xref: /freebsd/sys/fs/nfsclient/nfs_clbio.c (revision ba00ec3d539f213abbda3a45ef8c539306cac098)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_kdtrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vnode_pager.h>
56 
57 #include <fs/nfs/nfsport.h>
58 #include <fs/nfsclient/nfsmount.h>
59 #include <fs/nfsclient/nfs.h>
60 #include <fs/nfsclient/nfsnode.h>
61 #include <fs/nfsclient/nfs_kdtrace.h>
62 
63 extern int newnfs_directio_allow_mmap;
64 extern struct nfsstats newnfsstats;
65 extern struct mtx ncl_iod_mutex;
66 extern int ncl_numasync;
67 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
68 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
69 extern int newnfs_directio_enable;
70 extern int nfs_keep_dirty_on_error;
71 
72 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
73 
74 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
75     struct thread *td);
76 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
77     struct ucred *cred, int ioflag);
78 
79 /*
80  * Vnode op for VM getpages.
81  */
82 int
83 ncl_getpages(struct vop_getpages_args *ap)
84 {
85 	int i, error, nextoff, size, toff, count, npages;
86 	struct uio uio;
87 	struct iovec iov;
88 	vm_offset_t kva;
89 	struct buf *bp;
90 	struct vnode *vp;
91 	struct thread *td;
92 	struct ucred *cred;
93 	struct nfsmount *nmp;
94 	vm_object_t object;
95 	vm_page_t *pages;
96 	struct nfsnode *np;
97 
98 	vp = ap->a_vp;
99 	np = VTONFS(vp);
100 	td = curthread;				/* XXX */
101 	cred = curthread->td_ucred;		/* XXX */
102 	nmp = VFSTONFS(vp->v_mount);
103 	pages = ap->a_m;
104 	count = ap->a_count;
105 
106 	if ((object = vp->v_object) == NULL) {
107 		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
108 		return (VM_PAGER_ERROR);
109 	}
110 
111 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
112 		mtx_lock(&np->n_mtx);
113 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
114 			mtx_unlock(&np->n_mtx);
115 			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
116 			return (VM_PAGER_ERROR);
117 		} else
118 			mtx_unlock(&np->n_mtx);
119 	}
120 
121 	mtx_lock(&nmp->nm_mtx);
122 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
123 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
124 		mtx_unlock(&nmp->nm_mtx);
125 		/* We'll never get here for v4, because we always have fsinfo */
126 		(void)ncl_fsinfo(nmp, vp, cred, td);
127 	} else
128 		mtx_unlock(&nmp->nm_mtx);
129 
130 	npages = btoc(count);
131 
132 	/*
133 	 * If the requested page is partially valid, just return it and
134 	 * allow the pager to zero-out the blanks.  Partially valid pages
135 	 * can only occur at the file EOF.
136 	 */
137 	VM_OBJECT_LOCK(object);
138 	if (pages[ap->a_reqpage]->valid != 0) {
139 		for (i = 0; i < npages; ++i) {
140 			if (i != ap->a_reqpage) {
141 				vm_page_lock(pages[i]);
142 				vm_page_free(pages[i]);
143 				vm_page_unlock(pages[i]);
144 			}
145 		}
146 		VM_OBJECT_UNLOCK(object);
147 		return (0);
148 	}
149 	VM_OBJECT_UNLOCK(object);
150 
151 	/*
152 	 * We use only the kva address for the buffer, but this is extremely
153 	 * convienient and fast.
154 	 */
155 	bp = getpbuf(&ncl_pbuf_freecnt);
156 
157 	kva = (vm_offset_t) bp->b_data;
158 	pmap_qenter(kva, pages, npages);
159 	PCPU_INC(cnt.v_vnodein);
160 	PCPU_ADD(cnt.v_vnodepgsin, npages);
161 
162 	iov.iov_base = (caddr_t) kva;
163 	iov.iov_len = count;
164 	uio.uio_iov = &iov;
165 	uio.uio_iovcnt = 1;
166 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167 	uio.uio_resid = count;
168 	uio.uio_segflg = UIO_SYSSPACE;
169 	uio.uio_rw = UIO_READ;
170 	uio.uio_td = td;
171 
172 	error = ncl_readrpc(vp, &uio, cred);
173 	pmap_qremove(kva, npages);
174 
175 	relpbuf(bp, &ncl_pbuf_freecnt);
176 
177 	if (error && (uio.uio_resid == count)) {
178 		ncl_printf("nfs_getpages: error %d\n", error);
179 		VM_OBJECT_LOCK(object);
180 		for (i = 0; i < npages; ++i) {
181 			if (i != ap->a_reqpage) {
182 				vm_page_lock(pages[i]);
183 				vm_page_free(pages[i]);
184 				vm_page_unlock(pages[i]);
185 			}
186 		}
187 		VM_OBJECT_UNLOCK(object);
188 		return (VM_PAGER_ERROR);
189 	}
190 
191 	/*
192 	 * Calculate the number of bytes read and validate only that number
193 	 * of bytes.  Note that due to pending writes, size may be 0.  This
194 	 * does not mean that the remaining data is invalid!
195 	 */
196 
197 	size = count - uio.uio_resid;
198 	VM_OBJECT_LOCK(object);
199 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
200 		vm_page_t m;
201 		nextoff = toff + PAGE_SIZE;
202 		m = pages[i];
203 
204 		if (nextoff <= size) {
205 			/*
206 			 * Read operation filled an entire page
207 			 */
208 			m->valid = VM_PAGE_BITS_ALL;
209 			KASSERT(m->dirty == 0,
210 			    ("nfs_getpages: page %p is dirty", m));
211 		} else if (size > toff) {
212 			/*
213 			 * Read operation filled a partial page.
214 			 */
215 			m->valid = 0;
216 			vm_page_set_valid_range(m, 0, size - toff);
217 			KASSERT(m->dirty == 0,
218 			    ("nfs_getpages: page %p is dirty", m));
219 		} else {
220 			/*
221 			 * Read operation was short.  If no error
222 			 * occured we may have hit a zero-fill
223 			 * section.  We leave valid set to 0, and page
224 			 * is freed by vm_page_readahead_finish() if
225 			 * its index is not equal to requested, or
226 			 * page is zeroed and set valid by
227 			 * vm_pager_get_pages() for requested page.
228 			 */
229 			;
230 		}
231 		if (i != ap->a_reqpage)
232 			vm_page_readahead_finish(m);
233 	}
234 	VM_OBJECT_UNLOCK(object);
235 	return (0);
236 }
237 
238 /*
239  * Vnode op for VM putpages.
240  */
241 int
242 ncl_putpages(struct vop_putpages_args *ap)
243 {
244 	struct uio uio;
245 	struct iovec iov;
246 	vm_offset_t kva;
247 	struct buf *bp;
248 	int iomode, must_commit, i, error, npages, count;
249 	off_t offset;
250 	int *rtvals;
251 	struct vnode *vp;
252 	struct thread *td;
253 	struct ucred *cred;
254 	struct nfsmount *nmp;
255 	struct nfsnode *np;
256 	vm_page_t *pages;
257 
258 	vp = ap->a_vp;
259 	np = VTONFS(vp);
260 	td = curthread;				/* XXX */
261 	/* Set the cred to n_writecred for the write rpcs. */
262 	if (np->n_writecred != NULL)
263 		cred = crhold(np->n_writecred);
264 	else
265 		cred = crhold(curthread->td_ucred);	/* XXX */
266 	nmp = VFSTONFS(vp->v_mount);
267 	pages = ap->a_m;
268 	count = ap->a_count;
269 	rtvals = ap->a_rtvals;
270 	npages = btoc(count);
271 	offset = IDX_TO_OFF(pages[0]->pindex);
272 
273 	mtx_lock(&nmp->nm_mtx);
274 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
275 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
276 		mtx_unlock(&nmp->nm_mtx);
277 		(void)ncl_fsinfo(nmp, vp, cred, td);
278 	} else
279 		mtx_unlock(&nmp->nm_mtx);
280 
281 	mtx_lock(&np->n_mtx);
282 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
283 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
284 		mtx_unlock(&np->n_mtx);
285 		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
286 		mtx_lock(&np->n_mtx);
287 	}
288 
289 	for (i = 0; i < npages; i++)
290 		rtvals[i] = VM_PAGER_ERROR;
291 
292 	/*
293 	 * When putting pages, do not extend file past EOF.
