1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/bio.h> 43 #include <sys/buf.h> 44 #include <sys/kernel.h> 45 #include <sys/mount.h> 46 #include <sys/rwlock.h> 47 #include <sys/vmmeter.h> 48 #include <sys/vnode.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vnode_pager.h> 57 58 #include <fs/nfs/nfsport.h> 59 #include <fs/nfsclient/nfsmount.h> 60 #include <fs/nfsclient/nfs.h> 61 #include <fs/nfsclient/nfsnode.h> 62 #include <fs/nfsclient/nfs_kdtrace.h> 63 64 extern int newnfs_directio_allow_mmap; 65 extern struct nfsstatsv1 nfsstatsv1; 66 extern struct mtx ncl_iod_mutex; 67 extern int ncl_numasync; 68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 70 extern int newnfs_directio_enable; 71 extern int nfs_keep_dirty_on_error; 72 73 uma_zone_t ncl_pbuf_zone; 74 75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 76 struct thread *td); 77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 78 struct ucred *cred, int ioflag); 79 80 /* 81 * Vnode op for VM getpages. 82 */ 83 SYSCTL_DECL(_vfs_nfs); 84 static int use_buf_pager = 1; 85 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 86 &use_buf_pager, 0, 87 "Use buffer pager instead of direct readrpc call"); 88 89 static daddr_t 90 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 91 { 92 93 return (off / vp->v_bufobj.bo_bsize); 94 } 95 96 static int 97 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn) 98 { 99 struct nfsnode *np; 100 u_quad_t nsize; 101 int biosize, bcount; 102 103 np = VTONFS(vp); 104 NFSLOCKNODE(np); 105 nsize = np->n_size; 106 NFSUNLOCKNODE(np); 107 108 biosize = vp->v_bufobj.bo_bsize; 109 bcount = biosize; 110 if ((off_t)lbn * biosize >= nsize) 111 bcount = 0; 112 else if ((off_t)(lbn + 1) * biosize > nsize) 113 bcount = nsize - (off_t)lbn * biosize; 114 return (bcount); 115 } 116 117 int 118 ncl_getpages(struct vop_getpages_args *ap) 119 { 120 int i, error, nextoff, size, toff, count, npages; 121 struct uio uio; 122 struct iovec iov; 123 vm_offset_t kva; 124 struct buf *bp; 125 struct vnode *vp; 126 struct thread *td; 127 struct ucred *cred; 128 struct nfsmount *nmp; 129 vm_object_t object; 130 vm_page_t *pages; 131 struct nfsnode *np; 132 133 vp = ap->a_vp; 134 np = VTONFS(vp); 135 td = curthread; 136 cred = curthread->td_ucred; 137 nmp = VFSTONFS(vp->v_mount); 138 pages = ap->a_m; 139 npages = ap->a_count; 140 141 if ((object = vp->v_object) == NULL) { 142 printf("ncl_getpages: called with non-merged cache vnode\n"); 143 return (VM_PAGER_ERROR); 144 } 145 146 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 147 NFSLOCKNODE(np); 148 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 149 NFSUNLOCKNODE(np); 150 printf("ncl_getpages: called on non-cacheable vnode\n"); 151 return (VM_PAGER_ERROR); 152 } else 153 NFSUNLOCKNODE(np); 154 } 155 156 mtx_lock(&nmp->nm_mtx); 157 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 158 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 159 mtx_unlock(&nmp->nm_mtx); 160 /* We'll never get here for v4, because we always have fsinfo */ 161 (void)ncl_fsinfo(nmp, vp, cred, td); 162 } else 163 mtx_unlock(&nmp->nm_mtx); 164 165 if (use_buf_pager) 166 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 167 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 168 169 /* 170 * If the requested page is partially valid, just return it and 171 * allow the pager to zero-out the blanks. Partially valid pages 172 * can only occur at the file EOF. 173 * 174 * XXXGL: is that true for NFS, where short read can occur??? 175 */ 176 VM_OBJECT_WLOCK(object); 177 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 178 goto out; 179 VM_OBJECT_WUNLOCK(object); 180 181 /* 182 * We use only the kva address for the buffer, but this is extremely 183 * convenient and fast. 184 */ 185 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 186 187 kva = (vm_offset_t) bp->b_data; 188 pmap_qenter(kva, pages, npages); 189 VM_CNT_INC(v_vnodein); 190 VM_CNT_ADD(v_vnodepgsin, npages); 191 192 count = npages << PAGE_SHIFT; 193 iov.iov_base = (caddr_t) kva; 194 iov.iov_len = count; 195 uio.uio_iov = &iov; 196 uio.uio_iovcnt = 1; 197 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 198 uio.uio_resid = count; 199 uio.uio_segflg = UIO_SYSSPACE; 200 uio.uio_rw = UIO_READ; 201 uio.uio_td = td; 202 203 error = ncl_readrpc(vp, &uio, cred); 204 pmap_qremove(kva, npages); 205 206 uma_zfree(ncl_pbuf_zone, bp); 207 208 if (error && (uio.uio_resid == count)) { 209 printf("ncl_getpages: error %d\n", error); 210 return (VM_PAGER_ERROR); 211 } 212 213 /* 214 * Calculate the number of bytes read and validate only that number 215 * of bytes. Note that due to pending writes, size may be 0. This 216 * does not mean that the remaining data is invalid! 217 */ 218 219 size = count - uio.uio_resid; 220 VM_OBJECT_WLOCK(object); 221 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 222 vm_page_t m; 223 nextoff = toff + PAGE_SIZE; 224 m = pages[i]; 225 226 if (nextoff <= size) { 227 /* 228 * Read operation filled an entire page 229 */ 230 vm_page_valid(m); 231 KASSERT(m->dirty == 0, 232 ("nfs_getpages: page %p is dirty", m)); 233 } else if (size > toff) { 234 /* 235 * Read operation filled a partial page. 236 */ 237 vm_page_invalid(m); 238 vm_page_set_valid_range(m, 0, size - toff); 239 KASSERT(m->dirty == 0, 240 ("nfs_getpages: page %p is dirty", m)); 241 } else { 242 /* 243 * Read operation was short. If no error 244 * occurred we may have hit a zero-fill 245 * section. We leave valid set to 0, and page 246 * is freed by vm_page_readahead_finish() if 247 * its index is not equal to requested, or 248 * page is zeroed and set valid by 249 * vm_pager_get_pages() for requested page. 250 */ 251 ; 252 } 253 } 254 out: 255 VM_OBJECT_WUNLOCK(object); 256 if (ap->a_rbehind) 257 *ap->a_rbehind = 0; 258 if (ap->a_rahead) 259 *ap->a_rahead = 0; 260 return (VM_PAGER_OK); 261 } 262 263 /* 264 * Vnode op for VM putpages. 