 for (i = 0; i < npages; i++) 403 rtvals[i] = VM_PAGER_AGAIN; 404 405 /* 406 * When putting pages, do not extend file past EOF. 407 */ 408 if (offset + count > np->n_size) { 409 count = np->n_size - offset; 410 if (count < 0) 411 count = 0; 412 } 413 mtx_unlock(&np->n_mtx); 414 415 /* 416 * We use only the kva address for the buffer, but this is extremely 417 * convienient and fast. 418 */ 419 bp = getpbuf(&ncl_pbuf_freecnt); 420 421 kva = (vm_offset_t) bp->b_data; 422 pmap_qenter(kva, pages, npages); 423 PCPU_INC(cnt.v_vnodeout); 424 PCPU_ADD(cnt.v_vnodepgsout, count); 425 426 iov.iov_base = (caddr_t) kva; 427 iov.iov_len = count; 428 uio.uio_iov = &iov; 429 uio.uio_iovcnt = 1; 430 uio.uio_offset = offset; 431 uio.uio_resid = count; 432 uio.uio_segflg = UIO_SYSSPACE; 433 uio.uio_rw = UIO_WRITE; 434 uio.uio_td = td; 435 436 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 437 iomode = NFSWRITE_UNSTABLE; 438 else 439 iomode = NFSWRITE_FILESYNC; 440 441 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit); 442 443 pmap_qremove(kva, npages); 444 relpbuf(bp, &ncl_pbuf_freecnt); 445 446 if (!error) { 447 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; 448 for (i = 0; i < nwritten; i++) { 449 rtvals[i] = VM_PAGER_OK; 450 vm_page_undirty(pages[i]); 451 } 452 if (must_commit) { 453 ncl_clearcommit(vp->v_mount); 454 } 455 } 456 return rtvals[0]; 457 } 458 459 /* 460 * For nfs, cache consistency can only be maintained approximately. 461 * Although RFC1094 does not specify the criteria, the following is 462 * believed to be compatible with the reference port. 463 * For nfs: 464 * If the file's modify time on the server has changed since the 465 * last read rpc or you have written to the file, 466 * you may have lost data cache consistency with the 467 * server, so flush all of the file's data out of the cache. 468 * Then force a getattr rpc to ensure that you have up to date 469 * attributes. 470 * NB: This implies that cache data can be read when up to 471 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 472 * attributes this could be forced by setting n_attrstamp to 0 before 473 * the VOP_GETATTR() call. 474 */ 475 static inline int 476 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 477 { 478 int error = 0; 479 struct vattr vattr; 480 struct nfsnode *np = VTONFS(vp); 481 int old_lock; 482 483 /* 484 * Grab the exclusive lock before checking whether the cache is 485 * consistent. 486 * XXX - We can make this cheaper later (by acquiring cheaper locks). 487 * But for now, this suffices. 488 */ 489 old_lock = ncl_upgrade_vnlock(vp); 490 mtx_lock(&np->n_mtx); 491 if (np->n_flag & NMODIFIED) { 492 mtx_unlock(&np->n_mtx); 493 if (vp->v_type != VREG) { 494 if (vp->v_type != VDIR) 495 panic("nfs: bioread, not dir"); 496 ncl_invaldir(vp); 497 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 498 if (error) 499 goto out; 500 } 501 np->n_attrstamp = 0; 502 error = VOP_GETATTR(vp, &vattr, cred); 503 if (error) 504 goto out; 505 mtx_lock(&np->n_mtx); 506 np->n_mtime = vattr.va_mtime; 507 mtx_unlock(&np->n_mtx); 508 } else { 509 mtx_unlock(&np->n_mtx); 510 error = VOP_GETATTR(vp, &vattr, cred); 511 if (error) 512 return (error); 513 mtx_lock(&np->n_mtx); 514 if ((np->n_flag & NSIZECHANGED) 515 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 516 mtx_unlock(&np->n_mtx); 517 if (vp->v_type == VDIR) 518 ncl_invaldir(vp); 519 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 520 if (error) 521 goto out; 522 mtx_lock(&np->n_mtx); 523 np->n_mtime = vattr.va_mtime; 524 np->n_flag &= ~NSIZECHANGED; 525 } 526 mtx_unlock(&np->n_mtx); 527 } 528 out: 529 ncl_downgrade_vnlock(vp, old_lock); 530 return error; 531 } 532 533 /* 534 * Vnode op for read using bio 535 */ 536 int 537 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 538 { 539 struct nfsnode *np = VTONFS(vp); 540 int biosize, i; 541 struct buf *bp, *rabp; 542 struct thread *td; 543 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 544 daddr_t lbn, rabn; 545 int bcount; 546 int seqcount; 547 int nra, error = 0, n = 0, on = 0; 548 549 #ifdef DIAGNOSTIC 550 if (uio->uio_rw != UIO_READ) 551 panic("ncl_read mode"); 552 #endif 553 if (uio->uio_resid == 0) 554 return (0); 555 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 556 return (EINVAL); 557 td = uio->uio_td; 558 559 mtx_lock(&nmp->nm_mtx); 560 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 561 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 562 mtx_unlock(&nmp->nm_mtx); 563 (void)ncl_fsinfo(nmp, vp, cred, td); 564 mtx_lock(&nmp->nm_mtx); 565 } 566 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 567 (void) newnfs_iosize(nmp); 568 mtx_unlock(&nmp->nm_mtx); 569 570 if (vp->v_type != VDIR && 571 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 572 return (EFBIG); 573 574 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 575 /* No caching/ no readaheads. Just read data into the user buffer */ 576 return ncl_readrpc(vp, uio, cred); 577 578 biosize = vp->v_mount->mnt_stat.f_iosize; 579 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 580 581 error = nfs_bioread_check_cons(vp, td, cred); 582 if (error) 583 return error; 584 585 do { 586 u_quad_t nsize; 587 588 mtx_lock(&np->n_mtx); 589 nsize = np->n_size; 590 mtx_unlock(&np->n_mtx); 591 592 switch (vp->v_type) { 593 case VREG: 594 NFSINCRGLOBAL(newnfsstats.biocache_reads); 595 lbn = uio->uio_offset / biosize; 596 on = uio->uio_offset & (biosize - 1); 597 598 /* 599 * Start the read ahead(s), as required. 