1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/vmmeter.h> 45 #include <sys/vnode.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_extern.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_pager.h> 52 #include <vm/vnode_pager.h> 53 54 #include <fs/nfs/nfsport.h> 55 #include <fs/nfsclient/nfsmount.h> 56 #include <fs/nfsclient/nfs.h> 57 #include <fs/nfsclient/nfsnode.h> 58 59 extern int newnfs_directio_allow_mmap; 60 extern struct nfsstats newnfsstats; 61 extern struct mtx ncl_iod_mutex; 62 extern int ncl_numasync; 63 extern enum nfsiod_state ncl_iodwant[NFS_MAXRAHEAD]; 64 extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD]; 65 extern int newnfs_directio_enable; 66 67 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 68 69 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 70 struct thread *td); 71 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 72 struct ucred *cred, int ioflag); 73 74 /* 75 * Vnode op for VM getpages. 76 */ 77 int 78 ncl_getpages(struct vop_getpages_args *ap) 79 { 80 int i, error, nextoff, size, toff, count, npages; 81 struct uio uio; 82 struct iovec iov; 83 vm_offset_t kva; 84 struct buf *bp; 85 struct vnode *vp; 86 struct thread *td; 87 struct ucred *cred; 88 struct nfsmount *nmp; 89 vm_object_t object; 90 vm_page_t *pages; 91 struct nfsnode *np; 92 93 vp = ap->a_vp; 94 np = VTONFS(vp); 95 td = curthread; /* XXX */ 96 cred = curthread->td_ucred; /* XXX */ 97 nmp = VFSTONFS(vp->v_mount); 98 pages = ap->a_m; 99 count = ap->a_count; 100 101 if ((object = vp->v_object) == NULL) { 102 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 103 return (VM_PAGER_ERROR); 104 } 105 106 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 107 mtx_lock(&np->n_mtx); 108 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 109 mtx_unlock(&np->n_mtx); 110 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 111 return (VM_PAGER_ERROR); 112 } else 113 mtx_unlock(&np->n_mtx); 114 } 115 116 mtx_lock(&nmp->nm_mtx); 117 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 118 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 119 mtx_unlock(&nmp->nm_mtx); 120 /* We'll never get here for v4, because we always have fsinfo */ 121 (void)ncl_fsinfo(nmp, vp, cred, td); 122 } else 123 mtx_unlock(&nmp->nm_mtx); 124 125 npages = btoc(count); 126 127 /* 128 * If the requested page is partially valid, just return it and 129 * allow the pager to zero-out the blanks. Partially valid pages 130 * can only occur at the file EOF. 131 */ 132 VM_OBJECT_LOCK(object); 133 if (pages[ap->a_reqpage]->valid != 0) { 134 for (i = 0; i < npages; ++i) { 135 if (i != ap->a_reqpage) { 136 vm_page_lock(pages[i]); 137 vm_page_free(pages[i]); 138 vm_page_unlock(pages[i]); 139 } 140 } 141 VM_OBJECT_UNLOCK(object); 142 return (0); 143 } 144 VM_OBJECT_UNLOCK(object); 145 146 /* 147 * We use only the kva address for the buffer, but this is extremely 148 * convienient and fast. 149 */ 150 bp = getpbuf(&ncl_pbuf_freecnt); 151 152 kva = (vm_offset_t) bp->b_data; 153 pmap_qenter(kva, pages, npages); 154 PCPU_INC(cnt.v_vnodein); 155 PCPU_ADD(cnt.v_vnodepgsin, npages); 156 157 iov.iov_base = (caddr_t) kva; 158 iov.iov_len = count; 159 uio.uio_iov = &iov; 160 uio.uio_iovcnt = 1; 161 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 162 uio.uio_resid = count; 163 uio.uio_segflg = UIO_SYSSPACE; 164 uio.uio_rw = UIO_READ; 165 uio.uio_td = td; 166 167 error = ncl_readrpc(vp, &uio, cred); 168 pmap_qremove(kva, npages); 169 170 relpbuf(bp, &ncl_pbuf_freecnt); 171 172 if (error && (uio.uio_resid == count)) { 173 ncl_printf("nfs_getpages: error %d\n", error); 174 VM_OBJECT_LOCK(object); 175 for (i = 0; i < npages; ++i) { 176 if (i != ap->a_reqpage) { 177 vm_page_lock(pages[i]); 178 vm_page_free(pages[i]); 179 vm_page_unlock(pages[i]); 180 } 181 } 182 VM_OBJECT_UNLOCK(object); 183 return (VM_PAGER_ERROR); 184 } 185 186 /* 187 * Calculate the number of bytes read and validate only that number 188 * of bytes. Note that due to pending writes, size may be 0. This 189 * does not mean that the remaining data is invalid! 190 */ 191 192 size = count - uio.uio_resid; 193 VM_OBJECT_LOCK(object); 194 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 195 vm_page_t m; 196 nextoff = toff + PAGE_SIZE; 197 m = pages[i]; 198 199 if (nextoff <= size) { 200 /* 201 * Read operation filled an entire page 202 */ 203 m->valid = VM_PAGE_BITS_ALL; 204 KASSERT(m->dirty == 0, 205 ("nfs_getpages: page %p is dirty", m)); 206 } else if (size > toff) { 207 /* 208 * Read operation filled a partial page. 209 */ 210 m->valid = 0; 211 vm_page_set_valid(m, 0, size - toff); 212 KASSERT(m->dirty == 0, 213 ("nfs_getpages: page %p is dirty", m)); 214 } else { 215 /* 216 * Read operation was short. If no error occured 217 * we may have hit a zero-fill section. We simply 218 * leave valid set to 0. 219 */ 220 ; 221 } 222 if (i != ap->a_reqpage) { 223 /* 224 * Whether or not to leave the page activated is up in 225 * the air, but we should put the page on a page queue 226 * somewhere (it already is in the object). Result: 227 * It appears that emperical results show that 228 * deactivating pages is best. 229 */ 230 231 /* 232 * Just in case someone was asking for this page we 233 * now tell them that it is ok to use. 234 */ 235 if (!error) { 236 if (m->oflags & VPO_WANTED) { 237 vm_page_lock(m); 238 vm_page_activate(m); 239 vm_page_unlock(m); 240 } else { 241 vm_page_lock(m); 242 vm_page_deactivate(m); 243 vm_page_unlock(m); 244 } 245 vm_page_wakeup(m); 246 } else { 247 vm_page_lock(m); 248 vm_page_free(m); 249 vm_page_unlock(m); 250 } 251 } 252 } 253 VM_OBJECT_UNLOCK(object); 254 return (0); 255 } 256 257 /* 258 * Vnode op for VM putpages. 