294 	 */
295 	if (offset + count > np->n_size) {
296 		count = np->n_size - offset;
297 		if (count < 0)
298 			count = 0;
299 	}
300 	mtx_unlock(&np->n_mtx);
301 
302 	/*
303 	 * We use only the kva address for the buffer, but this is extremely
304 	 * convienient and fast.
305 	 */
306 	bp = getpbuf(&ncl_pbuf_freecnt);
307 
308 	kva = (vm_offset_t) bp->b_data;
309 	pmap_qenter(kva, pages, npages);
310 	PCPU_INC(cnt.v_vnodeout);
311 	PCPU_ADD(cnt.v_vnodepgsout, count);
312 
313 	iov.iov_base = (caddr_t) kva;
314 	iov.iov_len = count;
315 	uio.uio_iov = &iov;
316 	uio.uio_iovcnt = 1;
317 	uio.uio_offset = offset;
318 	uio.uio_resid = count;
319 	uio.uio_segflg = UIO_SYSSPACE;
320 	uio.uio_rw = UIO_WRITE;
321 	uio.uio_td = td;
322 
323 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324 	    iomode = NFSWRITE_UNSTABLE;
325 	else
326 	    iomode = NFSWRITE_FILESYNC;
327 
328 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
329 	crfree(cred);
330 
331 	pmap_qremove(kva, npages);
332 	relpbuf(bp, &ncl_pbuf_freecnt);
333 
334 	if (error == 0 || !nfs_keep_dirty_on_error) {
335 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
336 		if (must_commit)
337 			ncl_clearcommit(vp->v_mount);
338 	}
339 	return rtvals[0];
340 }
341 
342 /*
343  * For nfs, cache consistency can only be maintained approximately.
344  * Although RFC1094 does not specify the criteria, the following is
345  * believed to be compatible with the reference port.
346  * For nfs:
347  * If the file's modify time on the server has changed since the
348  * last read rpc or you have written to the file,
349  * you may have lost data cache consistency with the
350  * server, so flush all of the file's data out of the cache.
351  * Then force a getattr rpc to ensure that you have up to date
352  * attributes.
353  * NB: This implies that cache data can be read when up to
354  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
355  * attributes this could be forced by setting n_attrstamp to 0 before
356  * the VOP_GETATTR() call.
357  */
358 static inline int
359 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
360 {
361 	int error = 0;
362 	struct vattr vattr;
363 	struct nfsnode *np = VTONFS(vp);
364 	int old_lock;
365 
366 	/*
367 	 * Grab the exclusive lock before checking whether the cache is
368 	 * consistent.
369 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
370 	 * But for now, this suffices.
371 	 */
372 	old_lock = ncl_upgrade_vnlock(vp);
373 	if (vp->v_iflag & VI_DOOMED) {
374 		ncl_downgrade_vnlock(vp, old_lock);
375 		return (EBADF);
376 	}
377 
378 	mtx_lock(&np->n_mtx);
379 	if (np->n_flag & NMODIFIED) {
380 		mtx_unlock(&np->n_mtx);
381 		if (vp->v_type != VREG) {
382 			if (vp->v_type != VDIR)
383 				panic("nfs: bioread, not dir");
384 			ncl_invaldir(vp);
385 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
386 			if (error)
387 				goto out;
388 		}
389 		np->n_attrstamp = 0;
390 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
391 		error = VOP_GETATTR(vp, &vattr, cred);
392 		if (error)
393 			goto out;
394 		mtx_lock(&np->n_mtx);
395 		np->n_mtime = vattr.va_mtime;
396 		mtx_unlock(&np->n_mtx);
397 	} else {
398 		mtx_unlock(&np->n_mtx);
399 		error = VOP_GETATTR(vp, &vattr, cred);
400 		if (error)
401 			return (error);
402 		mtx_lock(&np->n_mtx);
403 		if ((np->n_flag & NSIZECHANGED)
404 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
405 			mtx_unlock(&np->n_mtx);
406 			if (vp->v_type == VDIR)
407 				ncl_invaldir(vp);
408 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
409 			if (error)
410 				goto out;
411 			mtx_lock(&np->n_mtx);
412 			np->n_mtime = vattr.va_mtime;
413 			np->n_flag &= ~NSIZECHANGED;
414 		}
415 		mtx_unlock(&np->n_mtx);
416 	}
417 out:
418 	ncl_downgrade_vnlock(vp, old_lock);
419 	return error;
420 }
421 
422 /*
423  * Vnode op for read using bio
424  */
425 int
426 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
427 {
428 	struct nfsnode *np = VTONFS(vp);
429 	int biosize, i;
430 	struct buf *bp, *rabp;
431 	struct thread *td;
432 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
433 	daddr_t lbn, rabn;
434 	int bcount;
435 	int seqcount;
436 	int nra, error = 0, n = 0, on = 0;
437 	off_t tmp_off;
438 
439 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
440 	if (uio->uio_resid == 0)
441 		return (0);
442 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
443 		return (EINVAL);
444 	td = uio->uio_td;
445 
446 	mtx_lock(&nmp->nm_mtx);
447 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
448 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
449 		mtx_unlock(&nmp->nm_mtx);
450 		(void)ncl_fsinfo(nmp, vp, cred, td);
451 		mtx_lock(&nmp->nm_mtx);
452 	}
453 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
454 		(void) newnfs_iosize(nmp);
455 
456 	tmp_off = uio->uio_offset + uio->uio_resid;
457 	if (vp->v_type != VDIR &&
458 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
459 		mtx_unlock(&nmp->nm_mtx);
460 		return (EFBIG);
461 	}
462 	mtx_unlock(&nmp->nm_mtx);
463 
464 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
465 		/* No caching/ no readaheads. Just read data into the user buffer */
466 		return ncl_readrpc(vp, uio, cred);
467 
468 	biosize = vp->v_bufobj.bo_bsize;
469 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
470 
471 	error = nfs_bioread_check_cons(vp, td, cred);
472 	if (error)
473 		return error;
474 
475 	do {
476 	    u_quad_t nsize;
477 
478 	    mtx_lock(&np->n_mtx);
479 	    nsize = np->n_size;
480 	    mtx_unlock(&np->n_mtx);
481 
482 	    switch (vp->v_type) {
483 	    case VREG:
484 		NFSINCRGLOBAL(newnfsstats.biocache_reads);
485 		lbn = uio->uio_offset / biosize;
486 		on = uio->uio_offset & (biosize - 1);
487 
488 		/*
489 		 * Start the read ahead(s), as required.
490 		 */
491 		if (nmp->nm_readahead > 0) {
492 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
493 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
494 			rabn = lbn + 1 + nra;
495 			if (incore(&vp->v_bufobj, rabn) == NULL) {
496 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
497 			    if (!rabp) {
498 				error = newnfs_sigintr(nmp, td);
499 				return (error ? error : EINTR);
500 			    }
501 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
502 				rabp->b_flags |= B_ASYNC;
503 				rabp->b_iocmd = BIO_READ;
504 				vfs_busy_pages(rabp, 0);
505 				if (ncl_asyncio(nmp, rabp, cred, td)) {
506 				    rabp->b_flags |= B_INVAL;
507 				    rabp->b_ioflags |= BIO_ERROR;
508 				    vfs_unbusy_pages(rabp);
509 				    brelse(rabp);
510 				    break;
511 				}
512 			    } else {
513 				brelse(rabp);
514 			    }
515 			}
516 		    }
517 		}
518 
519 		/* Note that bcount is *not* DEV_BSIZE aligned. */
520 		bcount = biosize;
521 		if ((off_t)lbn * biosize >= nsize) {
522 			bcount = 0;
523 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
524 			bcount = nsize - (off_t)lbn * biosize;
525 		}
526 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
527 
528 		if (!bp) {
529 			error = newnfs_sigintr(nmp, td);
530 			return (error ? error : EINTR);
531 		}
532 
533 		/*
534 		 * If B_CACHE is not set, we must issue the read.  If this
535 		 * fails, we return an error.
