1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/vmmeter.h> 48 #include <sys/vnode.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_pager.h> 55 #include <vm/vnode_pager.h> 56 57 #include <fs/nfs/nfsport.h> 58 #include <fs/nfsclient/nfsmount.h> 59 #include <fs/nfsclient/nfs.h> 60 #include <fs/nfsclient/nfsnode.h> 61 62 extern int newnfs_directio_allow_mmap; 63 extern struct nfsstats newnfsstats; 64 extern struct mtx ncl_iod_mutex; 65 extern int ncl_numasync; 66 extern struct proc *ncl_iodwant[NFS_MAXRAHEAD]; 67 extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD]; 68 extern int newnfs_directio_enable; 69 70 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 71 72 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 73 struct thread *td); 74 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 75 struct ucred *cred, int ioflag); 76 77 /* 78 * Any signal that can interrupt an NFS operation in an intr mount 79 * should be added to this set. SIGSTOP and SIGKILL cannot be masked. 80 */ 81 static int nfs_sig_set[] = { 82 SIGINT, 83 SIGTERM, 84 SIGHUP, 85 SIGKILL, 86 SIGSTOP, 87 SIGQUIT 88 }; 89 90 #ifdef notnow 91 /* 92 * Check to see if one of the signals in our subset is pending on 93 * the process (in an intr mount). 94 */ 95 int 96 ncl_sig_pending(sigset_t set) 97 { 98 int i; 99 100 for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) 101 if (SIGISMEMBER(set, nfs_sig_set[i])) 102 return (1); 103 return (0); 104 } 105 #endif 106 107 /* 108 * The set/restore sigmask functions are used to (temporarily) overwrite 109 * the process p_sigmask during an RPC call (for example). These are also 110 * used in other places in the NFS client that might tsleep(). 111 */ 112 static void 113 ncl_set_sigmask(struct thread *td, sigset_t *oldset) 114 { 115 sigset_t newset; 116 int i; 117 struct proc *p; 118 119 SIGFILLSET(newset); 120 if (td == NULL) 121 td = curthread; /* XXX */ 122 p = td->td_proc; 123 /* Remove the NFS set of signals from newset */ 124 PROC_LOCK(p); 125 mtx_lock(&p->p_sigacts->ps_mtx); 126 for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) { 127 /* 128 * But make sure we leave the ones already masked 129 * by the process, ie. remove the signal from the 130 * temporary signalmask only if it wasn't already 131 * in p_sigmask. 132 */ 133 if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) && 134 !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i])) 135 SIGDELSET(newset, nfs_sig_set[i]); 136 } 137 mtx_unlock(&p->p_sigacts->ps_mtx); 138 PROC_UNLOCK(p); 139 kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0); 140 } 141 142 static void 143 ncl_restore_sigmask(struct thread *td, sigset_t *set) 144 { 145 if (td == NULL) 146 td = curthread; /* XXX */ 147 kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0); 148 } 149 150 /* 151 * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the 152 * old one after msleep() returns. 153 */ 154 int 155 ncl_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo) 156 { 157 sigset_t oldset; 158 int error; 159 struct proc *p; 160 161 if ((priority & PCATCH) == 0) 162 return msleep(ident, mtx, priority, wmesg, timo); 163 if (td == NULL) 164 td = curthread; /* XXX */ 165 ncl_set_sigmask(td, &oldset); 166 error = msleep(ident, mtx, priority, wmesg, timo); 167 ncl_restore_sigmask(td, &oldset); 168 p = td->td_proc; 169 return (error); 170 } 171 172 /* 173 * Vnode op for VM getpages. 174 */ 175 int 176 ncl_getpages(struct vop_getpages_args *ap) 177 { 178 int i, error, nextoff, size, toff, count, npages; 179 struct uio uio; 180 struct iovec iov; 181 vm_offset_t kva; 182 struct buf *bp; 183 struct vnode *vp; 184 struct thread *td; 185 struct ucred *cred; 186 struct nfsmount *nmp; 187 vm_object_t object; 188 vm_page_t *pages; 189 struct nfsnode *np; 190 191 vp = ap->a_vp; 192 np = VTONFS(vp); 193 td = curthread; /* XXX */ 194 cred = curthread->td_ucred; /* XXX */ 195 nmp = VFSTONFS(vp->v_mount); 196 pages = ap->a_m; 197 count = ap->a_count; 198 199 if ((object = vp->v_object) == NULL) { 200 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 201 return (VM_PAGER_ERROR); 202 } 203 204 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 205 mtx_lock(&np->n_mtx); 206 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 207 mtx_unlock(&np->n_mtx); 208 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 209 return (VM_PAGER_ERROR); 210 } else 211 mtx_unlock(&np->n_mtx); 212 } 213 214 mtx_lock(&nmp->nm_mtx); 215 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 216 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 217 mtx_unlock(&nmp->nm_mtx); 218 /* We'll never get here for v4, because we always have fsinfo */ 219 (void)ncl_fsinfo(nmp, vp, cred, td); 220 } else 221 mtx_unlock(&nmp->nm_mtx); 222 223 npages = btoc(count); 224 225 /* 226 * If the requested page is partially valid, just return it and 227 * allow the pager to zero-out the blanks. Partially valid pages 228 * can only occur at the file EOF. 229 */ 230 VM_OBJECT_LOCK(object); 231 if (pages[ap->a_reqpage]->valid != 0) { 232 vm_page_lock_queues(); 233 for (i = 0; i < npages; ++i) { 234 if (i != ap->a_reqpage) 235 vm_page_free(pages[i]); 236 } 237 vm_page_unlock_queues(); 238 VM_OBJECT_UNLOCK(object); 239 return (0); 240 } 241 VM_OBJECT_UNLOCK(object); 242 243 /* 244 * We use only the kva address for the buffer, but this is extremely 245 * convienient and fast. 246 */ 247 bp = getpbuf(&ncl_pbuf_freecnt); 248 249 kva = (vm_offset_t) bp->b_data; 250 pmap_qenter(kva, pages, npages); 251 PCPU_INC(cnt.v_vnodein); 252 PCPU_ADD(cnt.v_vnodepgsin, npages); 253 254 iov.iov_base = (caddr_t) kva; 255 iov.iov_len = count; 256 uio.uio_iov = &iov; 257 uio.uio_iovcnt = 1; 258 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 259 uio.uio_resid = count; 260 uio.uio_segflg = UIO_SYSSPACE; 261 uio.uio_rw = UIO_READ; 262 uio.uio_td = td; 263 264 error = ncl_readrpc(vp, &uio, cred); 265 pmap_qremove(kva, npages); 266 267 relpbuf(bp, &ncl_pbuf_freecnt); 268 269 if (error && (uio.uio_resid == count)) { 270 ncl_printf("nfs_getpages: error %d\n", error); 271 VM_OBJECT_LOCK(object); 272 vm_page_lock_queues(); 273 for (i = 0; i < npages; ++i) { 274 if (i != ap->a_reqpage) 275 vm_page_free(pages[i]); 276 } 277 vm_page_unlock_queues(); 278 VM_OBJECT_UNLOCK(object); 279 return (VM_PAGER_ERROR); 280 } 281 282 /* 283 * Calculate the number of bytes read and validate only that number 284 * of bytes. Note that due to pending writes, size may be 0. This 285 * does not mean that the remaining data is invalid! 