259 */ 260 int 261 ncl_putpages(struct vop_putpages_args *ap) 262 { 263 struct uio uio; 264 struct iovec iov; 265 vm_offset_t kva; 266 struct buf *bp; 267 int iomode, must_commit, i, error, npages, count; 268 off_t offset; 269 int *rtvals; 270 struct vnode *vp; 271 struct thread *td; 272 struct ucred *cred; 273 struct nfsmount *nmp; 274 struct nfsnode *np; 275 vm_page_t *pages; 276 277 vp = ap->a_vp; 278 np = VTONFS(vp); 279 td = curthread; /* XXX */ 280 cred = curthread->td_ucred; /* XXX */ 281 nmp = VFSTONFS(vp->v_mount); 282 pages = ap->a_m; 283 count = ap->a_count; 284 rtvals = ap->a_rtvals; 285 npages = btoc(count); 286 offset = IDX_TO_OFF(pages[0]->pindex); 287 288 mtx_lock(&nmp->nm_mtx); 289 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 290 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 291 mtx_unlock(&nmp->nm_mtx); 292 (void)ncl_fsinfo(nmp, vp, cred, td); 293 } else 294 mtx_unlock(&nmp->nm_mtx); 295 296 mtx_lock(&np->n_mtx); 297 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 298 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 299 mtx_unlock(&np->n_mtx); 300 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 301 mtx_lock(&np->n_mtx); 302 } 303 304 for (i = 0; i < npages; i++) 305 rtvals[i] = VM_PAGER_AGAIN; 306 307 /* 308 * When putting pages, do not extend file past EOF. 309 */ 310 if (offset + count > np->n_size) { 311 count = np->n_size - offset; 312 if (count < 0) 313 count = 0; 314 } 315 mtx_unlock(&np->n_mtx); 316 317 /* 318 * We use only the kva address for the buffer, but this is extremely 319 * convienient and fast. 320 */ 321 bp = getpbuf(&ncl_pbuf_freecnt); 322 323 kva = (vm_offset_t) bp->b_data; 324 pmap_qenter(kva, pages, npages); 325 PCPU_INC(cnt.v_vnodeout); 326 PCPU_ADD(cnt.v_vnodepgsout, count); 327 328 iov.iov_base = (caddr_t) kva; 329 iov.iov_len = count; 330 uio.uio_iov = &iov; 331 uio.uio_iovcnt = 1; 332 uio.uio_offset = offset; 333 uio.uio_resid = count; 334 uio.uio_segflg = UIO_SYSSPACE; 335 uio.uio_rw = UIO_WRITE; 336 uio.uio_td = td; 337 338 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 339 iomode = NFSWRITE_UNSTABLE; 340 else 341 iomode = NFSWRITE_FILESYNC; 342 343 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0); 344 345 pmap_qremove(kva, npages); 346 relpbuf(bp, &ncl_pbuf_freecnt); 347 348 if (!error) { 349 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; 350 for (i = 0; i < nwritten; i++) { 351 rtvals[i] = VM_PAGER_OK; 352 vm_page_undirty(pages[i]); 353 } 354 if (must_commit) { 355 ncl_clearcommit(vp->v_mount); 356 } 357 } 358 return rtvals[0]; 359 } 360 361 /* 362 * For nfs, cache consistency can only be maintained approximately. 363 * Although RFC1094 does not specify the criteria, the following is 364 * believed to be compatible with the reference port. 365 * For nfs: 366 * If the file's modify time on the server has changed since the 367 * last read rpc or you have written to the file, 368 * you may have lost data cache consistency with the 369 * server, so flush all of the file's data out of the cache. 370 * Then force a getattr rpc to ensure that you have up to date 371 * attributes. 372 * NB: This implies that cache data can be read when up to 373 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 374 * attributes this could be forced by setting n_attrstamp to 0 before 375 * the VOP_GETATTR() call. 376 */ 377 static inline int 378 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 379 { 380 int error = 0; 381 struct vattr vattr; 382 struct nfsnode *np = VTONFS(vp); 383 int old_lock; 384 385 /* 386 * Grab the exclusive lock before checking whether the cache is 387 * consistent. 388 * XXX - We can make this cheaper later (by acquiring cheaper locks). 389 * But for now, this suffices. 390 */ 391 old_lock = ncl_upgrade_vnlock(vp); 392 if (vp->v_iflag & VI_DOOMED) { 393 ncl_downgrade_vnlock(vp, old_lock); 394 return (EBADF); 395 } 396 397 mtx_lock(&np->n_mtx); 398 if (np->n_flag & NMODIFIED) { 399 mtx_unlock(&np->n_mtx); 400 if (vp->v_type != VREG) { 401 if (vp->v_type != VDIR) 402 panic("nfs: bioread, not dir"); 403 ncl_invaldir(vp); 404 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 405 if (error) 406 goto out; 407 } 408 np->n_attrstamp = 0; 409 error = VOP_GETATTR(vp, &vattr, cred); 410 if (error) 411 goto out; 412 mtx_lock(&np->n_mtx); 413 np->n_mtime = vattr.va_mtime; 414 mtx_unlock(&np->n_mtx); 415 } else { 416 mtx_unlock(&np->n_mtx); 417 error = VOP_GETATTR(vp, &vattr, cred); 418 if (error) 419 return (error); 420 mtx_lock(&np->n_mtx); 421 if ((np->n_flag & NSIZECHANGED) 422 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 423 mtx_unlock(&np->n_mtx); 424 if (vp->v_type == VDIR) 425 ncl_invaldir(vp); 426 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 427 if (error) 428 goto out; 429 mtx_lock(&np->n_mtx); 430 np->n_mtime = vattr.va_mtime; 431 np->n_flag &= ~NSIZECHANGED; 432 } 433 mtx_unlock(&np->n_mtx); 434 } 435 out: 436 ncl_downgrade_vnlock(vp, old_lock); 437 return error; 438 } 439 440 /* 441 * Vnode op for read using bio 442 */ 443 int 444 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 445 { 446 struct nfsnode *np = VTONFS(vp); 447 int biosize, i; 448 struct buf *bp, *rabp; 449 struct thread *td; 450 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 451 daddr_t lbn, rabn; 452 int bcount; 453 int seqcount; 454 int nra, error = 0, n = 0, on = 0; 455 456 #ifdef DIAGNOSTIC 457 if (uio->uio_rw != UIO_READ) 458 panic("ncl_read mode"); 459 #endif 460 if (uio->uio_resid == 0) 461 return (0); 462 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 463 return (EINVAL); 464 td = uio->uio_td; 465 466 mtx_lock(&nmp->nm_mtx); 