265 */ 266 int 267 ncl_putpages(struct vop_putpages_args *ap) 268 { 269 struct uio uio; 270 struct iovec iov; 271 int i, error, npages, count; 272 off_t offset; 273 int *rtvals; 274 struct vnode *vp; 275 struct thread *td; 276 struct ucred *cred; 277 struct nfsmount *nmp; 278 struct nfsnode *np; 279 vm_page_t *pages; 280 281 vp = ap->a_vp; 282 np = VTONFS(vp); 283 td = curthread; /* XXX */ 284 /* Set the cred to n_writecred for the write rpcs. */ 285 if (np->n_writecred != NULL) 286 cred = crhold(np->n_writecred); 287 else 288 cred = crhold(curthread->td_ucred); /* XXX */ 289 nmp = VFSTONFS(vp->v_mount); 290 pages = ap->a_m; 291 count = ap->a_count; 292 rtvals = ap->a_rtvals; 293 npages = btoc(count); 294 offset = IDX_TO_OFF(pages[0]->pindex); 295 296 mtx_lock(&nmp->nm_mtx); 297 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 298 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 299 mtx_unlock(&nmp->nm_mtx); 300 (void)ncl_fsinfo(nmp, vp, cred, td); 301 } else 302 mtx_unlock(&nmp->nm_mtx); 303 304 NFSLOCKNODE(np); 305 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 306 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 307 NFSUNLOCKNODE(np); 308 printf("ncl_putpages: called on noncache-able vnode\n"); 309 NFSLOCKNODE(np); 310 } 311 /* 312 * When putting pages, do not extend file past EOF. 313 */ 314 if (offset + count > np->n_size) { 315 count = np->n_size - offset; 316 if (count < 0) 317 count = 0; 318 } 319 NFSUNLOCKNODE(np); 320 321 for (i = 0; i < npages; i++) 322 rtvals[i] = VM_PAGER_ERROR; 323 324 VM_CNT_INC(v_vnodeout); 325 VM_CNT_ADD(v_vnodepgsout, count); 326 327 iov.iov_base = unmapped_buf; 328 iov.iov_len = count; 329 uio.uio_iov = &iov; 330 uio.uio_iovcnt = 1; 331 uio.uio_offset = offset; 332 uio.uio_resid = count; 333 uio.uio_segflg = UIO_NOCOPY; 334 uio.uio_rw = UIO_WRITE; 335 uio.uio_td = td; 336 337 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 338 cred); 339 crfree(cred); 340 341 if (error == 0 || !nfs_keep_dirty_on_error) { 342 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 343 np->n_size - offset, npages * PAGE_SIZE); 344 } 345 return (rtvals[0]); 346 } 347 348 /* 349 * For nfs, cache consistency can only be maintained approximately. 350 * Although RFC1094 does not specify the criteria, the following is 351 * believed to be compatible with the reference port. 352 * For nfs: 353 * If the file's modify time on the server has changed since the 354 * last read rpc or you have written to the file, 355 * you may have lost data cache consistency with the 356 * server, so flush all of the file's data out of the cache. 357 * Then force a getattr rpc to ensure that you have up to date 358 * attributes. 359 * NB: This implies that cache data can be read when up to 360 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 361 * attributes this could be forced by setting n_attrstamp to 0 before 362 * the VOP_GETATTR() call. 363 */ 364 static inline int 365 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 366 { 367 int error = 0; 368 struct vattr vattr; 369 struct nfsnode *np = VTONFS(vp); 370 bool old_lock; 371 372 /* 373 * Ensure the exclusove access to the node before checking 374 * whether the cache is consistent. 375 */ 376 old_lock = ncl_excl_start(vp); 377 NFSLOCKNODE(np); 378 if (np->n_flag & NMODIFIED) { 379 NFSUNLOCKNODE(np); 380 if (vp->v_type != VREG) { 381 if (vp->v_type != VDIR) 382 panic("nfs: bioread, not dir"); 383 ncl_invaldir(vp); 384 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 385 if (error != 0) 386 goto out; 387 } 388 np->n_attrstamp = 0; 389 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 390 error = VOP_GETATTR(vp, &vattr, cred); 391 if (error) 392 goto out; 393 NFSLOCKNODE(np); 394 np->n_mtime = vattr.va_mtime; 395 NFSUNLOCKNODE(np); 396 } else { 397 NFSUNLOCKNODE(np); 398 error = VOP_GETATTR(vp, &vattr, cred); 399 if (error) 400 goto out; 401 NFSLOCKNODE(np); 402 if ((np->n_flag & NSIZECHANGED) 403 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 404 NFSUNLOCKNODE(np); 405 if (vp->v_type == VDIR) 406 ncl_invaldir(vp); 407 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 408 if (error != 0) 409 goto out; 410 NFSLOCKNODE(np); 411 np->n_mtime = vattr.va_mtime; 412 np->n_flag &= ~NSIZECHANGED; 413 } 414 NFSUNLOCKNODE(np); 415 } 416 out: 417 ncl_excl_finish(vp, old_lock); 418 return (error); 419 } 420 421 /* 422 * Vnode op for read using bio 423 */ 424 int 425 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 426 { 427 struct nfsnode *np = VTONFS(vp); 428 struct buf *bp, *rabp; 429 struct thread *td; 430 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 431 daddr_t lbn, rabn; 432 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 433 off_t tmp_off; 434 435 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 436 if (uio->uio_resid == 0) 437 return (0); 438 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 439 return (EINVAL); 440 td = uio->uio_td; 441 442 mtx_lock(&nmp->nm_mtx); 443 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 444 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 445 mtx_unlock(&nmp->nm_mtx); 446 (void)ncl_fsinfo(nmp, vp, cred, td); 447 mtx_lock(&nmp->nm_mtx); 448 } 449 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 450 (void) newnfs_iosize(nmp); 451 452 tmp_off = uio->uio_offset + uio->uio_resid; 453 if (vp->v_type != VDIR && 454 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 455 mtx_unlock(&nmp->nm_mtx); 456 return (EFBIG); 457 } 458 mtx_unlock(&nmp->nm_mtx); 459 460 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 461 /* No caching/ no readaheads. Just read data into the user buffer */ 462 return ncl_readrpc(vp, uio, cred); 463 464 n = 0; 465 on = 0; 466 biosize = vp->v_bufobj.bo_bsize; 467 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 468 469 error = nfs_bioread_check_cons(vp, td, cred); 470 if (error) 471 return error; 472 473 save2 = curthread_pflags2_set(TDP2_SBPAGES); 474 do { 475 u_quad_t nsize; 476 477 NFSLOCKNODE(np); 478 nsize = np->n_size; 479 NFSUNLOCKNODE(np); 480 481 switch (vp->v_type) { 482 case VREG: 483 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 484 lbn = uio->uio_offset / biosize; 485 on = uio->uio_offset - (lbn * biosize); 486 487 /* 488 * Start the read ahead(s), as required. 489 */ 490 if (nmp->nm_readahead > 0) { 491 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 492 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 493 rabn = lbn + 1 + nra; 494 if (incore(&vp->v_bufobj, rabn) == NULL) { 495 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 496 if (!rabp) { 497 error = newnfs_sigintr(nmp, td); 498 if (error == 0) 499 error = EINTR; 500 goto out; 501 } 502 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 503 rabp->b_flags |= B_ASYNC; 504 rabp->b_iocmd = BIO_READ; 505 vfs_busy_pages(rabp, 0); 506 if (ncl_asyncio(nmp, rabp, cred, td)) { 507 rabp->b_flags |= B_INVAL; 508 rabp->b_ioflags |= BIO_ERROR; 509 vfs_unbusy_pages(rabp); 510 brelse(rabp); 511 break; 512 } 513 } else { 514 brelse(rabp); 515 } 516 } 517 } 518 } 519 520 /* Note that bcount is *not* DEV_BSIZE aligned. */ 521 bcount = biosize; 522 if ((off_t)lbn * biosize >= nsize) { 523 bcount = 0; 524 } else if ((off_t)(lbn + 1) * biosize > nsize) { 525 bcount = nsize - (off_t)lbn * biosize; 526 } 527 bp = nfs_getcacheblk(vp, lbn, bcount, td); 528 529 if (!bp) { 530 error = newnfs_sigintr(nmp, td); 531 if (error == 0) 532 error = EINTR; 533 goto out; 534 } 535 536 /* 537 * If B_CACHE is not set, we must issue the read. If this 538 * fails, we return an error. 