536 		 */
537 
538 		if ((bp->b_flags & B_CACHE) == 0) {
539 		    bp->b_iocmd = BIO_READ;
540 		    vfs_busy_pages(bp, 0);
541 		    error = ncl_doio(vp, bp, cred, td, 0);
542 		    if (error) {
543 			brelse(bp);
544 			return (error);
545 		    }
546 		}
547 
548 		/*
549 		 * on is the offset into the current bp.  Figure out how many
550 		 * bytes we can copy out of the bp.  Note that bcount is
551 		 * NOT DEV_BSIZE aligned.
552 		 *
553 		 * Then figure out how many bytes we can copy into the uio.
554 		 */
555 
556 		n = 0;
557 		if (on < bcount)
558 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
559 		break;
560 	    case VLNK:
561 		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
562 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
563 		if (!bp) {
564 			error = newnfs_sigintr(nmp, td);
565 			return (error ? error : EINTR);
566 		}
567 		if ((bp->b_flags & B_CACHE) == 0) {
568 		    bp->b_iocmd = BIO_READ;
569 		    vfs_busy_pages(bp, 0);
570 		    error = ncl_doio(vp, bp, cred, td, 0);
571 		    if (error) {
572 			bp->b_ioflags |= BIO_ERROR;
573 			brelse(bp);
574 			return (error);
575 		    }
576 		}
577 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
578 		on = 0;
579 		break;
580 	    case VDIR:
581 		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
582 		if (np->n_direofoffset
583 		    && uio->uio_offset >= np->n_direofoffset) {
584 		    return (0);
585 		}
586 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
587 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
588 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
589 		if (!bp) {
590 		    error = newnfs_sigintr(nmp, td);
591 		    return (error ? error : EINTR);
592 		}
593 		if ((bp->b_flags & B_CACHE) == 0) {
594 		    bp->b_iocmd = BIO_READ;
595 		    vfs_busy_pages(bp, 0);
596 		    error = ncl_doio(vp, bp, cred, td, 0);
597 		    if (error) {
598 			    brelse(bp);
599 		    }
600 		    while (error == NFSERR_BAD_COOKIE) {
601 			ncl_invaldir(vp);
602 			error = ncl_vinvalbuf(vp, 0, td, 1);
603 			/*
604 			 * Yuck! The directory has been modified on the
605 			 * server. The only way to get the block is by
606 			 * reading from the beginning to get all the
607 			 * offset cookies.
608 			 *
609 			 * Leave the last bp intact unless there is an error.
610 			 * Loop back up to the while if the error is another
611 			 * NFSERR_BAD_COOKIE (double yuch!).
612 			 */
613 			for (i = 0; i <= lbn && !error; i++) {
614 			    if (np->n_direofoffset
615 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
616 				    return (0);
617 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
618 			    if (!bp) {
619 				error = newnfs_sigintr(nmp, td);
620 				return (error ? error : EINTR);
621 			    }
622 			    if ((bp->b_flags & B_CACHE) == 0) {
623 				    bp->b_iocmd = BIO_READ;
624 				    vfs_busy_pages(bp, 0);
625 				    error = ncl_doio(vp, bp, cred, td, 0);
626 				    /*
627 				     * no error + B_INVAL == directory EOF,
628 				     * use the block.
629 				     */
630 				    if (error == 0 && (bp->b_flags & B_INVAL))
631 					    break;
632 			    }
633 			    /*
634 			     * An error will throw away the block and the
635 			     * for loop will break out.  If no error and this
636 			     * is not the block we want, we throw away the
637 			     * block and go for the next one via the for loop.
638 			     */
639 			    if (error || i < lbn)
640 				    brelse(bp);
641 			}
642 		    }
643 		    /*
644 		     * The above while is repeated if we hit another cookie
645 		     * error.  If we hit an error and it wasn't a cookie error,
646 		     * we give up.
647 		     */
648 		    if (error)
649 			    return (error);
650 		}
651 
652 		/*
653 		 * If not eof and read aheads are enabled, start one.
654 		 * (You need the current block first, so that you have the
655 		 *  directory offset cookie of the next block.)
656 		 */
657 		if (nmp->nm_readahead > 0 &&
658 		    (bp->b_flags & B_INVAL) == 0 &&
659 		    (np->n_direofoffset == 0 ||
660 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
661 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
662 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
663 			if (rabp) {
664 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
665 				rabp->b_flags |= B_ASYNC;
666 				rabp->b_iocmd = BIO_READ;
667 				vfs_busy_pages(rabp, 0);
668 				if (ncl_asyncio(nmp, rabp, cred, td)) {
669 				    rabp->b_flags |= B_INVAL;
670 				    rabp->b_ioflags |= BIO_ERROR;
671 				    vfs_unbusy_pages(rabp);
672 				    brelse(rabp);
673 				}
674 			    } else {
675 				brelse(rabp);
676 			    }
677 			}
678 		}
679 		/*
680 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
681 		 * chopped for the EOF condition, we cannot tell how large
682 		 * NFS directories are going to be until we hit EOF.  So
683 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
684 		 * it just so happens that b_resid will effectively chop it
685 		 * to EOF.  *BUT* this information is lost if the buffer goes
686 		 * away and is reconstituted into a B_CACHE state ( due to
687 		 * being VMIO ) later.  So we keep track of the directory eof
688 		 * in np->n_direofoffset and chop it off as an extra step
689 		 * right here.
690 		 */
691 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
692 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
693 			n = np->n_direofoffset - uio->uio_offset;
694 		break;
695 	    default:
696 		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
697 		bp = NULL;
698 		break;
699 	    };
700 
701 	    if (n > 0) {
702 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
703 	    }
704 	    if (vp->v_type == VLNK)
705 		n = 0;
706 	    if (bp != NULL)
707 		brelse(bp);
708 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
709 	return (error);
710 }
711 
712 /*
713  * The NFS write path cannot handle iovecs with len > 1. So we need to
714  * break up iovecs accordingly (restricting them to wsize).
715  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
716  * For the ASYNC case, 2 copies are needed. The first a copy from the
717  * user buffer to a staging buffer and then a second copy from the staging
718  * buffer to mbufs. This can be optimized by copying from the user buffer
719  * directly into mbufs and passing the chain down, but that requires a
720  * fair amount of re-working of the relevant codepaths (and can be done
721  * later).