600 */ 601 if (nmp->nm_readahead > 0) { 602 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 603 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 604 rabn = lbn + 1 + nra; 605 if (incore(&vp->v_bufobj, rabn) == NULL) { 606 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 607 if (!rabp) { 608 error = newnfs_sigintr(nmp, td); 609 if (error) 610 return (error); 611 else 612 break; 613 } 614 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 615 rabp->b_flags |= B_ASYNC; 616 rabp->b_iocmd = BIO_READ; 617 vfs_busy_pages(rabp, 0); 618 if (ncl_asyncio(nmp, rabp, cred, td)) { 619 rabp->b_flags |= B_INVAL; 620 rabp->b_ioflags |= BIO_ERROR; 621 vfs_unbusy_pages(rabp); 622 brelse(rabp); 623 break; 624 } 625 } else { 626 brelse(rabp); 627 } 628 } 629 } 630 } 631 632 /* Note that bcount is *not* DEV_BSIZE aligned. */ 633 bcount = biosize; 634 if ((off_t)lbn * biosize >= nsize) { 635 bcount = 0; 636 } else if ((off_t)(lbn + 1) * biosize > nsize) { 637 bcount = nsize - (off_t)lbn * biosize; 638 } 639 bp = nfs_getcacheblk(vp, lbn, bcount, td); 640 641 if (!bp) { 642 error = newnfs_sigintr(nmp, td); 643 return (error ? error : EINTR); 644 } 645 646 /* 647 * If B_CACHE is not set, we must issue the read. If this 648 * fails, we return an error. 649 */ 650 651 if ((bp->b_flags & B_CACHE) == 0) { 652 bp->b_iocmd = BIO_READ; 653 vfs_busy_pages(bp, 0); 654 error = ncl_doio(vp, bp, cred, td); 655 if (error) { 656 brelse(bp); 657 return (error); 658 } 659 } 660 661 /* 662 * on is the offset into the current bp. Figure out how many 663 * bytes we can copy out of the bp. Note that bcount is 664 * NOT DEV_BSIZE aligned. 665 * 666 * Then figure out how many bytes we can copy into the uio. 667 */ 668 669 n = 0; 670 if (on < bcount) 671 n = min((unsigned)(bcount - on), uio->uio_resid); 672 break; 673 case VLNK: 674 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 675 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 676 if (!bp) { 677 error = newnfs_sigintr(nmp, td); 678 return (error ? error : EINTR); 679 } 680 if ((bp->b_flags & B_CACHE) == 0) { 681 bp->b_iocmd = BIO_READ; 682 vfs_busy_pages(bp, 0); 683 error = ncl_doio(vp, bp, cred, td); 684 if (error) { 685 bp->b_ioflags |= BIO_ERROR; 686 brelse(bp); 687 return (error); 688 } 689 } 690 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 691 on = 0; 692 break; 693 case VDIR: 694 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 695 if (np->n_direofoffset 696 && uio->uio_offset >= np->n_direofoffset) { 697 return (0); 698 } 699 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 700 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 701 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 702 if (!bp) { 703 error = newnfs_sigintr(nmp, td); 704 return (error ? error : EINTR); 705 } 706 if ((bp->b_flags & B_CACHE) == 0) { 707 bp->b_iocmd = BIO_READ; 708 vfs_busy_pages(bp, 0); 709 error = ncl_doio(vp, bp, cred, td); 710 if (error) { 711 brelse(bp); 712 } 713 while (error == NFSERR_BAD_COOKIE) { 714 ncl_invaldir(vp); 715 error = ncl_vinvalbuf(vp, 0, td, 1); 716 /* 717 * Yuck! The directory has been modified on the 718 * server. The only way to get the block is by 719 * reading from the beginning to get all the 720 * offset cookies. 721 * 722 * Leave the last bp intact unless there is an error. 723 * Loop back up to the while if the error is another 724 * NFSERR_BAD_COOKIE (double yuch!). 725 */ 726 for (i = 0; i <= lbn && !error; i++) { 727 if (np->n_direofoffset 728 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 729 return (0); 730 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 731 if (!bp) { 732 error = newnfs_sigintr(nmp, td); 733 return (error ? error : EINTR); 734 } 735 if ((bp->b_flags & B_CACHE) == 0) { 736 bp->b_iocmd = BIO_READ; 737 vfs_busy_pages(bp, 0); 738 error = ncl_doio(vp, bp, cred, td); 739 /* 740 * no error + B_INVAL == directory EOF, 741 * use the block. 742 */ 743 if (error == 0 && (bp->b_flags & B_INVAL)) 744 break; 745 } 746 /* 747 * An error will throw away the block and the 748 * for loop will break out. If no error and this 749 * is not the block we want, we throw away the 750 * block and go for the next one via the for loop. 751 */ 752 if (error || i < lbn) 753 brelse(bp); 754 } 755 } 756 /* 757 * The above while is repeated if we hit another cookie 758 * error. If we hit an error and it wasn't a cookie error, 759 * we give up. 760 */ 761 if (error) 762 return (error); 763 } 764 765 /* 766 * If not eof and read aheads are enabled, start one. 767 * (You need the current block first, so that you have the 768 * directory offset cookie of the next block.) 769 */ 770 if (nmp->nm_readahead > 0 && 771 (bp->b_flags & B_INVAL) == 0 && 772 (np->n_direofoffset == 0 || 773 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 774 incore(&vp->v_bufobj, lbn + 1) == NULL) { 775 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 776 if (rabp) { 777 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 778 rabp->b_flags |= B_ASYNC; 779 rabp->b_iocmd = BIO_READ; 780 vfs_busy_pages(rabp, 0); 781 if (ncl_asyncio(nmp, rabp, cred, td)) { 782 rabp->b_flags |= B_INVAL; 783 rabp->b_ioflags |= BIO_ERROR; 784 vfs_unbusy_pages(rabp); 785 brelse(rabp); 786 } 787 } else { 788 brelse(rabp); 789 } 790 } 791 } 792 /* 793 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 794 * chopped for the EOF condition, we cannot tell how large 795 * NFS directories are going to be until we hit EOF. So 796 * an NFS directory buffer is *not* chopped to its EOF. Now, 797 * it just so happens that b_resid will effectively chop it 798 * to EOF. *BUT* this information is lost if the buffer goes 799 * away and is reconstituted into a B_CACHE state ( due to 800 * being VMIO ) later. So we keep track of the directory eof 801 * in np->n_direofoffset and chop it off as an extra step 802 * right here. 803 */ 804 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 805 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 806 n = np->n_direofoffset - uio->uio_offset; 807 break; 808 default: 809 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 810 bp = NULL; 811 break; 812 }; 813 814 if (n > 0) { 815 error = uiomove(bp->b_data + on, (int)n, uio); 816 } 817 if (vp->v_type == VLNK) 818 n = 0; 819 if (bp != NULL) 820 brelse(bp); 821 } while (error == 0 && uio->uio_resid > 0 && n > 0); 822 return (error); 823 } 824 825 /* 826 * The NFS write path cannot handle iovecs with len > 1. So we need to 827 * break up iovecs accordingly (restricting them to wsize). 