539 */ 540 541 if ((bp->b_flags & B_CACHE) == 0) { 542 bp->b_iocmd = BIO_READ; 543 vfs_busy_pages(bp, 0); 544 error = ncl_doio(vp, bp, cred, td, 0); 545 if (error) { 546 brelse(bp); 547 goto out; 548 } 549 } 550 551 /* 552 * on is the offset into the current bp. Figure out how many 553 * bytes we can copy out of the bp. Note that bcount is 554 * NOT DEV_BSIZE aligned. 555 * 556 * Then figure out how many bytes we can copy into the uio. 557 */ 558 559 n = 0; 560 if (on < bcount) 561 n = MIN((unsigned)(bcount - on), uio->uio_resid); 562 break; 563 case VLNK: 564 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 565 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 566 if (!bp) { 567 error = newnfs_sigintr(nmp, td); 568 if (error == 0) 569 error = EINTR; 570 goto out; 571 } 572 if ((bp->b_flags & B_CACHE) == 0) { 573 bp->b_iocmd = BIO_READ; 574 vfs_busy_pages(bp, 0); 575 error = ncl_doio(vp, bp, cred, td, 0); 576 if (error) { 577 bp->b_ioflags |= BIO_ERROR; 578 brelse(bp); 579 goto out; 580 } 581 } 582 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 583 on = 0; 584 break; 585 case VDIR: 586 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 587 NFSLOCKNODE(np); 588 if (np->n_direofoffset 589 && uio->uio_offset >= np->n_direofoffset) { 590 NFSUNLOCKNODE(np); 591 error = 0; 592 goto out; 593 } 594 NFSUNLOCKNODE(np); 595 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 596 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 597 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 598 if (!bp) { 599 error = newnfs_sigintr(nmp, td); 600 if (error == 0) 601 error = EINTR; 602 goto out; 603 } 604 if ((bp->b_flags & B_CACHE) == 0) { 605 bp->b_iocmd = BIO_READ; 606 vfs_busy_pages(bp, 0); 607 error = ncl_doio(vp, bp, cred, td, 0); 608 if (error) { 609 brelse(bp); 610 } 611 while (error == NFSERR_BAD_COOKIE) { 612 ncl_invaldir(vp); 613 error = ncl_vinvalbuf(vp, 0, td, 1); 614 615 /* 616 * Yuck! The directory has been modified on the 617 * server. The only way to get the block is by 618 * reading from the beginning to get all the 619 * offset cookies. 620 * 621 * Leave the last bp intact unless there is an error. 622 * Loop back up to the while if the error is another 623 * NFSERR_BAD_COOKIE (double yuch!). 624 */ 625 for (i = 0; i <= lbn && !error; i++) { 626 NFSLOCKNODE(np); 627 if (np->n_direofoffset 628 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 629 NFSUNLOCKNODE(np); 630 error = 0; 631 goto out; 632 } 633 NFSUNLOCKNODE(np); 634 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 635 if (!bp) { 636 error = newnfs_sigintr(nmp, td); 637 if (error == 0) 638 error = EINTR; 639 goto out; 640 } 641 if ((bp->b_flags & B_CACHE) == 0) { 642 bp->b_iocmd = BIO_READ; 643 vfs_busy_pages(bp, 0); 644 error = ncl_doio(vp, bp, cred, td, 0); 645 /* 646 * no error + B_INVAL == directory EOF, 647 * use the block. 648 */ 649 if (error == 0 && (bp->b_flags & B_INVAL)) 650 break; 651 } 652 /* 653 * An error will throw away the block and the 654 * for loop will break out. If no error and this 655 * is not the block we want, we throw away the 656 * block and go for the next one via the for loop. 657 */ 658 if (error || i < lbn) 659 brelse(bp); 660 } 661 } 662 /* 663 * The above while is repeated if we hit another cookie 664 * error. If we hit an error and it wasn't a cookie error, 665 * we give up. 666 */ 667 if (error) 668 goto out; 669 } 670 671 /* 672 * If not eof and read aheads are enabled, start one. 673 * (You need the current block first, so that you have the 674 * directory offset cookie of the next block.) 675 */ 676 NFSLOCKNODE(np); 677 if (nmp->nm_readahead > 0 && 678 (bp->b_flags & B_INVAL) == 0 && 679 (np->n_direofoffset == 0 || 680 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 681 incore(&vp->v_bufobj, lbn + 1) == NULL) { 682 NFSUNLOCKNODE(np); 683 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 684 if (rabp) { 685 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 686 rabp->b_flags |= B_ASYNC; 687 rabp->b_iocmd = BIO_READ; 688 vfs_busy_pages(rabp, 0); 689 if (ncl_asyncio(nmp, rabp, cred, td)) { 690 rabp->b_flags |= B_INVAL; 691 rabp->b_ioflags |= BIO_ERROR; 692 vfs_unbusy_pages(rabp); 693 brelse(rabp); 694 } 695 } else { 696 brelse(rabp); 697 } 698 } 699 NFSLOCKNODE(np); 700 } 701 /* 702 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 703 * chopped for the EOF condition, we cannot tell how large 704 * NFS directories are going to be until we hit EOF. So 705 * an NFS directory buffer is *not* chopped to its EOF. Now, 706 * it just so happens that b_resid will effectively chop it 707 * to EOF. *BUT* this information is lost if the buffer goes 708 * away and is reconstituted into a B_CACHE state ( due to 709 * being VMIO ) later. So we keep track of the directory eof 710 * in np->n_direofoffset and chop it off as an extra step 711 * right here. 712 */ 713 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 714 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 715 n = np->n_direofoffset - uio->uio_offset; 716 NFSUNLOCKNODE(np); 717 break; 718 default: 719 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 720 bp = NULL; 721 break; 722 } 723 724 if (n > 0) { 725 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 726 } 727 if (vp->v_type == VLNK) 728 n = 0; 729 if (bp != NULL) 730 brelse(bp); 731 } while (error == 0 && uio->uio_resid > 0 && n > 0); 732 out: 733 curthread_pflags2_restore(save2); 734 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 735 NFSLOCKNODE(np); 736 ncl_pager_setsize(vp, NULL); 737 } 738 return (error); 739 } 740 741 /* 742 * The NFS write path cannot handle iovecs with len > 1. So we need to 743 * break up iovecs accordingly (restricting them to wsize). 744 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 745 * For the ASYNC case, 2 copies are needed. The first a copy from the 746 * user buffer to a staging buffer and then a second copy from the staging 747 * buffer to mbufs. This can be optimized by copying from the user buffer 748 * directly into mbufs and passing the chain down, but that requires a 749 * fair amount of re-working of the relevant codepaths (and can be done 750 * later). 