xref: /freebsd/sys/fs/nfsclient/nfs_clbio.c (revision ca27f0cef04fe67c812aae3568211798f52f28ee)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_kdtrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_page.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_pager.h>
54 #include <vm/vnode_pager.h>
55 
56 #include <fs/nfs/nfsport.h>
57 #include <fs/nfsclient/nfsmount.h>
58 #include <fs/nfsclient/nfs.h>
59 #include <fs/nfsclient/nfsnode.h>
60 #include <fs/nfsclient/nfs_kdtrace.h>
61 
62 extern int newnfs_directio_allow_mmap;
63 extern struct nfsstats newnfsstats;
64 extern struct mtx ncl_iod_mutex;
65 extern int ncl_numasync;
66 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
67 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
68 extern int newnfs_directio_enable;
69 extern int nfs_keep_dirty_on_error;
70 
71 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
72 
73 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
74     struct thread *td);
75 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
76     struct ucred *cred, int ioflag);
77 
78 /*
79  * Vnode op for VM getpages.
80  */
81 int
82 ncl_getpages(struct vop_getpages_args *ap)
83 {
84 	int i, error, nextoff, size, toff, count, npages;
85 	struct uio uio;
86 	struct iovec iov;
87 	vm_offset_t kva;
88 	struct buf *bp;
89 	struct vnode *vp;
90 	struct thread *td;
91 	struct ucred *cred;
92 	struct nfsmount *nmp;
93 	vm_object_t object;
94 	vm_page_t *pages;
95 	struct nfsnode *np;
96 
97 	vp = ap->a_vp;
98 	np = VTONFS(vp);
99 	td = curthread;				/* XXX */
100 	cred = curthread->td_ucred;		/* XXX */
101 	nmp = VFSTONFS(vp->v_mount);
102 	pages = ap->a_m;
103 	count = ap->a_count;
104 
105 	if ((object = vp->v_object) == NULL) {
106 		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
107 		return (VM_PAGER_ERROR);
108 	}
109 
110 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
111 		mtx_lock(&np->n_mtx);
112 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
113 			mtx_unlock(&np->n_mtx);
114 			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
115 			return (VM_PAGER_ERROR);
116 		} else
117 			mtx_unlock(&np->n_mtx);
118 	}
119 
120 	mtx_lock(&nmp->nm_mtx);
121 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
122 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
123 		mtx_unlock(&nmp->nm_mtx);
124 		/* We'll never get here for v4, because we always have fsinfo */
125 		(void)ncl_fsinfo(nmp, vp, cred, td);
126 	} else
127 		mtx_unlock(&nmp->nm_mtx);
128 
129 	npages = btoc(count);
130 
131 	/*
132 	 * If the requested page is partially valid, just return it and
133 	 * allow the pager to zero-out the blanks.  Partially valid pages
134 	 * can only occur at the file EOF.
135 	 */
136 	VM_OBJECT_LOCK(object);
137 	if (pages[ap->a_reqpage]->valid != 0) {
138 		for (i = 0; i < npages; ++i) {
139 			if (i != ap->a_reqpage) {
140 				vm_page_lock(pages[i]);
141 				vm_page_free(pages[i]);
142 				vm_page_unlock(pages[i]);
143 			}
144 		}
145 		VM_OBJECT_UNLOCK(object);
146 		return (0);
147 	}
148 	VM_OBJECT_UNLOCK(object);
149 
150 	/*
151 	 * We use only the kva address for the buffer, but this is extremely
152 	 * convienient and fast.
153 	 */
154 	bp = getpbuf(&ncl_pbuf_freecnt);
155 
156 	kva = (vm_offset_t) bp->b_data;
157 	pmap_qenter(kva, pages, npages);
158 	PCPU_INC(cnt.v_vnodein);
159 	PCPU_ADD(cnt.v_vnodepgsin, npages);
160 
161 	iov.iov_base = (caddr_t) kva;
162 	iov.iov_len = count;
163 	uio.uio_iov = &iov;
164 	uio.uio_iovcnt = 1;
165 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
166 	uio.uio_resid = count;
167 	uio.uio_segflg = UIO_SYSSPACE;
168 	uio.uio_rw = UIO_READ;
169 	uio.uio_td = td;
170 
171 	error = ncl_readrpc(vp, &uio, cred);
172 	pmap_qremove(kva, npages);
173 
174 	relpbuf(bp, &ncl_pbuf_freecnt);
175 
176 	if (error && (uio.uio_resid == count)) {
177 		ncl_printf("nfs_getpages: error %d\n", error);
178 		VM_OBJECT_LOCK(object);
179 		for (i = 0; i < npages; ++i) {
180 			if (i != ap->a_reqpage) {
181 				vm_page_lock(pages[i]);
182 				vm_page_free(pages[i]);
183 				vm_page_unlock(pages[i]);
184 			}
185 		}
186 		VM_OBJECT_UNLOCK(object);
187 		return (VM_PAGER_ERROR);
188 	}
189 
190 	/*
191 	 * Calculate the number of bytes read and validate only that number
192 	 * of bytes.  Note that due to pending writes, size may be 0.  This
193 	 * does not mean that the remaining data is invalid!
194 	 */
195 
196 	size = count - uio.uio_resid;
197 	VM_OBJECT_LOCK(object);
198 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
199 		vm_page_t m;
200 		nextoff = toff + PAGE_SIZE;
201 		m = pages[i];
202 
203 		if (nextoff <= size) {
204 			/*
205 			 * Read operation filled an entire page
206 			 */
207 			m->valid = VM_PAGE_BITS_ALL;
208 			KASSERT(m->dirty == 0,
209 			    ("nfs_getpages: page %p is dirty", m));
210 		} else if (size > toff) {
211 			/*
212 			 * Read operation filled a partial page.
213 			 */
214 			m->valid = 0;
215 			vm_page_set_valid_range(m, 0, size - toff);
216 			KASSERT(m->dirty == 0,
217 			    ("nfs_getpages: page %p is dirty", m));
218 		} else {
219 			/*
220 			 * Read operation was short.  If no error occured
221 			 * we may have hit a zero-fill section.   We simply
222 			 * leave valid set to 0.
223 			 */
224 			;
225 		}
226 		if (i != ap->a_reqpage) {
227 			/*
228 			 * Whether or not to leave the page activated is up in
229 			 * the air, but we should put the page on a page queue
230 			 * somewhere (it already is in the object).  Result:
231 			 * It appears that emperical results show that
232 			 * deactivating pages is best.
233 			 */
234 
235 			/*
236 			 * Just in case someone was asking for this page we
237 			 * now tell them that it is ok to use.
238 			 */
239 			if (!error) {
240 				if (m->oflags & VPO_WANTED) {
241 					vm_page_lock(m);
242 					vm_page_activate(m);
243 					vm_page_unlock(m);
244 				} else {
245 					vm_page_lock(m);
246 					vm_page_deactivate(m);
247 					vm_page_unlock(m);
248 				}
249 				vm_page_wakeup(m);
250 			} else {
251 				vm_page_lock(m);
252 				vm_page_free(m);
253 				vm_page_unlock(m);
254 			}
255 		}
256 	}
257 	VM_OBJECT_UNLOCK(object);
258 	return (0);
259 }
260 
261 /*
262  * Vnode op for VM putpages.