286 */ 287 288 size = count - uio.uio_resid; 289 VM_OBJECT_LOCK(object); 290 vm_page_lock_queues(); 291 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 292 vm_page_t m; 293 nextoff = toff + PAGE_SIZE; 294 m = pages[i]; 295 296 if (nextoff <= size) { 297 /* 298 * Read operation filled an entire page 299 */ 300 m->valid = VM_PAGE_BITS_ALL; 301 KASSERT(m->dirty == 0, 302 ("nfs_getpages: page %p is dirty", m)); 303 } else if (size > toff) { 304 /* 305 * Read operation filled a partial page. 306 */ 307 m->valid = 0; 308 vm_page_set_valid(m, 0, size - toff); 309 KASSERT(m->dirty == 0, 310 ("nfs_getpages: page %p is dirty", m)); 311 } else { 312 /* 313 * Read operation was short. If no error occured 314 * we may have hit a zero-fill section. We simply 315 * leave valid set to 0. 316 */ 317 ; 318 } 319 if (i != ap->a_reqpage) { 320 /* 321 * Whether or not to leave the page activated is up in 322 * the air, but we should put the page on a page queue 323 * somewhere (it already is in the object). Result: 324 * It appears that emperical results show that 325 * deactivating pages is best. 326 */ 327 328 /* 329 * Just in case someone was asking for this page we 330 * now tell them that it is ok to use. 331 */ 332 if (!error) { 333 if (m->oflags & VPO_WANTED) 334 vm_page_activate(m); 335 else 336 vm_page_deactivate(m); 337 vm_page_wakeup(m); 338 } else { 339 vm_page_free(m); 340 } 341 } 342 } 343 vm_page_unlock_queues(); 344 VM_OBJECT_UNLOCK(object); 345 return (0); 346 } 347 348 /* 349 * Vnode op for VM putpages. 350 */ 351 int 352 ncl_putpages(struct vop_putpages_args *ap) 353 { 354 struct uio uio; 355 struct iovec iov; 356 vm_offset_t kva; 357 struct buf *bp; 358 int iomode, must_commit, i, error, npages, count; 359 off_t offset; 360 int *rtvals; 361 struct vnode *vp; 362 struct thread *td; 363 struct ucred *cred; 364 struct nfsmount *nmp; 365 struct nfsnode *np; 366 vm_page_t *pages; 367 368 vp = ap->a_vp; 369 np = VTONFS(vp); 370 td = curthread; /* XXX */ 371 cred = curthread->td_ucred; /* XXX */ 372 nmp = VFSTONFS(vp->v_mount); 373 pages = ap->a_m; 374 count = ap->a_count; 375 rtvals = ap->a_rtvals; 376 npages = btoc(count); 377 offset = IDX_TO_OFF(pages[0]->pindex); 378 379 mtx_lock(&nmp->nm_mtx); 380 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 381 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 382 mtx_unlock(&nmp->nm_mtx); 383 (void)ncl_fsinfo(nmp, vp, cred, td); 384 } else 385 mtx_unlock(&nmp->nm_mtx); 386 387 mtx_lock(&np->n_mtx); 388 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 389 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 390 mtx_unlock(&np->n_mtx); 391 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 392 mtx_lock(&np->n_mtx); 393 } 394 395 for (i = 0; i < npages; i++) 396 rtvals[i] = VM_PAGER_AGAIN; 397 398 /* 399 * When putting pages, do not extend file past EOF. 400 */ 401 if (offset + count > np->n_size) { 402 count = np->n_size - offset; 403 if (count < 0) 404 count = 0; 405 } 406 mtx_unlock(&np->n_mtx); 407 408 /* 409 * We use only the kva address for the buffer, but this is extremely 410 * convienient and fast. 411 */ 412 bp = getpbuf(&ncl_pbuf_freecnt); 413 414 kva = (vm_offset_t) bp->b_data; 415 pmap_qenter(kva, pages, npages); 416 PCPU_INC(cnt.v_vnodeout); 417 PCPU_ADD(cnt.v_vnodepgsout, count); 418 419 iov.iov_base = (caddr_t) kva; 420 iov.iov_len = count; 421 uio.uio_iov = &iov; 422 uio.uio_iovcnt = 1; 423 uio.uio_offset = offset; 424 uio.uio_resid = count; 425 uio.uio_segflg = UIO_SYSSPACE; 426 uio.uio_rw = UIO_WRITE; 427 uio.uio_td = td; 428 429 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 430 iomode = NFSWRITE_UNSTABLE; 431 else 432 iomode = NFSWRITE_FILESYNC; 433 434 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit); 435 436 pmap_qremove(kva, npages); 437 relpbuf(bp, &ncl_pbuf_freecnt); 438 439 if (!error) { 440 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; 441 for (i = 0; i < nwritten; i++) { 442 rtvals[i] = VM_PAGER_OK; 443 vm_page_undirty(pages[i]); 444 } 445 if (must_commit) { 446 ncl_clearcommit(vp->v_mount); 447 } 448 } 449 return rtvals[0]; 450 } 451 452 /* 453 * For nfs, cache consistency can only be maintained approximately. 454 * Although RFC1094 does not specify the criteria, the following is 455 * believed to be compatible with the reference port. 456 * For nfs: 457 * If the file's modify time on the server has changed since the 458 * last read rpc or you have written to the file, 459 * you may have lost data cache consistency with the 460 * server, so flush all of the file's data out of the cache. 461 * Then force a getattr rpc to ensure that you have up to date 462 * attributes. 463 * NB: This implies that cache data can be read when up to 464 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 465 * attributes this could be forced by setting n_attrstamp to 0 before 466 * the VOP_GETATTR() call. 467 */ 468 static inline int 469 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 470 { 471 int error = 0; 472 struct vattr vattr; 473 struct nfsnode *np = VTONFS(vp); 474 int old_lock; 475 476 /* 477 * Grab the exclusive lock before checking whether the cache is 478 * consistent. 479 * XXX - We can make this cheaper later (by acquiring cheaper locks). 480 * But for now, this suffices. 481 */ 482 old_lock = ncl_upgrade_vnlock(vp); 483 if (vp->v_iflag & VI_DOOMED) { 484 ncl_downgrade_vnlock(vp, old_lock); 485 return (EBADF); 486 } 487 488 mtx_lock(&np->n_mtx); 489 if (np->n_flag & NMODIFIED) { 490 mtx_unlock(&np->n_mtx); 491 if (vp->v_type != VREG) { 492 if (vp->v_type != VDIR) 493 panic("nfs: bioread, not dir"); 494 ncl_invaldir(vp); 495 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 496 if (error) 497 goto out; 498 } 499 np->n_attrstamp = 0; 500 error = VOP_GETATTR(vp, &vattr, cred); 501 if (error) 502 goto out; 503 mtx_lock(&np->n_mtx); 504 np->n_mtime = vattr.va_mtime; 505 mtx_unlock(&np->n_mtx); 506 } else { 507 mtx_unlock(&np->n_mtx); 508 error = VOP_GETATTR(vp, &vattr, cred); 509 if (error) 510 return (error); 511 mtx_lock(&np->n_mtx); 512 if ((np->n_flag & NSIZECHANGED) 513 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 514 mtx_unlock(&np->n_mtx); 515 if (vp->v_type == VDIR) 516 ncl_invaldir(vp); 517 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 518 if (error) 519 goto out; 520 mtx_lock(&np->n_mtx); 521 np->n_mtime = vattr.va_mtime; 522 np->n_flag &= ~NSIZECHANGED; 523 } 524 mtx_unlock(&np->n_mtx); 525 } 526 out: 527 ncl_downgrade_vnlock(vp, old_lock); 528 return error; 529 } 530 531 /* 532 * Vnode op for read using bio 533 */ 534 int 535 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 536 { 537 struct nfsnode *np = VTONFS(vp); 538 int biosize, i; 539 struct buf *bp, *rabp; 540 struct thread *td; 541 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 542 daddr_t lbn, rabn; 543 int bcount; 544 int seqcount; 545 int nra, error = 0, n = 0, on = 0; 546 547 #ifdef DIAGNOSTIC 548 if (uio->uio_rw != UIO_READ) 549 panic("ncl_read mode"); 550 #endif 551 if (uio->uio_resid == 0) 552 return (0); 553 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 554 return (EINVAL); 555 td = uio->uio_td; 556 557 mtx_lock(&nmp->nm_mtx); 558 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 559 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 560 mtx_unlock(&nmp->nm_mtx); 561 (void)ncl_fsinfo(nmp, vp, cred, td); 562 mtx_lock(&nmp->nm_mtx); 563 } 564 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 565 (void) newnfs_iosize(nmp); 566 mtx_unlock(&nmp->nm_mtx); 567 568 if (vp->v_type != VDIR && 569 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 570 return (EFBIG); 571 572 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 573 /* No caching/ no readaheads. Just read data into the user buffer */ 574 return ncl_readrpc(vp, uio, cred); 575 576 biosize = vp->v_mount->mnt_stat.f_iosize; 577 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 578 579 error = nfs_bioread_check_cons(vp, td, cred); 580 if (error) 581 return error; 582 583 do { 584 u_quad_t nsize; 585 586 mtx_lock(&np->n_mtx); 587 nsize = np->n_size; 588 mtx_unlock(&np->n_mtx); 589 590 switch (vp->v_type) { 591 case VREG: 592 NFSINCRGLOBAL(newnfsstats.biocache_reads); 593 lbn = uio->uio_offset / biosize; 594 on = uio->uio_offset & (biosize - 1); 595 596 /* 597 * Start the read ahead(s), as required. 598 */ 599 if (nmp->nm_readahead > 0) { 600 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 601 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 602 rabn = lbn + 1 + nra; 603 if (incore(&vp->v_bufobj, rabn) == NULL) { 604 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 605 if (!rabp) { 606 error = newnfs_sigintr(nmp, td); 607 if (error) 608 return (error); 609 else 610 break; 611 } 612 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 613 rabp->b_flags |= B_ASYNC; 614 rabp->b_iocmd = BIO_READ; 615 vfs_busy_pages(rabp, 0); 616 if (ncl_asyncio(nmp, rabp, cred, td)) { 617 rabp->b_flags |= B_INVAL; 618 rabp->b_ioflags |= BIO_ERROR; 619 vfs_unbusy_pages(rabp); 620 brelse(rabp); 621 break; 622 } 623 } else { 624 brelse(rabp); 625 } 626 } 627 } 628 } 629 630 /* Note that bcount is *not* DEV_BSIZE aligned. */ 631 bcount = biosize; 632 if ((off_t)lbn * biosize >= nsize) { 633 bcount = 0; 634 } else if ((off_t)(lbn + 1) * biosize > nsize) { 635 bcount = nsize - (off_t)lbn * biosize; 636 } 637 bp = nfs_getcacheblk(vp, lbn, bcount, td); 638 639 if (!bp) { 640 error = newnfs_sigintr(nmp, td); 641 return (error ? error : EINTR); 642 } 643 644 /* 645 * If B_CACHE is not set, we must issue the read. If this 646 * fails, we return an error. 647 */ 648 649 if ((bp->b_flags & B_CACHE) == 0) { 650 bp->b_iocmd = BIO_READ; 651 vfs_busy_pages(bp, 0); 652 error = ncl_doio(vp, bp, cred, td); 653 if (error) { 654 brelse(bp); 655 return (error); 656 } 657 } 658 659 /* 660 * on is the offset into the current bp. Figure out how many 661 * bytes we can copy out of the bp. Note that bcount is 662 * NOT DEV_BSIZE aligned. 663 * 664 * Then figure out how many bytes we can copy into the uio. 665 */ 666 667 n = 0; 668 if (on < bcount) 669 n = min((unsigned)(bcount - on), uio->uio_resid); 670 break; 671 case VLNK: 672 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 673 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 674 if (!bp) { 675 error = newnfs_sigintr(nmp, td); 676 return (error ? error : EINTR); 677 } 678 if ((bp->b_flags & B_CACHE) == 0) { 679 bp->b_iocmd = BIO_READ; 680 vfs_busy_pages(bp, 0); 681 error = ncl_doio(vp, bp, cred, td); 682 if (error) { 683 bp->b_ioflags |= BIO_ERROR; 684 brelse(bp); 685 return (error); 686 } 687 } 688 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 689 on = 0; 690 break; 691 case VDIR: 692 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 693 if (np->n_direofoffset 694 && uio->uio_offset >= np->n_direofoffset) { 695 return (0); 696 } 697 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 698 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 699 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 700 if (!bp) { 701 error = newnfs_sigintr(nmp, td); 702 return (error ? error : EINTR); 703 } 704 if ((bp->b_flags & B_CACHE) == 0) { 705 bp->b_iocmd = BIO_READ; 706 vfs_busy_pages(bp, 0); 707 error = ncl_doio(vp, bp, cred, td); 708 if (error) { 709 brelse(bp); 710 } 711 while (error == NFSERR_BAD_COOKIE) { 712 ncl_invaldir(vp); 713 error = ncl_vinvalbuf(vp, 0, td, 1); 714 /* 715 * Yuck! The directory has been modified on the 716 * server. The only way to get the block is by 717 * reading from the beginning to get all the 718 * offset cookies. 719 * 720 * Leave the last bp intact unless there is an error. 721 * Loop back up to the while if the error is another 722 * NFSERR_BAD_COOKIE (double yuch!). 723 */ 724 for (i = 0; i <= lbn && !error; i++) { 725 if (np->n_direofoffset 726 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 727 return (0); 728 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 729 if (!bp) { 730 error = newnfs_sigintr(nmp, td); 731 return (error ? error : EINTR); 732 } 733 if ((bp->b_flags & B_CACHE) == 0) { 734 bp->b_iocmd = BIO_READ; 735 vfs_busy_pages(bp, 0); 736 error = ncl_doio(vp, bp, cred, td); 737 /* 738 * no error + B_INVAL == directory EOF, 739 * use the block. 740 */ 741 if (error == 0 && (bp->b_flags & B_INVAL)) 742 break; 743 } 744 /* 745 * An error will throw away the block and the 746 * for loop will break out. If no error and this 747 * is not the block we want, we throw away the 748 * block and go for the next one via the for loop. 749 */ 750 if (error || i < lbn) 751 brelse(bp); 752 } 753 } 754 /* 755 * The above while is repeated if we hit another cookie 756 * error. If we hit an error and it wasn't a cookie error, 757 * we give up. 758 */ 759 if (error) 760 return (error); 761 } 762 763 /* 764 * If not eof and read aheads are enabled, start one. 765 * (You need the current block first, so that you have the 766 * directory offset cookie of the next block.) 767 */ 768 if (nmp->nm_readahead > 0 && 769 (bp->b_flags & B_INVAL) == 0 && 770 (np->n_direofoffset == 0 || 771 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 772 incore(&vp->v_bufobj, lbn + 1) == NULL) { 773 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 774 if (rabp) { 775 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 776 rabp->b_flags |= B_ASYNC; 777 rabp->b_iocmd = BIO_READ; 778 vfs_busy_pages(rabp, 0); 779 if (ncl_asyncio(nmp, rabp, cred, td)) { 780 rabp->b_flags |= B_INVAL; 781 rabp->b_ioflags |= BIO_ERROR; 782 vfs_unbusy_pages(rabp); 783 brelse(rabp); 784 } 785 } else { 786 brelse(rabp); 787 } 788 } 789 } 790 /* 791 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 792 * chopped for the EOF condition, we cannot tell how large 793 * NFS directories are going to be until we hit EOF. So 794 * an NFS directory buffer is *not* chopped to its EOF. Now, 795 * it just so happens that b_resid will effectively chop it 796 * to EOF. *BUT* this information is lost if the buffer goes 797 * away and is reconstituted into a B_CACHE state ( due to 798 * being VMIO ) later. So we keep track of the directory eof 799 * in np->n_direofoffset and chop it off as an extra step 800 * right here. 801 */ 802 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 803 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 804 n = np->n_direofoffset - uio->uio_offset; 805 break; 806 default: 807 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 808 bp = NULL; 809 break; 810 }; 811 812 if (n > 0) { 813 error = uiomove(bp->b_data + on, (int)n, uio); 814 } 815 if (vp->v_type == VLNK) 816 n = 0; 817 if (bp != NULL) 818 brelse(bp); 819 } while (error == 0 && uio->uio_resid > 0 && n > 0); 820 return (error); 821 } 822 823 /* 824 * The NFS write path cannot handle iovecs with len > 1. So we need to 825 * break up iovecs accordingly (restricting them to wsize). 