751 */ 752 static int 753 nfs_directio_write(vp, uiop, cred, ioflag) 754 struct vnode *vp; 755 struct uio *uiop; 756 struct ucred *cred; 757 int ioflag; 758 { 759 int error; 760 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 761 struct thread *td = uiop->uio_td; 762 int size; 763 int wsize; 764 765 mtx_lock(&nmp->nm_mtx); 766 wsize = nmp->nm_wsize; 767 mtx_unlock(&nmp->nm_mtx); 768 if (ioflag & IO_SYNC) { 769 int iomode, must_commit; 770 struct uio uio; 771 struct iovec iov; 772 do_sync: 773 while (uiop->uio_resid > 0) { 774 size = MIN(uiop->uio_resid, wsize); 775 size = MIN(uiop->uio_iov->iov_len, size); 776 iov.iov_base = uiop->uio_iov->iov_base; 777 iov.iov_len = size; 778 uio.uio_iov = &iov; 779 uio.uio_iovcnt = 1; 780 uio.uio_offset = uiop->uio_offset; 781 uio.uio_resid = size; 782 uio.uio_segflg = UIO_USERSPACE; 783 uio.uio_rw = UIO_WRITE; 784 uio.uio_td = td; 785 iomode = NFSWRITE_FILESYNC; 786 error = ncl_writerpc(vp, &uio, cred, &iomode, 787 &must_commit, 0); 788 KASSERT((must_commit == 0), 789 ("ncl_directio_write: Did not commit write")); 790 if (error) 791 return (error); 792 uiop->uio_offset += size; 793 uiop->uio_resid -= size; 794 if (uiop->uio_iov->iov_len <= size) { 795 uiop->uio_iovcnt--; 796 uiop->uio_iov++; 797 } else { 798 uiop->uio_iov->iov_base = 799 (char *)uiop->uio_iov->iov_base + size; 800 uiop->uio_iov->iov_len -= size; 801 } 802 } 803 } else { 804 struct uio *t_uio; 805 struct iovec *t_iov; 806 struct buf *bp; 807 808 /* 809 * Break up the write into blocksize chunks and hand these 810 * over to nfsiod's for write back. 811 * Unfortunately, this incurs a copy of the data. Since 812 * the user could modify the buffer before the write is 813 * initiated. 814 * 815 * The obvious optimization here is that one of the 2 copies 816 * in the async write path can be eliminated by copying the 817 * data here directly into mbufs and passing the mbuf chain 818 * down. But that will require a fair amount of re-working 819 * of the code and can be done if there's enough interest 820 * in NFS directio access. 821 */ 822 while (uiop->uio_resid > 0) { 823 size = MIN(uiop->uio_resid, wsize); 824 size = MIN(uiop->uio_iov->iov_len, size); 825 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 826 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 827 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 828 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 829 t_iov->iov_len = size; 830 t_uio->uio_iov = t_iov; 831 t_uio->uio_iovcnt = 1; 832 t_uio->uio_offset = uiop->uio_offset; 833 t_uio->uio_resid = size; 834 t_uio->uio_segflg = UIO_SYSSPACE; 835 t_uio->uio_rw = UIO_WRITE; 836 t_uio->uio_td = td; 837 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 838 uiop->uio_segflg == UIO_SYSSPACE, 839 ("nfs_directio_write: Bad uio_segflg")); 840 if (uiop->uio_segflg == UIO_USERSPACE) { 841 error = copyin(uiop->uio_iov->iov_base, 842 t_iov->iov_base, size); 843 if (error != 0) 844 goto err_free; 845 } else 846 /* 847 * UIO_SYSSPACE may never happen, but handle 848 * it just in case it does. 849 */ 850 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 851 size); 852 bp->b_flags |= B_DIRECT; 853 bp->b_iocmd = BIO_WRITE; 854 if (cred != NOCRED) { 855 crhold(cred); 856 bp->b_wcred = cred; 857 } else 858 bp->b_wcred = NOCRED; 859 bp->b_caller1 = (void *)t_uio; 860 bp->b_vp = vp; 861 error = ncl_asyncio(nmp, bp, NOCRED, td); 862 err_free: 863 if (error) { 864 free(t_iov->iov_base, M_NFSDIRECTIO); 865 free(t_iov, M_NFSDIRECTIO); 866 free(t_uio, M_NFSDIRECTIO); 867 bp->b_vp = NULL; 868 uma_zfree(ncl_pbuf_zone, bp); 869 if (error == EINTR) 870 return (error); 871 goto do_sync; 872 } 873 uiop->uio_offset += size; 874 uiop->uio_resid -= size; 875 if (uiop->uio_iov->iov_len <= size) { 876 uiop->uio_iovcnt--; 877 uiop->uio_iov++; 878 } else { 879 uiop->uio_iov->iov_base = 880 (char *)uiop->uio_iov->iov_base + size; 881 uiop->uio_iov->iov_len -= size; 882 } 883 } 884 } 885 return (0); 886 } 887 888 /* 889 * Vnode op for write using bio 890 */ 891 int 892 ncl_write(struct vop_write_args *ap) 893 { 894 int biosize; 895 struct uio *uio = ap->a_uio; 896 struct thread *td = uio->uio_td; 897 struct vnode *vp = ap->a_vp; 898 struct nfsnode *np = VTONFS(vp); 899 struct ucred *cred = ap->a_cred; 900 int ioflag = ap->a_ioflag; 901 struct buf *bp; 902 struct vattr vattr; 903 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 904 daddr_t lbn; 905 int bcount, noncontig_write, obcount; 906 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 907 size_t orig_resid, local_resid; 908 off_t orig_size, tmp_off; 909 910 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 911 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 912 ("ncl_write proc")); 913 if (vp->v_type != VREG) 914 return (EIO); 915 NFSLOCKNODE(np); 916 if (np->n_flag & NWRITEERR) { 917 np->n_flag &= ~NWRITEERR; 918 NFSUNLOCKNODE(np); 919 return (np->n_error); 920 } else 921 NFSUNLOCKNODE(np); 922 mtx_lock(&nmp->nm_mtx); 923 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 924 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 925 mtx_unlock(&nmp->nm_mtx); 926 (void)ncl_fsinfo(nmp, vp, cred, td); 927 mtx_lock(&nmp->nm_mtx); 928 } 929 if (nmp->nm_wsize == 0) 930 (void) newnfs_iosize(nmp); 931 mtx_unlock(&nmp->nm_mtx); 932 933 /* 934 * Synchronously flush pending buffers if we are in synchronous 935 * mode or if we are appending. 936 */ 937 if (ioflag & (IO_APPEND | IO_SYNC)) { 938 NFSLOCKNODE(np); 939 if (np->n_flag & NMODIFIED) { 940 NFSUNLOCKNODE(np); 941 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 942 /* 943 * Require non-blocking, synchronous writes to 944 * dirty files to inform the program it needs 945 * to fsync(2) explicitly. 946 */ 947 if (ioflag & IO_NDELAY) 948 return (EAGAIN); 949 #endif 950 np->n_attrstamp = 0; 951 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 952 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 953 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 954 if (error != 0) 955 return (error); 956 } else 957 NFSUNLOCKNODE(np); 958 } 959 960 orig_resid = uio->uio_resid; 961 NFSLOCKNODE(np); 962 orig_size = np->n_size; 963 NFSUNLOCKNODE(np); 964 965 /* 966 * If IO_APPEND then load uio_offset. We restart here if we cannot 967 * get the append lock. 968 */ 969 if (ioflag & IO_APPEND) { 970 np->n_attrstamp = 0; 971 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 972 error = VOP_GETATTR(vp, &vattr, cred); 973 if (error) 974 return (error); 975 NFSLOCKNODE(np); 976 uio->uio_offset = np->n_size; 977 NFSUNLOCKNODE(np); 978 } 979 980 if (uio->uio_offset < 0) 981 return (EINVAL); 982 tmp_off = uio->uio_offset + uio->uio_resid; 983 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 984 return (EFBIG); 985 if (uio->uio_resid == 0) 986 return (0); 987 988 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 989 return nfs_directio_write(vp, uio, cred, ioflag); 990 991 /* 992 * Maybe this should be above the vnode op call, but so long as 993 * file servers have no limits, i don't think it matters 994 */ 995 if (vn_rlimit_fsize(vp, uio, td)) 996 return (EFBIG); 997 998 save2 = curthread_pflags2_set(TDP2_SBPAGES); 999 biosize = vp->v_bufobj.bo_bsize; 1000 /* 1001 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1002 * would exceed the local maximum per-file write commit size when 1003 * combined with those, we must decide whether to flush, 1004 * go synchronous, or return error. We don't bother checking 1005 * IO_UNIT -- we just make all writes atomic anyway, as there's 1006 * no point optimizing for something that really won't ever happen. 1007 */ 1008 wouldcommit = 0; 1009 if (!