263  */
264 int
265 ncl_putpages(struct vop_putpages_args *ap)
266 {
267 	struct uio uio;
268 	struct iovec iov;
269 	vm_offset_t kva;
270 	struct buf *bp;
271 	int iomode, must_commit, i, error, npages, count;
272 	off_t offset;
273 	int *rtvals;
274 	struct vnode *vp;
275 	struct thread *td;
276 	struct ucred *cred;
277 	struct nfsmount *nmp;
278 	struct nfsnode *np;
279 	vm_page_t *pages;
280 
281 	vp = ap->a_vp;
282 	np = VTONFS(vp);
283 	td = curthread;				/* XXX */
284 	cred = curthread->td_ucred;		/* XXX */
285 	nmp = VFSTONFS(vp->v_mount);
286 	pages = ap->a_m;
287 	count = ap->a_count;
288 	rtvals = ap->a_rtvals;
289 	npages = btoc(count);
290 	offset = IDX_TO_OFF(pages[0]->pindex);
291 
292 	mtx_lock(&nmp->nm_mtx);
293 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
294 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
295 		mtx_unlock(&nmp->nm_mtx);
296 		(void)ncl_fsinfo(nmp, vp, cred, td);
297 	} else
298 		mtx_unlock(&nmp->nm_mtx);
299 
300 	mtx_lock(&np->n_mtx);
301 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
302 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
303 		mtx_unlock(&np->n_mtx);
304 		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
305 		mtx_lock(&np->n_mtx);
306 	}
307 
308 	for (i = 0; i < npages; i++)
309 		rtvals[i] = VM_PAGER_ERROR;
310 
311 	/*
312 	 * When putting pages, do not extend file past EOF.
313 	 */
314 	if (offset + count > np->n_size) {
315 		count = np->n_size - offset;
316 		if (count < 0)
317 			count = 0;
318 	}
319 	mtx_unlock(&np->n_mtx);
320 
321 	/*
322 	 * We use only the kva address for the buffer, but this is extremely
323 	 * convienient and fast.
324 	 */
325 	bp = getpbuf(&ncl_pbuf_freecnt);
326 
327 	kva = (vm_offset_t) bp->b_data;
328 	pmap_qenter(kva, pages, npages);
329 	PCPU_INC(cnt.v_vnodeout);
330 	PCPU_ADD(cnt.v_vnodepgsout, count);
331 
332 	iov.iov_base = (caddr_t) kva;
333 	iov.iov_len = count;
334 	uio.uio_iov = &iov;
335 	uio.uio_iovcnt = 1;
336 	uio.uio_offset = offset;
337 	uio.uio_resid = count;
338 	uio.uio_segflg = UIO_SYSSPACE;
339 	uio.uio_rw = UIO_WRITE;
340 	uio.uio_td = td;
341 
342 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
343 	    iomode = NFSWRITE_UNSTABLE;
344 	else
345 	    iomode = NFSWRITE_FILESYNC;
346 
347 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
348 
349 	pmap_qremove(kva, npages);
350 	relpbuf(bp, &ncl_pbuf_freecnt);
351 
352 	if (error == 0 || !nfs_keep_dirty_on_error) {
353 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
354 		if (must_commit)
355 			ncl_clearcommit(vp->v_mount);
356 	}
357 	return rtvals[0];
358 }
359 
360 /*
361  * For nfs, cache consistency can only be maintained approximately.
362  * Although RFC1094 does not specify the criteria, the following is
363  * believed to be compatible with the reference port.
364  * For nfs:
365  * If the file's modify time on the server has changed since the
366  * last read rpc or you have written to the file,
367  * you may have lost data cache consistency with the
368  * server, so flush all of the file's data out of the cache.
369  * Then force a getattr rpc to ensure that you have up to date
370  * attributes.
371  * NB: This implies that cache data can be read when up to
372  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
373  * attributes this could be forced by setting n_attrstamp to 0 before
374  * the VOP_GETATTR() call.
375  */
376 static inline int
377 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
378 {
379 	int error = 0;
380 	struct vattr vattr;
381 	struct nfsnode *np = VTONFS(vp);
382 	int old_lock;
383 
384 	/*
385 	 * Grab the exclusive lock before checking whether the cache is
386 	 * consistent.
387 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
388 	 * But for now, this suffices.
389 	 */
390 	old_lock = ncl_upgrade_vnlock(vp);
391 	if (vp->v_iflag & VI_DOOMED) {
392 		ncl_downgrade_vnlock(vp, old_lock);
393 		return (EBADF);
394 	}
395 
396 	mtx_lock(&np->n_mtx);
397 	if (np->n_flag & NMODIFIED) {
398 		mtx_unlock(&np->n_mtx);
399 		if (vp->v_type != VREG) {
400 			if (vp->v_type != VDIR)
401 				panic("nfs: bioread, not dir");
402 			ncl_invaldir(vp);
403 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
404 			if (error)
405 				goto out;
406 		}
407 		np->n_attrstamp = 0;
408 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
409 		error = VOP_GETATTR(vp, &vattr, cred);
410 		if (error)
411 			goto out;
412 		mtx_lock(&np->n_mtx);
413 		np->n_mtime = vattr.va_mtime;
414 		mtx_unlock(&np->n_mtx);
415 	} else {
416 		mtx_unlock(&np->n_mtx);
417 		error = VOP_GETATTR(vp, &vattr, cred);
418 		if (error)
419 			return (error);
420 		mtx_lock(&np->n_mtx);
421 		if ((np->n_flag & NSIZECHANGED)
422 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
423 			mtx_unlock(&np->n_mtx);
424 			if (vp->v_type == VDIR)
425 				ncl_invaldir(vp);
426 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
427 			if (error)
428 				goto out;
429 			mtx_lock(&np->n_mtx);
430 			np->n_mtime = vattr.va_mtime;
431 			np->n_flag &= ~NSIZECHANGED;
432 		}
433 		mtx_unlock(&np->n_mtx);
434 	}
435 out:
436 	ncl_downgrade_vnlock(vp, old_lock);
437 	return error;
438 }
439 
440 /*
441  * Vnode op for read using bio
442  */
443 int
444 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
445 {
446 	struct nfsnode *np = VTONFS(vp);
447 	int biosize, i;
448 	struct buf *bp, *rabp;
449 	struct thread *td;
450 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
451 	daddr_t lbn, rabn;
452 	int bcount;
453 	int seqcount;
454 	int nra, error = 0, n = 0, on = 0;
455 	off_t tmp_off;
456 
457 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
458 	if (uio->uio_resid == 0)
459 		return (0);
460 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
461 		return (EINVAL);
462 	td = uio->uio_td;
463 
464 	mtx_lock(&nmp->nm_mtx);
465 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
466 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
467 		mtx_unlock(&nmp->nm_mtx);
468 		(void)ncl_fsinfo(nmp, vp, cred, td);
469 		mtx_lock(&nmp->nm_mtx);
470 	}
471 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
472 		(void) newnfs_iosize(nmp);
473 
474 	tmp_off = uio->uio_offset + uio->uio_resid;
475 	if (vp->v_type != VDIR &&
476 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
477 		mtx_unlock(&nmp->nm_mtx);
478 		return (EFBIG);
479 	}
480 	mtx_unlock(&nmp->nm_mtx);
481 
482 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
483 		/* No caching/ no readaheads. Just read data into the user buffer */
484 		return ncl_readrpc(vp, uio, cred);
485 
486 	biosize = vp->v_bufobj.bo_bsize;
487 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
488 
489 	error = nfs_bioread_check_cons(vp, td, cred);
490 	if (error)
491 		return error;
492 
493 	do {
494 	    u_quad_t nsize;
495 
496 	    mtx_lock(&np->n_mtx);
497 	    nsize = np->n_size;
498 	    mtx_unlock(&np->n_mtx);
499 
500 	    switch (vp->v_type) {
501 	    case VREG:
502 		NFSINCRGLOBAL(newnfsstats.biocache_reads);
503 		lbn = uio->uio_offset / biosize;
504 		on = uio->uio_offset & (biosize - 1);
505 
506 		/*
507 		 * Start the read ahead(s), as required.