467 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 468 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 469 mtx_unlock(&nmp->nm_mtx); 470 (void)ncl_fsinfo(nmp, vp, cred, td); 471 mtx_lock(&nmp->nm_mtx); 472 } 473 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 474 (void) newnfs_iosize(nmp); 475 mtx_unlock(&nmp->nm_mtx); 476 477 if (vp->v_type != VDIR && 478 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 479 return (EFBIG); 480 481 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 482 /* No caching/ no readaheads. Just read data into the user buffer */ 483 return ncl_readrpc(vp, uio, cred); 484 485 biosize = vp->v_mount->mnt_stat.f_iosize; 486 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 487 488 error = nfs_bioread_check_cons(vp, td, cred); 489 if (error) 490 return error; 491 492 do { 493 u_quad_t nsize; 494 495 mtx_lock(&np->n_mtx); 496 nsize = np->n_size; 497 mtx_unlock(&np->n_mtx); 498 499 switch (vp->v_type) { 500 case VREG: 501 NFSINCRGLOBAL(newnfsstats.biocache_reads); 502 lbn = uio->uio_offset / biosize; 503 on = uio->uio_offset & (biosize - 1); 504 505 /* 506 * Start the read ahead(s), as required. 507 */ 508 if (nmp->nm_readahead > 0) { 509 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 510 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 511 rabn = lbn + 1 + nra; 512 if (incore(&vp->v_bufobj, rabn) == NULL) { 513 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 514 if (!rabp) { 515 error = newnfs_sigintr(nmp, td); 516 if (error) 517 return (error); 518 else 519 break; 520 } 521 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 522 rabp->b_flags |= B_ASYNC; 523 rabp->b_iocmd = BIO_READ; 524 vfs_busy_pages(rabp, 0); 525 if (ncl_asyncio(nmp, rabp, cred, td)) { 526 rabp->b_flags |= B_INVAL; 527 rabp->b_ioflags |= BIO_ERROR; 528 vfs_unbusy_pages(rabp); 529 brelse(rabp); 530 break; 531 } 532 } else { 533 brelse(rabp); 534 } 535 } 536 } 537 } 538 539 /* Note that bcount is *not* DEV_BSIZE aligned. */ 540 bcount = biosize; 541 if ((off_t)lbn * biosize >= nsize) { 542 bcount = 0; 543 } else if ((off_t)(lbn + 1) * biosize > nsize) { 544 bcount = nsize - (off_t)lbn * biosize; 545 } 546 bp = nfs_getcacheblk(vp, lbn, bcount, td); 547 548 if (!bp) { 549 error = newnfs_sigintr(nmp, td); 550 return (error ? error : EINTR); 551 } 552 553 /* 554 * If B_CACHE is not set, we must issue the read. If this 555 * fails, we return an error. 556 */ 557 558 if ((bp->b_flags & B_CACHE) == 0) { 559 bp->b_iocmd = BIO_READ; 560 vfs_busy_pages(bp, 0); 561 error = ncl_doio(vp, bp, cred, td, 0); 562 if (error) { 563 brelse(bp); 564 return (error); 565 } 566 } 567 568 /* 569 * on is the offset into the current bp. Figure out how many 570 * bytes we can copy out of the bp. Note that bcount is 571 * NOT DEV_BSIZE aligned. 572 * 573 * Then figure out how many bytes we can copy into the uio. 574 */ 575 576 n = 0; 577 if (on < bcount) 578 n = min((unsigned)(bcount - on), uio->uio_resid); 579 break; 580 case VLNK: 581 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 582 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 583 if (!bp) { 584 error = newnfs_sigintr(nmp, td); 585 return (error ? error : EINTR); 586 } 587 if ((bp->b_flags & B_CACHE) == 0) { 588 bp->b_iocmd = BIO_READ; 589 vfs_busy_pages(bp, 0); 590 error = ncl_doio(vp, bp, cred, td, 0); 591 if (error) { 592 bp->b_ioflags |= BIO_ERROR; 593 brelse(bp); 594 return (error); 595 } 596 } 597 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 598 on = 0; 599 break; 600 case VDIR: 601 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 602 if (np->n_direofoffset 603 && uio->uio_offset >= np->n_direofoffset) { 604 return (0); 605 } 606 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 607 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 608 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 609 if (!bp) { 610 error = newnfs_sigintr(nmp, td); 611 return (error ? error : EINTR); 612 } 613 if ((bp->b_flags & B_CACHE) == 0) { 614 bp->b_iocmd = BIO_READ; 615 vfs_busy_pages(bp, 0); 616 error = ncl_doio(vp, bp, cred, td, 0); 617 if (error) { 618 brelse(bp); 619 } 620 while (error == NFSERR_BAD_COOKIE) { 621 ncl_invaldir(vp); 622 error = ncl_vinvalbuf(vp, 0, td, 1); 623 /* 624 * Yuck! The directory has been modified on the 625 * server. The only way to get the block is by 626 * reading from the beginning to get all the 627 * offset cookies. 628 * 629 * Leave the last bp intact unless there is an error. 630 * Loop back up to the while if the error is another 631 * NFSERR_BAD_COOKIE (double yuch!). 632 */ 633 for (i = 0; i <= lbn && !error; i++) { 634 if (np->n_direofoffset 635 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 636 return (0); 637 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 638 if (!bp) { 639 error = newnfs_sigintr(nmp, td); 640 return (error ? error : EINTR); 641 } 642 if ((bp->b_flags & B_CACHE) == 0) { 643 bp->b_iocmd = BIO_READ; 644 vfs_busy_pages(bp, 0); 645 error = ncl_doio(vp, bp, cred, td, 0); 646 /* 647 * no error + B_INVAL == directory EOF, 648 * use the block. 649 */ 650 if (error == 0 && (bp->b_flags & B_INVAL)) 651 break; 652 } 653 /* 654 * An error will throw away the block and the 655 * for loop will break out. If no error and this 656 * is not the block we want, we throw away the 657 * block and go for the next one via the for loop. 658 */ 659 if (error || i < lbn) 660 brelse(bp); 661 } 662 } 663 /* 664 * The above while is repeated if we hit another cookie 665 * error. If we hit an error and it wasn't a cookie error, 666 * we give up. 667 */ 668 if (error) 669 return (error); 670 } 671 672 /* 673 * If not eof and read aheads are enabled, start one. 674 * (You need the current block first, so that you have the 675 * directory offset cookie of the next block.) 