(ioflag & IO_SYNC)) { 1010 int nflag; 1011 1012 NFSLOCKNODE(np); 1013 nflag = np->n_flag; 1014 NFSUNLOCKNODE(np); 1015 if (nflag & NMODIFIED) { 1016 BO_LOCK(&vp->v_bufobj); 1017 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1018 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1019 b_bobufs) { 1020 if (bp->b_flags & B_NEEDCOMMIT) 1021 wouldcommit += bp->b_bcount; 1022 } 1023 } 1024 BO_UNLOCK(&vp->v_bufobj); 1025 } 1026 } 1027 1028 do { 1029 if (!(ioflag & IO_SYNC)) { 1030 wouldcommit += biosize; 1031 if (wouldcommit > nmp->nm_wcommitsize) { 1032 np->n_attrstamp = 0; 1033 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1034 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1035 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1036 if (error != 0) 1037 goto out; 1038 wouldcommit = biosize; 1039 } 1040 } 1041 1042 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1043 lbn = uio->uio_offset / biosize; 1044 on = uio->uio_offset - (lbn * biosize); 1045 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1046 again: 1047 /* 1048 * Handle direct append and file extension cases, calculate 1049 * unaligned buffer size. 1050 */ 1051 NFSLOCKNODE(np); 1052 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1053 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1054 noncontig_write = 1; 1055 else 1056 noncontig_write = 0; 1057 if ((uio->uio_offset == np->n_size || 1058 (noncontig_write != 0 && 1059 lbn == (np->n_size / biosize) && 1060 uio->uio_offset + n > np->n_size)) && n) { 1061 NFSUNLOCKNODE(np); 1062 /* 1063 * Get the buffer (in its pre-append state to maintain 1064 * B_CACHE if it was previously set). Resize the 1065 * nfsnode after we have locked the buffer to prevent 1066 * readers from reading garbage. 1067 */ 1068 obcount = np->n_size - (lbn * biosize); 1069 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1070 1071 if (bp != NULL) { 1072 long save; 1073 1074 NFSLOCKNODE(np); 1075 np->n_size = uio->uio_offset + n; 1076 np->n_flag |= NMODIFIED; 1077 np->n_flag &= ~NVNSETSZSKIP; 1078 vnode_pager_setsize(vp, np->n_size); 1079 NFSUNLOCKNODE(np); 1080 1081 save = bp->b_flags & B_CACHE; 1082 bcount = on + n; 1083 allocbuf(bp, bcount); 1084 bp->b_flags |= save; 1085 if (noncontig_write != 0 && on > obcount) 1086 vfs_bio_bzero_buf(bp, obcount, on - 1087 obcount); 1088 } 1089 } else { 1090 /* 1091 * Obtain the locked cache block first, and then 1092 * adjust the file's size as appropriate. 1093 */ 1094 bcount = on + n; 1095 if ((off_t)lbn * biosize + bcount < np->n_size) { 1096 if ((off_t)(lbn + 1) * biosize < np->n_size) 1097 bcount = biosize; 1098 else 1099 bcount = np->n_size - (off_t)lbn * biosize; 1100 } 1101 NFSUNLOCKNODE(np); 1102 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1103 NFSLOCKNODE(np); 1104 if (uio->uio_offset + n > np->n_size) { 1105 np->n_size = uio->uio_offset + n; 1106 np->n_flag |= NMODIFIED; 1107 np->n_flag &= ~NVNSETSZSKIP; 1108 vnode_pager_setsize(vp, np->n_size); 1109 } 1110 NFSUNLOCKNODE(np); 1111 } 1112 1113 if (!bp) { 1114 error = newnfs_sigintr(nmp, td); 1115 if (!error) 1116 error = EINTR; 1117 break; 1118 } 1119 1120 /* 1121 * Issue a READ if B_CACHE is not set. In special-append 1122 * mode, B_CACHE is based on the buffer prior to the write 1123 * op and is typically set, avoiding the read. If a read 1124 * is required in special append mode, the server will 1125 * probably send us a short-read since we extended the file 1126 * on our end, resulting in b_resid == 0 and, thusly, 1127 * B_CACHE getting set. 1128 * 1129 * We can also avoid issuing the read if the write covers 1130 * the entire buffer. We have to make sure the buffer state 1131 * is reasonable in this case since we will not be initiating 1132 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1133 * more information. 1134 * 1135 * B_CACHE may also be set due to the buffer being cached 1136 * normally. 1137 */ 1138 1139 bp_cached = 1; 1140 if (on == 0 && n == bcount) { 1141 if ((bp->b_flags & B_CACHE) == 0) 1142 bp_cached = 0; 1143 bp->b_flags |= B_CACHE; 1144 bp->b_flags &= ~B_INVAL; 1145 bp->b_ioflags &= ~BIO_ERROR; 1146 } 1147 1148 if ((bp->b_flags & B_CACHE) == 0) { 1149 bp->b_iocmd = BIO_READ; 1150 vfs_busy_pages(bp, 0); 1151 error = ncl_doio(vp, bp, cred, td, 0); 1152 if (error) { 1153 brelse(bp); 1154 break; 1155 } 1156 } 1157 if (bp->b_wcred == NOCRED) 1158 bp->b_wcred = crhold(cred); 1159 NFSLOCKNODE(np); 1160 np->n_flag |= NMODIFIED; 1161 NFSUNLOCKNODE(np); 1162 1163 /* 1164 * If dirtyend exceeds file size, chop it down. This should 1165 * not normally occur but there is an append race where it 1166 * might occur XXX, so we log it. 1167 * 1168 * If the chopping creates a reverse-indexed or degenerate 1169 * situation with dirtyoff/end, we 0 both of them. 1170 */ 1171 1172 if (bp->b_dirtyend > bcount) { 1173 printf("NFS append race @%lx:%d\n", 1174 (long)bp->b_blkno * DEV_BSIZE, 1175 bp->b_dirtyend - bcount); 1176 bp->b_dirtyend = bcount; 1177 } 1178 1179 if (bp->b_dirtyoff >= bp->b_dirtyend) 1180 bp->b_dirtyoff = bp->b_dirtyend = 0; 1181 1182 /* 1183 * If the new write will leave a contiguous dirty 1184 * area, just update the b_dirtyoff and b_dirtyend, 1185 * otherwise force a write rpc of the old dirty area. 1186 * 1187 * If there has been a file lock applied to this file 1188 * or vfs.nfs.old_noncontig_writing is set, do the following: 1189 * While it is possible to merge discontiguous writes due to 1190 * our having a B_CACHE buffer ( and thus valid read data 1191 * for the hole), we don't because it could lead to 1192 * significant cache coherency problems with multiple clients, 1193 * especially if locking is implemented later on. 1194 * 1195 * If vfs.nfs.old_noncontig_writing is not set and there has 1196 * not been file locking done on this file: 1197 * Relax coherency a bit for the sake of performance and 1198 * expand the current dirty region to contain the new 1199 * write even if it means we mark some non-dirty data as 1200 * dirty. 1201 */ 1202 1203 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1204 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1205 if (bwrite(bp) == EINTR) { 1206 error = EINTR; 1207 break; 1208 } 1209 goto again; 1210 } 1211 1212 local_resid = uio->uio_resid; 1213 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1214 1215 if (error != 0 && !bp_cached) { 1216 /* 1217 * This block has no other content then what 1218 * possibly was written by the faulty uiomove. 1219 * Release it, forgetting the data pages, to 1220 * prevent the leak of uninitialized data to 1221 * usermode. 