508 		 */
509 		if (nmp->nm_readahead > 0) {
510 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
511 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
512 			rabn = lbn + 1 + nra;
513 			if (incore(&vp->v_bufobj, rabn) == NULL) {
514 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
515 			    if (!rabp) {
516 				error = newnfs_sigintr(nmp, td);
517 				return (error ? error : EINTR);
518 			    }
519 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
520 				rabp->b_flags |= B_ASYNC;
521 				rabp->b_iocmd = BIO_READ;
522 				vfs_busy_pages(rabp, 0);
523 				if (ncl_asyncio(nmp, rabp, cred, td)) {
524 				    rabp->b_flags |= B_INVAL;
525 				    rabp->b_ioflags |= BIO_ERROR;
526 				    vfs_unbusy_pages(rabp);
527 				    brelse(rabp);
528 				    break;
529 				}
530 			    } else {
531 				brelse(rabp);
532 			    }
533 			}
534 		    }
535 		}
536 
537 		/* Note that bcount is *not* DEV_BSIZE aligned. */
538 		bcount = biosize;
539 		if ((off_t)lbn * biosize >= nsize) {
540 			bcount = 0;
541 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
542 			bcount = nsize - (off_t)lbn * biosize;
543 		}
544 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
545 
546 		if (!bp) {
547 			error = newnfs_sigintr(nmp, td);
548 			return (error ? error : EINTR);
549 		}
550 
551 		/*
552 		 * If B_CACHE is not set, we must issue the read.  If this
553 		 * fails, we return an error.
554 		 */
555 
556 		if ((bp->b_flags & B_CACHE) == 0) {
557 		    bp->b_iocmd = BIO_READ;
558 		    vfs_busy_pages(bp, 0);
559 		    error = ncl_doio(vp, bp, cred, td, 0);
560 		    if (error) {
561 			brelse(bp);
562 			return (error);
563 		    }
564 		}
565 
566 		/*
567 		 * on is the offset into the current bp.  Figure out how many
568 		 * bytes we can copy out of the bp.  Note that bcount is
569 		 * NOT DEV_BSIZE aligned.
570 		 *
571 		 * Then figure out how many bytes we can copy into the uio.
572 		 */
573 
574 		n = 0;
575 		if (on < bcount)
576 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
577 		break;
578 	    case VLNK:
579 		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
580 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
581 		if (!bp) {
582 			error = newnfs_sigintr(nmp, td);
583 			return (error ? error : EINTR);
584 		}
585 		if ((bp->b_flags & B_CACHE) == 0) {
586 		    bp->b_iocmd = BIO_READ;
587 		    vfs_busy_pages(bp, 0);
588 		    error = ncl_doio(vp, bp, cred, td, 0);
589 		    if (error) {
590 			bp->b_ioflags |= BIO_ERROR;
591 			brelse(bp);
592 			return (error);
593 		    }
594 		}
595 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
596 		on = 0;
597 		break;
598 	    case VDIR:
599 		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
600 		if (np->n_direofoffset
601 		    && uio->uio_offset >= np->n_direofoffset) {
602 		    return (0);
603 		}
604 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
605 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
606 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
607 		if (!bp) {
608 		    error = newnfs_sigintr(nmp, td);
609 		    return (error ? error : EINTR);
610 		}
611 		if ((bp->b_flags & B_CACHE) == 0) {
612 		    bp->b_iocmd = BIO_READ;
613 		    vfs_busy_pages(bp, 0);
614 		    error = ncl_doio(vp, bp, cred, td, 0);
615 		    if (error) {
616 			    brelse(bp);
617 		    }
618 		    while (error == NFSERR_BAD_COOKIE) {
619 			ncl_invaldir(vp);
620 			error = ncl_vinvalbuf(vp, 0, td, 1);
621 			/*
622 			 * Yuck! The directory has been modified on the
623 			 * server. The only way to get the block is by
624 			 * reading from the beginning to get all the
625 			 * offset cookies.
626 			 *
627 			 * Leave the last bp intact unless there is an error.
628 			 * Loop back up to the while if the error is another
629 			 * NFSERR_BAD_COOKIE (double yuch!).
630 			 */
631 			for (i = 0; i <= lbn && !error; i++) {
632 			    if (np->n_direofoffset
633 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
634 				    return (0);
635 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
636 			    if (!bp) {
637 				error = newnfs_sigintr(nmp, td);
638 				return (error ? error : EINTR);
639 			    }
640 			    if ((bp->b_flags & B_CACHE) == 0) {
641 				    bp->b_iocmd = BIO_READ;
642 				    vfs_busy_pages(bp, 0);
643 				    error = ncl_doio(vp, bp, cred, td, 0);
644 				    /*
645 				     * no error + B_INVAL == directory EOF,
646 				     * use the block.
647 				     */
648 				    if (error == 0 && (bp->b_flags & B_INVAL))
649 					    break;
650 			    }
651 			    /*
652 			     * An error will throw away the block and the
653 			     * for loop will break out.  If no error and this
654 			     * is not the block we want, we throw away the
655 			     * block and go for the next one via the for loop.
656 			     */
657 			    if (error || i < lbn)
658 				    brelse(bp);
659 			}
660 		    }
661 		    /*
662 		     * The above while is repeated if we hit another cookie
663 		     * error.  If we hit an error and it wasn't a cookie error,
664 		     * we give up.
665 		     */
666 		    if (error)
667 			    return (error);
668 		}
669 
670 		/*
671 		 * If not eof and read aheads are enabled, start one.
672 		 * (You need the current block first, so that you have the
673 		 *  directory offset cookie of the next block.)
674 		 */
675 		if (nmp->nm_readahead > 0 &&
676 		    (bp->b_flags & B_INVAL) == 0 &&
677 		    (np->n_direofoffset == 0 ||
678 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
679 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
680 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
681 			if (rabp) {
682 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
683 				rabp->b_flags |= B_ASYNC;
684 				rabp->b_iocmd = BIO_READ;
685 				vfs_busy_pages(rabp, 0);
686 				if (ncl_asyncio(nmp, rabp, cred, td)) {
687 				    rabp->b_flags |= B_INVAL;
688 				    rabp->b_ioflags |= BIO_ERROR;
689 				    vfs_unbusy_pages(rabp);
690 				    brelse(rabp);
691 				}
692 			    } else {
693 				brelse(rabp);
694 			    }
695 			}
696 		}
697 		/*
698 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
699 		 * chopped for the EOF condition, we cannot tell how large
700 		 * NFS directories are going to be until we hit EOF.  So
701 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
702 		 * it just so happens that b_resid will effectively chop it
703 		 * to EOF.  *BUT* this information is lost if the buffer goes
704 		 * away and is reconstituted into a B_CACHE state ( due to
705 		 * being VMIO ) later.  So we keep track of the directory eof
706 		 * in np->n_direofoffset and chop it off as an extra step
707 		 * right here.
708 		 */
709 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
710 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
711 			n = np->n_direofoffset - uio->uio_offset;
712 		break;
713 	    default:
714 		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
715 		bp = NULL;
716 		break;
717 	    };
718 
719 	    if (n > 0) {
720 		    error = uiomove(bp->b_data + on, (int)n, uio);
721 	    }
722 	    if (vp->v_type == VLNK)
723 		n = 0;
724 	    if (bp != NULL)
725 		brelse(bp);
726 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
727 	return (error);
728 }
729 
730 /*
731  * The NFS write path cannot handle iovecs with len > 1. So we need to
732  * break up iovecs accordingly (restricting them to wsize).