828 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 829 * For the ASYNC case, 2 copies are needed. The first a copy from the 830 * user buffer to a staging buffer and then a second copy from the staging 831 * buffer to mbufs. This can be optimized by copying from the user buffer 832 * directly into mbufs and passing the chain down, but that requires a 833 * fair amount of re-working of the relevant codepaths (and can be done 834 * later). 835 */ 836 static int 837 nfs_directio_write(vp, uiop, cred, ioflag) 838 struct vnode *vp; 839 struct uio *uiop; 840 struct ucred *cred; 841 int ioflag; 842 { 843 int error; 844 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 845 struct thread *td = uiop->uio_td; 846 int size; 847 int wsize; 848 849 mtx_lock(&nmp->nm_mtx); 850 wsize = nmp->nm_wsize; 851 mtx_unlock(&nmp->nm_mtx); 852 if (ioflag & IO_SYNC) { 853 int iomode, must_commit; 854 struct uio uio; 855 struct iovec iov; 856 do_sync: 857 while (uiop->uio_resid > 0) { 858 size = min(uiop->uio_resid, wsize); 859 size = min(uiop->uio_iov->iov_len, size); 860 iov.iov_base = uiop->uio_iov->iov_base; 861 iov.iov_len = size; 862 uio.uio_iov = &iov; 863 uio.uio_iovcnt = 1; 864 uio.uio_offset = uiop->uio_offset; 865 uio.uio_resid = size; 866 uio.uio_segflg = UIO_USERSPACE; 867 uio.uio_rw = UIO_WRITE; 868 uio.uio_td = td; 869 iomode = NFSWRITE_FILESYNC; 870 error = ncl_writerpc(vp, &uio, cred, &iomode, 871 &must_commit); 872 KASSERT((must_commit == 0), 873 ("ncl_directio_write: Did not commit write")); 874 if (error) 875 return (error); 876 uiop->uio_offset += size; 877 uiop->uio_resid -= size; 878 if (uiop->uio_iov->iov_len <= size) { 879 uiop->uio_iovcnt--; 880 uiop->uio_iov++; 881 } else { 882 uiop->uio_iov->iov_base = 883 (char *)uiop->uio_iov->iov_base + size; 884 uiop->uio_iov->iov_len -= size; 885 } 886 } 887 } else { 888 struct uio *t_uio; 889 struct iovec *t_iov; 890 struct buf *bp; 891 892 /* 893 * Break up the write into blocksize chunks and hand these 894 * over to nfsiod's for write back. 895 * Unfortunately, this incurs a copy of the data. Since 896 * the user could modify the buffer before the write is 897 * initiated. 898 * 899 * The obvious optimization here is that one of the 2 copies 900 * in the async write path can be eliminated by copying the 901 * data here directly into mbufs and passing the mbuf chain 902 * down. But that will require a fair amount of re-working 903 * of the code and can be done if there's enough interest 904 * in NFS directio access. 905 */ 906 while (uiop->uio_resid > 0) { 907 size = min(uiop->uio_resid, wsize); 908 size = min(uiop->uio_iov->iov_len, size); 909 bp = getpbuf(&ncl_pbuf_freecnt); 910 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 911 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 912 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 913 t_iov->iov_len = size; 914 t_uio->uio_iov = t_iov; 915 t_uio->uio_iovcnt = 1; 916 t_uio->uio_offset = uiop->uio_offset; 917 t_uio->uio_resid = size; 918 t_uio->uio_segflg = UIO_SYSSPACE; 919 t_uio->uio_rw = UIO_WRITE; 920 t_uio->uio_td = td; 921 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size); 922 bp->b_flags |= B_DIRECT; 923 bp->b_iocmd = BIO_WRITE; 924 if (cred != NOCRED) { 925 crhold(cred); 926 bp->b_wcred = cred; 927 } else 928 bp->b_wcred = NOCRED; 929 bp->b_caller1 = (void *)t_uio; 930 bp->b_vp = vp; 931 error = ncl_asyncio(nmp, bp, NOCRED, td); 932 if (error) { 933 free(t_iov->iov_base, M_NFSDIRECTIO); 934 free(t_iov, M_NFSDIRECTIO); 935 free(t_uio, M_NFSDIRECTIO); 936 bp->b_vp = NULL; 937 relpbuf(bp, &ncl_pbuf_freecnt); 938 if (error == EINTR) 939 return (error); 940 goto do_sync; 941 } 942 uiop->uio_offset += size; 943 uiop->uio_resid -= size; 944 if (uiop->uio_iov->iov_len <= size) { 945 uiop->uio_iovcnt--; 946 uiop->uio_iov++; 947 } else { 948 uiop->uio_iov->iov_base = 949 (char *)uiop->uio_iov->iov_base + size; 950 uiop->uio_iov->iov_len -= size; 951 } 952 } 953 } 954 return (0); 955 } 956 957 /* 958 * Vnode op for write using bio 959 */ 960 int 961 ncl_write(struct vop_write_args *ap) 962 { 963 int biosize; 964 struct uio *uio = ap->a_uio; 965 struct thread *td = uio->uio_td; 966 struct vnode *vp = ap->a_vp; 967 struct nfsnode *np = VTONFS(vp); 968 struct ucred *cred = ap->a_cred; 969 int ioflag = ap->a_ioflag; 970 struct buf *bp; 971 struct vattr vattr; 972 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 973 daddr_t lbn; 974 int bcount; 975 int n, on, error = 0; 976 struct proc *p = td?td->td_proc:NULL; 977 978 #ifdef DIAGNOSTIC 979 if (uio->uio_rw != UIO_WRITE) 980 panic("ncl_write mode"); 981 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 982 panic("ncl_write proc"); 983 #endif 984 if (vp->v_type != VREG) 985 return (EIO); 986 mtx_lock(&np->n_mtx); 987 if (np->n_flag & NWRITEERR) { 988 np->n_flag &= ~NWRITEERR; 989 mtx_unlock(&np->n_mtx); 990 return (np->n_error); 991 } else 992 mtx_unlock(&np->n_mtx); 993 mtx_lock(&nmp->nm_mtx); 994 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 995 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 996 mtx_unlock(&nmp->nm_mtx); 997 (void)ncl_fsinfo(nmp, vp, cred, td); 998 mtx_lock(&nmp->nm_mtx); 999 } 1000 if (nmp->nm_wsize == 0) 1001 (void) newnfs_iosize(nmp); 1002 mtx_unlock(&nmp->nm_mtx); 1003 1004 /* 1005 * Synchronously flush pending buffers if we are in synchronous 1006 * mode or if we are appending. 