1222 */ 1223 bp->b_ioflags |= BIO_ERROR; 1224 brelse(bp); 1225 uio->uio_offset -= local_resid - uio->uio_resid; 1226 uio->uio_resid = local_resid; 1227 break; 1228 } 1229 1230 /* 1231 * Since this block is being modified, it must be written 1232 * again and not just committed. Since write clustering does 1233 * not work for the stage 1 data write, only the stage 2 1234 * commit rpc, we have to clear B_CLUSTEROK as well. 1235 */ 1236 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1237 1238 /* 1239 * Get the partial update on the progress made from 1240 * uiomove, if an error occurred. 1241 */ 1242 if (error != 0) 1243 n = local_resid - uio->uio_resid; 1244 1245 /* 1246 * Only update dirtyoff/dirtyend if not a degenerate 1247 * condition. 1248 */ 1249 if (n > 0) { 1250 if (bp->b_dirtyend > 0) { 1251 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1252 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1253 } else { 1254 bp->b_dirtyoff = on; 1255 bp->b_dirtyend = on + n; 1256 } 1257 vfs_bio_set_valid(bp, on, n); 1258 } 1259 1260 /* 1261 * If IO_SYNC do bwrite(). 1262 * 1263 * IO_INVAL appears to be unused. The idea appears to be 1264 * to turn off caching in this case. Very odd. XXX 1265 */ 1266 if ((ioflag & IO_SYNC)) { 1267 if (ioflag & IO_INVAL) 1268 bp->b_flags |= B_NOCACHE; 1269 error1 = bwrite(bp); 1270 if (error1 != 0) { 1271 if (error == 0) 1272 error = error1; 1273 break; 1274 } 1275 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1276 bp->b_flags |= B_ASYNC; 1277 (void) ncl_writebp(bp, 0, NULL); 1278 } else { 1279 bdwrite(bp); 1280 } 1281 1282 if (error != 0) 1283 break; 1284 } while (uio->uio_resid > 0 && n > 0); 1285 1286 if (error != 0) { 1287 if (ioflag & IO_UNIT) { 1288 VATTR_NULL(&vattr); 1289 vattr.va_size = orig_size; 1290 /* IO_SYNC is handled implicitely */ 1291 (void)VOP_SETATTR(vp, &vattr, cred); 1292 uio->uio_offset -= orig_resid - uio->uio_resid; 1293 uio->uio_resid = orig_resid; 1294 } 1295 } 1296 1297 out: 1298 curthread_pflags2_restore(save2); 1299 return (error); 1300 } 1301 1302 /* 1303 * Get an nfs cache block. 1304 * 1305 * Allocate a new one if the block isn't currently in the cache 1306 * and return the block marked busy. If the calling process is 1307 * interrupted by a signal for an interruptible mount point, return 1308 * NULL. 1309 * 1310 * The caller must carefully deal with the possible B_INVAL state of 1311 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1312 * indirectly), so synchronous reads can be issued without worrying about 1313 * the B_INVAL state. We have to be a little more careful when dealing 1314 * with writes (see comments in nfs_write()) when extending a file past 1315 * its EOF. 1316 */ 1317 static struct buf * 1318 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1319 { 1320 struct buf *bp; 1321 struct mount *mp; 1322 struct nfsmount *nmp; 1323 1324 mp = vp->v_mount; 1325 nmp = VFSTONFS(mp); 1326 1327 if (nmp->nm_flag & NFSMNT_INT) { 1328 sigset_t oldset; 1329 1330 newnfs_set_sigmask(td, &oldset); 1331 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1332 newnfs_restore_sigmask(td, &oldset); 1333 while (bp == NULL) { 1334 if (newnfs_sigintr(nmp, td)) 1335 return (NULL); 1336 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1337 } 1338 } else { 1339 bp = getblk(vp, bn, size, 0, 0, 0); 1340 } 1341 1342 if (vp->v_type == VREG) 1343 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1344 return (bp); 1345 } 1346 1347 /* 1348 * Flush and invalidate all dirty buffers. If another process is already 1349 * doing the flush, just wait for completion. 1350 */ 1351 int 1352 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1353 { 1354 struct nfsnode *np = VTONFS(vp); 1355 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1356 int error = 0, slpflag, slptimeo; 1357 bool old_lock; 1358 1359 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1360 1361 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1362 intrflg = 0; 1363 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1364 intrflg = 1; 1365 if (intrflg) { 1366 slpflag = PCATCH; 1367 slptimeo = 2 * hz; 1368 } else { 1369 slpflag = 0; 1370 slptimeo = 0; 1371 } 1372 1373 old_lock = ncl_excl_start(vp); 1374 if (old_lock) 1375 flags |= V_ALLOWCLEAN; 1376 1377 /* 1378 * Now, flush as required. 1379 */ 1380 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE && 1381 vp->v_bufobj.bo_object != NULL) { 1382 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1383 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1384 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1385 /* 1386 * If the page clean was interrupted, fail the invalidation. 1387 * Not doing so, we run the risk of losing dirty pages in the 1388 * vinvalbuf() call below. 1389 */ 1390 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1391 goto out; 1392 } 1393 1394 error = vinvalbuf(vp, flags, slpflag, 0); 1395 while (error) { 1396 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1397 goto out; 1398 error = vinvalbuf(vp, flags, 0, slptimeo); 1399 } 1400 if (NFSHASPNFS(nmp)) { 1401 nfscl_layoutcommit(vp, td); 1402 /* 1403 * Invalidate the attribute cache, since writes to a DS 1404 * won't update the size attribute. 1405 */ 1406 NFSLOCKNODE(np); 1407 np->n_attrstamp = 0; 1408 } else 1409 NFSLOCKNODE(np); 1410 if (np->n_directio_asyncwr == 0) 1411 np->n_flag &= ~NMODIFIED; 1412 NFSUNLOCKNODE(np); 1413 out: 1414 ncl_excl_finish(vp, old_lock); 1415 return error; 1416 } 1417 1418 /* 1419 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1420 * This is mainly to avoid queueing async I/O requests when the nfsiods 1421 * are all hung on a dead server. 1422 * 1423 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1424 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1425 */ 1426 int 1427 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1428 { 1429 int iod; 1430 int gotiod; 1431 int slpflag = 0; 1432 int slptimeo = 0; 1433 int error, error2; 1434 1435 /* 1436 * Commits are usually short and sweet so lets save some cpu and 1437 * leave the async daemons for more important rpc's (such as reads 1438 * and writes). 1439 * 1440 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1441 * in the directory in order to update attributes. This can deadlock 1442 * with another thread that is waiting for async I/O to be done by 1443 * an nfsiod thread while holding a lock on one of these vnodes. 1444 * To avoid this deadlock, don't allow the async nfsiod threads to 1445 * perform Readdirplus RPCs. 1446 */ 1447 NFSLOCKIOD(); 1448 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1449 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1450 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1451 NFSUNLOCKIOD(); 1452 return(EIO); 1453 } 1454 again: 1455 if (nmp->nm_flag & NFSMNT_INT) 1456 slpflag = PCATCH; 1457 gotiod = FALSE; 1458 1459 /* 1460 * Find a free iod to process this request. 