733  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
734  * For the ASYNC case, 2 copies are needed. The first a copy from the
735  * user buffer to a staging buffer and then a second copy from the staging
736  * buffer to mbufs. This can be optimized by copying from the user buffer
737  * directly into mbufs and passing the chain down, but that requires a
738  * fair amount of re-working of the relevant codepaths (and can be done
739  * later).
740  */
741 static int
742 nfs_directio_write(vp, uiop, cred, ioflag)
743 	struct vnode *vp;
744 	struct uio *uiop;
745 	struct ucred *cred;
746 	int ioflag;
747 {
748 	int error;
749 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
750 	struct thread *td = uiop->uio_td;
751 	int size;
752 	int wsize;
753 
754 	mtx_lock(&nmp->nm_mtx);
755 	wsize = nmp->nm_wsize;
756 	mtx_unlock(&nmp->nm_mtx);
757 	if (ioflag & IO_SYNC) {
758 		int iomode, must_commit;
759 		struct uio uio;
760 		struct iovec iov;
761 do_sync:
762 		while (uiop->uio_resid > 0) {
763 			size = MIN(uiop->uio_resid, wsize);
764 			size = MIN(uiop->uio_iov->iov_len, size);
765 			iov.iov_base = uiop->uio_iov->iov_base;
766 			iov.iov_len = size;
767 			uio.uio_iov = &iov;
768 			uio.uio_iovcnt = 1;
769 			uio.uio_offset = uiop->uio_offset;
770 			uio.uio_resid = size;
771 			uio.uio_segflg = UIO_USERSPACE;
772 			uio.uio_rw = UIO_WRITE;
773 			uio.uio_td = td;
774 			iomode = NFSWRITE_FILESYNC;
775 			error = ncl_writerpc(vp, &uio, cred, &iomode,
776 			    &must_commit, 0);
777 			KASSERT((must_commit == 0),
778 				("ncl_directio_write: Did not commit write"));
779 			if (error)
780 				return (error);
781 			uiop->uio_offset += size;
782 			uiop->uio_resid -= size;
783 			if (uiop->uio_iov->iov_len <= size) {
784 				uiop->uio_iovcnt--;
785 				uiop->uio_iov++;
786 			} else {
787 				uiop->uio_iov->iov_base =
788 					(char *)uiop->uio_iov->iov_base + size;
789 				uiop->uio_iov->iov_len -= size;
790 			}
791 		}
792 	} else {
793 		struct uio *t_uio;
794 		struct iovec *t_iov;
795 		struct buf *bp;
796 
797 		/*
798 		 * Break up the write into blocksize chunks and hand these
799 		 * over to nfsiod's for write back.
800 		 * Unfortunately, this incurs a copy of the data. Since
801 		 * the user could modify the buffer before the write is
802 		 * initiated.
803 		 *
804 		 * The obvious optimization here is that one of the 2 copies
805 		 * in the async write path can be eliminated by copying the
806 		 * data here directly into mbufs and passing the mbuf chain
807 		 * down. But that will require a fair amount of re-working
808 		 * of the code and can be done if there's enough interest
809 		 * in NFS directio access.
810 		 */
811 		while (uiop->uio_resid > 0) {
812 			size = MIN(uiop->uio_resid, wsize);
813 			size = MIN(uiop->uio_iov->iov_len, size);
814 			bp = getpbuf(&ncl_pbuf_freecnt);
815 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
816 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
817 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
818 			t_iov->iov_len = size;
819 			t_uio->uio_iov = t_iov;
820 			t_uio->uio_iovcnt = 1;
821 			t_uio->uio_offset = uiop->uio_offset;
822 			t_uio->uio_resid = size;
823 			t_uio->uio_segflg = UIO_SYSSPACE;
824 			t_uio->uio_rw = UIO_WRITE;
825 			t_uio->uio_td = td;
826 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
827 			    uiop->uio_segflg == UIO_SYSSPACE,
828 			    ("nfs_directio_write: Bad uio_segflg"));
829 			if (uiop->uio_segflg == UIO_USERSPACE) {
830 				error = copyin(uiop->uio_iov->iov_base,
831 				    t_iov->iov_base, size);
832 				if (error != 0)
833 					goto err_free;
834 			} else
835 				/*
836 				 * UIO_SYSSPACE may never happen, but handle
837 				 * it just in case it does.
838 				 */
839 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
840 				    size);
841 			bp->b_flags |= B_DIRECT;
842 			bp->b_iocmd = BIO_WRITE;
843 			if (cred != NOCRED) {
844 				crhold(cred);
845 				bp->b_wcred = cred;
846 			} else
847 				bp->b_wcred = NOCRED;
848 			bp->b_caller1 = (void *)t_uio;
849 			bp->b_vp = vp;
850 			error = ncl_asyncio(nmp, bp, NOCRED, td);
851 err_free:
852 			if (error) {
853 				free(t_iov->iov_base, M_NFSDIRECTIO);
854 				free(t_iov, M_NFSDIRECTIO);
855 				free(t_uio, M_NFSDIRECTIO);
856 				bp->b_vp = NULL;
857 				relpbuf(bp, &ncl_pbuf_freecnt);
858 				if (error == EINTR)
859 					return (error);
860 				goto do_sync;
861 			}
862 			uiop->uio_offset += size;
863 			uiop->uio_resid -= size;
864 			if (uiop->uio_iov->iov_len <= size) {
865 				uiop->uio_iovcnt--;
866 				uiop->uio_iov++;
867 			} else {
868 				uiop->uio_iov->iov_base =
869 					(char *)uiop->uio_iov->iov_base + size;
870 				uiop->uio_iov->iov_len -= size;
871 			}
872 		}
873 	}
874 	return (0);
875 }
876 
877 /*
878  * Vnode op for write using bio
879  */
880 int
881 ncl_write(struct vop_write_args *ap)
882 {
883 	int biosize;
884 	struct uio *uio = ap->a_uio;
885 	struct thread *td = uio->uio_td;
886 	struct vnode *vp = ap->a_vp;
887 	struct nfsnode *np = VTONFS(vp);
888 	struct ucred *cred = ap->a_cred;
889 	int ioflag = ap->a_ioflag;
890 	struct buf *bp;
891 	struct vattr vattr;
892 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
893 	daddr_t lbn;
894 	int bcount;
895 	int n, on, error = 0;
896 	off_t tmp_off;
897 
898 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
899 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
900 	    ("ncl_write proc"));
901 	if (vp->v_type != VREG)
902 		return (EIO);
903 	mtx_lock(&np->n_mtx);
904 	if (np->n_flag & NWRITEERR) {
905 		np->n_flag &= ~NWRITEERR;
906 		mtx_unlock(&np->n_mtx);
907 		return (np->n_error);
908 	} else
909 		mtx_unlock(&np->n_mtx);
910 	mtx_lock(&nmp->nm_mtx);
911 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
912 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
913 		mtx_unlock(&nmp->nm_mtx);
914 		(void)ncl_fsinfo(nmp, vp, cred, td);
915 		mtx_lock(&nmp->nm_mtx);
916 	}
917 	if (nmp->nm_wsize == 0)
918 		(void) newnfs_iosize(nmp);
919 	mtx_unlock(&nmp->nm_mtx);
920 
921 	/*
922 	 * Synchronously flush pending buffers if we are in synchronous
923 	 * mode or if we are appending.
924 	 */
925 	if (ioflag & (IO_APPEND | IO_SYNC)) {
926 		mtx_lock(&np->n_mtx);
927 		if (np->n_flag & NMODIFIED) {
928 			mtx_unlock(&np->n_mtx);
929 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
930 			/*
931 			 * Require non-blocking, synchronous writes to
932 			 * dirty files to inform the program it needs
933 			 * to fsync(2) explicitly.