722  */
723 static int
724 nfs_directio_write(vp, uiop, cred, ioflag)
725 	struct vnode *vp;
726 	struct uio *uiop;
727 	struct ucred *cred;
728 	int ioflag;
729 {
730 	int error;
731 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
732 	struct thread *td = uiop->uio_td;
733 	int size;
734 	int wsize;
735 
736 	mtx_lock(&nmp->nm_mtx);
737 	wsize = nmp->nm_wsize;
738 	mtx_unlock(&nmp->nm_mtx);
739 	if (ioflag & IO_SYNC) {
740 		int iomode, must_commit;
741 		struct uio uio;
742 		struct iovec iov;
743 do_sync:
744 		while (uiop->uio_resid > 0) {
745 			size = MIN(uiop->uio_resid, wsize);
746 			size = MIN(uiop->uio_iov->iov_len, size);
747 			iov.iov_base = uiop->uio_iov->iov_base;
748 			iov.iov_len = size;
749 			uio.uio_iov = &iov;
750 			uio.uio_iovcnt = 1;
751 			uio.uio_offset = uiop->uio_offset;
752 			uio.uio_resid = size;
753 			uio.uio_segflg = UIO_USERSPACE;
754 			uio.uio_rw = UIO_WRITE;
755 			uio.uio_td = td;
756 			iomode = NFSWRITE_FILESYNC;
757 			error = ncl_writerpc(vp, &uio, cred, &iomode,
758 			    &must_commit, 0);
759 			KASSERT((must_commit == 0),
760 				("ncl_directio_write: Did not commit write"));
761 			if (error)
762 				return (error);
763 			uiop->uio_offset += size;
764 			uiop->uio_resid -= size;
765 			if (uiop->uio_iov->iov_len <= size) {
766 				uiop->uio_iovcnt--;
767 				uiop->uio_iov++;
768 			} else {
769 				uiop->uio_iov->iov_base =
770 					(char *)uiop->uio_iov->iov_base + size;
771 				uiop->uio_iov->iov_len -= size;
772 			}
773 		}
774 	} else {
775 		struct uio *t_uio;
776 		struct iovec *t_iov;
777 		struct buf *bp;
778 
779 		/*
780 		 * Break up the write into blocksize chunks and hand these
781 		 * over to nfsiod's for write back.
782 		 * Unfortunately, this incurs a copy of the data. Since
783 		 * the user could modify the buffer before the write is
784 		 * initiated.
785 		 *
786 		 * The obvious optimization here is that one of the 2 copies
787 		 * in the async write path can be eliminated by copying the
788 		 * data here directly into mbufs and passing the mbuf chain
789 		 * down. But that will require a fair amount of re-working
790 		 * of the code and can be done if there's enough interest
791 		 * in NFS directio access.
792 		 */
793 		while (uiop->uio_resid > 0) {
794 			size = MIN(uiop->uio_resid, wsize);
795 			size = MIN(uiop->uio_iov->iov_len, size);
796 			bp = getpbuf(&ncl_pbuf_freecnt);
797 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
798 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
799 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
800 			t_iov->iov_len = size;
801 			t_uio->uio_iov = t_iov;
802 			t_uio->uio_iovcnt = 1;
803 			t_uio->uio_offset = uiop->uio_offset;
804 			t_uio->uio_resid = size;
805 			t_uio->uio_segflg = UIO_SYSSPACE;
806 			t_uio->uio_rw = UIO_WRITE;
807 			t_uio->uio_td = td;
808 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
809 			    uiop->uio_segflg == UIO_SYSSPACE,
810 			    ("nfs_directio_write: Bad uio_segflg"));
811 			if (uiop->uio_segflg == UIO_USERSPACE) {
812 				error = copyin(uiop->uio_iov->iov_base,
813 				    t_iov->iov_base, size);
814 				if (error != 0)
815 					goto err_free;
816 			} else
817 				/*
818 				 * UIO_SYSSPACE may never happen, but handle
819 				 * it just in case it does.
820 				 */
821 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
822 				    size);
823 			bp->b_flags |= B_DIRECT;
824 			bp->b_iocmd = BIO_WRITE;
825 			if (cred != NOCRED) {
826 				crhold(cred);
827 				bp->b_wcred = cred;
828 			} else
829 				bp->b_wcred = NOCRED;
830 			bp->b_caller1 = (void *)t_uio;
831 			bp->b_vp = vp;
832 			error = ncl_asyncio(nmp, bp, NOCRED, td);
833 err_free:
834 			if (error) {
835 				free(t_iov->iov_base, M_NFSDIRECTIO);
836 				free(t_iov, M_NFSDIRECTIO);
837 				free(t_uio, M_NFSDIRECTIO);
838 				bp->b_vp = NULL;
839 				relpbuf(bp, &ncl_pbuf_freecnt);
840 				if (error == EINTR)
841 					return (error);
842 				goto do_sync;
843 			}
844 			uiop->uio_offset += size;
845 			uiop->uio_resid -= size;
846 			if (uiop->uio_iov->iov_len <= size) {
847 				uiop->uio_iovcnt--;
848 				uiop->uio_iov++;
849 			} else {
850 				uiop->uio_iov->iov_base =
851 					(char *)uiop->uio_iov->iov_base + size;
852 				uiop->uio_iov->iov_len -= size;
853 			}
854 		}
855 	}
856 	return (0);
857 }
858 
859 /*
860  * Vnode op for write using bio
861  */
862 int
863 ncl_write(struct vop_write_args *ap)
864 {
865 	int biosize;
866 	struct uio *uio = ap->a_uio;
867 	struct thread *td = uio->uio_td;
868 	struct vnode *vp = ap->a_vp;
869 	struct nfsnode *np = VTONFS(vp);
870 	struct ucred *cred = ap->a_cred;
871 	int ioflag = ap->a_ioflag;
872 	struct buf *bp;
873 	struct vattr vattr;
874 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875 	daddr_t lbn;
876 	int bcount;
877 	int bp_cached, n, on, error = 0, error1;
878 	size_t orig_resid, local_resid;
879 	off_t orig_size, tmp_off;
880 
881 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
882 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
883 	    ("ncl_write proc"));
884 	if (vp->v_type != VREG)
885 		return (EIO);
886 	mtx_lock(&np->n_mtx);
887 	if (np->n_flag & NWRITEERR) {
888 		np->n_flag &= ~NWRITEERR;
889 		mtx_unlock(&np->n_mtx);
890 		return (np->n_error);
891 	} else
892 		mtx_unlock(&np->n_mtx);
893 	mtx_lock(&nmp->nm_mtx);
894 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896 		mtx_unlock(&nmp->nm_mtx);
897 		(void)ncl_fsinfo(nmp, vp, cred, td);
898 		mtx_lock(&nmp->nm_mtx);
899 	}
900 	if (nmp->nm_wsize == 0)
901 		(void) newnfs_iosize(nmp);
902 	mtx_unlock(&nmp->nm_mtx);
903 
904 	/*
905 	 * Synchronously flush pending buffers if we are in synchronous
906 	 * mode or if we are appending.
907 	 */
908 	if (ioflag & (IO_APPEND | IO_SYNC)) {
909 		mtx_lock(&np->n_mtx);
910 		if (np->n_flag & NMODIFIED) {
911 			mtx_unlock(&np->n_mtx);
912 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
913 			/*
914 			 * Require non-blocking, synchronous writes to
915 			 * dirty files to inform the program it needs
916 			 * to fsync(2) explicitly.
917 			 */
918 			if (ioflag & IO_NDELAY)
919 				return (EAGAIN);
920 #endif
921 flush_and_restart:
922 			np->n_attrstamp = 0;
923 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
924 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
925 			if (error)
926 				return (error);
927 		} else
928 			mtx_unlock(&np->n_mtx);
929 	}
930 
931 	orig_resid = uio->uio_resid;
932 	mtx_lock(&np->n_mtx);
933 	orig_size = np->n_size;
934 	mtx_unlock(&np->n_mtx);
935 
936 	/*
937 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
938 	 * get the append lock.