676 */ 677 if (nmp->nm_readahead > 0 && 678 (bp->b_flags & B_INVAL) == 0 && 679 (np->n_direofoffset == 0 || 680 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 681 incore(&vp->v_bufobj, lbn + 1) == NULL) { 682 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 683 if (rabp) { 684 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 685 rabp->b_flags |= B_ASYNC; 686 rabp->b_iocmd = BIO_READ; 687 vfs_busy_pages(rabp, 0); 688 if (ncl_asyncio(nmp, rabp, cred, td)) { 689 rabp->b_flags |= B_INVAL; 690 rabp->b_ioflags |= BIO_ERROR; 691 vfs_unbusy_pages(rabp); 692 brelse(rabp); 693 } 694 } else { 695 brelse(rabp); 696 } 697 } 698 } 699 /* 700 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 701 * chopped for the EOF condition, we cannot tell how large 702 * NFS directories are going to be until we hit EOF. So 703 * an NFS directory buffer is *not* chopped to its EOF. Now, 704 * it just so happens that b_resid will effectively chop it 705 * to EOF. *BUT* this information is lost if the buffer goes 706 * away and is reconstituted into a B_CACHE state ( due to 707 * being VMIO ) later. So we keep track of the directory eof 708 * in np->n_direofoffset and chop it off as an extra step 709 * right here. 710 */ 711 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 712 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 713 n = np->n_direofoffset - uio->uio_offset; 714 break; 715 default: 716 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 717 bp = NULL; 718 break; 719 }; 720 721 if (n > 0) { 722 error = uiomove(bp->b_data + on, (int)n, uio); 723 } 724 if (vp->v_type == VLNK) 725 n = 0; 726 if (bp != NULL) 727 brelse(bp); 728 } while (error == 0 && uio->uio_resid > 0 && n > 0); 729 return (error); 730 } 731 732 /* 733 * The NFS write path cannot handle iovecs with len > 1. So we need to 734 * break up iovecs accordingly (restricting them to wsize). 735 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 736 * For the ASYNC case, 2 copies are needed. The first a copy from the 737 * user buffer to a staging buffer and then a second copy from the staging 738 * buffer to mbufs. This can be optimized by copying from the user buffer 739 * directly into mbufs and passing the chain down, but that requires a 740 * fair amount of re-working of the relevant codepaths (and can be done 741 * later). 742 */ 743 static int 744 nfs_directio_write(vp, uiop, cred, ioflag) 745 struct vnode *vp; 746 struct uio *uiop; 747 struct ucred *cred; 748 int ioflag; 749 { 750 int error; 751 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 752 struct thread *td = uiop->uio_td; 753 int size; 754 int wsize; 755 756 mtx_lock(&nmp->nm_mtx); 757 wsize = nmp->nm_wsize; 758 mtx_unlock(&nmp->nm_mtx); 759 if (ioflag & IO_SYNC) { 760 int iomode, must_commit; 761 struct uio uio; 762 struct iovec iov; 763 do_sync: 764 while (uiop->uio_resid > 0) { 765 size = min(uiop->uio_resid, wsize); 766 size = min(uiop->uio_iov->iov_len, size); 767 iov.iov_base = uiop->uio_iov->iov_base; 768 iov.iov_len = size; 769 uio.uio_iov = &iov; 770 uio.uio_iovcnt = 1; 771 uio.uio_offset = uiop->uio_offset; 772 uio.uio_resid = size; 773 uio.uio_segflg = UIO_USERSPACE; 774 uio.uio_rw = UIO_WRITE; 775 uio.uio_td = td; 776 iomode = NFSWRITE_FILESYNC; 777 error = ncl_writerpc(vp, &uio, cred, &iomode, 778 &must_commit, 0); 779 KASSERT((must_commit == 0), 780 ("ncl_directio_write: Did not commit write")); 781 if (error) 782 return (error); 783 uiop->uio_offset += size; 784 uiop->uio_resid -= size; 785 if (uiop->uio_iov->iov_len <= size) { 786 uiop->uio_iovcnt--; 787 uiop->uio_iov++; 788 } else { 789 uiop->uio_iov->iov_base = 790 (char *)uiop->uio_iov->iov_base + size; 791 uiop->uio_iov->iov_len -= size; 792 } 793 } 794 } else { 795 struct uio *t_uio; 796 struct iovec *t_iov; 797 struct buf *bp; 798 799 /* 800 * Break up the write into blocksize chunks and hand these 801 * over to nfsiod's for write back. 802 * Unfortunately, this incurs a copy of the data. Since 803 * the user could modify the buffer before the write is 804 * initiated. 805 * 806 * The obvious optimization here is that one of the 2 copies 807 * in the async write path can be eliminated by copying the 808 * data here directly into mbufs and passing the mbuf chain 809 * down. But that will require a fair amount of re-working 810 * of the code and can be done if there's enough interest 811 * in NFS directio access. 812 */ 813 while (uiop->uio_resid > 0) { 814 size = min(uiop->uio_resid, wsize); 815 size = min(uiop->uio_iov->iov_len, size); 816 bp = getpbuf(&ncl_pbuf_freecnt); 817 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 818 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 819 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 820 t_iov->iov_len = size; 821 t_uio->uio_iov = t_iov; 822 t_uio->uio_iovcnt = 1; 823 t_uio->uio_offset = uiop->uio_offset; 824 t_uio->uio_resid = size; 825 t_uio->uio_segflg = UIO_SYSSPACE; 826 t_uio->uio_rw = UIO_WRITE; 827 t_uio->uio_td = td; 828 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size); 829 bp->b_flags |= B_DIRECT; 830 bp->b_iocmd = BIO_WRITE; 831 if (cred != NOCRED) { 832 crhold(cred); 833 bp->b_wcred = cred; 834 } else 835 bp->b_wcred = NOCRED; 836 bp->b_caller1 = (void *)t_uio; 837 bp->b_vp = vp; 838 error = ncl_asyncio(nmp, bp, NOCRED, td); 839 if (error) { 840 free(t_iov->iov_base, M_NFSDIRECTIO); 841 free(t_iov, M_NFSDIRECTIO); 842 free(t_uio, M_NFSDIRECTIO); 843 bp->b_vp = NULL; 844 relpbuf(bp, &ncl_pbuf_freecnt); 845 if (error == EINTR) 846 return (error); 847 goto