934 			 */
935 			if (ioflag & IO_NDELAY)
936 				return (EAGAIN);
937 #endif
938 flush_and_restart:
939 			np->n_attrstamp = 0;
940 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
941 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
942 			if (error)
943 				return (error);
944 		} else
945 			mtx_unlock(&np->n_mtx);
946 	}
947 
948 	/*
949 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
950 	 * get the append lock.
951 	 */
952 	if (ioflag & IO_APPEND) {
953 		np->n_attrstamp = 0;
954 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
955 		error = VOP_GETATTR(vp, &vattr, cred);
956 		if (error)
957 			return (error);
958 		mtx_lock(&np->n_mtx);
959 		uio->uio_offset = np->n_size;
960 		mtx_unlock(&np->n_mtx);
961 	}
962 
963 	if (uio->uio_offset < 0)
964 		return (EINVAL);
965 	tmp_off = uio->uio_offset + uio->uio_resid;
966 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
967 		return (EFBIG);
968 	if (uio->uio_resid == 0)
969 		return (0);
970 
971 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
972 		return nfs_directio_write(vp, uio, cred, ioflag);
973 
974 	/*
975 	 * Maybe this should be above the vnode op call, but so long as
976 	 * file servers have no limits, i don't think it matters
977 	 */
978 	if (vn_rlimit_fsize(vp, uio, td))
979 		return (EFBIG);
980 
981 	biosize = vp->v_bufobj.bo_bsize;
982 	/*
983 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
984 	 * would exceed the local maximum per-file write commit size when
985 	 * combined with those, we must decide whether to flush,
986 	 * go synchronous, or return error.  We don't bother checking
987 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
988 	 * no point optimizing for something that really won't ever happen.
989 	 */
990 	if (!(ioflag & IO_SYNC)) {
991 		int nflag;
992 
993 		mtx_lock(&np->n_mtx);
994 		nflag = np->n_flag;
995 		mtx_unlock(&np->n_mtx);
996 		int needrestart = 0;
997 		if (nmp->nm_wcommitsize < uio->uio_resid) {
998 			/*
999 			 * If this request could not possibly be completed
1000 			 * without exceeding the maximum outstanding write
1001 			 * commit size, see if we can convert it into a
1002 			 * synchronous write operation.
1003 			 */
1004 			if (ioflag & IO_NDELAY)
1005 				return (EAGAIN);
1006 			ioflag |= IO_SYNC;
1007 			if (nflag & NMODIFIED)
1008 				needrestart = 1;
1009 		} else if (nflag & NMODIFIED) {
1010 			int wouldcommit = 0;
1011 			BO_LOCK(&vp->v_bufobj);
1012 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1013 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1014 				    b_bobufs) {
1015 					if (bp->b_flags & B_NEEDCOMMIT)
1016 						wouldcommit += bp->b_bcount;
1017 				}
1018 			}
1019 			BO_UNLOCK(&vp->v_bufobj);
1020 			/*
1021 			 * Since we're not operating synchronously and
1022 			 * bypassing the buffer cache, we are in a commit
1023 			 * and holding all of these buffers whether
1024 			 * transmitted or not.  If not limited, this
1025 			 * will lead to the buffer cache deadlocking,
1026 			 * as no one else can flush our uncommitted buffers.
1027 			 */
1028 			wouldcommit += uio->uio_resid;
1029 			/*
1030 			 * If we would initially exceed the maximum
1031 			 * outstanding write commit size, flush and restart.
1032 			 */
1033 			if (wouldcommit > nmp->nm_wcommitsize)
1034 				needrestart = 1;
1035 		}
1036 		if (needrestart)
1037 			goto flush_and_restart;
1038 	}
1039 
1040 	do {
1041 		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1042 		lbn = uio->uio_offset / biosize;
1043 		on = uio->uio_offset & (biosize-1);
1044 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1045 again:
1046 		/*
1047 		 * Handle direct append and file extension cases, calculate
1048 		 * unaligned buffer size.
1049 		 */
1050 		mtx_lock(&np->n_mtx);
1051 		if (uio->uio_offset == np->n_size && n) {
1052 			mtx_unlock(&np->n_mtx);
1053 			/*
1054 			 * Get the buffer (in its pre-append state to maintain
1055 			 * B_CACHE if it was previously set).  Resize the
1056 			 * nfsnode after we have locked the buffer to prevent
1057 			 * readers from reading garbage.
1058 			 */
1059 			bcount = on;
1060 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1061 
1062 			if (bp != NULL) {
1063 				long save;
1064 
1065 				mtx_lock(&np->n_mtx);
1066 				np->n_size = uio->uio_offset + n;
1067 				np->n_flag |= NMODIFIED;
1068 				vnode_pager_setsize(vp, np->n_size);
1069 				mtx_unlock(&np->n_mtx);
1070 
1071 				save = bp->b_flags & B_CACHE;
1072 				bcount += n;
1073 				allocbuf(bp, bcount);
1074 				bp->b_flags |= save;
1075 			}
1076 		} else {
1077 			/*
1078 			 * Obtain the locked cache block first, and then
1079 			 * adjust the file's size as appropriate.
1080 			 */
1081 			bcount = on + n;
1082 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1083 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1084 					bcount = biosize;
1085 				else
1086 					bcount = np->n_size - (off_t)lbn * biosize;
1087 			}
1088 			mtx_unlock(&np->n_mtx);
1089 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1090 			mtx_lock(&np->n_mtx);
1091 			if (uio->uio_offset + n > np->n_size) {
1092 				np->n_size = uio->uio_offset + n;
1093 				np->n_flag |= NMODIFIED;
1094 				vnode_pager_setsize(vp, np->n_size);
1095 			}
1096 			mtx_unlock(&np->n_mtx);
1097 		}
1098 
1099 		if (!bp) {
1100 			error = newnfs_sigintr(nmp, td);
1101 			if (!error)
1102 				error = EINTR;
1103 			break;
1104 		}
1105 
1106 		/*
1107 		 * Issue a READ if B_CACHE is not set.  In special-append
1108 		 * mode, B_CACHE is based on the buffer prior to the write
1109 		 * op and is typically set, avoiding the read.  If a read
1110 		 * is required in special append mode, the server will
1111 		 * probably send us a short-read since we extended the file
1112 		 * on our end, resulting in b_resid == 0 and, thusly,
1113 		 * B_CACHE getting set.
1114 		 *
1115 		 * We can also avoid issuing the read if the write covers
1116 		 * the entire buffer.  We have to make sure the buffer state
1117 		 * is reasonable in this case since we will not be initiating
1118 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1119 		 * more information.
1120 		 *
1121 		 * B_CACHE may also be set due to the buffer being cached
1122 		 * normally.
1123 		 */
1124 
1125 		if (on == 0 && n == bcount) {
1126 			bp->b_flags |= B_CACHE;
1127 			bp->b_flags &= ~B_INVAL;
1128 			bp->b_ioflags &= ~BIO_ERROR;
1129 		}
1130 
1131 		if ((bp->b_flags & B_CACHE) == 0) {
1132 			bp->b_iocmd = BIO_READ;
1133 			vfs_busy_pages(bp, 0);
1134 			error = ncl_doio(vp, bp, cred, td, 0);
1135 			if (error) {
1136 				brelse(bp);
1137 				break;
1138 			}
1139 		}
1140 		if (bp->b_wcred == NOCRED)
1141 			bp->b_wcred = crhold(cred);
1142 		mtx_lock(&np->n_mtx);
1143 		np->n_flag |= NMODIFIED;
1144 		mtx_unlock(&np->n_mtx);
1145 
1146 		/*
1147 		 * If dirtyend exceeds file size, chop it down.  This should
1148 		 * not normally occur but there is an append race where it
1149 		 * might occur XXX, so we log it.