1007 */ 1008 if (ioflag & (IO_APPEND | IO_SYNC)) { 1009 mtx_lock(&np->n_mtx); 1010 if (np->n_flag & NMODIFIED) { 1011 mtx_unlock(&np->n_mtx); 1012 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 1013 /* 1014 * Require non-blocking, synchronous writes to 1015 * dirty files to inform the program it needs 1016 * to fsync(2) explicitly. 1017 */ 1018 if (ioflag & IO_NDELAY) 1019 return (EAGAIN); 1020 #endif 1021 flush_and_restart: 1022 np->n_attrstamp = 0; 1023 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 1024 if (error) 1025 return (error); 1026 } else 1027 mtx_unlock(&np->n_mtx); 1028 } 1029 1030 /* 1031 * If IO_APPEND then load uio_offset. We restart here if we cannot 1032 * get the append lock. 1033 */ 1034 if (ioflag & IO_APPEND) { 1035 np->n_attrstamp = 0; 1036 error = VOP_GETATTR(vp, &vattr, cred); 1037 if (error) 1038 return (error); 1039 mtx_lock(&np->n_mtx); 1040 uio->uio_offset = np->n_size; 1041 mtx_unlock(&np->n_mtx); 1042 } 1043 1044 if (uio->uio_offset < 0) 1045 return (EINVAL); 1046 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 1047 return (EFBIG); 1048 if (uio->uio_resid == 0) 1049 return (0); 1050 1051 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 1052 return nfs_directio_write(vp, uio, cred, ioflag); 1053 1054 /* 1055 * Maybe this should be above the vnode op call, but so long as 1056 * file servers have no limits, i don't think it matters 1057 */ 1058 if (p != NULL) { 1059 PROC_LOCK(p); 1060 if (uio->uio_offset + uio->uio_resid > 1061 lim_cur(p, RLIMIT_FSIZE)) { 1062 psignal(p, SIGXFSZ); 1063 PROC_UNLOCK(p); 1064 return (EFBIG); 1065 } 1066 PROC_UNLOCK(p); 1067 } 1068 1069 biosize = vp->v_mount->mnt_stat.f_iosize; 1070 /* 1071 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1072 * would exceed the local maximum per-file write commit size when 1073 * combined with those, we must decide whether to flush, 1074 * go synchronous, or return error. We don't bother checking 1075 * IO_UNIT -- we just make all writes atomic anyway, as there's 1076 * no point optimizing for something that really won't ever happen. 1077 */ 1078 if (!(ioflag & IO_SYNC)) { 1079 int nflag; 1080 1081 mtx_lock(&np->n_mtx); 1082 nflag = np->n_flag; 1083 mtx_unlock(&np->n_mtx); 1084 int needrestart = 0; 1085 if (nmp->nm_wcommitsize < uio->uio_resid) { 1086 /* 1087 * If this request could not possibly be completed 1088 * without exceeding the maximum outstanding write 1089 * commit size, see if we can convert it into a 1090 * synchronous write operation. 1091 */ 1092 if (ioflag & IO_NDELAY) 1093 return (EAGAIN); 1094 ioflag |= IO_SYNC; 1095 if (nflag & NMODIFIED) 1096 needrestart = 1; 1097 } else if (nflag & NMODIFIED) { 1098 int wouldcommit = 0; 1099 BO_LOCK(&vp->v_bufobj); 1100 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1101 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1102 b_bobufs) { 1103 if (bp->b_flags & B_NEEDCOMMIT) 1104 wouldcommit += bp->b_bcount; 1105 } 1106 } 1107 BO_UNLOCK(&vp->v_bufobj); 1108 /* 1109 * Since we're not operating synchronously and 1110 * bypassing the buffer cache, we are in a commit 1111 * and holding all of these buffers whether 1112 * transmitted or not. If not limited, this 1113 * will lead to the buffer cache deadlocking, 1114 * as no one else can flush our uncommitted buffers. 1115 */ 1116 wouldcommit += uio->uio_resid; 1117 /* 1118 * If we would initially exceed the maximum 1119 * outstanding write commit size, flush and restart. 1120 */ 1121 if (wouldcommit > nmp->nm_wcommitsize) 1122 needrestart = 1; 1123 } 1124 if (needrestart) 1125 goto flush_and_restart; 1126 } 1127 1128 do { 1129 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1130 lbn = uio->uio_offset / biosize; 1131 on = uio->uio_offset & (biosize-1); 1132 n = min((unsigned)(biosize - on), uio->uio_resid); 1133 again: 1134 /* 1135 * Handle direct append and file extension cases, calculate 1136 * unaligned buffer size. 1137 */ 1138 mtx_lock(&np->n_mtx); 1139 if (uio->uio_offset == np->n_size && n) { 1140 mtx_unlock(&np->n_mtx); 1141 /* 1142 * Get the buffer (in its pre-append state to maintain 1143 * B_CACHE if it was previously set). Resize the 1144 * nfsnode after we have locked the buffer to prevent 1145 * readers from reading garbage. 1146 */ 1147 bcount = on; 1148 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1149 1150 if (bp != NULL) { 1151 long save; 1152 1153 mtx_lock(&np->n_mtx); 1154 np->n_size = uio->uio_offset + n; 1155 np->n_flag |= NMODIFIED; 1156 vnode_pager_setsize(vp, np->n_size); 1157 mtx_unlock(&np->n_mtx); 1158 1159 save = bp->b_flags & B_CACHE; 1160 bcount += n; 1161 allocbuf(bp, bcount); 1162 bp->b_flags |= save; 1163 } 1164 } else { 1165 /* 1166 * Obtain the locked cache block first, and then 1167 * adjust the file's size as appropriate. 