826 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 827 * For the ASYNC case, 2 copies are needed. The first a copy from the 828 * user buffer to a staging buffer and then a second copy from the staging 829 * buffer to mbufs. This can be optimized by copying from the user buffer 830 * directly into mbufs and passing the chain down, but that requires a 831 * fair amount of re-working of the relevant codepaths (and can be done 832 * later). 833 */ 834 static int 835 nfs_directio_write(vp, uiop, cred, ioflag) 836 struct vnode *vp; 837 struct uio *uiop; 838 struct ucred *cred; 839 int ioflag; 840 { 841 int error; 842 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 843 struct thread *td = uiop->uio_td; 844 int size; 845 int wsize; 846 847 mtx_lock(&nmp->nm_mtx); 848 wsize = nmp->nm_wsize; 849 mtx_unlock(&nmp->nm_mtx); 850 if (ioflag & IO_SYNC) { 851 int iomode, must_commit; 852 struct uio uio; 853 struct iovec iov; 854 do_sync: 855 while (uiop->uio_resid > 0) { 856 size = min(uiop->uio_resid, wsize); 857 size = min(uiop->uio_iov->iov_len, size); 858 iov.iov_base = uiop->uio_iov->iov_base; 859 iov.iov_len = size; 860 uio.uio_iov = &iov; 861 uio.uio_iovcnt = 1; 862 uio.uio_offset = uiop->uio_offset; 863 uio.uio_resid = size; 864 uio.uio_segflg = UIO_USERSPACE; 865 uio.uio_rw = UIO_WRITE; 866 uio.uio_td = td; 867 iomode = NFSWRITE_FILESYNC; 868 error = ncl_writerpc(vp, &uio, cred, &iomode, 869 &must_commit); 870 KASSERT((must_commit == 0), 871 ("ncl_directio_write: Did not commit write")); 872 if (error) 873 return (error); 874 uiop->uio_offset += size; 875 uiop->uio_resid -= size; 876 if (uiop->uio_iov->iov_len <= size) { 877 uiop->uio_iovcnt--; 878 uiop->uio_iov++; 879 } else { 880 uiop->uio_iov->iov_base = 881 (char *)uiop->uio_iov->iov_base + size; 882 uiop->uio_iov->iov_len -= size; 883 } 884 } 885 } else { 886 struct uio *t_uio; 887 struct iovec *t_iov; 888 struct buf *bp; 889 890 /* 891 * Break up the write into blocksize chunks and hand these 892 * over to nfsiod's for write back. 893 * Unfortunately, this incurs a copy of the data. Since 894 * the user could modify the buffer before the write is 895 * initiated. 896 * 897 * The obvious optimization here is that one of the 2 copies 898 * in the async write path can be eliminated by copying the 899 * data here directly into mbufs and passing the mbuf chain 900 * down. But that will require a fair amount of re-working 901 * of the code and can be done if there's enough interest 902 * in NFS directio access. 903 */ 904 while (uiop->uio_resid > 0) { 905 size = min(uiop->uio_resid, wsize); 906 size = min(uiop->uio_iov->iov_len, size); 907 bp = getpbuf(&ncl_pbuf_freecnt); 908 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 909 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 910 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 911 t_iov->iov_len = size; 912 t_uio->uio_iov = t_iov; 913 t_uio->uio_iovcnt = 1; 914 t_uio->uio_offset = uiop->uio_offset; 915 t_uio->uio_resid = size; 916 t_uio->uio_segflg = UIO_SYSSPACE; 917 t_uio->uio_rw = UIO_WRITE; 918 t_uio->uio_td = td; 919 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size); 920 bp->b_flags |= B_DIRECT; 921 bp->b_iocmd = BIO_WRITE; 922 if (cred != NOCRED) { 923 crhold(cred); 924 bp->b_wcred = cred; 925 } else 926 bp->b_wcred = NOCRED; 927 bp->b_caller1 = (void *)t_uio; 928 bp->b_vp = vp; 929 error = ncl_asyncio(nmp, bp, NOCRED, td); 930 if (error) { 931 free(t_iov->iov_base, M_NFSDIRECTIO); 932 free(t_iov, M_NFSDIRECTIO); 933 free(t_uio, M_NFSDIRECTIO); 934 bp->b_vp = NULL; 935 relpbuf(bp, &ncl_pbuf_freecnt); 936 if (error == EINTR) 937 return (error); 938 goto do_sync; 939 } 940 uiop->uio_offset += size; 941 uiop->uio_resid -= size; 942 if (uiop->uio_iov->iov_len <= size) { 943 uiop->uio_iovcnt--; 944 uiop->uio_iov++; 945 } else { 946 uiop->uio_iov->iov_base = 947 (char *)uiop->uio_iov->iov_base + size; 948 uiop->uio_iov->iov_len -= size; 949 } 950 } 951 } 952 return (0); 953 } 954 955 /* 956 * Vnode op for write using bio 957 */ 958 int 959 ncl_write(struct vop_write_args *ap) 960 { 961 int biosize; 962 struct uio *uio = ap->a_uio; 963 struct thread *td = uio->uio_td; 964 struct vnode *vp = ap->a_vp; 965 struct nfsnode *np = VTONFS(vp); 966 struct ucred *cred = ap->a_cred; 967 int ioflag = ap->a_ioflag; 968 struct buf *bp; 969 struct vattr vattr; 970 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 971 daddr_t lbn; 972 int bcount; 973 int n, on, error = 0; 974 struct proc *p = td?td->td_proc:NULL; 975 976 #ifdef DIAGNOSTIC 977 if (uio->uio_rw != UIO_WRITE) 978 panic("ncl_write mode"); 979 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 980 panic("ncl_write proc"); 981 #endif 982 if (vp->v_type != VREG) 983 return (EIO); 984 mtx_lock(&np->n_mtx); 985 if (np->n_flag & NWRITEERR) { 986 np->n_flag &= ~NWRITEERR; 987 mtx_unlock(&np->n_mtx); 988 return (np->n_error); 989 } else 990 mtx_unlock(&np->n_mtx); 991 mtx_lock(&nmp->nm_mtx); 992 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 993 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 994 mtx_unlock(&nmp->nm_mtx); 995 (void)ncl_fsinfo(nmp, vp, cred, td); 996 mtx_lock(&nmp->nm_mtx); 997 } 998 if (nmp->nm_wsize == 0) 999 (void) newnfs_iosize(nmp); 1000 mtx_unlock(&nmp->nm_mtx); 1001 1002 /* 1003 * Synchronously flush pending buffers if we are in synchronous 1004 * mode or if we are appending. 1005 */ 1006 if (ioflag & (IO_APPEND | IO_SYNC)) { 1007 mtx_lock(&np->n_mtx); 1008 if (np->n_flag & NMODIFIED) { 1009 mtx_unlock(&np->n_mtx); 1010 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 1011 /* 1012 * Require non-blocking, synchronous writes to 1013 * dirty files to inform the program it needs 1014 * to fsync(2) explicitly. 