939 	 */
940 	if (ioflag & IO_APPEND) {
941 		np->n_attrstamp = 0;
942 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
943 		error = VOP_GETATTR(vp, &vattr, cred);
944 		if (error)
945 			return (error);
946 		mtx_lock(&np->n_mtx);
947 		uio->uio_offset = np->n_size;
948 		mtx_unlock(&np->n_mtx);
949 	}
950 
951 	if (uio->uio_offset < 0)
952 		return (EINVAL);
953 	tmp_off = uio->uio_offset + uio->uio_resid;
954 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
955 		return (EFBIG);
956 	if (uio->uio_resid == 0)
957 		return (0);
958 
959 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
960 		return nfs_directio_write(vp, uio, cred, ioflag);
961 
962 	/*
963 	 * Maybe this should be above the vnode op call, but so long as
964 	 * file servers have no limits, i don't think it matters
965 	 */
966 	if (vn_rlimit_fsize(vp, uio, td))
967 		return (EFBIG);
968 
969 	biosize = vp->v_bufobj.bo_bsize;
970 	/*
971 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
972 	 * would exceed the local maximum per-file write commit size when
973 	 * combined with those, we must decide whether to flush,
974 	 * go synchronous, or return error.  We don't bother checking
975 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
976 	 * no point optimizing for something that really won't ever happen.
977 	 */
978 	if (!(ioflag & IO_SYNC)) {
979 		int nflag;
980 
981 		mtx_lock(&np->n_mtx);
982 		nflag = np->n_flag;
983 		mtx_unlock(&np->n_mtx);
984 		int needrestart = 0;
985 		if (nmp->nm_wcommitsize < uio->uio_resid) {
986 			/*
987 			 * If this request could not possibly be completed
988 			 * without exceeding the maximum outstanding write
989 			 * commit size, see if we can convert it into a
990 			 * synchronous write operation.
991 			 */
992 			if (ioflag & IO_NDELAY)
993 				return (EAGAIN);
994 			ioflag |= IO_SYNC;
995 			if (nflag & NMODIFIED)
996 				needrestart = 1;
997 		} else if (nflag & NMODIFIED) {
998 			int wouldcommit = 0;
999 			BO_LOCK(&vp->v_bufobj);
1000 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1001 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1002 				    b_bobufs) {
1003 					if (bp->b_flags & B_NEEDCOMMIT)
1004 						wouldcommit += bp->b_bcount;
1005 				}
1006 			}
1007 			BO_UNLOCK(&vp->v_bufobj);
1008 			/*
1009 			 * Since we're not operating synchronously and
1010 			 * bypassing the buffer cache, we are in a commit
1011 			 * and holding all of these buffers whether
1012 			 * transmitted or not.  If not limited, this
1013 			 * will lead to the buffer cache deadlocking,
1014 			 * as no one else can flush our uncommitted buffers.
1015 			 */
1016 			wouldcommit += uio->uio_resid;
1017 			/*
1018 			 * If we would initially exceed the maximum
1019 			 * outstanding write commit size, flush and restart.
1020 			 */
1021 			if (wouldcommit > nmp->nm_wcommitsize)
1022 				needrestart = 1;
1023 		}
1024 		if (needrestart)
1025 			goto flush_and_restart;
1026 	}
1027 
1028 	do {
1029 		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1030 		lbn = uio->uio_offset / biosize;
1031 		on = uio->uio_offset & (biosize-1);
1032 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1033 again:
1034 		/*
1035 		 * Handle direct append and file extension cases, calculate
1036 		 * unaligned buffer size.
1037 		 */
1038 		mtx_lock(&np->n_mtx);
1039 		if (uio->uio_offset == np->n_size && n) {
1040 			mtx_unlock(&np->n_mtx);
1041 			/*
1042 			 * Get the buffer (in its pre-append state to maintain
1043 			 * B_CACHE if it was previously set).  Resize the
1044 			 * nfsnode after we have locked the buffer to prevent
1045 			 * readers from reading garbage.
1046 			 */
1047 			bcount = on;
1048 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1049 
1050 			if (bp != NULL) {
1051 				long save;
1052 
1053 				mtx_lock(&np->n_mtx);
1054 				np->n_size = uio->uio_offset + n;
1055 				np->n_flag |= NMODIFIED;
1056 				vnode_pager_setsize(vp, np->n_size);
1057 				mtx_unlock(&np->n_mtx);
1058 
1059 				save = bp->b_flags & B_CACHE;
1060 				bcount += n;
1061 				allocbuf(bp, bcount);
1062 				bp->b_flags |= save;
1063 			}
1064 		} else {
1065 			/*
1066 			 * Obtain the locked cache block first, and then
1067 			 * adjust the file's size as appropriate.
1068 			 */
1069 			bcount = on + n;
1070 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1071 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1072 					bcount = biosize;
1073 				else
1074 					bcount = np->n_size - (off_t)lbn * biosize;
1075 			}
1076 			mtx_unlock(&np->n_mtx);
1077 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1078 			mtx_lock(&np->n_mtx);
1079 			if (uio->uio_offset + n > np->n_size) {
1080 				np->n_size = uio->uio_offset + n;
1081 				np->n_flag |= NMODIFIED;
1082 				vnode_pager_setsize(vp, np->n_size);
1083 			}
1084 			mtx_unlock(&np->n_mtx);
1085 		}
1086 
1087 		if (!bp) {
1088 			error = newnfs_sigintr(nmp, td);
1089 			if (!error)
1090 				error = EINTR;
1091 			break;
1092 		}
1093 
1094 		/*
1095 		 * Issue a READ if B_CACHE is not set.  In special-append
1096 		 * mode, B_CACHE is based on the buffer prior to the write
1097 		 * op and is typically set, avoiding the read.  If a read
1098 		 * is required in special append mode, the server will
1099 		 * probably send us a short-read since we extended the file
1100 		 * on our end, resulting in b_resid == 0 and, thusly,
1101 		 * B_CACHE getting set.
1102 		 *
1103 		 * We can also avoid issuing the read if the write covers
1104 		 * the entire buffer.  We have to make sure the buffer state
1105 		 * is reasonable in this case since we will not be initiating
1106 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1107 		 * more information.
1108 		 *
1109 		 * B_CACHE may also be set due to the buffer being cached
1110 		 * normally.
1111 		 */
1112 
1113 		bp_cached = 1;
1114 		if (on == 0 && n == bcount) {
1115 			if ((bp->b_flags & B_CACHE) == 0)
1116 				bp_cached = 0;
1117 			bp->b_flags |= B_CACHE;
1118 			bp->b_flags &= ~B_INVAL;
1119 			bp->b_ioflags &= ~BIO_ERROR;
1120 		}
1121 
1122 		if ((bp->b_flags & B_CACHE) == 0) {
1123 			bp->b_iocmd = BIO_READ;
1124 			vfs_busy_pages(bp, 0);
1125 			error = ncl_doio(vp, bp, cred, td, 0);
1126 			if (error) {
1127 				brelse(bp);
1128 				break;
1129 			}
1130 		}
1131 		if (bp->b_wcred == NOCRED)
1132 			bp->b_wcred = crhold(cred);
1133 		mtx_lock(&np->n_mtx);
1134 		np->n_flag |= NMODIFIED;
1135 		mtx_unlock(&np->n_mtx);
1136 
1137 		/*
1138 		 * If dirtyend exceeds file size, chop it down.  This should
1139 		 * not normally occur but there is an append race where it
1140 		 * might occur XXX, so we log it.
1141 		 *
1142 		 * If the chopping creates a reverse-indexed or degenerate
1143 		 * situation with dirtyoff/end, we 0 both of them.
1144 		 */
1145 
1146 		if (bp->b_dirtyend > bcount) {
1147 			ncl_printf("NFS append race @%lx:%d\n",
1148 			    (long)bp->b_blkno * DEV_BSIZE,
1149 			    bp->b_dirtyend - bcount);
1150 			bp->b_dirtyend = bcount;
1151 		}
1152 
1153 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1154 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1155 
1156 		/*
1157 		 * If the new write will leave a contiguous dirty
1158 		 * area, just update the b_dirtyoff and b_dirtyend,
1159 		 * otherwise force a write rpc of the old dirty area.
1160 		 *
1161 		 * While it is possible to merge discontiguous writes due to
1162 		 * our having a B_CACHE buffer ( and thus valid read data
1163 		 * for the hole), we don't because it could lead to
1164 		 * significant cache coherency problems with multiple clients,
1165 		 * especially if locking is implemented later on.