1168 */ 1169 bcount = on + n; 1170 if ((off_t)lbn * biosize + bcount < np->n_size) { 1171 if ((off_t)(lbn + 1) * biosize < np->n_size) 1172 bcount = biosize; 1173 else 1174 bcount = np->n_size - (off_t)lbn * biosize; 1175 } 1176 mtx_unlock(&np->n_mtx); 1177 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1178 mtx_lock(&np->n_mtx); 1179 if (uio->uio_offset + n > np->n_size) { 1180 np->n_size = uio->uio_offset + n; 1181 np->n_flag |= NMODIFIED; 1182 vnode_pager_setsize(vp, np->n_size); 1183 } 1184 mtx_unlock(&np->n_mtx); 1185 } 1186 1187 if (!bp) { 1188 error = newnfs_sigintr(nmp, td); 1189 if (!error) 1190 error = EINTR; 1191 break; 1192 } 1193 1194 /* 1195 * Issue a READ if B_CACHE is not set. In special-append 1196 * mode, B_CACHE is based on the buffer prior to the write 1197 * op and is typically set, avoiding the read. If a read 1198 * is required in special append mode, the server will 1199 * probably send us a short-read since we extended the file 1200 * on our end, resulting in b_resid == 0 and, thusly, 1201 * B_CACHE getting set. 1202 * 1203 * We can also avoid issuing the read if the write covers 1204 * the entire buffer. We have to make sure the buffer state 1205 * is reasonable in this case since we will not be initiating 1206 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1207 * more information. 1208 * 1209 * B_CACHE may also be set due to the buffer being cached 1210 * normally. 1211 */ 1212 1213 if (on == 0 && n == bcount) { 1214 bp->b_flags |= B_CACHE; 1215 bp->b_flags &= ~B_INVAL; 1216 bp->b_ioflags &= ~BIO_ERROR; 1217 } 1218 1219 if ((bp->b_flags & B_CACHE) == 0) { 1220 bp->b_iocmd = BIO_READ; 1221 vfs_busy_pages(bp, 0); 1222 error = ncl_doio(vp, bp, cred, td); 1223 if (error) { 1224 brelse(bp); 1225 break; 1226 } 1227 } 1228 if (bp->b_wcred == NOCRED) 1229 bp->b_wcred = crhold(cred); 1230 mtx_lock(&np->n_mtx); 1231 np->n_flag |= NMODIFIED; 1232 mtx_unlock(&np->n_mtx); 1233 1234 /* 1235 * If dirtyend exceeds file size, chop it down. This should 1236 * not normally occur but there is an append race where it 1237 * might occur XXX, so we log it. 1238 * 1239 * If the chopping creates a reverse-indexed or degenerate 1240 * situation with dirtyoff/end, we 0 both of them. 1241 */ 1242 1243 if (bp->b_dirtyend > bcount) { 1244 ncl_printf("NFS append race @%lx:%d\n", 1245 (long)bp->b_blkno * DEV_BSIZE, 1246 bp->b_dirtyend - bcount); 1247 bp->b_dirtyend = bcount; 1248 } 1249 1250 if (bp->b_dirtyoff >= bp->b_dirtyend) 1251 bp->b_dirtyoff = bp->b_dirtyend = 0; 1252 1253 /* 1254 * If the new write will leave a contiguous dirty 1255 * area, just update the b_dirtyoff and b_dirtyend, 1256 * otherwise force a write rpc of the old dirty area. 1257 * 1258 * While it is possible to merge discontiguous writes due to 1259 * our having a B_CACHE buffer ( and thus valid read data 1260 * for the hole), we don't because it could lead to 1261 * significant cache coherency problems with multiple clients, 1262 * especially if locking is implemented later on. 1263 * 1264 * as an optimization we could theoretically maintain 1265 * a linked list of discontinuous areas, but we would still 1266 * have to commit them separately so there isn't much 1267 * advantage to it except perhaps a bit of asynchronization. 1268 */ 1269 1270 if (bp->b_dirtyend > 0 && 1271 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1272 if (bwrite(bp) == EINTR) { 1273 error = EINTR; 1274 break; 1275 } 1276 goto again; 1277 } 1278 1279 error = uiomove((char *)bp->b_data + on, n, uio); 1280 1281 /* 1282 * Since this block is being modified, it must be written 1283 * again and not just committed. Since write clustering does 1284 * not work for the stage 1 data write, only the stage 2 1285 * commit rpc, we have to clear B_CLUSTEROK as well. 1286 */ 1287 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1288 1289 if (error) { 1290 bp->b_ioflags |= BIO_ERROR; 1291 brelse(bp); 1292 break; 1293 } 1294 1295 /* 1296 * Only update dirtyoff/dirtyend if not a degenerate 1297 * condition. 1298 */ 1299 if (n) { 1300 if (bp->b_dirtyend > 0) { 1301 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1302 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1303 } else { 1304 bp->b_dirtyoff = on; 1305 bp->b_dirtyend = on + n; 1306 } 1307 vfs_bio_set_validclean(bp, on, n); 1308 } 1309 1310 /* 1311 * If IO_SYNC do bwrite(). 1312 * 1313 * IO_INVAL appears to be unused. The idea appears to be 1314 * to turn off caching in this case. Very odd. XXX 1315 */ 1316 if ((ioflag & IO_SYNC)) { 1317 if (ioflag & IO_INVAL) 1318 bp->b_flags |= B_NOCACHE; 1319 error = bwrite(bp); 1320 if (error) 1321 break; 1322 } else if ((n + on) == biosize) { 1323 bp->b_flags |= B_ASYNC; 1324 (void) ncl_writebp(bp, 0, NULL); 1325 } else { 1326 bdwrite(bp); 1327 } 1328 } while (uio->uio_resid > 0 && n > 0); 1329 1330 return (error); 1331 } 1332 1333 /* 1334 * Get an nfs cache block. 1335 * 1336 * Allocate a new one if the block isn't currently in the cache 1337 * and return the block marked busy. If the calling process is 1338 * interrupted by a signal for an interruptible mount point, return 1339 * NULL. 1340 * 1341 * The caller must carefully deal with the possible B_INVAL state of 1342 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1343 * indirectly), so synchronous reads can be issued without worrying about 1344 * the B_INVAL state. We have to be a little more careful when dealing 1345 * with writes (see comments in nfs_write()) when extending a file past 1346 * its EOF. 1347 */ 1348 static struct buf * 1349 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1350 { 1351 struct buf *bp; 1352 struct mount *mp; 1353 struct nfsmount *nmp; 1354 1355 mp = vp->v_mount; 1356 nmp = VFSTONFS(mp); 1357 1358 if (nmp->nm_flag & NFSMNT_INT) { 1359 sigset_t oldset; 1360 1361 ncl_set_sigmask(td, &oldset); 1362 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1363 ncl_restore_sigmask(td, &oldset); 1364 while (bp == NULL) { 1365 if (newnfs_sigintr(nmp, td)) 1366 return (NULL); 1367 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1368 } 1369 } else { 1370 bp = getblk(vp, bn, size, 0, 0, 0); 1371 } 1372 1373 if (vp->v_type == VREG) { 1374 int biosize; 1375 1376 biosize = mp->mnt_stat.f_iosize; 1377 bp->b_blkno = bn * (biosize / DEV_BSIZE); 1378 } 1379 return (bp); 1380 } 1381 1382 /* 1383 * Flush and invalidate all dirty buffers. If another process is already 1384 * doing the flush, just wait for completion. 