1150 		 *
1151 		 * If the chopping creates a reverse-indexed or degenerate
1152 		 * situation with dirtyoff/end, we 0 both of them.
1153 		 */
1154 
1155 		if (bp->b_dirtyend > bcount) {
1156 			ncl_printf("NFS append race @%lx:%d\n",
1157 			    (long)bp->b_blkno * DEV_BSIZE,
1158 			    bp->b_dirtyend - bcount);
1159 			bp->b_dirtyend = bcount;
1160 		}
1161 
1162 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1163 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1164 
1165 		/*
1166 		 * If the new write will leave a contiguous dirty
1167 		 * area, just update the b_dirtyoff and b_dirtyend,
1168 		 * otherwise force a write rpc of the old dirty area.
1169 		 *
1170 		 * While it is possible to merge discontiguous writes due to
1171 		 * our having a B_CACHE buffer ( and thus valid read data
1172 		 * for the hole), we don't because it could lead to
1173 		 * significant cache coherency problems with multiple clients,
1174 		 * especially if locking is implemented later on.
1175 		 *
1176 		 * as an optimization we could theoretically maintain
1177 		 * a linked list of discontinuous areas, but we would still
1178 		 * have to commit them separately so there isn't much
1179 		 * advantage to it except perhaps a bit of asynchronization.
1180 		 */
1181 
1182 		if (bp->b_dirtyend > 0 &&
1183 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1184 			if (bwrite(bp) == EINTR) {
1185 				error = EINTR;
1186 				break;
1187 			}
1188 			goto again;
1189 		}
1190 
1191 		error = uiomove((char *)bp->b_data + on, n, uio);
1192 
1193 		/*
1194 		 * Since this block is being modified, it must be written
1195 		 * again and not just committed.  Since write clustering does
1196 		 * not work for the stage 1 data write, only the stage 2
1197 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1198 		 */
1199 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1200 
1201 		if (error) {
1202 			bp->b_ioflags |= BIO_ERROR;
1203 			brelse(bp);
1204 			break;
1205 		}
1206 
1207 		/*
1208 		 * Only update dirtyoff/dirtyend if not a degenerate
1209 		 * condition.
1210 		 */
1211 		if (n) {
1212 			if (bp->b_dirtyend > 0) {
1213 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1214 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1215 			} else {
1216 				bp->b_dirtyoff = on;
1217 				bp->b_dirtyend = on + n;
1218 			}
1219 			vfs_bio_set_valid(bp, on, n);
1220 		}
1221 
1222 		/*
1223 		 * If IO_SYNC do bwrite().
1224 		 *
1225 		 * IO_INVAL appears to be unused.  The idea appears to be
1226 		 * to turn off caching in this case.  Very odd.  XXX
1227 		 */
1228 		if ((ioflag & IO_SYNC)) {
1229 			if (ioflag & IO_INVAL)
1230 				bp->b_flags |= B_NOCACHE;
1231 			error = bwrite(bp);
1232 			if (error)
1233 				break;
1234 		} else if ((n + on) == biosize) {
1235 			bp->b_flags |= B_ASYNC;
1236 			(void) ncl_writebp(bp, 0, NULL);
1237 		} else {
1238 			bdwrite(bp);
1239 		}
1240 	} while (uio->uio_resid > 0 && n > 0);
1241 
1242 	return (error);
1243 }
1244 
1245 /*
1246  * Get an nfs cache block.
1247  *
1248  * Allocate a new one if the block isn't currently in the cache
1249  * and return the block marked busy. If the calling process is
1250  * interrupted by a signal for an interruptible mount point, return
1251  * NULL.
1252  *
1253  * The caller must carefully deal with the possible B_INVAL state of
1254  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1255  * indirectly), so synchronous reads can be issued without worrying about
1256  * the B_INVAL state.  We have to be a little more careful when dealing
1257  * with writes (see comments in nfs_write()) when extending a file past
1258  * its EOF.
1259  */
1260 static struct buf *
1261 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1262 {
1263 	struct buf *bp;
1264 	struct mount *mp;
1265 	struct nfsmount *nmp;
1266 
1267 	mp = vp->v_mount;
1268 	nmp = VFSTONFS(mp);
1269 
1270 	if (nmp->nm_flag & NFSMNT_INT) {
1271  		sigset_t oldset;
1272 
1273  		newnfs_set_sigmask(td, &oldset);
1274 		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1275  		newnfs_restore_sigmask(td, &oldset);
1276 		while (bp == NULL) {
1277 			if (newnfs_sigintr(nmp, td))
1278 				return (NULL);
1279 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1280 		}
1281 	} else {
1282 		bp = getblk(vp, bn, size, 0, 0, 0);
1283 	}
1284 
1285 	if (vp->v_type == VREG)
1286 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1287 	return (bp);
1288 }
1289 
1290 /*
1291  * Flush and invalidate all dirty buffers. If another process is already
1292  * doing the flush, just wait for completion.
1293  */
1294 int
1295 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1296 {
1297 	struct nfsnode *np = VTONFS(vp);
1298 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1299 	int error = 0, slpflag, slptimeo;
1300  	int old_lock = 0;
1301 
1302 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1303 
1304 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1305 		intrflg = 0;
1306 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1307 		intrflg = 1;
1308 	if (intrflg) {
1309 		slpflag = NFS_PCATCH;
1310 		slptimeo = 2 * hz;
1311 	} else {
1312 		slpflag = 0;
1313 		slptimeo = 0;
1314 	}
1315 
1316 	old_lock = ncl_upgrade_vnlock(vp);
1317 	if (vp->v_iflag & VI_DOOMED) {
1318 		/*
1319 		 * Since vgonel() uses the generic vinvalbuf() to flush
1320 		 * dirty buffers and it does not call this function, it
1321 		 * is safe to just return OK when VI_DOOMED is set.
1322 		 */
1323 		ncl_downgrade_vnlock(vp, old_lock);
1324 		return (0);
1325 	}
1326 
1327 	/*
1328 	 * Now, flush as required.
1329 	 */
1330 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1331 		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1332 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1333 		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1334 		/*
1335 		 * If the page clean was interrupted, fail the invalidation.
1336 		 * Not doing so, we run the risk of losing dirty pages in the
1337 		 * vinvalbuf() call below.
1338 		 */
1339 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1340 			goto out;
1341 	}
1342 
1343 	error = vinvalbuf(vp, flags, slpflag, 0);
1344 	while (error) {
1345 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1346 			goto out;
1347 		error = vinvalbuf(vp, flags, 0, slptimeo);
1348 	}
1349 	mtx_lock(&np->n_mtx);
1350 	if (np->n_directio_asyncwr == 0)
1351 		np->n_flag &= ~NMODIFIED;
1352 	mtx_unlock(&np->n_mtx);
1353 out:
1354 	ncl_downgrade_vnlock(vp, old_lock);
1355 	return error;
1356 }
1357 
1358 /*
1359  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1360  * This is mainly to avoid queueing async I/O requests when the nfsiods
1361  * are all hung on a dead server.
1362  *
1363  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1364  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1365  */
1366 int
1367 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1368 {
1369 	int iod;
1370 	int gotiod;
1371 	int slpflag = 0;
1372 	int slptimeo = 0;
1373 	int error, error2;
1374 
1375 	/*
1376 	 * Commits are usually short and sweet so lets save some cpu and
1377 	 * leave the async daemons for more important rpc's (such as reads
1378 	 * and writes).
1379 	 */
1380 	mtx_lock(&ncl_iod_mutex);
1381 	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1382 	    (nmp->nm_bufqiods > ncl_numasync / 2)) {
1383 		mtx_unlock(&ncl_iod_mutex);
1384 		return(EIO);
1385 	}
1386 again:
1387 	if (nmp->nm_flag & NFSMNT_INT)
1388 		slpflag = NFS_PCATCH;
1389 	gotiod = FALSE;
1390 
1391 	/*
1392 	 * Find a free iod to process this request.