do_sync; 848 } 849 uiop->uio_offset += size; 850 uiop->uio_resid -= size; 851 if (uiop->uio_iov->iov_len <= size) { 852 uiop->uio_iovcnt--; 853 uiop->uio_iov++; 854 } else { 855 uiop->uio_iov->iov_base = 856 (char *)uiop->uio_iov->iov_base + size; 857 uiop->uio_iov->iov_len -= size; 858 } 859 } 860 } 861 return (0); 862 } 863 864 /* 865 * Vnode op for write using bio 866 */ 867 int 868 ncl_write(struct vop_write_args *ap) 869 { 870 int biosize; 871 struct uio *uio = ap->a_uio; 872 struct thread *td = uio->uio_td; 873 struct vnode *vp = ap->a_vp; 874 struct nfsnode *np = VTONFS(vp); 875 struct ucred *cred = ap->a_cred; 876 int ioflag = ap->a_ioflag; 877 struct buf *bp; 878 struct vattr vattr; 879 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 880 daddr_t lbn; 881 int bcount; 882 int n, on, error = 0; 883 884 #ifdef DIAGNOSTIC 885 if (uio->uio_rw != UIO_WRITE) 886 panic("ncl_write mode"); 887 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 888 panic("ncl_write proc"); 889 #endif 890 if (vp->v_type != VREG) 891 return (EIO); 892 mtx_lock(&np->n_mtx); 893 if (np->n_flag & NWRITEERR) { 894 np->n_flag &= ~NWRITEERR; 895 mtx_unlock(&np->n_mtx); 896 return (np->n_error); 897 } else 898 mtx_unlock(&np->n_mtx); 899 mtx_lock(&nmp->nm_mtx); 900 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 901 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 902 mtx_unlock(&nmp->nm_mtx); 903 (void)ncl_fsinfo(nmp, vp, cred, td); 904 mtx_lock(&nmp->nm_mtx); 905 } 906 if (nmp->nm_wsize == 0) 907 (void) newnfs_iosize(nmp); 908 mtx_unlock(&nmp->nm_mtx); 909 910 /* 911 * Synchronously flush pending buffers if we are in synchronous 912 * mode or if we are appending. 913 */ 914 if (ioflag & (IO_APPEND | IO_SYNC)) { 915 mtx_lock(&np->n_mtx); 916 if (np->n_flag & NMODIFIED) { 917 mtx_unlock(&np->n_mtx); 918 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 919 /* 920 * Require non-blocking, synchronous writes to 921 * dirty files to inform the program it needs 922 * to fsync(2) explicitly. 923 */ 924 if (ioflag & IO_NDELAY) 925 return (EAGAIN); 926 #endif 927 flush_and_restart: 928 np->n_attrstamp = 0; 929 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 930 if (error) 931 return (error); 932 } else 933 mtx_unlock(&np->n_mtx); 934 } 935 936 /* 937 * If IO_APPEND then load uio_offset. We restart here if we cannot 938 * get the append lock. 939 */ 940 if (ioflag & IO_APPEND) { 941 np->n_attrstamp = 0; 942 error = VOP_GETATTR(vp, &vattr, cred); 943 if (error) 944 return (error); 945 mtx_lock(&np->n_mtx); 946 uio->uio_offset = np->n_size; 947 mtx_unlock(&np->n_mtx); 948 } 949 950 if (uio->uio_offset < 0) 951 return (EINVAL); 952 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 953 return (EFBIG); 954 if (uio->uio_resid == 0) 955 return (0); 956 957 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 958 return nfs_directio_write(vp, uio, cred, ioflag); 959 960 /* 961 * Maybe this should be above the vnode op call, but so long as 962 * file servers have no limits, i don't think it matters 963 */ 964 if (vn_rlimit_fsize(vp, uio, td)) 965 return (EFBIG); 966 967 biosize = vp->v_mount->mnt_stat.f_iosize; 968 /* 969 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 970 * would exceed the local maximum per-file write commit size when 971 * combined with those, we must decide whether to flush, 972 * go synchronous, or return error. We don't bother checking 973 * IO_UNIT -- we just make all writes atomic anyway, as there's 974 * no point optimizing for something that really won't ever happen. 975 */ 976 if (!(ioflag & IO_SYNC)) { 977 int nflag; 978 979 mtx_lock(&np->n_mtx); 980 nflag = np->n_flag; 981 mtx_unlock(&np->n_mtx); 982 int needrestart = 0; 983 if (nmp->nm_wcommitsize < uio->uio_resid) { 984 /* 985 * If this request could not possibly be completed 986 * without exceeding the maximum outstanding write 987 * commit size, see if we can convert it into a 988 * synchronous write operation. 989 */ 990 if (ioflag & IO_NDELAY) 991 return (EAGAIN); 992 ioflag |= IO_SYNC; 993 if (nflag & NMODIFIED) 994 needrestart = 1; 995 } else if (nflag & NMODIFIED) { 996 int wouldcommit = 0; 997 BO_LOCK(&vp->v_bufobj); 998 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 999 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1000 b_bobufs) { 1001 if (bp->b_flags & B_NEEDCOMMIT) 1002 wouldcommit += bp->b_bcount; 1003 } 1004 } 1005 BO_UNLOCK(&vp->v_bufobj); 1006 /* 1007 * Since we're not operating synchronously and 1008 * bypassing the buffer cache, we are in a commit 1009 * and holding all of these buffers whether 1010 * transmitted or not. If not limited, this 1011 * will lead to the buffer cache deadlocking, 1012 * as no one else can flush our uncommitted buffers. 1013 */ 1014 wouldcommit += uio->uio_resid; 1015 /* 1016 * If we would initially exceed the maximum 1017 * outstanding write commit size, flush and restart. 1018 */ 1019 if (wouldcommit > nmp->nm_wcommitsize) 1020 needrestart = 1; 1021 } 1022 if (needrestart) 1023 goto flush_and_restart; 1024 } 1025 1026 do { 1027 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1028 lbn = uio->uio_offset / biosize; 1029 on = uio->uio_offset & (biosize-1); 1030 n = min((unsigned)(biosize - on), uio->uio_resid); 1031 again: 1032 /* 1033 * Handle direct append and file extension cases, calculate 1034 * unaligned buffer size. 1035 */ 1036 mtx_lock(&np->n_mtx); 1037 if (uio->uio_offset == np->n_size && n) { 1038 mtx_unlock(&np->n_mtx); 1039 /* 1040 * Get the buffer (in its pre-append state to maintain 1041 * B_CACHE if it was previously set). Resize the 1042 * nfsnode after we have locked the buffer to prevent 1043 * readers from reading garbage. 