1385 */ 1386 int 1387 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1388 { 1389 struct nfsnode *np = VTONFS(vp); 1390 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1391 int error = 0, slpflag, slptimeo; 1392 int old_lock = 0; 1393 1394 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1395 1396 /* 1397 * XXX This check stops us from needlessly doing a vinvalbuf when 1398 * being called through vclean(). It is not clear that this is 1399 * unsafe. 1400 */ 1401 if (vp->v_iflag & VI_DOOMED) 1402 return (0); 1403 1404 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1405 intrflg = 0; 1406 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1407 intrflg = 1; 1408 if (intrflg) { 1409 slpflag = PCATCH; 1410 slptimeo = 2 * hz; 1411 } else { 1412 slpflag = 0; 1413 slptimeo = 0; 1414 } 1415 1416 old_lock = ncl_upgrade_vnlock(vp); 1417 /* 1418 * Now, flush as required. 1419 */ 1420 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1421 VM_OBJECT_LOCK(vp->v_bufobj.bo_object); 1422 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1423 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object); 1424 /* 1425 * If the page clean was interrupted, fail the invalidation. 1426 * Not doing so, we run the risk of losing dirty pages in the 1427 * vinvalbuf() call below. 1428 */ 1429 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1430 goto out; 1431 } 1432 1433 error = vinvalbuf(vp, flags, slpflag, 0); 1434 while (error) { 1435 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1436 goto out; 1437 error = vinvalbuf(vp, flags, 0, slptimeo); 1438 } 1439 mtx_lock(&np->n_mtx); 1440 if (np->n_directio_asyncwr == 0) 1441 np->n_flag &= ~NMODIFIED; 1442 mtx_unlock(&np->n_mtx); 1443 out: 1444 ncl_downgrade_vnlock(vp, old_lock); 1445 return error; 1446 } 1447 1448 /* 1449 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1450 * This is mainly to avoid queueing async I/O requests when the nfsiods 1451 * are all hung on a dead server. 1452 * 1453 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1454 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1455 */ 1456 int 1457 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1458 { 1459 int iod; 1460 int gotiod; 1461 int slpflag = 0; 1462 int slptimeo = 0; 1463 int error, error2; 1464 1465 /* 1466 * Unless iothreadcnt is set > 0, don't bother with async I/O 1467 * threads. For LAN environments, they don't buy any significant 1468 * performance improvement that you can't get with large block 1469 * sizes. 1470 */ 1471 if (nmp->nm_readahead == 0) 1472 return (EPERM); 1473 1474 /* 1475 * Commits are usually short and sweet so lets save some cpu and 1476 * leave the async daemons for more important rpc's (such as reads 1477 * and writes). 1478 */ 1479 mtx_lock(&ncl_iod_mutex); 1480 if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1481 (nmp->nm_bufqiods > ncl_numasync / 2)) { 1482 mtx_unlock(&ncl_iod_mutex); 1483 return(EIO); 1484 } 1485 again: 1486 if (nmp->nm_flag & NFSMNT_INT) 1487 slpflag = PCATCH; 1488 gotiod = FALSE; 1489 1490 /* 1491 * Find a free iod to process this request. 1492 */ 1493 for (iod = 0; iod < ncl_numasync; iod++) 1494 if (ncl_iodwant[iod]) { 1495 gotiod = TRUE; 1496 break; 1497 } 1498 1499 /* 1500 * Try to create one if none are free. 1501 */ 1502 if (!gotiod) { 1503 iod = ncl_nfsiodnew(); 1504 if (iod != -1) 1505 gotiod = TRUE; 1506 } 1507 1508 if (gotiod) { 1509 /* 1510 * Found one, so wake it up and tell it which 1511 * mount to process. 1512 */ 1513 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1514 iod, nmp)); 1515 ncl_iodwant[iod] = NULL; 1516 ncl_iodmount[iod] = nmp; 1517 nmp->nm_bufqiods++; 1518 wakeup(&ncl_iodwant[iod]); 1519 } 1520 1521 /* 1522 * If none are free, we may already have an iod working on this mount 1523 * point. If so, it will process our request. 1524 */ 1525 if (!gotiod) { 1526 if (nmp->nm_bufqiods > 0) { 1527 NFS_DPF(ASYNCIO, 1528 ("ncl_asyncio: %d iods are already processing mount %p\n", 1529 nmp->nm_bufqiods, nmp)); 1530 gotiod = TRUE; 1531 } 1532 } 1533 1534 /* 1535 * If we have an iod which can process the request, then queue 1536 * the buffer. 1537 */ 1538 if (gotiod) { 1539 /* 1540 * Ensure that the queue never grows too large. We still want 1541 * to asynchronize so we block rather then return EIO. 1542 */ 1543 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1544 NFS_DPF(ASYNCIO, 1545 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1546 nmp->nm_bufqwant = TRUE; 1547 error = ncl_msleep(td, &nmp->nm_bufq, &ncl_iod_mutex, 1548 slpflag | PRIBIO, 1549 "nfsaio", slptimeo); 1550 if (error) { 1551 error2 = newnfs_sigintr(nmp, td); 1552 if (error2) { 1553 mtx_unlock(&ncl_iod_mutex); 1554 return (error2); 1555 } 1556 if (slpflag == PCATCH) { 1557 slpflag = 0; 1558 slptimeo = 2 * hz; 1559 } 1560 } 1561 /* 1562 * We might have lost our iod while sleeping, 1563 * so check and loop if nescessary. 