1393 	 */
1394 	for (iod = 0; iod < ncl_numasync; iod++)
1395 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1396 			gotiod = TRUE;
1397 			break;
1398 		}
1399 
1400 	/*
1401 	 * Try to create one if none are free.
1402 	 */
1403 	if (!gotiod)
1404 		ncl_nfsiodnew();
1405 	else {
1406 		/*
1407 		 * Found one, so wake it up and tell it which
1408 		 * mount to process.
1409 		 */
1410 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1411 		    iod, nmp));
1412 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1413 		ncl_iodmount[iod] = nmp;
1414 		nmp->nm_bufqiods++;
1415 		wakeup(&ncl_iodwant[iod]);
1416 	}
1417 
1418 	/*
1419 	 * If none are free, we may already have an iod working on this mount
1420 	 * point.  If so, it will process our request.
1421 	 */
1422 	if (!gotiod) {
1423 		if (nmp->nm_bufqiods > 0) {
1424 			NFS_DPF(ASYNCIO,
1425 				("ncl_asyncio: %d iods are already processing mount %p\n",
1426 				 nmp->nm_bufqiods, nmp));
1427 			gotiod = TRUE;
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * If we have an iod which can process the request, then queue
1433 	 * the buffer.
1434 	 */
1435 	if (gotiod) {
1436 		/*
1437 		 * Ensure that the queue never grows too large.  We still want
1438 		 * to asynchronize so we block rather then return EIO.
1439 		 */
1440 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1441 			NFS_DPF(ASYNCIO,
1442 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1443 			nmp->nm_bufqwant = TRUE;
1444  			error = newnfs_msleep(td, &nmp->nm_bufq,
1445 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1446   			   slptimeo);
1447 			if (error) {
1448 				error2 = newnfs_sigintr(nmp, td);
1449 				if (error2) {
1450 					mtx_unlock(&ncl_iod_mutex);
1451 					return (error2);
1452 				}
1453 				if (slpflag == NFS_PCATCH) {
1454 					slpflag = 0;
1455 					slptimeo = 2 * hz;
1456 				}
1457 			}
1458 			/*
1459 			 * We might have lost our iod while sleeping,
1460 			 * so check and loop if nescessary.
1461 			 */
1462 			goto again;
1463 		}
1464 
1465 		/* We might have lost our nfsiod */
1466 		if (nmp->nm_bufqiods == 0) {
1467 			NFS_DPF(ASYNCIO,
1468 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1469 			goto again;
1470 		}
1471 
1472 		if (bp->b_iocmd == BIO_READ) {
1473 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1474 				bp->b_rcred = crhold(cred);
1475 		} else {
1476 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1477 				bp->b_wcred = crhold(cred);
1478 		}
1479 
1480 		if (bp->b_flags & B_REMFREE)
1481 			bremfreef(bp);
1482 		BUF_KERNPROC(bp);
1483 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1484 		nmp->nm_bufqlen++;
1485 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1486 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1487 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1488 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1489 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1490 		}
1491 		mtx_unlock(&ncl_iod_mutex);
1492 		return (0);
1493 	}
1494 
1495 	mtx_unlock(&ncl_iod_mutex);
1496 
1497 	/*
1498 	 * All the iods are busy on other mounts, so return EIO to
1499 	 * force the caller to process the i/o synchronously.
1500 	 */
1501 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1502 	return (EIO);
1503 }
1504 
1505 void
1506 ncl_doio_directwrite(struct buf *bp)
1507 {
1508 	int iomode, must_commit;
1509 	struct uio *uiop = (struct uio *)bp->b_caller1;
1510 	char *iov_base = uiop->uio_iov->iov_base;
1511 
1512 	iomode = NFSWRITE_FILESYNC;
1513 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1514 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1515 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1516 	free(iov_base, M_NFSDIRECTIO);
1517 	free(uiop->uio_iov, M_NFSDIRECTIO);
1518 	free(uiop, M_NFSDIRECTIO);
1519 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1520 		struct nfsnode *np = VTONFS(bp->b_vp);
1521 		mtx_lock(&np->n_mtx);
1522 		np->n_directio_asyncwr--;
1523 		if (np->n_directio_asyncwr == 0) {
1524 			np->n_flag &= ~NMODIFIED;
1525 			if ((np->n_flag & NFSYNCWAIT)) {
1526 				np->n_flag &= ~NFSYNCWAIT;
1527 				wakeup((caddr_t)&np->n_directio_asyncwr);
1528 			}
1529 		}
1530 		mtx_unlock(&np->n_mtx);
1531 	}
1532 	bp->b_vp = NULL;
1533 	relpbuf(bp, &ncl_pbuf_freecnt);
1534 }
1535 
1536 /*
1537  * Do an I/O operation to/from a cache block. This may be called
1538  * synchronously or from an nfsiod.
1539  */
1540 int
1541 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1542     int called_from_strategy)
1543 {
1544 	struct uio *uiop;
1545 	struct nfsnode *np;
1546 	struct nfsmount *nmp;
1547 	int error = 0, iomode, must_commit = 0;
1548 	struct uio uio;
1549 	struct iovec io;
1550 	struct proc *p = td ? td->td_proc : NULL;
1551 	uint8_t	iocmd;
1552 
1553 	np = VTONFS(vp);
1554 	nmp = VFSTONFS(vp->v_mount);
1555 	uiop = &uio;
1556 	uiop->uio_iov = &io;
1557 	uiop->uio_iovcnt = 1;
1558 	uiop->uio_segflg = UIO_SYSSPACE;
1559 	uiop->uio_td = td;
1560 
1561 	/*
1562 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1563 	 * do this here so we do not have to do it in all the code that
1564 	 * calls us.
1565 	 */
1566 	bp->b_flags &= ~B_INVAL;
1567 	bp->b_ioflags &= ~BIO_ERROR;
1568 
1569 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1570 	iocmd = bp->b_iocmd;
1571 	if (iocmd == BIO_READ) {
1572 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1573 	    io.iov_base = bp->b_data;
1574 	    uiop->uio_rw = UIO_READ;
1575 
1576 	    switch (vp->v_type) {
1577 	    case VREG:
1578 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1579 		NFSINCRGLOBAL(newnfsstats.read_bios);
1580 		error = ncl_readrpc(vp, uiop, cr);
1581 
1582 		if (!error) {
1583 		    if (uiop->uio_resid) {
1584 			/*
1585 			 * If we had a short read with no error, we must have
1586 			 * hit a file hole.  We should zero-fill the remainder.
1587 			 * This can also occur if the server hits the file EOF.
1588 			 *
1589 			 * Holes used to be able to occur due to pending
1590 			 * writes, but that is not possible any longer.
1591 			 */
1592 			int nread = bp->b_bcount - uiop->uio_resid;
1593 			ssize_t left = uiop->uio_resid;
1594 
1595 			if (left > 0)
1596 				bzero((char *)bp->b_data + nread, left);
1597 			uiop->uio_resid = 0;
1598 		    }
1599 		}
1600 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1601 		if (p && (vp->v_vflag & VV_TEXT)) {
1602 			mtx_lock(&np->n_mtx);
1603 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1604 				mtx_unlock(&np->n_mtx);
1605 				PROC_LOCK(p);
1606 				killproc(p, "text file modification");
1607 				PROC_UNLOCK(p);
1608 			} else
1609 				mtx_unlock(&np->n_mtx);
1610 		}
1611 		break;
1612 	    case VLNK:
1613 		uiop->uio_offset = (off_t)0;
1614 		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1615 		error = ncl_readlinkrpc(vp, uiop, cr);
1616 		break;
1617 	    case VDIR:
1618 		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1619 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1620 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1621 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1622 			if (error == NFSERR_NOTSUPP)
1623 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1624 		}
1625 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1626 			error = ncl_readdirrpc(vp, uiop, cr, td);
1627 		/*
1628 		 * end-of-directory sets B_INVAL but does not generate an
1629 		 * error.