1015 */ 1016 if (ioflag & IO_NDELAY) 1017 return (EAGAIN); 1018 #endif 1019 flush_and_restart: 1020 np->n_attrstamp = 0; 1021 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 1022 if (error) 1023 return (error); 1024 } else 1025 mtx_unlock(&np->n_mtx); 1026 } 1027 1028 /* 1029 * If IO_APPEND then load uio_offset. We restart here if we cannot 1030 * get the append lock. 1031 */ 1032 if (ioflag & IO_APPEND) { 1033 np->n_attrstamp = 0; 1034 error = VOP_GETATTR(vp, &vattr, cred); 1035 if (error) 1036 return (error); 1037 mtx_lock(&np->n_mtx); 1038 uio->uio_offset = np->n_size; 1039 mtx_unlock(&np->n_mtx); 1040 } 1041 1042 if (uio->uio_offset < 0) 1043 return (EINVAL); 1044 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 1045 return (EFBIG); 1046 if (uio->uio_resid == 0) 1047 return (0); 1048 1049 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 1050 return nfs_directio_write(vp, uio, cred, ioflag); 1051 1052 /* 1053 * Maybe this should be above the vnode op call, but so long as 1054 * file servers have no limits, i don't think it matters 1055 */ 1056 if (p != NULL) { 1057 PROC_LOCK(p); 1058 if (uio->uio_offset + uio->uio_resid > 1059 lim_cur(p, RLIMIT_FSIZE)) { 1060 psignal(p, SIGXFSZ); 1061 PROC_UNLOCK(p); 1062 return (EFBIG); 1063 } 1064 PROC_UNLOCK(p); 1065 } 1066 1067 biosize = vp->v_mount->mnt_stat.f_iosize; 1068 /* 1069 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1070 * would exceed the local maximum per-file write commit size when 1071 * combined with those, we must decide whether to flush, 1072 * go synchronous, or return error. We don't bother checking 1073 * IO_UNIT -- we just make all writes atomic anyway, as there's 1074 * no point optimizing for something that really won't ever happen. 1075 */ 1076 if (!(ioflag & IO_SYNC)) { 1077 int nflag; 1078 1079 mtx_lock(&np->n_mtx); 1080 nflag = np->n_flag; 1081 mtx_unlock(&np->n_mtx); 1082 int needrestart = 0; 1083 if (nmp->nm_wcommitsize < uio->uio_resid) { 1084 /* 1085 * If this request could not possibly be completed 1086 * without exceeding the maximum outstanding write 1087 * commit size, see if we can convert it into a 1088 * synchronous write operation. 1089 */ 1090 if (ioflag & IO_NDELAY) 1091 return (EAGAIN); 1092 ioflag |= IO_SYNC; 1093 if (nflag & NMODIFIED) 1094 needrestart = 1; 1095 } else if (nflag & NMODIFIED) { 1096 int wouldcommit = 0; 1097 BO_LOCK(&vp->v_bufobj); 1098 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1099 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1100 b_bobufs) { 1101 if (bp->b_flags & B_NEEDCOMMIT) 1102 wouldcommit += bp->b_bcount; 1103 } 1104 } 1105 BO_UNLOCK(&vp->v_bufobj); 1106 /* 1107 * Since we're not operating synchronously and 1108 * bypassing the buffer cache, we are in a commit 1109 * and holding all of these buffers whether 1110 * transmitted or not. If not limited, this 1111 * will lead to the buffer cache deadlocking, 1112 * as no one else can flush our uncommitted buffers. 1113 */ 1114 wouldcommit += uio->uio_resid; 1115 /* 1116 * If we would initially exceed the maximum 1117 * outstanding write commit size, flush and restart. 1118 */ 1119 if (wouldcommit > nmp->nm_wcommitsize) 1120 needrestart = 1; 1121 } 1122 if (needrestart) 1123 goto flush_and_restart; 1124 } 1125 1126 do { 1127 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1128 lbn = uio->uio_offset / biosize; 1129 on = uio->uio_offset & (biosize-1); 1130 n = min((unsigned)(biosize - on), uio->uio_resid); 1131 again: 1132 /* 1133 * Handle direct append and file extension cases, calculate 1134 * unaligned buffer size. 1135 */ 1136 mtx_lock(&np->n_mtx); 1137 if (uio->uio_offset == np->n_size && n) { 1138 mtx_unlock(&np->n_mtx); 1139 /* 1140 * Get the buffer (in its pre-append state to maintain 1141 * B_CACHE if it was previously set). Resize the 1142 * nfsnode after we have locked the buffer to prevent 1143 * readers from reading garbage. 1144 */ 1145 bcount = on; 1146 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1147 1148 if (bp != NULL) { 1149 long save; 1150 1151 mtx_lock(&np->n_mtx); 1152 np->n_size = uio->uio_offset + n; 1153 np->n_flag |= NMODIFIED; 1154 vnode_pager_setsize(vp, np->n_size); 1155 mtx_unlock(&np->n_mtx); 1156 1157 save = bp->b_flags & B_CACHE; 1158 bcount += n; 1159 allocbuf(bp, bcount); 1160 bp->b_flags |= save; 1161 } 1162 } else { 1163 /* 1164 * Obtain the locked cache block first, and then 1165 * adjust the file's size as appropriate. 1166 */ 1167 bcount = on + n; 1168 if ((off_t)lbn * biosize + bcount < np->n_size) { 1169 if ((off_t)(lbn + 1) * biosize < np->n_size) 1170 bcount = biosize; 1171 else 1172 bcount = np->n_size - (off_t)lbn * biosize; 1173 } 1174 mtx_unlock(&np->n_mtx); 1175 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1176 mtx_lock(&np->n_mtx); 1177 if (uio->uio_offset + n > np->n_size) { 1178 np->n_size = uio->uio_offset + n; 1179 np->n_flag |= NMODIFIED; 1180 vnode_pager_setsize(vp, np->n_size); 1181 } 1182 mtx_unlock(&np->n_mtx); 1183 } 1184 1185 if (!bp) { 1186 error = newnfs_sigintr(nmp, td); 1187 if (!error) 1188 error = EINTR; 1189 break; 1190 } 1191 1192 /* 1193 * Issue a READ if B_CACHE is not set. In special-append 1194 * mode, B_CACHE is based on the buffer prior to the write 1195 * op and is typically set, avoiding the read. If a read 1196 * is required in special append mode, the server will 1197 * probably send us a short-read since we extended the file 1198 * on our end, resulting in b_resid == 0 and, thusly, 1199 * B_CACHE getting set. 1200 * 1201 * We can also avoid issuing the read if the write covers 1202 * the entire buffer. We have to make sure the buffer state 1203 * is reasonable in this case since we will not be initiating 1204 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1205 * more information. 1206 * 1207 * B_CACHE may also be set due to the buffer being cached 1208 * normally. 1209 */ 1210 1211 if (on == 0 && n == bcount) { 1212 bp->b_flags |= B_CACHE; 1213 bp->b_flags &= ~B_INVAL; 1214 bp->b_ioflags &= ~BIO_ERROR; 1215 } 1216 1217 if ((bp->b_flags & B_CACHE) == 0) { 1218 bp->b_iocmd = BIO_READ; 1219 vfs_busy_pages(bp, 0); 1220 error = ncl_doio(vp, bp, cred, td); 1221 if (error) { 1222 brelse(bp); 1223 break; 1224 } 1225 } 1226 if (bp->b_wcred == NOCRED) 1227 bp->b_wcred = crhold(cred); 1228 mtx_lock(&np->n_mtx); 1229 np->n_flag |= NMODIFIED; 1230 mtx_unlock(&np->n_mtx); 1231 1232 /* 1233 * If dirtyend exceeds file size, chop it down. This should 1234 * not normally occur but there is an append race where it 1235 * might occur XXX, so we log it. 1236 * 1237 * If the chopping creates a reverse-indexed or degenerate 1238 * situation with dirtyoff/end, we 0 both of them. 1239 */ 1240 1241 if (bp->b_dirtyend > bcount) { 1242 ncl_printf("NFS append race @%lx:%d\n", 1243 (long)bp->b_blkno * DEV_BSIZE, 1244 bp->b_dirtyend - bcount); 1245 bp->b_dirtyend = bcount; 1246 } 1247 1248 if (bp->b_dirtyoff >= bp->b_dirtyend) 1249 bp->b_dirtyoff = bp->b_dirtyend = 0; 1250 1251 /* 1252 * If the new write will leave a contiguous dirty 1253 * area, just update the b_dirtyoff and b_dirtyend, 1254 * otherwise force a write rpc of the old dirty area. 1255 * 1256 * While it is possible to merge discontiguous writes due to 1257 * our having a B_CACHE buffer ( and thus valid read data 1258 * for the hole), we don't because it could lead to 1259 * significant cache coherency problems with multiple clients, 1260 * especially if locking is implemented later on. 1261 * 1262 * as an optimization we could theoretically maintain 1263 * a linked list of discontinuous areas, but we would still 1264 * have to commit them separately so there isn't much 1265 * advantage to it except perhaps a bit of asynchronization. 