1564 */ 1565 if (nmp->nm_bufqiods == 0) { 1566 NFS_DPF(ASYNCIO, 1567 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1568 goto again; 1569 } 1570 } 1571 1572 /* We might have lost our nfsiod */ 1573 if (nmp->nm_bufqiods == 0) { 1574 NFS_DPF(ASYNCIO, 1575 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1576 goto again; 1577 } 1578 1579 if (bp->b_iocmd == BIO_READ) { 1580 if (bp->b_rcred == NOCRED && cred != NOCRED) 1581 bp->b_rcred = crhold(cred); 1582 } else { 1583 if (bp->b_wcred == NOCRED && cred != NOCRED) 1584 bp->b_wcred = crhold(cred); 1585 } 1586 1587 if (bp->b_flags & B_REMFREE) 1588 bremfreef(bp); 1589 BUF_KERNPROC(bp); 1590 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1591 nmp->nm_bufqlen++; 1592 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1593 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1594 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1595 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1596 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1597 } 1598 mtx_unlock(&ncl_iod_mutex); 1599 return (0); 1600 } 1601 1602 mtx_unlock(&ncl_iod_mutex); 1603 1604 /* 1605 * All the iods are busy on other mounts, so return EIO to 1606 * force the caller to process the i/o synchronously. 1607 */ 1608 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1609 return (EIO); 1610 } 1611 1612 void 1613 ncl_doio_directwrite(struct buf *bp) 1614 { 1615 int iomode, must_commit; 1616 struct uio *uiop = (struct uio *)bp->b_caller1; 1617 char *iov_base = uiop->uio_iov->iov_base; 1618 1619 iomode = NFSWRITE_FILESYNC; 1620 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1621 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit); 1622 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1623 free(iov_base, M_NFSDIRECTIO); 1624 free(uiop->uio_iov, M_NFSDIRECTIO); 1625 free(uiop, M_NFSDIRECTIO); 1626 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1627 struct nfsnode *np = VTONFS(bp->b_vp); 1628 mtx_lock(&np->n_mtx); 1629 np->n_directio_asyncwr--; 1630 if (np->n_directio_asyncwr == 0) { 1631 np->n_flag &= ~NMODIFIED; 1632 if ((np->n_flag & NFSYNCWAIT)) { 1633 np->n_flag &= ~NFSYNCWAIT; 1634 wakeup((caddr_t)&np->n_directio_asyncwr); 1635 } 1636 } 1637 mtx_unlock(&np->n_mtx); 1638 } 1639 bp->b_vp = NULL; 1640 relpbuf(bp, &ncl_pbuf_freecnt); 1641 } 1642 1643 /* 1644 * Do an I/O operation to/from a cache block. This may be called 1645 * synchronously or from an nfsiod. 1646 */ 1647 int 1648 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td) 1649 { 1650 struct uio *uiop; 1651 struct nfsnode *np; 1652 struct nfsmount *nmp; 1653 int error = 0, iomode, must_commit = 0; 1654 struct uio uio; 1655 struct iovec io; 1656 struct proc *p = td ? td->td_proc : NULL; 1657 uint8_t iocmd; 1658 1659 np = VTONFS(vp); 1660 nmp = VFSTONFS(vp->v_mount); 1661 uiop = &uio; 1662 uiop->uio_iov = &io; 1663 uiop->uio_iovcnt = 1; 1664 uiop->uio_segflg = UIO_SYSSPACE; 1665 uiop->uio_td = td; 1666 1667 /* 1668 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1669 * do this here so we do not have to do it in all the code that 1670 * calls us. 1671 */ 1672 bp->b_flags &= ~B_INVAL; 1673 bp->b_ioflags &= ~BIO_ERROR; 1674 1675 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1676 iocmd = bp->b_iocmd; 1677 if (iocmd == BIO_READ) { 1678 io.iov_len = uiop->uio_resid = bp->b_bcount; 1679 io.iov_base = bp->b_data; 1680 uiop->uio_rw = UIO_READ; 1681 1682 switch (vp->v_type) { 1683 case VREG: 1684 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1685 NFSINCRGLOBAL(newnfsstats.read_bios); 1686 error = ncl_readrpc(vp, uiop, cr); 1687 1688 if (!error) { 1689 if (uiop->uio_resid) { 1690 /* 1691 * If we had a short read with no error, we must have 1692 * hit a file hole. We should zero-fill the remainder. 1693 * This can also occur if the server hits the file EOF. 1694 * 1695 * Holes used to be able to occur due to pending 1696 * writes, but that is not possible any longer. 1697 */ 1698 int nread = bp->b_bcount - uiop->uio_resid; 1699 int left = uiop->uio_resid; 1700 1701 if (left > 0) 1702 bzero((char *)bp->b_data + nread, left); 1703 uiop->uio_resid = 0; 1704 } 1705 } 1706 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1707 if (p && (vp->v_vflag & VV_TEXT)) { 1708 mtx_lock(&np->n_mtx); 1709 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1710 mtx_unlock(&np->n_mtx); 1711 PROC_LOCK(p); 1712 killproc(p, "text file modification"); 1713 PROC_UNLOCK(p); 1714 } else 1715 mtx_unlock(&np->n_mtx); 1716 } 1717 break; 1718 case VLNK: 1719 uiop->uio_offset = (off_t)0; 1720 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1721 error = ncl_readlinkrpc(vp, uiop, cr); 1722 break; 1723 case VDIR: 1724 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1725 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1726 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1727 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1728 if (error == NFSERR_NOTSUPP) 1729 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1730 } 1731 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1732 error = ncl_readdirrpc(vp, uiop, cr, td); 1733 /* 1734 * end-of-directory sets B_INVAL but does not generate an 1735 * error. 