1630 		 */
1631 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1632 			bp->b_flags |= B_INVAL;
1633 		break;
1634 	    default:
1635 		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1636 		break;
1637 	    };
1638 	    if (error) {
1639 		bp->b_ioflags |= BIO_ERROR;
1640 		bp->b_error = error;
1641 	    }
1642 	} else {
1643 	    /*
1644 	     * If we only need to commit, try to commit
1645 	     */
1646 	    if (bp->b_flags & B_NEEDCOMMIT) {
1647 		    int retv;
1648 		    off_t off;
1649 
1650 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1651 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1652 			bp->b_wcred, td);
1653 		    if (retv == 0) {
1654 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1655 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1656 			    bp->b_resid = 0;
1657 			    bufdone(bp);
1658 			    return (0);
1659 		    }
1660 		    if (retv == NFSERR_STALEWRITEVERF) {
1661 			    ncl_clearcommit(vp->v_mount);
1662 		    }
1663 	    }
1664 
1665 	    /*
1666 	     * Setup for actual write
1667 	     */
1668 	    mtx_lock(&np->n_mtx);
1669 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1670 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1671 	    mtx_unlock(&np->n_mtx);
1672 
1673 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1674 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1675 		    - bp->b_dirtyoff;
1676 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1677 		    + bp->b_dirtyoff;
1678 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1679 		uiop->uio_rw = UIO_WRITE;
1680 		NFSINCRGLOBAL(newnfsstats.write_bios);
1681 
1682 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1683 		    iomode = NFSWRITE_UNSTABLE;
1684 		else
1685 		    iomode = NFSWRITE_FILESYNC;
1686 
1687 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1688 		    called_from_strategy);
1689 
1690 		/*
1691 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1692 		 * to cluster the buffers needing commit.  This will allow
1693 		 * the system to submit a single commit rpc for the whole
1694 		 * cluster.  We can do this even if the buffer is not 100%
1695 		 * dirty (relative to the NFS blocksize), so we optimize the
1696 		 * append-to-file-case.
1697 		 *
1698 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1699 		 * cleared because write clustering only works for commit
1700 		 * rpc's, not for the data portion of the write).
1701 		 */
1702 
1703 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1704 		    bp->b_flags |= B_NEEDCOMMIT;
1705 		    if (bp->b_dirtyoff == 0
1706 			&& bp->b_dirtyend == bp->b_bcount)
1707 			bp->b_flags |= B_CLUSTEROK;
1708 		} else {
1709 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1710 		}
1711 
1712 		/*
1713 		 * For an interrupted write, the buffer is still valid
1714 		 * and the write hasn't been pushed to the server yet,
1715 		 * so we can't set BIO_ERROR and report the interruption
1716 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1717 		 * is not relevant, so the rpc attempt is essentially
1718 		 * a noop.  For the case of a V3 write rpc not being
1719 		 * committed to stable storage, the block is still
1720 		 * dirty and requires either a commit rpc or another
1721 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1722 		 * the block is reused. This is indicated by setting
1723 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1724 		 *
1725 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1726 		 * write error and is handled as above, except that
1727 		 * B_EINTR isn't set. One cause of this is a stale stateid
1728 		 * error for the RPC that indicates recovery is required,
1729 		 * when called with called_from_strategy != 0.
1730 		 *
1731 		 * If the buffer is marked B_PAGING, it does not reside on
1732 		 * the vp's paging queues so we cannot call bdirty().  The
1733 		 * bp in this case is not an NFS cache block so we should
1734 		 * be safe. XXX
1735 		 *
1736 		 * The logic below breaks up errors into recoverable and
1737 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1738 		 * and keep the buffer around for potential write retries.
1739 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1740 		 * and save the error in the nfsnode. This is less than ideal
1741 		 * but necessary. Keeping such buffers around could potentially
1742 		 * cause buffer exhaustion eventually (they can never be written
1743 		 * out, so will get constantly be re-dirtied). It also causes
1744 		 * all sorts of vfs panics. For non-recoverable write errors,
1745 		 * also invalidate the attrcache, so we'll be forced to go over
1746 		 * the wire for this object, returning an error to user on next
1747 		 * call (most of the time).
1748 		 */
1749     		if (error == EINTR || error == EIO || error == ETIMEDOUT
1750 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1751 			int s;
1752 
1753 			s = splbio();
1754 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1755 			if ((bp->b_flags & B_PAGING) == 0) {
1756 			    bdirty(bp);
1757 			    bp->b_flags &= ~B_DONE;
1758 			}
1759 			if ((error == EINTR || error == ETIMEDOUT) &&
1760 			    (bp->b_flags & B_ASYNC) == 0)
1761 			    bp->b_flags |= B_EINTR;
1762 			splx(s);
1763 	    	} else {
1764 		    if (error) {
1765 			bp->b_ioflags |= BIO_ERROR;
1766 			bp->b_flags |= B_INVAL;
1767 			bp->b_error = np->n_error = error;
1768 			mtx_lock(&np->n_mtx);
1769 			np->n_flag |= NWRITEERR;
1770 			np->n_attrstamp = 0;
1771 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1772 			mtx_unlock(&np->n_mtx);
1773 		    }
1774 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1775 		}
1776 	    } else {
1777 		bp->b_resid = 0;
1778 		bufdone(bp);
1779 		return (0);
1780 	    }
1781 	}
1782 	bp->b_resid = uiop->uio_resid;
1783 	if (must_commit)
1784 	    ncl_clearcommit(vp->v_mount);
1785 	bufdone(bp);
1786 	return (error);
1787 }
1788 
1789 /*
1790  * Used to aid in handling ftruncate() operations on the NFS client side.
1791  * Truncation creates a number of special problems for NFS.  We have to
1792  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1793  * we have to properly handle VM pages or (potentially dirty) buffers
1794  * that straddle the truncation point.
1795  */
1796 
1797 int
1798 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1799 {
1800 	struct nfsnode *np = VTONFS(vp);
1801 	u_quad_t tsize;
1802 	int biosize = vp->v_bufobj.bo_bsize;
1803 	int error = 0;
1804 
1805 	mtx_lock(&np->n_mtx);
1806 	tsize = np->n_size;
1807 	np->n_size = nsize;
1808 	mtx_unlock(&np->n_mtx);
1809 
1810 	if (nsize < tsize) {
1811 		struct buf *bp;
1812 		daddr_t lbn;
1813 		int bufsize;
1814 
1815 		/*
1816 		 * vtruncbuf() doesn't get the buffer overlapping the
1817 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1818 		 * buffer that now needs to be truncated.
1819 		 */
1820 		error = vtruncbuf(vp, cred, nsize, biosize);
1821 		lbn = nsize / biosize;
1822 		bufsize = nsize & (biosize - 1);
1823 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1824  		if (!bp)
1825  			return EINTR;
1826 		if (bp->b_dirtyoff > bp->b_bcount)
1827 			bp->b_dirtyoff = bp->b_bcount;
1828 		if (bp->b_dirtyend > bp->b_bcount)
1829 			bp->b_dirtyend = bp->b_bcount;
1830 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1831 		brelse(bp);
1832 	} else {
1833 		vnode_pager_setsize(vp, nsize);
1834 	}
1835 	return(error);
1836 }
1837 
1838