1266 */ 1267 1268 if (bp->b_dirtyend > 0 && 1269 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1270 if (bwrite(bp) == EINTR) { 1271 error = EINTR; 1272 break; 1273 } 1274 goto again; 1275 } 1276 1277 error = uiomove((char *)bp->b_data + on, n, uio); 1278 1279 /* 1280 * Since this block is being modified, it must be written 1281 * again and not just committed. Since write clustering does 1282 * not work for the stage 1 data write, only the stage 2 1283 * commit rpc, we have to clear B_CLUSTEROK as well. 1284 */ 1285 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1286 1287 if (error) { 1288 bp->b_ioflags |= BIO_ERROR; 1289 brelse(bp); 1290 break; 1291 } 1292 1293 /* 1294 * Only update dirtyoff/dirtyend if not a degenerate 1295 * condition. 1296 */ 1297 if (n) { 1298 if (bp->b_dirtyend > 0) { 1299 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1300 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1301 } else { 1302 bp->b_dirtyoff = on; 1303 bp->b_dirtyend = on + n; 1304 } 1305 vfs_bio_set_valid(bp, on, n); 1306 } 1307 1308 /* 1309 * If IO_SYNC do bwrite(). 1310 * 1311 * IO_INVAL appears to be unused. The idea appears to be 1312 * to turn off caching in this case. Very odd. XXX 1313 */ 1314 if ((ioflag & IO_SYNC)) { 1315 if (ioflag & IO_INVAL) 1316 bp->b_flags |= B_NOCACHE; 1317 error = bwrite(bp); 1318 if (error) 1319 break; 1320 } else if ((n + on) == biosize) { 1321 bp->b_flags |= B_ASYNC; 1322 (void) ncl_writebp(bp, 0, NULL); 1323 } else { 1324 bdwrite(bp); 1325 } 1326 } while (uio->uio_resid > 0 && n > 0); 1327 1328 return (error); 1329 } 1330 1331 /* 1332 * Get an nfs cache block. 1333 * 1334 * Allocate a new one if the block isn't currently in the cache 1335 * and return the block marked busy. If the calling process is 1336 * interrupted by a signal for an interruptible mount point, return 1337 * NULL. 1338 * 1339 * The caller must carefully deal with the possible B_INVAL state of 1340 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1341 * indirectly), so synchronous reads can be issued without worrying about 1342 * the B_INVAL state. We have to be a little more careful when dealing 1343 * with writes (see comments in nfs_write()) when extending a file past 1344 * its EOF. 1345 */ 1346 static struct buf * 1347 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1348 { 1349 struct buf *bp; 1350 struct mount *mp; 1351 struct nfsmount *nmp; 1352 1353 mp = vp->v_mount; 1354 nmp = VFSTONFS(mp); 1355 1356 if (nmp->nm_flag & NFSMNT_INT) { 1357 sigset_t oldset; 1358 1359 ncl_set_sigmask(td, &oldset); 1360 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0); 1361 ncl_restore_sigmask(td, &oldset); 1362 while (bp == NULL) { 1363 if (newnfs_sigintr(nmp, td)) 1364 return (NULL); 1365 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1366 } 1367 } else { 1368 bp = getblk(vp, bn, size, 0, 0, 0); 1369 } 1370 1371 if (vp->v_type == VREG) { 1372 int biosize; 1373 1374 biosize = mp->mnt_stat.f_iosize; 1375 bp->b_blkno = bn * (biosize / DEV_BSIZE); 1376 } 1377 return (bp); 1378 } 1379 1380 /* 1381 * Flush and invalidate all dirty buffers. If another process is already 1382 * doing the flush, just wait for completion. 1383 */ 1384 int 1385 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1386 { 1387 struct nfsnode *np = VTONFS(vp); 1388 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1389 int error = 0, slpflag, slptimeo; 1390 int old_lock = 0; 1391 1392 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1393 1394 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1395 intrflg = 0; 1396 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1397 intrflg = 1; 1398 if (intrflg) { 1399 slpflag = NFS_PCATCH; 1400 slptimeo = 2 * hz; 1401 } else { 1402 slpflag = 0; 1403 slptimeo = 0; 1404 } 1405 1406 old_lock = ncl_upgrade_vnlock(vp); 1407 if (vp->v_iflag & VI_DOOMED) { 1408 /* 1409 * Since vgonel() uses the generic vinvalbuf() to flush 1410 * dirty buffers and it does not call this function, it 1411 * is safe to just return OK when VI_DOOMED is set. 1412 */ 1413 ncl_downgrade_vnlock(vp, old_lock); 1414 return (0); 1415 } 1416 1417 /* 1418 * Now, flush as required. 1419 */ 1420 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1421 VM_OBJECT_LOCK(vp->v_bufobj.bo_object); 1422 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1423 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object); 1424 /* 1425 * If the page clean was interrupted, fail the invalidation. 1426 * Not doing so, we run the risk of losing dirty pages in the 1427 * vinvalbuf() call below. 1428 */ 1429 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1430 goto out; 1431 } 1432 1433 error = vinvalbuf(vp, flags, slpflag, 0); 1434 while (error) { 1435 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1436 goto out; 1437 error = vinvalbuf(vp, flags, 0, slptimeo); 1438 } 1439 mtx_lock(&np->n_mtx); 1440 if (np->n_directio_asyncwr == 0) 1441 np->n_flag &= ~NMODIFIED; 1442 mtx_unlock(&np->n_mtx); 1443 out: 1444 ncl_downgrade_vnlock(vp, old_lock); 1445 return error; 1446 } 1447 1448 /* 1449 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1450 * This is mainly to avoid queueing async I/O requests when the nfsiods 1451 * are all hung on a dead server. 1452 * 1453 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1454 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1455 */ 1456 int 1457 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1458 { 1459 int iod; 1460 int gotiod; 1461 int slpflag = 0; 1462 int slptimeo = 0; 1463 int error, error2; 1464 1465 /* 1466 * Unless iothreadcnt is set > 0, don't bother with async I/O 1467 * threads. For LAN environments, they don't buy any significant 1468 * performance improvement that you can't get with large block 1469 * sizes. 1470 */ 1471 if (nmp->nm_readahead == 0) 1472 return (EPERM); 1473 1474 /* 1475 * Commits are usually short and sweet so lets save some cpu and 1476 * leave the async daemons for more important rpc's (such as reads 1477 * and writes). 