1461 */ 1462 for (iod = 0; iod < ncl_numasync; iod++) 1463 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1464 gotiod = TRUE; 1465 break; 1466 } 1467 1468 /* 1469 * Try to create one if none are free. 1470 */ 1471 if (!gotiod) 1472 ncl_nfsiodnew(); 1473 else { 1474 /* 1475 * Found one, so wake it up and tell it which 1476 * mount to process. 1477 */ 1478 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1479 iod, nmp)); 1480 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1481 ncl_iodmount[iod] = nmp; 1482 nmp->nm_bufqiods++; 1483 wakeup(&ncl_iodwant[iod]); 1484 } 1485 1486 /* 1487 * If none are free, we may already have an iod working on this mount 1488 * point. If so, it will process our request. 1489 */ 1490 if (!gotiod) { 1491 if (nmp->nm_bufqiods > 0) { 1492 NFS_DPF(ASYNCIO, 1493 ("ncl_asyncio: %d iods are already processing mount %p\n", 1494 nmp->nm_bufqiods, nmp)); 1495 gotiod = TRUE; 1496 } 1497 } 1498 1499 /* 1500 * If we have an iod which can process the request, then queue 1501 * the buffer. 1502 */ 1503 if (gotiod) { 1504 /* 1505 * Ensure that the queue never grows too large. We still want 1506 * to asynchronize so we block rather then return EIO. 1507 */ 1508 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1509 NFS_DPF(ASYNCIO, 1510 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1511 nmp->nm_bufqwant = TRUE; 1512 error = newnfs_msleep(td, &nmp->nm_bufq, 1513 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1514 slptimeo); 1515 if (error) { 1516 error2 = newnfs_sigintr(nmp, td); 1517 if (error2) { 1518 NFSUNLOCKIOD(); 1519 return (error2); 1520 } 1521 if (slpflag == PCATCH) { 1522 slpflag = 0; 1523 slptimeo = 2 * hz; 1524 } 1525 } 1526 /* 1527 * We might have lost our iod while sleeping, 1528 * so check and loop if necessary. 1529 */ 1530 goto again; 1531 } 1532 1533 /* We might have lost our nfsiod */ 1534 if (nmp->nm_bufqiods == 0) { 1535 NFS_DPF(ASYNCIO, 1536 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1537 goto again; 1538 } 1539 1540 if (bp->b_iocmd == BIO_READ) { 1541 if (bp->b_rcred == NOCRED && cred != NOCRED) 1542 bp->b_rcred = crhold(cred); 1543 } else { 1544 if (bp->b_wcred == NOCRED && cred != NOCRED) 1545 bp->b_wcred = crhold(cred); 1546 } 1547 1548 if (bp->b_flags & B_REMFREE) 1549 bremfreef(bp); 1550 BUF_KERNPROC(bp); 1551 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1552 nmp->nm_bufqlen++; 1553 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1554 NFSLOCKNODE(VTONFS(bp->b_vp)); 1555 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1556 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1557 NFSUNLOCKNODE(VTONFS(bp->b_vp)); 1558 } 1559 NFSUNLOCKIOD(); 1560 return (0); 1561 } 1562 1563 NFSUNLOCKIOD(); 1564 1565 /* 1566 * All the iods are busy on other mounts, so return EIO to 1567 * force the caller to process the i/o synchronously. 1568 */ 1569 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1570 return (EIO); 1571 } 1572 1573 void 1574 ncl_doio_directwrite(struct buf *bp) 1575 { 1576 int iomode, must_commit; 1577 struct uio *uiop = (struct uio *)bp->b_caller1; 1578 char *iov_base = uiop->uio_iov->iov_base; 1579 1580 iomode = NFSWRITE_FILESYNC; 1581 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1582 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1583 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1584 free(iov_base, M_NFSDIRECTIO); 1585 free(uiop->uio_iov, M_NFSDIRECTIO); 1586 free(uiop, M_NFSDIRECTIO); 1587 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1588 struct nfsnode *np = VTONFS(bp->b_vp); 1589 NFSLOCKNODE(np); 1590 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) { 1591 /* 1592 * Invalidate the attribute cache, since writes to a DS 1593 * won't update the size attribute. 1594 */ 1595 np->n_attrstamp = 0; 1596 } 1597 np->n_directio_asyncwr--; 1598 if (np->n_directio_asyncwr == 0) { 1599 np->n_flag &= ~NMODIFIED; 1600 if ((np->n_flag & NFSYNCWAIT)) { 1601 np->n_flag &= ~NFSYNCWAIT; 1602 wakeup((caddr_t)&np->n_directio_asyncwr); 1603 } 1604 } 1605 NFSUNLOCKNODE(np); 1606 } 1607 bp->b_vp = NULL; 1608 uma_zfree(ncl_pbuf_zone, bp); 1609 } 1610 1611 /* 1612 * Do an I/O operation to/from a cache block. This may be called 1613 * synchronously or from an nfsiod. 1614 */ 1615 int 1616 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1617 int called_from_strategy) 1618 { 1619 struct uio *uiop; 1620 struct nfsnode *np; 1621 struct nfsmount *nmp; 1622 int error = 0, iomode, must_commit = 0; 1623 struct uio uio; 1624 struct iovec io; 1625 struct proc *p = td ? td->td_proc : NULL; 1626 uint8_t iocmd; 1627 1628 np = VTONFS(vp); 1629 nmp = VFSTONFS(vp->v_mount); 1630 uiop = &uio; 1631 uiop->uio_iov = &io; 1632 uiop->uio_iovcnt = 1; 1633 uiop->uio_segflg = UIO_SYSSPACE; 1634 uiop->uio_td = td; 1635 1636 /* 1637 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1638 * do this here so we do not have to do it in all the code that 1639 * calls us. 1640 */ 1641 bp->b_flags &= ~B_INVAL; 1642 bp->b_ioflags &= ~BIO_ERROR; 1643 1644 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1645 iocmd = bp->b_iocmd; 1646 if (iocmd == BIO_READ) { 1647 io.iov_len = uiop->uio_resid = bp->b_bcount; 1648 io.iov_base = bp->b_data; 1649 uiop->uio_rw = UIO_READ; 1650 1651 switch (vp->v_type) { 1652 case VREG: 1653 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1654 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1655 error = ncl_readrpc(vp, uiop, cr); 1656 1657 if (!error) { 1658 if (uiop->uio_resid) { 1659 /* 1660 * If we had a short read with no error, we must have 1661 * hit a file hole. We should zero-fill the remainder. 1662 * This can also occur if the server hits the file EOF. 1663 * 1664 * Holes used to be able to occur due to pending 1665 * writes, but that is not possible any longer. 1666 */ 1667 int nread = bp->b_bcount - uiop->uio_resid; 1668 ssize_t left = uiop->uio_resid; 1669 1670 if (left > 0) 1671 bzero((char *)bp->b_data + nread, left); 1672 uiop->uio_resid = 0; 1673 } 1674 } 1675 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1676 if (p && vp->v_writecount <= -1) { 1677 NFSLOCKNODE(np); 1678 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1679 NFSUNLOCKNODE(np); 1680 PROC_LOCK(p); 1681 killproc(p, "text file modification"); 1682 PROC_UNLOCK(p); 1683 } else 1684 NFSUNLOCKNODE(np); 1685 } 1686 break; 1687 case VLNK: 1688 uiop->uio_offset = (off_t)0; 1689 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1690 error = ncl_readlinkrpc(vp, uiop, cr); 1691 break; 1692 case VDIR: 1693 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1694 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1695 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1696 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1697 if (error == NFSERR_NOTSUPP) 1698 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1699 } 1700 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1701 error = ncl_readdirrpc(vp, uiop, cr, td); 1702 /* 1703 * end-of-directory sets B_INVAL but does not generate an 1704 * error. 