1044 */ 1045 bcount = on; 1046 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1047 1048 if (bp != NULL) { 1049 long save; 1050 1051 mtx_lock(&np->n_mtx); 1052 np->n_size = uio->uio_offset + n; 1053 np->n_flag |= NMODIFIED; 1054 vnode_pager_setsize(vp, np->n_size); 1055 mtx_unlock(&np->n_mtx); 1056 1057 save = bp->b_flags & B_CACHE; 1058 bcount += n; 1059 allocbuf(bp, bcount); 1060 bp->b_flags |= save; 1061 } 1062 } else { 1063 /* 1064 * Obtain the locked cache block first, and then 1065 * adjust the file's size as appropriate. 1066 */ 1067 bcount = on + n; 1068 if ((off_t)lbn * biosize + bcount < np->n_size) { 1069 if ((off_t)(lbn + 1) * biosize < np->n_size) 1070 bcount = biosize; 1071 else 1072 bcount = np->n_size - (off_t)lbn * biosize; 1073 } 1074 mtx_unlock(&np->n_mtx); 1075 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1076 mtx_lock(&np->n_mtx); 1077 if (uio->uio_offset + n > np->n_size) { 1078 np->n_size = uio->uio_offset + n; 1079 np->n_flag |= NMODIFIED; 1080 vnode_pager_setsize(vp, np->n_size); 1081 } 1082 mtx_unlock(&np->n_mtx); 1083 } 1084 1085 if (!bp) { 1086 error = newnfs_sigintr(nmp, td); 1087 if (!error) 1088 error = EINTR; 1089 break; 1090 } 1091 1092 /* 1093 * Issue a READ if B_CACHE is not set. In special-append 1094 * mode, B_CACHE is based on the buffer prior to the write 1095 * op and is typically set, avoiding the read. If a read 1096 * is required in special append mode, the server will 1097 * probably send us a short-read since we extended the file 1098 * on our end, resulting in b_resid == 0 and, thusly, 1099 * B_CACHE getting set. 1100 * 1101 * We can also avoid issuing the read if the write covers 1102 * the entire buffer. We have to make sure the buffer state 1103 * is reasonable in this case since we will not be initiating 1104 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1105 * more information. 1106 * 1107 * B_CACHE may also be set due to the buffer being cached 1108 * normally. 1109 */ 1110 1111 if (on == 0 && n == bcount) { 1112 bp->b_flags |= B_CACHE; 1113 bp->b_flags &= ~B_INVAL; 1114 bp->b_ioflags &= ~BIO_ERROR; 1115 } 1116 1117 if ((bp->b_flags & B_CACHE) == 0) { 1118 bp->b_iocmd = BIO_READ; 1119 vfs_busy_pages(bp, 0); 1120 error = ncl_doio(vp, bp, cred, td, 0); 1121 if (error) { 1122 brelse(bp); 1123 break; 1124 } 1125 } 1126 if (bp->b_wcred == NOCRED) 1127 bp->b_wcred = crhold(cred); 1128 mtx_lock(&np->n_mtx); 1129 np->n_flag |= NMODIFIED; 1130 mtx_unlock(&np->n_mtx); 1131 1132 /* 1133 * If dirtyend exceeds file size, chop it down. This should 1134 * not normally occur but there is an append race where it 1135 * might occur XXX, so we log it. 1136 * 1137 * If the chopping creates a reverse-indexed or degenerate 1138 * situation with dirtyoff/end, we 0 both of them. 1139 */ 1140 1141 if (bp->b_dirtyend > bcount) { 1142 ncl_printf("NFS append race @%lx:%d\n", 1143 (long)bp->b_blkno * DEV_BSIZE, 1144 bp->b_dirtyend - bcount); 1145 bp->b_dirtyend = bcount; 1146 } 1147 1148 if (bp->b_dirtyoff >= bp->b_dirtyend) 1149 bp->b_dirtyoff = bp->b_dirtyend = 0; 1150 1151 /* 1152 * If the new write will leave a contiguous dirty 1153 * area, just update the b_dirtyoff and b_dirtyend, 1154 * otherwise force a write rpc of the old dirty area. 1155 * 1156 * While it is possible to merge discontiguous writes due to 1157 * our having a B_CACHE buffer ( and thus valid read data 1158 * for the hole), we don't because it could lead to 1159 * significant cache coherency problems with multiple clients, 1160 * especially if locking is implemented later on. 1161 * 1162 * as an optimization we could theoretically maintain 1163 * a linked list of discontinuous areas, but we would still 1164 * have to commit them separately so there isn't much 1165 * advantage to it except perhaps a bit of asynchronization. 1166 */ 1167 1168 if (bp->b_dirtyend > 0 && 1169 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1170 if (bwrite(bp) == EINTR) { 1171 error = EINTR; 1172 break; 1173 } 1174 goto again; 1175 } 1176 1177 error = uiomove((char *)bp->b_data + on, n, uio); 1178 1179 /* 1180 * Since this block is being modified, it must be written 1181 * again and not just committed. Since write clustering does 1182 * not work for the stage 1 data write, only the stage 2 1183 * commit rpc, we have to clear B_CLUSTEROK as well. 1184 */ 1185 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1186 1187 if (error) { 1188 bp->b_ioflags |= BIO_ERROR; 1189 brelse(bp); 1190 break; 1191 } 1192 1193 /* 1194 * Only update dirtyoff/dirtyend if not a degenerate 1195 * condition. 1196 */ 1197 if (n) { 1198 if (bp->b_dirtyend > 0) { 1199 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1200 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1201 } else { 1202 bp->b_dirtyoff = on; 1203 bp->b_dirtyend = on + n; 1204 } 1205 vfs_bio_set_valid(bp, on, n); 1206 } 1207 1208 /* 1209 * If IO_SYNC do bwrite(). 1210 * 1211 * IO_INVAL appears to be unused. The idea appears to be 1212 * to turn off caching in this case. Very odd. XXX 1213 */ 1214 if ((ioflag & IO_SYNC)) { 1215 if (ioflag & IO_INVAL) 1216 bp->b_flags |= B_NOCACHE; 1217 error = bwrite(bp); 1218 if (error) 1219 break; 1220 } else if ((n + on) == biosize) { 1221 bp->b_flags |= B_ASYNC; 1222 (void) ncl_writebp(bp, 0, NULL); 1223 } else { 1224 bdwrite(bp); 1225 } 1226 } while (uio->uio_resid > 0 && n > 0); 1227 1228 return (error); 1229 } 1230 1231 /* 1232 * Get an nfs cache block. 