1478 */ 1479 mtx_lock(&ncl_iod_mutex); 1480 if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1481 (nmp->nm_bufqiods > ncl_numasync / 2)) { 1482 mtx_unlock(&ncl_iod_mutex); 1483 return(EIO); 1484 } 1485 again: 1486 if (nmp->nm_flag & NFSMNT_INT) 1487 slpflag = NFS_PCATCH; 1488 gotiod = FALSE; 1489 1490 /* 1491 * Find a free iod to process this request. 1492 */ 1493 for (iod = 0; iod < ncl_numasync; iod++) 1494 if (ncl_iodwant[iod]) { 1495 gotiod = TRUE; 1496 break; 1497 } 1498 1499 /* 1500 * Try to create one if none are free. 1501 */ 1502 if (!gotiod) { 1503 iod = ncl_nfsiodnew(); 1504 if (iod != -1) 1505 gotiod = TRUE; 1506 } 1507 1508 if (gotiod) { 1509 /* 1510 * Found one, so wake it up and tell it which 1511 * mount to process. 1512 */ 1513 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1514 iod, nmp)); 1515 ncl_iodwant[iod] = NULL; 1516 ncl_iodmount[iod] = nmp; 1517 nmp->nm_bufqiods++; 1518 wakeup(&ncl_iodwant[iod]); 1519 } 1520 1521 /* 1522 * If none are free, we may already have an iod working on this mount 1523 * point. If so, it will process our request. 1524 */ 1525 if (!gotiod) { 1526 if (nmp->nm_bufqiods > 0) { 1527 NFS_DPF(ASYNCIO, 1528 ("ncl_asyncio: %d iods are already processing mount %p\n", 1529 nmp->nm_bufqiods, nmp)); 1530 gotiod = TRUE; 1531 } 1532 } 1533 1534 /* 1535 * If we have an iod which can process the request, then queue 1536 * the buffer. 1537 */ 1538 if (gotiod) { 1539 /* 1540 * Ensure that the queue never grows too large. We still want 1541 * to asynchronize so we block rather then return EIO. 1542 */ 1543 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1544 NFS_DPF(ASYNCIO, 1545 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1546 nmp->nm_bufqwant = TRUE; 1547 error = ncl_msleep(td, &nmp->nm_bufq, &ncl_iod_mutex, 1548 slpflag | PRIBIO, 1549 "nfsaio", slptimeo); 1550 if (error) { 1551 error2 = newnfs_sigintr(nmp, td); 1552 if (error2) { 1553 mtx_unlock(&ncl_iod_mutex); 1554 return (error2); 1555 } 1556 if (slpflag == NFS_PCATCH) { 1557 slpflag = 0; 1558 slptimeo = 2 * hz; 1559 } 1560 } 1561 /* 1562 * We might have lost our iod while sleeping, 1563 * so check and loop if nescessary. 1564 */ 1565 if (nmp->nm_bufqiods == 0) { 1566 NFS_DPF(ASYNCIO, 1567 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1568 goto again; 1569 } 1570 } 1571 1572 /* We might have lost our nfsiod */ 1573 if (nmp->nm_bufqiods == 0) { 1574 NFS_DPF(ASYNCIO, 1575 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1576 goto again; 1577 } 1578 1579 if (bp->b_iocmd == BIO_READ) { 1580 if (bp->b_rcred == NOCRED && cred != NOCRED) 1581 bp->b_rcred = crhold(cred); 1582 } else { 1583 if (bp->b_wcred == NOCRED && cred != NOCRED) 1584 bp->b_wcred = crhold(cred); 1585 } 1586 1587 if (bp->b_flags & B_REMFREE) 1588 bremfreef(bp); 1589 BUF_KERNPROC(bp); 1590 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1591 nmp->nm_bufqlen++; 1592 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1593 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1594 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1595 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1596 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1597 } 1598 mtx_unlock(&ncl_iod_mutex); 1599 return (0); 1600 } 1601 1602 mtx_unlock(&ncl_iod_mutex); 1603 1604 /* 1605 * All the iods are busy on other mounts, so return EIO to 1606 * force the caller to process the i/o synchronously. 1607 */ 1608 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1609 return (EIO); 1610 } 1611 1612 void 1613 ncl_doio_directwrite(struct buf *bp) 1614 { 1615 int iomode, must_commit; 1616 struct uio *uiop = (struct uio *)bp->b_caller1; 1617 char *iov_base = uiop->uio_iov->iov_base; 1618 1619 iomode = NFSWRITE_FILESYNC; 1620 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1621 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit); 1622 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1623 free(iov_base, M_NFSDIRECTIO); 1624 free(uiop->uio_iov, M_NFSDIRECTIO); 1625 free(uiop, M_NFSDIRECTIO); 1626 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1627 struct nfsnode *np = VTONFS(bp->b_vp); 1628 mtx_lock(&np->n_mtx); 1629 np->n_directio_asyncwr--; 1630 if (np->n_directio_asyncwr == 0) { 1631 np->n_flag &= ~NMODIFIED; 1632 if ((np->n_flag & NFSYNCWAIT)) { 1633 np->n_flag &= ~NFSYNCWAIT; 1634 wakeup((caddr_t)&np->n_directio_asyncwr); 1635 } 1636 } 1637 mtx_unlock(&np->n_mtx); 1638 } 1639 bp->b_vp = NULL; 1640 relpbuf(bp, &ncl_pbuf_freecnt); 1641 } 1642 1643 /* 1644 * Do an I/O operation to/from a cache block. This may be called 1645 * synchronously or from an nfsiod. 1646 */ 1647 int 1648 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td) 1649 { 1650 struct uio *uiop; 1651 struct nfsnode *np; 1652 struct nfsmount *nmp; 1653 int error = 0, iomode, must_commit = 0; 1654 struct uio uio; 1655 struct iovec io; 1656 struct proc *p = td ? td->td_proc : NULL; 1657 uint8_t iocmd; 1658 1659 np = VTONFS(vp); 1660 nmp = VFSTONFS(vp->v_mount); 1661 uiop = &uio; 1662 uiop->uio_iov = &io; 1663 uiop->uio_iovcnt = 1; 1664 uiop->uio_segflg = UIO_SYSSPACE; 1665 uiop->uio_td = td; 1666 1667 /* 1668 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1669 * do this here so we do not have to do it in all the code that 1670 * calls us. 1671 */ 1672 bp->b_flags &= ~B_INVAL; 1673 bp->b_ioflags &= ~BIO_ERROR; 1674 1675 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1676 iocmd = bp->b_iocmd; 1677 if (iocmd == BIO_READ) { 1678 io.iov_len = uiop->uio_resid = bp->b_bcount; 1679 io.iov_base = bp->b_data; 1680 uiop->uio_rw = UIO_READ; 1681 1682 switch (vp->v_type) { 1683 case VREG: 1684 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1685 NFSINCRGLOBAL(newnfsstats.read_bios); 1686 error = ncl_readrpc(vp, uiop, cr); 1687 1688 if (!error) { 1689 if (uiop->uio_resid) { 1690 /* 1691 * If we had a short read with no error, we must have 1692 * hit a file hole. We should zero-fill the remainder. 1693 * This can also occur if the server hits the file EOF. 1694 * 1695 * Holes used to be able to occur due to pending 1696 * writes, but that is not possible any longer. 1697 */ 1698 int nread = bp->b_bcount - uiop->uio_resid; 1699 int left = uiop->uio_resid; 1700 1701 if (left > 0) 1702 bzero((char *)bp->b_data + nread, left); 1703 uiop->uio_resid = 0; 1704 } 1705 } 1706 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1707 if (p && (vp->v_vflag & VV_TEXT)) { 1708 mtx_lock(&np->n_mtx); 1709 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1710 mtx_unlock(&np->n_mtx); 1711 PROC_LOCK(p); 1712 killproc(p, "text file modification"); 1713 PROC_UNLOCK(p); 1714 } else 1715 mtx_unlock(&np->n_mtx); 1716 } 1717 break; 1718 case VLNK: 1719 uiop->uio_offset = (off_t)0; 1720 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1721 error = ncl_readlinkrpc(vp, uiop, cr); 1722 break; 1723 case VDIR: 1724 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1725 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1726 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1727 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1728 if (error == NFSERR_NOTSUPP) 1729 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1730 } 1731 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1732 error = ncl_readdirrpc(vp, uiop, cr, td); 1733 /* 1734 * end-of-directory sets B_INVAL but does not generate an 1735 * error. 