1705 */ 1706 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1707 bp->b_flags |= B_INVAL; 1708 break; 1709 default: 1710 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1711 break; 1712 } 1713 if (error) { 1714 bp->b_ioflags |= BIO_ERROR; 1715 bp->b_error = error; 1716 } 1717 } else { 1718 /* 1719 * If we only need to commit, try to commit 1720 */ 1721 if (bp->b_flags & B_NEEDCOMMIT) { 1722 int retv; 1723 off_t off; 1724 1725 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1726 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1727 bp->b_wcred, td); 1728 if (retv == 0) { 1729 bp->b_dirtyoff = bp->b_dirtyend = 0; 1730 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1731 bp->b_resid = 0; 1732 bufdone(bp); 1733 return (0); 1734 } 1735 if (retv == NFSERR_STALEWRITEVERF) { 1736 ncl_clearcommit(vp->v_mount); 1737 } 1738 } 1739 1740 /* 1741 * Setup for actual write 1742 */ 1743 NFSLOCKNODE(np); 1744 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1745 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1746 NFSUNLOCKNODE(np); 1747 1748 if (bp->b_dirtyend > bp->b_dirtyoff) { 1749 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1750 - bp->b_dirtyoff; 1751 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1752 + bp->b_dirtyoff; 1753 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1754 uiop->uio_rw = UIO_WRITE; 1755 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1756 1757 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1758 iomode = NFSWRITE_UNSTABLE; 1759 else 1760 iomode = NFSWRITE_FILESYNC; 1761 1762 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1763 called_from_strategy); 1764 1765 /* 1766 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1767 * to cluster the buffers needing commit. This will allow 1768 * the system to submit a single commit rpc for the whole 1769 * cluster. We can do this even if the buffer is not 100% 1770 * dirty (relative to the NFS blocksize), so we optimize the 1771 * append-to-file-case. 1772 * 1773 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1774 * cleared because write clustering only works for commit 1775 * rpc's, not for the data portion of the write). 1776 */ 1777 1778 if (!error && iomode == NFSWRITE_UNSTABLE) { 1779 bp->b_flags |= B_NEEDCOMMIT; 1780 if (bp->b_dirtyoff == 0 1781 && bp->b_dirtyend == bp->b_bcount) 1782 bp->b_flags |= B_CLUSTEROK; 1783 } else { 1784 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1785 } 1786 1787 /* 1788 * For an interrupted write, the buffer is still valid 1789 * and the write hasn't been pushed to the server yet, 1790 * so we can't set BIO_ERROR and report the interruption 1791 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1792 * is not relevant, so the rpc attempt is essentially 1793 * a noop. For the case of a V3 write rpc not being 1794 * committed to stable storage, the block is still 1795 * dirty and requires either a commit rpc or another 1796 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1797 * the block is reused. This is indicated by setting 1798 * the B_DELWRI and B_NEEDCOMMIT flags. 1799 * 1800 * EIO is returned by ncl_writerpc() to indicate a recoverable 1801 * write error and is handled as above, except that 1802 * B_EINTR isn't set. One cause of this is a stale stateid 1803 * error for the RPC that indicates recovery is required, 1804 * when called with called_from_strategy != 0. 1805 * 1806 * If the buffer is marked B_PAGING, it does not reside on 1807 * the vp's paging queues so we cannot call bdirty(). The 1808 * bp in this case is not an NFS cache block so we should 1809 * be safe. XXX 1810 * 1811 * The logic below breaks up errors into recoverable and 1812 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1813 * and keep the buffer around for potential write retries. 1814 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1815 * and save the error in the nfsnode. This is less than ideal 1816 * but necessary. Keeping such buffers around could potentially 1817 * cause buffer exhaustion eventually (they can never be written 1818 * out, so will get constantly be re-dirtied). It also causes 1819 * all sorts of vfs panics. For non-recoverable write errors, 1820 * also invalidate the attrcache, so we'll be forced to go over 1821 * the wire for this object, returning an error to user on next 1822 * call (most of the time). 1823 */ 1824 if (error == EINTR || error == EIO || error == ETIMEDOUT 1825 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1826 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1827 if ((bp->b_flags & B_PAGING) == 0) { 1828 bdirty(bp); 1829 bp->b_flags &= ~B_DONE; 1830 } 1831 if ((error == EINTR || error == ETIMEDOUT) && 1832 (bp->b_flags & B_ASYNC) == 0) 1833 bp->b_flags |= B_EINTR; 1834 } else { 1835 if (error) { 1836 bp->b_ioflags |= BIO_ERROR; 1837 bp->b_flags |= B_INVAL; 1838 bp->b_error = np->n_error = error; 1839 NFSLOCKNODE(np); 1840 np->n_flag |= NWRITEERR; 1841 np->n_attrstamp = 0; 1842 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1843 NFSUNLOCKNODE(np); 1844 } 1845 bp->b_dirtyoff = bp->b_dirtyend = 0; 1846 } 1847 } else { 1848 bp->b_resid = 0; 1849 bufdone(bp); 1850 return (0); 1851 } 1852 } 1853 bp->b_resid = uiop->uio_resid; 1854 if (must_commit) 1855 ncl_clearcommit(vp->v_mount); 1856 bufdone(bp); 1857 return (error); 1858 } 1859 1860 /* 1861 * Used to aid in handling ftruncate() operations on the NFS client side. 1862 * Truncation creates a number of special problems for NFS. We have to 1863 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1864 * we have to properly handle VM pages or (potentially dirty) buffers 1865 * that straddle the truncation point. 1866 */ 1867 1868 int 1869 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1870 { 1871 struct nfsnode *np = VTONFS(vp); 1872 u_quad_t tsize; 1873 int biosize = vp->v_bufobj.bo_bsize; 1874 int error = 0; 1875 1876 NFSLOCKNODE(np); 1877 tsize = np->n_size; 1878 np->n_size = nsize; 1879 NFSUNLOCKNODE(np); 1880 1881 if (nsize < tsize) { 1882 struct buf *bp; 1883 daddr_t lbn; 1884 int bufsize; 1885 1886 /* 1887 * vtruncbuf() doesn't get the buffer overlapping the 1888 * truncation point. We may have a B_DELWRI and/or B_CACHE 1889 * buffer that now needs to be truncated. 1890 */ 1891 error = vtruncbuf(vp, nsize, biosize); 1892 lbn = nsize / biosize; 1893 bufsize = nsize - (lbn * biosize); 1894 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1895 if (!bp) 1896 return EINTR; 1897 if (bp->b_dirtyoff > bp->b_bcount) 1898 bp->b_dirtyoff = bp->b_bcount; 1899 if (bp->b_dirtyend > bp->b_bcount) 1900 bp->b_dirtyend = bp->b_bcount; 1901 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1902 brelse(bp); 1903 } else { 1904 vnode_pager_setsize(vp, nsize); 1905 } 1906 return(error); 1907 } 1908