1166 		 *
1167 		 * As an optimization we could theoretically maintain
1168 		 * a linked list of discontinuous areas, but we would still
1169 		 * have to commit them separately so there isn't much
1170 		 * advantage to it except perhaps a bit of asynchronization.
1171 		 */
1172 
1173 		if (bp->b_dirtyend > 0 &&
1174 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1175 			if (bwrite(bp) == EINTR) {
1176 				error = EINTR;
1177 				break;
1178 			}
1179 			goto again;
1180 		}
1181 
1182 		local_resid = uio->uio_resid;
1183 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1184 
1185 		if (error != 0 && !bp_cached) {
1186 			/*
1187 			 * This block has no other content then what
1188 			 * possibly was written by the faulty uiomove.
1189 			 * Release it, forgetting the data pages, to
1190 			 * prevent the leak of uninitialized data to
1191 			 * usermode.
1192 			 */
1193 			bp->b_ioflags |= BIO_ERROR;
1194 			brelse(bp);
1195 			uio->uio_offset -= local_resid - uio->uio_resid;
1196 			uio->uio_resid = local_resid;
1197 			break;
1198 		}
1199 
1200 		/*
1201 		 * Since this block is being modified, it must be written
1202 		 * again and not just committed.  Since write clustering does
1203 		 * not work for the stage 1 data write, only the stage 2
1204 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1205 		 */
1206 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1207 
1208 		/*
1209 		 * Get the partial update on the progress made from
1210 		 * uiomove, if an error occured.
1211 		 */
1212 		if (error != 0)
1213 			n = local_resid - uio->uio_resid;
1214 
1215 		/*
1216 		 * Only update dirtyoff/dirtyend if not a degenerate
1217 		 * condition.
1218 		 */
1219 		if (n > 0) {
1220 			if (bp->b_dirtyend > 0) {
1221 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1222 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1223 			} else {
1224 				bp->b_dirtyoff = on;
1225 				bp->b_dirtyend = on + n;
1226 			}
1227 			vfs_bio_set_valid(bp, on, n);
1228 		}
1229 
1230 		/*
1231 		 * If IO_SYNC do bwrite().
1232 		 *
1233 		 * IO_INVAL appears to be unused.  The idea appears to be
1234 		 * to turn off caching in this case.  Very odd.  XXX
1235 		 */
1236 		if ((ioflag & IO_SYNC)) {
1237 			if (ioflag & IO_INVAL)
1238 				bp->b_flags |= B_NOCACHE;
1239 			error1 = bwrite(bp);
1240 			if (error1 != 0) {
1241 				if (error == 0)
1242 					error = error1;
1243 				break;
1244 			}
1245 		} else if ((n + on) == biosize) {
1246 			bp->b_flags |= B_ASYNC;
1247 			(void) ncl_writebp(bp, 0, NULL);
1248 		} else {
1249 			bdwrite(bp);
1250 		}
1251 
1252 		if (error != 0)
1253 			break;
1254 	} while (uio->uio_resid > 0 && n > 0);
1255 
1256 	if (error != 0) {
1257 		if (ioflag & IO_UNIT) {
1258 			VATTR_NULL(&vattr);
1259 			vattr.va_size = orig_size;
1260 			/* IO_SYNC is handled implicitely */
1261 			(void)VOP_SETATTR(vp, &vattr, cred);
1262 			uio->uio_offset -= orig_resid - uio->uio_resid;
1263 			uio->uio_resid = orig_resid;
1264 		}
1265 	}
1266 
1267 	return (error);
1268 }
1269 
1270 /*
1271  * Get an nfs cache block.
1272  *
1273  * Allocate a new one if the block isn't currently in the cache
1274  * and return the block marked busy. If the calling process is
1275  * interrupted by a signal for an interruptible mount point, return
1276  * NULL.
1277  *
1278  * The caller must carefully deal with the possible B_INVAL state of
1279  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1280  * indirectly), so synchronous reads can be issued without worrying about
1281  * the B_INVAL state.  We have to be a little more careful when dealing
1282  * with writes (see comments in nfs_write()) when extending a file past
1283  * its EOF.
1284  */
1285 static struct buf *
1286 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1287 {
1288 	struct buf *bp;
1289 	struct mount *mp;
1290 	struct nfsmount *nmp;
1291 
1292 	mp = vp->v_mount;
1293 	nmp = VFSTONFS(mp);
1294 
1295 	if (nmp->nm_flag & NFSMNT_INT) {
1296  		sigset_t oldset;
1297 
1298  		newnfs_set_sigmask(td, &oldset);
1299 		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1300  		newnfs_restore_sigmask(td, &oldset);
1301 		while (bp == NULL) {
1302 			if (newnfs_sigintr(nmp, td))
1303 				return (NULL);
1304 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1305 		}
1306 	} else {
1307 		bp = getblk(vp, bn, size, 0, 0, 0);
1308 	}
1309 
1310 	if (vp->v_type == VREG)
1311 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1312 	return (bp);
1313 }
1314 
1315 /*
1316  * Flush and invalidate all dirty buffers. If another process is already
1317  * doing the flush, just wait for completion.
1318  */
1319 int
1320 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1321 {
1322 	struct nfsnode *np = VTONFS(vp);
1323 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1324 	int error = 0, slpflag, slptimeo;
1325  	int old_lock = 0;
1326 
1327 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1328 
1329 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1330 		intrflg = 0;
1331 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1332 		intrflg = 1;
1333 	if (intrflg) {
1334 		slpflag = NFS_PCATCH;
1335 		slptimeo = 2 * hz;
1336 	} else {
1337 		slpflag = 0;
1338 		slptimeo = 0;
1339 	}
1340 
1341 	old_lock = ncl_upgrade_vnlock(vp);
1342 	if (vp->v_iflag & VI_DOOMED) {
1343 		/*
1344 		 * Since vgonel() uses the generic vinvalbuf() to flush
1345 		 * dirty buffers and it does not call this function, it
1346 		 * is safe to just return OK when VI_DOOMED is set.
1347 		 */
1348 		ncl_downgrade_vnlock(vp, old_lock);
1349 		return (0);
1350 	}
1351 
1352 	/*
1353 	 * Now, flush as required.
1354 	 */
1355 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1356 		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1357 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1358 		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1359 		/*
1360 		 * If the page clean was interrupted, fail the invalidation.
1361 		 * Not doing so, we run the risk of losing dirty pages in the
1362 		 * vinvalbuf() call below.
1363 		 */
1364 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1365 			goto out;
1366 	}
1367 
1368 	error = vinvalbuf(vp, flags, slpflag, 0);
1369 	while (error) {
1370 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1371 			goto out;
1372 		error = vinvalbuf(vp, flags, 0, slptimeo);
1373 	}
1374 	if (NFSHASPNFS(nmp))
1375 		nfscl_layoutcommit(vp, td);
1376 	mtx_lock(&np->n_mtx);
1377 	if (np->n_directio_asyncwr == 0)
1378 		np->n_flag &= ~NMODIFIED;
1379 	mtx_unlock(&np->n_mtx);
1380 out:
1381 	ncl_downgrade_vnlock(vp, old_lock);
1382 	return error;
1383 }
1384 
1385 /*
1386  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1387  * This is mainly to avoid queueing async I/O requests when the nfsiods
1388  * are all hung on a dead server.
1389  *
1390  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1391  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1392  */
1393 int
1394 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1395 {
1396 	int iod;
1397 	int gotiod;
1398 	int slpflag = 0;
1399 	int slptimeo = 0;
1400 	int error, error2;
1401 
1402 	/*
1403 	 * Commits are usually short and sweet so lets save some cpu and
1404 	 * leave the async daemons for more important rpc's (such as reads
1405 	 * and writes).