1736 */ 1737 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1738 bp->b_flags |= B_INVAL; 1739 break; 1740 default: 1741 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1742 break; 1743 }; 1744 if (error) { 1745 bp->b_ioflags |= BIO_ERROR; 1746 bp->b_error = error; 1747 } 1748 } else { 1749 /* 1750 * If we only need to commit, try to commit 1751 */ 1752 if (bp->b_flags & B_NEEDCOMMIT) { 1753 int retv; 1754 off_t off; 1755 1756 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1757 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1758 bp->b_wcred, td); 1759 if (retv == 0) { 1760 bp->b_dirtyoff = bp->b_dirtyend = 0; 1761 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1762 bp->b_resid = 0; 1763 bufdone(bp); 1764 return (0); 1765 } 1766 if (retv == NFSERR_STALEWRITEVERF) { 1767 ncl_clearcommit(vp->v_mount); 1768 } 1769 } 1770 1771 /* 1772 * Setup for actual write 1773 */ 1774 mtx_lock(&np->n_mtx); 1775 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1776 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1777 mtx_unlock(&np->n_mtx); 1778 1779 if (bp->b_dirtyend > bp->b_dirtyoff) { 1780 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1781 - bp->b_dirtyoff; 1782 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1783 + bp->b_dirtyoff; 1784 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1785 uiop->uio_rw = UIO_WRITE; 1786 NFSINCRGLOBAL(newnfsstats.write_bios); 1787 1788 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1789 iomode = NFSWRITE_UNSTABLE; 1790 else 1791 iomode = NFSWRITE_FILESYNC; 1792 1793 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit); 1794 1795 /* 1796 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1797 * to cluster the buffers needing commit. This will allow 1798 * the system to submit a single commit rpc for the whole 1799 * cluster. We can do this even if the buffer is not 100% 1800 * dirty (relative to the NFS blocksize), so we optimize the 1801 * append-to-file-case. 1802 * 1803 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1804 * cleared because write clustering only works for commit 1805 * rpc's, not for the data portion of the write). 1806 */ 1807 1808 if (!error && iomode == NFSWRITE_UNSTABLE) { 1809 bp->b_flags |= B_NEEDCOMMIT; 1810 if (bp->b_dirtyoff == 0 1811 && bp->b_dirtyend == bp->b_bcount) 1812 bp->b_flags |= B_CLUSTEROK; 1813 } else { 1814 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1815 } 1816 1817 /* 1818 * For an interrupted write, the buffer is still valid 1819 * and the write hasn't been pushed to the server yet, 1820 * so we can't set BIO_ERROR and report the interruption 1821 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1822 * is not relevant, so the rpc attempt is essentially 1823 * a noop. For the case of a V3 write rpc not being 1824 * committed to stable storage, the block is still 1825 * dirty and requires either a commit rpc or another 1826 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1827 * the block is reused. This is indicated by setting 1828 * the B_DELWRI and B_NEEDCOMMIT flags. 1829 * 1830 * If the buffer is marked B_PAGING, it does not reside on 1831 * the vp's paging queues so we cannot call bdirty(). The 1832 * bp in this case is not an NFS cache block so we should 1833 * be safe. XXX 1834 * 1835 * The logic below breaks up errors into recoverable and 1836 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1837 * and keep the buffer around for potential write retries. 1838 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1839 * and save the error in the nfsnode. This is less than ideal 1840 * but necessary. Keeping such buffers around could potentially 1841 * cause buffer exhaustion eventually (they can never be written 1842 * out, so will get constantly be re-dirtied). It also causes 1843 * all sorts of vfs panics. For non-recoverable write errors, 1844 * also invalidate the attrcache, so we'll be forced to go over 1845 * the wire for this object, returning an error to user on next 1846 * call (most of the time). 1847 */ 1848 if (error == EINTR || error == EIO || error == ETIMEDOUT 1849 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1850 int s; 1851 1852 s = splbio(); 1853 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1854 if ((bp->b_flags & B_PAGING) == 0) { 1855 bdirty(bp); 1856 bp->b_flags &= ~B_DONE; 1857 } 1858 if (error && (bp->b_flags & B_ASYNC) == 0) 1859 bp->b_flags |= B_EINTR; 1860 splx(s); 1861 } else { 1862 if (error) { 1863 bp->b_ioflags |= BIO_ERROR; 1864 bp->b_flags |= B_INVAL; 1865 bp->b_error = np->n_error = error; 1866 mtx_lock(&np->n_mtx); 1867 np->n_flag |= NWRITEERR; 1868 np->n_attrstamp = 0; 1869 mtx_unlock(&np->n_mtx); 1870 } 1871 bp->b_dirtyoff = bp->b_dirtyend = 0; 1872 } 1873 } else { 1874 bp->b_resid = 0; 1875 bufdone(bp); 1876 return (0); 1877 } 1878 } 1879 bp->b_resid = uiop->uio_resid; 1880 if (must_commit) 1881 ncl_clearcommit(vp->v_mount); 1882 bufdone(bp); 1883 return (error); 1884 } 1885 1886 /* 1887 * Used to aid in handling ftruncate() operations on the NFS client side. 1888 * Truncation creates a number of special problems for NFS. We have to 1889 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1890 * we have to properly handle VM pages or (potentially dirty) buffers 1891 * that straddle the truncation point. 1892 */ 1893 1894 int 1895 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1896 { 1897 struct nfsnode *np = VTONFS(vp); 1898 u_quad_t tsize; 1899 int biosize = vp->v_mount->mnt_stat.f_iosize; 1900 int error = 0; 1901 1902 mtx_lock(&np->n_mtx); 1903 tsize = np->n_size; 1904 np->n_size = nsize; 1905 mtx_unlock(&np->n_mtx); 1906 1907 if (nsize < tsize) { 1908 struct buf *bp; 1909 daddr_t lbn; 1910 int bufsize; 1911 1912 /* 1913 * vtruncbuf() doesn't get the buffer overlapping the 1914 * truncation point. We may have a B_DELWRI and/or B_CACHE 1915 * buffer that now needs to be truncated. 1916 */ 1917 error = vtruncbuf(vp, cred, td, nsize, biosize); 1918 lbn = nsize / biosize; 1919 bufsize = nsize & (biosize - 1); 1920 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1921 if (!bp) 1922 return EINTR; 1923 if (bp->b_dirtyoff > bp->b_bcount) 1924 bp->b_dirtyoff = bp->b_bcount; 1925 if (bp->b_dirtyend > bp->b_bcount) 1926 bp->b_dirtyend = bp->b_bcount; 1927 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1928 brelse(bp); 1929 } else { 1930 vnode_pager_setsize(vp, nsize); 1931 } 1932 return(error); 1933 } 1934 1935