1736 */ 1737 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1738 bp->b_flags |= B_INVAL; 1739 break; 1740 default: 1741 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1742 break; 1743 }; 1744 if (error) { 1745 bp->b_ioflags |= BIO_ERROR; 1746 bp->b_error = error; 1747 } 1748 } else { 1749 /* 1750 * If we only need to commit, try to commit 1751 */ 1752 if (bp->b_flags & B_NEEDCOMMIT) { 1753 int retv; 1754 off_t off; 1755 1756 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1757 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1758 bp->b_wcred, td); 1759 if (retv == 0) { 1760 bp->b_dirtyoff = bp->b_dirtyend = 0; 1761 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1762 bp->b_resid = 0; 1763 bufdone(bp); 1764 return (0); 1765 } 1766 if (retv == NFSERR_STALEWRITEVERF) { 1767 ncl_clearcommit(vp->v_mount); 1768 } 1769 } 1770 1771 /* 1772 * Setup for actual write 1773 */ 1774 mtx_lock(&np->n_mtx); 1775 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1776 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1777 mtx_unlock(&np->n_mtx); 1778 1779 if (bp->b_dirtyend > bp->b_dirtyoff) { 1780 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1781 - bp->b_dirtyoff; 1782 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1783 + bp->b_dirtyoff; 1784 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1785 uiop->uio_rw = UIO_WRITE; 1786 NFSINCRGLOBAL(newnfsstats.write_bios); 1787 1788 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1789 iomode = NFSWRITE_UNSTABLE; 1790 else 1791 iomode = NFSWRITE_FILESYNC; 1792 1793 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit); 1794 1795 /* 1796 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1797 * to cluster the buffers needing commit. This will allow 1798 * the system to submit a single commit rpc for the whole 1799 * cluster. We can do this even if the buffer is not 100% 1800 * dirty (relative to the NFS blocksize), so we optimize the 1801 * append-to-file-case. 1802 * 1803 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1804 * cleared because write clustering only works for commit 1805 * rpc's, not for the data portion of the write). 1806 */ 1807 1808 if (!error && iomode == NFSWRITE_UNSTABLE) { 1809 bp->b_flags |= B_NEEDCOMMIT; 1810 if (bp->b_dirtyoff == 0 1811 && bp->b_dirtyend == bp->b_bcount) 1812 bp->b_flags |= B_CLUSTEROK; 1813 } else { 1814 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1815 } 1816 1817 /* 1818 * For an interrupted write, the buffer is still valid 1819 * and the write hasn't been pushed to the server yet, 1820 * so we can't set BIO_ERROR and report the interruption 1821 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1822 * is not relevant, so the rpc attempt is essentially 1823 * a noop. For the case of a V3 write rpc not being 1824 * committed to stable storage, the block is still 1825 * dirty and requires either a commit rpc or another 1826 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1827 * the block is reused. This is indicated by setting 1828 * the B_DELWRI and B_NEEDCOMMIT flags. 1829 * 1830 * If the buffer is marked B_PAGING, it does not reside on 1831 * the vp's paging queues so we cannot call bdirty(). The 1832 * bp in this case is not an NFS cache block so we should 1833 * be safe. XXX 1834 * 1835 * The logic below breaks up errors into recoverable and 1836 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1837 * and keep the buffer around for potential write retries. 1838 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1839 * and save the error in the nfsnode. This is less than ideal 1840 * but necessary. Keeping such buffers around could potentially 1841 * cause buffer exhaustion eventually (they can never be written 1842 * out, so will get constantly be re-dirtied). It also causes 1843 * all sorts of vfs panics. For non-recoverable write errors, 1844 * also invalidate the attrcache, so we'll be forced to go over 1845 * the wire for this object, returning an error to user on next 1846 * call (most of the time). 1847 */ 1848 if (error == EINTR || error == EIO || error == ETIMEDOUT 1849 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1850 int s; 1851 1852 s = splbio(); 1853 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1854 if ((bp->b_flags & B_PAGING) == 0) { 1855 bdirty(bp); 1856 bp->b_flags &= ~B_DONE; 1857 } 1858 if (error && (bp->b_flags & B_ASYNC) == 0) 1859 bp->b_flags |= B_EINTR; 1860 splx(s); 1861 } else { 1862 if (error) { 1863 bp->b_ioflags |= BIO_ERROR; 1864 bp->b_flags |= B_INVAL; 1865 bp->b_error = np->n_error = error; 1866 mtx_lock(&np->n_mtx); 1867 np->n_flag |= NWRITEERR; 1868 np->n_attrstamp = 0; 1869 mtx_unlock(&np->n_mtx); 1870 } 1871 bp->b_dirtyoff = bp->b_dirtyend = 0; 1872 } 1873 } else { 1874 bp->b_resid = 0; 1875 bufdone(bp); 1876 return (0); 1877 } 1878 } 1879 bp->b_resid = uiop->uio_resid; 1880 if (must_commit) 1881 ncl_clearcommit(vp->v_mount); 1882 bufdone(bp); 1883 return (error); 1884 } 1885 1886 /* 1887 * Used to aid in handling ftruncate() operations on the NFS client side. 1888 * Truncation creates a number of special problems for NFS. We have to 1889 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1890 * we have to properly handle VM pages or (potentially dirty) buffers 1891 * that straddle the truncation point. 1892 */ 1893 1894 int 1895 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1896 { 1897 struct nfsnode *np = VTONFS(vp); 1898 u_quad_t tsize; 1899 int biosize = vp->v_mount->mnt_stat.f_iosize; 1900 int error = 0; 1901 1902 mtx_lock(&np->n_mtx); 1903 tsize = np->n_size; 1904 np->n_size = nsize; 1905 mtx_unlock(&np->n_mtx); 1906 1907 if (nsize < tsize) { 1908 struct buf *bp; 1909 daddr_t lbn; 1910 int bufsize; 1911 1912 /* 1913 * vtruncbuf() doesn't get the buffer overlapping the 1914 * truncation point. We may have a B_DELWRI and/or B_CACHE 1915 * buffer that now needs to be truncated. 1916 */ 1917 error = vtruncbuf(vp, cred, td, nsize, biosize); 1918 lbn = nsize / biosize; 1919 bufsize = nsize & (biosize - 1); 1920 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1921 if (!bp) 1922 return EINTR; 1923 if (bp->b_dirtyoff > bp->b_bcount) 1924 bp->b_dirtyoff = bp->b_bcount; 1925 if (bp->b_dirtyend > bp->b_bcount) 1926 bp->b_dirtyend = bp->b_bcount; 1927 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1928 brelse(bp); 1929 } else { 1930 vnode_pager_setsize(vp, nsize); 1931 } 1932 return(error); 1933 } 1934 1935