1406 	 */
1407 	mtx_lock(&ncl_iod_mutex);
1408 	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1409 	    (nmp->nm_bufqiods > ncl_numasync / 2)) {
1410 		mtx_unlock(&ncl_iod_mutex);
1411 		return(EIO);
1412 	}
1413 again:
1414 	if (nmp->nm_flag & NFSMNT_INT)
1415 		slpflag = NFS_PCATCH;
1416 	gotiod = FALSE;
1417 
1418 	/*
1419 	 * Find a free iod to process this request.
1420 	 */
1421 	for (iod = 0; iod < ncl_numasync; iod++)
1422 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1423 			gotiod = TRUE;
1424 			break;
1425 		}
1426 
1427 	/*
1428 	 * Try to create one if none are free.
1429 	 */
1430 	if (!gotiod)
1431 		ncl_nfsiodnew();
1432 	else {
1433 		/*
1434 		 * Found one, so wake it up and tell it which
1435 		 * mount to process.
1436 		 */
1437 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1438 		    iod, nmp));
1439 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1440 		ncl_iodmount[iod] = nmp;
1441 		nmp->nm_bufqiods++;
1442 		wakeup(&ncl_iodwant[iod]);
1443 	}
1444 
1445 	/*
1446 	 * If none are free, we may already have an iod working on this mount
1447 	 * point.  If so, it will process our request.
1448 	 */
1449 	if (!gotiod) {
1450 		if (nmp->nm_bufqiods > 0) {
1451 			NFS_DPF(ASYNCIO,
1452 				("ncl_asyncio: %d iods are already processing mount %p\n",
1453 				 nmp->nm_bufqiods, nmp));
1454 			gotiod = TRUE;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * If we have an iod which can process the request, then queue
1460 	 * the buffer.
1461 	 */
1462 	if (gotiod) {
1463 		/*
1464 		 * Ensure that the queue never grows too large.  We still want
1465 		 * to asynchronize so we block rather then return EIO.
1466 		 */
1467 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1468 			NFS_DPF(ASYNCIO,
1469 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1470 			nmp->nm_bufqwant = TRUE;
1471  			error = newnfs_msleep(td, &nmp->nm_bufq,
1472 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1473   			   slptimeo);
1474 			if (error) {
1475 				error2 = newnfs_sigintr(nmp, td);
1476 				if (error2) {
1477 					mtx_unlock(&ncl_iod_mutex);
1478 					return (error2);
1479 				}
1480 				if (slpflag == NFS_PCATCH) {
1481 					slpflag = 0;
1482 					slptimeo = 2 * hz;
1483 				}
1484 			}
1485 			/*
1486 			 * We might have lost our iod while sleeping,
1487 			 * so check and loop if nescessary.
1488 			 */
1489 			goto again;
1490 		}
1491 
1492 		/* We might have lost our nfsiod */
1493 		if (nmp->nm_bufqiods == 0) {
1494 			NFS_DPF(ASYNCIO,
1495 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1496 			goto again;
1497 		}
1498 
1499 		if (bp->b_iocmd == BIO_READ) {
1500 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1501 				bp->b_rcred = crhold(cred);
1502 		} else {
1503 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1504 				bp->b_wcred = crhold(cred);
1505 		}
1506 
1507 		if (bp->b_flags & B_REMFREE)
1508 			bremfreef(bp);
1509 		BUF_KERNPROC(bp);
1510 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1511 		nmp->nm_bufqlen++;
1512 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1513 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1514 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1515 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1516 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1517 		}
1518 		mtx_unlock(&ncl_iod_mutex);
1519 		return (0);
1520 	}
1521 
1522 	mtx_unlock(&ncl_iod_mutex);
1523 
1524 	/*
1525 	 * All the iods are busy on other mounts, so return EIO to
1526 	 * force the caller to process the i/o synchronously.
1527 	 */
1528 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1529 	return (EIO);
1530 }
1531 
1532 void
1533 ncl_doio_directwrite(struct buf *bp)
1534 {
1535 	int iomode, must_commit;
1536 	struct uio *uiop = (struct uio *)bp->b_caller1;
1537 	char *iov_base = uiop->uio_iov->iov_base;
1538 
1539 	iomode = NFSWRITE_FILESYNC;
1540 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1541 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1542 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1543 	free(iov_base, M_NFSDIRECTIO);
1544 	free(uiop->uio_iov, M_NFSDIRECTIO);
1545 	free(uiop, M_NFSDIRECTIO);
1546 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1547 		struct nfsnode *np = VTONFS(bp->b_vp);
1548 		mtx_lock(&np->n_mtx);
1549 		np->n_directio_asyncwr--;
1550 		if (np->n_directio_asyncwr == 0) {
1551 			np->n_flag &= ~NMODIFIED;
1552 			if ((np->n_flag & NFSYNCWAIT)) {
1553 				np->n_flag &= ~NFSYNCWAIT;
1554 				wakeup((caddr_t)&np->n_directio_asyncwr);
1555 			}
1556 		}
1557 		mtx_unlock(&np->n_mtx);
1558 	}
1559 	bp->b_vp = NULL;
1560 	relpbuf(bp, &ncl_pbuf_freecnt);
1561 }
1562 
1563 /*
1564  * Do an I/O operation to/from a cache block. This may be called
1565  * synchronously or from an nfsiod.
1566  */
1567 int
1568 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1569     int called_from_strategy)
1570 {
1571 	struct uio *uiop;
1572 	struct nfsnode *np;
1573 	struct nfsmount *nmp;
1574 	int error = 0, iomode, must_commit = 0;
1575 	struct uio uio;
1576 	struct iovec io;
1577 	struct proc *p = td ? td->td_proc : NULL;
1578 	uint8_t	iocmd;
1579 
1580 	np = VTONFS(vp);
1581 	nmp = VFSTONFS(vp->v_mount);
1582 	uiop = &uio;
1583 	uiop->uio_iov = &io;
1584 	uiop->uio_iovcnt = 1;
1585 	uiop->uio_segflg = UIO_SYSSPACE;
1586 	uiop->uio_td = td;
1587 
1588 	/*
1589 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1590 	 * do this here so we do not have to do it in all the code that
1591 	 * calls us.
1592 	 */
1593 	bp->b_flags &= ~B_INVAL;
1594 	bp->b_ioflags &= ~BIO_ERROR;
1595 
1596 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1597 	iocmd = bp->b_iocmd;
1598 	if (iocmd == BIO_READ) {
1599 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1600 	    io.iov_base = bp->b_data;
1601 	    uiop->uio_rw = UIO_READ;
1602 
1603 	    switch (vp->v_type) {
1604 	    case VREG:
1605 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1606 		NFSINCRGLOBAL(newnfsstats.read_bios);
1607 		error = ncl_readrpc(vp, uiop, cr);
1608 
1609 		if (!error) {
1610 		    if (uiop->uio_resid) {
1611 			/*
1612 			 * If we had a short read with no error, we must have
1613 			 * hit a file hole.  We should zero-fill the remainder.
1614 			 * This can also occur if the server hits the file EOF.
1615 			 *
1616 			 * Holes used to be able to occur due to pending
1617 			 * writes, but that is not possible any longer.
1618 			 */
1619 			int nread = bp->b_bcount - uiop->uio_resid;
1620 			ssize_t left = uiop->uio_resid;
1621 
1622 			if (left > 0)
1623 				bzero((char *)bp->b_data + nread, left);
1624 			uiop->uio_resid = 0;
1625 		    }
1626 		}
1627 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1628 		if (p && (vp->v_vflag & VV_TEXT)) {
1629 			mtx_lock(&np->n_mtx);
1630 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1631 				mtx_unlock(&np->n_mtx);
1632 				PROC_LOCK(p);
1633 				killproc(p, "text file modification");
1634 				PROC_UNLOCK(p);
1635 			} else
1636 				mtx_unlock(&np->n_mtx);
1637 		}
1638 		break;
1639 	    case VLNK:
1640 		uiop->uio_offset = (off_t)0;
1641 		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1642 		error = ncl_readlinkrpc(vp, uiop, cr);
1643 		break;
1644 	    case VDIR:
1645 		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1646 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1647 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1648 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1649 			if (error == NFSERR_NOTSUPP)
1650 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1651 		}
1652 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1653 			error = ncl_readdirrpc(vp, uiop, cr, td);
1654 		/*
1655 		 * end-of-directory sets B_INVAL but does not generate an
1656 		 * error.