1233 * 1234 * Allocate a new one if the block isn't currently in the cache 1235 * and return the block marked busy. If the calling process is 1236 * interrupted by a signal for an interruptible mount point, return 1237 * NULL. 1238 * 1239 * The caller must carefully deal with the possible B_INVAL state of 1240 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1241 * indirectly), so synchronous reads can be issued without worrying about 1242 * the B_INVAL state. We have to be a little more careful when dealing 1243 * with writes (see comments in nfs_write()) when extending a file past 1244 * its EOF. 1245 */ 1246 static struct buf * 1247 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1248 { 1249 struct buf *bp; 1250 struct mount *mp; 1251 struct nfsmount *nmp; 1252 1253 mp = vp->v_mount; 1254 nmp = VFSTONFS(mp); 1255 1256 if (nmp->nm_flag & NFSMNT_INT) { 1257 sigset_t oldset; 1258 1259 newnfs_set_sigmask(td, &oldset); 1260 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0); 1261 newnfs_restore_sigmask(td, &oldset); 1262 while (bp == NULL) { 1263 if (newnfs_sigintr(nmp, td)) 1264 return (NULL); 1265 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1266 } 1267 } else { 1268 bp = getblk(vp, bn, size, 0, 0, 0); 1269 } 1270 1271 if (vp->v_type == VREG) { 1272 int biosize; 1273 1274 biosize = mp->mnt_stat.f_iosize; 1275 bp->b_blkno = bn * (biosize / DEV_BSIZE); 1276 } 1277 return (bp); 1278 } 1279 1280 /* 1281 * Flush and invalidate all dirty buffers. If another process is already 1282 * doing the flush, just wait for completion. 1283 */ 1284 int 1285 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1286 { 1287 struct nfsnode *np = VTONFS(vp); 1288 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1289 int error = 0, slpflag, slptimeo; 1290 int old_lock = 0; 1291 1292 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1293 1294 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1295 intrflg = 0; 1296 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1297 intrflg = 1; 1298 if (intrflg) { 1299 slpflag = NFS_PCATCH; 1300 slptimeo = 2 * hz; 1301 } else { 1302 slpflag = 0; 1303 slptimeo = 0; 1304 } 1305 1306 old_lock = ncl_upgrade_vnlock(vp); 1307 if (vp->v_iflag & VI_DOOMED) { 1308 /* 1309 * Since vgonel() uses the generic vinvalbuf() to flush 1310 * dirty buffers and it does not call this function, it 1311 * is safe to just return OK when VI_DOOMED is set. 1312 */ 1313 ncl_downgrade_vnlock(vp, old_lock); 1314 return (0); 1315 } 1316 1317 /* 1318 * Now, flush as required. 1319 */ 1320 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1321 VM_OBJECT_LOCK(vp->v_bufobj.bo_object); 1322 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1323 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object); 1324 /* 1325 * If the page clean was interrupted, fail the invalidation. 1326 * Not doing so, we run the risk of losing dirty pages in the 1327 * vinvalbuf() call below. 1328 */ 1329 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1330 goto out; 1331 } 1332 1333 error = vinvalbuf(vp, flags, slpflag, 0); 1334 while (error) { 1335 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1336 goto out; 1337 error = vinvalbuf(vp, flags, 0, slptimeo); 1338 } 1339 mtx_lock(&np->n_mtx); 1340 if (np->n_directio_asyncwr == 0) 1341 np->n_flag &= ~NMODIFIED; 1342 mtx_unlock(&np->n_mtx); 1343 out: 1344 ncl_downgrade_vnlock(vp, old_lock); 1345 return error; 1346 } 1347 1348 /* 1349 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1350 * This is mainly to avoid queueing async I/O requests when the nfsiods 1351 * are all hung on a dead server. 1352 * 1353 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1354 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1355 */ 1356 int 1357 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1358 { 1359 int iod; 1360 int gotiod; 1361 int slpflag = 0; 1362 int slptimeo = 0; 1363 int error, error2; 1364 1365 /* 1366 * Unless iothreadcnt is set > 0, don't bother with async I/O 1367 * threads. For LAN environments, they don't buy any significant 1368 * performance improvement that you can't get with large block 1369 * sizes. 1370 */ 1371 if (nmp->nm_readahead == 0) 1372 return (EPERM); 1373 1374 /* 1375 * Commits are usually short and sweet so lets save some cpu and 1376 * leave the async daemons for more important rpc's (such as reads 1377 * and writes). 1378 */ 1379 mtx_lock(&ncl_iod_mutex); 1380 if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1381 (nmp->nm_bufqiods > ncl_numasync / 2)) { 1382 mtx_unlock(&ncl_iod_mutex); 1383 return(EIO); 1384 } 1385 again: 1386 if (nmp->nm_flag & NFSMNT_INT) 1387 slpflag = NFS_PCATCH; 1388 gotiod = FALSE; 1389 1390 /* 1391 * Find a free iod to process this request. 1392 */ 1393 for (iod = 0; iod < ncl_numasync; iod++) 1394 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1395 gotiod = TRUE; 1396 break; 1397 } 1398 1399 /* 1400 * Try to create one if none are free. 1401 */ 1402 if (!gotiod) { 1403 iod = ncl_nfsiodnew(1); 1404 if (iod != -1) 1405 gotiod = TRUE; 1406 } 1407 1408 if (gotiod) { 1409 /* 1410 * Found one, so wake it up and tell it which 1411 * mount to process. 1412 */ 1413 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1414 iod, nmp)); 1415 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1416 ncl_iodmount[iod] = nmp; 1417 nmp->nm_bufqiods++; 1418 wakeup(&ncl_iodwant[iod]); 1419 } 1420 1421 /* 1422 * If none are free, we may already have an iod working on this mount 1423 * point. If so, it will process our request. 1424 */ 1425 if (!gotiod) { 1426 if (nmp->nm_bufqiods > 0) { 1427 NFS_DPF(ASYNCIO, 1428 ("ncl_asyncio: %d iods are already processing mount %p\n", 1429 nmp->nm_bufqiods, nmp)); 1430 gotiod = TRUE; 1431 } 1432 } 1433 1434 /* 1435 * If we have an iod which can process the request, then queue 1436 * the buffer. 