1657 		 */
1658 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1659 			bp->b_flags |= B_INVAL;
1660 		break;
1661 	    default:
1662 		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1663 		break;
1664 	    };
1665 	    if (error) {
1666 		bp->b_ioflags |= BIO_ERROR;
1667 		bp->b_error = error;
1668 	    }
1669 	} else {
1670 	    /*
1671 	     * If we only need to commit, try to commit
1672 	     */
1673 	    if (bp->b_flags & B_NEEDCOMMIT) {
1674 		    int retv;
1675 		    off_t off;
1676 
1677 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1678 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1679 			bp->b_wcred, td);
1680 		    if (retv == 0) {
1681 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1682 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1683 			    bp->b_resid = 0;
1684 			    bufdone(bp);
1685 			    return (0);
1686 		    }
1687 		    if (retv == NFSERR_STALEWRITEVERF) {
1688 			    ncl_clearcommit(vp->v_mount);
1689 		    }
1690 	    }
1691 
1692 	    /*
1693 	     * Setup for actual write
1694 	     */
1695 	    mtx_lock(&np->n_mtx);
1696 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1697 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1698 	    mtx_unlock(&np->n_mtx);
1699 
1700 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1701 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1702 		    - bp->b_dirtyoff;
1703 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1704 		    + bp->b_dirtyoff;
1705 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1706 		uiop->uio_rw = UIO_WRITE;
1707 		NFSINCRGLOBAL(newnfsstats.write_bios);
1708 
1709 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1710 		    iomode = NFSWRITE_UNSTABLE;
1711 		else
1712 		    iomode = NFSWRITE_FILESYNC;
1713 
1714 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1715 		    called_from_strategy);
1716 
1717 		/*
1718 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1719 		 * to cluster the buffers needing commit.  This will allow
1720 		 * the system to submit a single commit rpc for the whole
1721 		 * cluster.  We can do this even if the buffer is not 100%
1722 		 * dirty (relative to the NFS blocksize), so we optimize the
1723 		 * append-to-file-case.
1724 		 *
1725 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1726 		 * cleared because write clustering only works for commit
1727 		 * rpc's, not for the data portion of the write).
1728 		 */
1729 
1730 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1731 		    bp->b_flags |= B_NEEDCOMMIT;
1732 		    if (bp->b_dirtyoff == 0
1733 			&& bp->b_dirtyend == bp->b_bcount)
1734 			bp->b_flags |= B_CLUSTEROK;
1735 		} else {
1736 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1737 		}
1738 
1739 		/*
1740 		 * For an interrupted write, the buffer is still valid
1741 		 * and the write hasn't been pushed to the server yet,
1742 		 * so we can't set BIO_ERROR and report the interruption
1743 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1744 		 * is not relevant, so the rpc attempt is essentially
1745 		 * a noop.  For the case of a V3 write rpc not being
1746 		 * committed to stable storage, the block is still
1747 		 * dirty and requires either a commit rpc or another
1748 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1749 		 * the block is reused. This is indicated by setting
1750 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1751 		 *
1752 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1753 		 * write error and is handled as above, except that
1754 		 * B_EINTR isn't set. One cause of this is a stale stateid
1755 		 * error for the RPC that indicates recovery is required,
1756 		 * when called with called_from_strategy != 0.
1757 		 *
1758 		 * If the buffer is marked B_PAGING, it does not reside on
1759 		 * the vp's paging queues so we cannot call bdirty().  The
1760 		 * bp in this case is not an NFS cache block so we should
1761 		 * be safe. XXX
1762 		 *
1763 		 * The logic below breaks up errors into recoverable and
1764 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1765 		 * and keep the buffer around for potential write retries.
1766 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1767 		 * and save the error in the nfsnode. This is less than ideal
1768 		 * but necessary. Keeping such buffers around could potentially
1769 		 * cause buffer exhaustion eventually (they can never be written
1770 		 * out, so will get constantly be re-dirtied). It also causes
1771 		 * all sorts of vfs panics. For non-recoverable write errors,
1772 		 * also invalidate the attrcache, so we'll be forced to go over
1773 		 * the wire for this object, returning an error to user on next
1774 		 * call (most of the time).
1775 		 */
1776     		if (error == EINTR || error == EIO || error == ETIMEDOUT
1777 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1778 			int s;
1779 
1780 			s = splbio();
1781 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1782 			if ((bp->b_flags & B_PAGING) == 0) {
1783 			    bdirty(bp);
1784 			    bp->b_flags &= ~B_DONE;
1785 			}
1786 			if ((error == EINTR || error == ETIMEDOUT) &&
1787 			    (bp->b_flags & B_ASYNC) == 0)
1788 			    bp->b_flags |= B_EINTR;
1789 			splx(s);
1790 	    	} else {
1791 		    if (error) {
1792 			bp->b_ioflags |= BIO_ERROR;
1793 			bp->b_flags |= B_INVAL;
1794 			bp->b_error = np->n_error = error;
1795 			mtx_lock(&np->n_mtx);
1796 			np->n_flag |= NWRITEERR;
1797 			np->n_attrstamp = 0;
1798 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1799 			mtx_unlock(&np->n_mtx);
1800 		    }
1801 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1802 		}
1803 	    } else {
1804 		bp->b_resid = 0;
1805 		bufdone(bp);
1806 		return (0);
1807 	    }
1808 	}
1809 	bp->b_resid = uiop->uio_resid;
1810 	if (must_commit)
1811 	    ncl_clearcommit(vp->v_mount);
1812 	bufdone(bp);
1813 	return (error);
1814 }
1815 
1816 /*
1817  * Used to aid in handling ftruncate() operations on the NFS client side.
1818  * Truncation creates a number of special problems for NFS.  We have to
1819  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1820  * we have to properly handle VM pages or (potentially dirty) buffers
1821  * that straddle the truncation point.
1822  */
1823 
1824 int
1825 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1826 {
1827 	struct nfsnode *np = VTONFS(vp);
1828 	u_quad_t tsize;
1829 	int biosize = vp->v_bufobj.bo_bsize;
1830 	int error = 0;
1831 
1832 	mtx_lock(&np->n_mtx);
1833 	tsize = np->n_size;
1834 	np->n_size = nsize;
1835 	mtx_unlock(&np->n_mtx);
1836 
1837 	if (nsize < tsize) {
1838 		struct buf *bp;
1839 		daddr_t lbn;
1840 		int bufsize;
1841 
1842 		/*
1843 		 * vtruncbuf() doesn't get the buffer overlapping the
1844 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1845 		 * buffer that now needs to be truncated.
1846 		 */
1847 		error = vtruncbuf(vp, cred, nsize, biosize);
1848 		lbn = nsize / biosize;
1849 		bufsize = nsize & (biosize - 1);
1850 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1851  		if (!bp)
1852  			return EINTR;
1853 		if (bp->b_dirtyoff > bp->b_bcount)
1854 			bp->b_dirtyoff = bp->b_bcount;
1855 		if (bp->b_dirtyend > bp->b_bcount)
1856 			bp->b_dirtyend = bp->b_bcount;
1857 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1858 		brelse(bp);
1859 	} else {
1860 		vnode_pager_setsize(vp, nsize);
1861 	}
1862 	return(error);
1863 }
1864 
1865