1437 */ 1438 if (gotiod) { 1439 /* 1440 * Ensure that the queue never grows too large. We still want 1441 * to asynchronize so we block rather then return EIO. 1442 */ 1443 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1444 NFS_DPF(ASYNCIO, 1445 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1446 nmp->nm_bufqwant = TRUE; 1447 error = newnfs_msleep(td, &nmp->nm_bufq, 1448 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1449 slptimeo); 1450 if (error) { 1451 error2 = newnfs_sigintr(nmp, td); 1452 if (error2) { 1453 mtx_unlock(&ncl_iod_mutex); 1454 return (error2); 1455 } 1456 if (slpflag == NFS_PCATCH) { 1457 slpflag = 0; 1458 slptimeo = 2 * hz; 1459 } 1460 } 1461 /* 1462 * We might have lost our iod while sleeping, 1463 * so check and loop if nescessary. 1464 */ 1465 if (nmp->nm_bufqiods == 0) { 1466 NFS_DPF(ASYNCIO, 1467 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1468 goto again; 1469 } 1470 } 1471 1472 /* We might have lost our nfsiod */ 1473 if (nmp->nm_bufqiods == 0) { 1474 NFS_DPF(ASYNCIO, 1475 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1476 goto again; 1477 } 1478 1479 if (bp->b_iocmd == BIO_READ) { 1480 if (bp->b_rcred == NOCRED && cred != NOCRED) 1481 bp->b_rcred = crhold(cred); 1482 } else { 1483 if (bp->b_wcred == NOCRED && cred != NOCRED) 1484 bp->b_wcred = crhold(cred); 1485 } 1486 1487 if (bp->b_flags & B_REMFREE) 1488 bremfreef(bp); 1489 BUF_KERNPROC(bp); 1490 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1491 nmp->nm_bufqlen++; 1492 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1493 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1494 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1495 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1496 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1497 } 1498 mtx_unlock(&ncl_iod_mutex); 1499 return (0); 1500 } 1501 1502 mtx_unlock(&ncl_iod_mutex); 1503 1504 /* 1505 * All the iods are busy on other mounts, so return EIO to 1506 * force the caller to process the i/o synchronously. 1507 */ 1508 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1509 return (EIO); 1510 } 1511 1512 void 1513 ncl_doio_directwrite(struct buf *bp) 1514 { 1515 int iomode, must_commit; 1516 struct uio *uiop = (struct uio *)bp->b_caller1; 1517 char *iov_base = uiop->uio_iov->iov_base; 1518 1519 iomode = NFSWRITE_FILESYNC; 1520 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1521 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1522 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1523 free(iov_base, M_NFSDIRECTIO); 1524 free(uiop->uio_iov, M_NFSDIRECTIO); 1525 free(uiop, M_NFSDIRECTIO); 1526 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1527 struct nfsnode *np = VTONFS(bp->b_vp); 1528 mtx_lock(&np->n_mtx); 1529 np->n_directio_asyncwr--; 1530 if (np->n_directio_asyncwr == 0) { 1531 np->n_flag &= ~NMODIFIED; 1532 if ((np->n_flag & NFSYNCWAIT)) { 1533 np->n_flag &= ~NFSYNCWAIT; 1534 wakeup((caddr_t)&np->n_directio_asyncwr); 1535 } 1536 } 1537 mtx_unlock(&np->n_mtx); 1538 } 1539 bp->b_vp = NULL; 1540 relpbuf(bp, &ncl_pbuf_freecnt); 1541 } 1542 1543 /* 1544 * Do an I/O operation to/from a cache block. This may be called 1545 * synchronously or from an nfsiod. 1546 */ 1547 int 1548 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1549 int called_from_strategy) 1550 { 1551 struct uio *uiop; 1552 struct nfsnode *np; 1553 struct nfsmount *nmp; 1554 int error = 0, iomode, must_commit = 0; 1555 struct uio uio; 1556 struct iovec io; 1557 struct proc *p = td ? td->td_proc : NULL; 1558 uint8_t iocmd; 1559 1560 np = VTONFS(vp); 1561 nmp = VFSTONFS(vp->v_mount); 1562 uiop = &uio; 1563 uiop->uio_iov = &io; 1564 uiop->uio_iovcnt = 1; 1565 uiop->uio_segflg = UIO_SYSSPACE; 1566 uiop->uio_td = td; 1567 1568 /* 1569 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1570 * do this here so we do not have to do it in all the code that 1571 * calls us. 1572 */ 1573 bp->b_flags &= ~B_INVAL; 1574 bp->b_ioflags &= ~BIO_ERROR; 1575 1576 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1577 iocmd = bp->b_iocmd; 1578 if (iocmd == BIO_READ) { 1579 io.iov_len = uiop->uio_resid = bp->b_bcount; 1580 io.iov_base = bp->b_data; 1581 uiop->uio_rw = UIO_READ; 1582 1583 switch (vp->v_type) { 1584 case VREG: 1585 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1586 NFSINCRGLOBAL(newnfsstats.read_bios); 1587 error = ncl_readrpc(vp, uiop, cr); 1588 1589 if (!error) { 1590 if (uiop->uio_resid) { 1591 /* 1592 * If we had a short read with no error, we must have 1593 * hit a file hole. We should zero-fill the remainder. 1594 * This can also occur if the server hits the file EOF. 1595 * 1596 * Holes used to be able to occur due to pending 1597 * writes, but that is not possible any longer. 1598 */ 1599 int nread = bp->b_bcount - uiop->uio_resid; 1600 int left = uiop->uio_resid; 1601 1602 if (left > 0) 1603 bzero((char *)bp->b_data + nread, left); 1604 uiop->uio_resid = 0; 1605 } 1606 } 1607 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1608 if (p && (vp->v_vflag & VV_TEXT)) { 1609 mtx_lock(&np->n_mtx); 1610 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1611 mtx_unlock(&np->n_mtx); 1612 PROC_LOCK(p); 1613 killproc(p, "text file modification"); 1614 PROC_UNLOCK(p); 1615 } else 1616 mtx_unlock(&np->n_mtx); 1617 } 1618 break; 1619 case VLNK: 1620 uiop->uio_offset = (off_t)0; 1621 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1622 error = ncl_readlinkrpc(vp, uiop, cr); 1623 break; 1624 case VDIR: 1625 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1626 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1627 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1628 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1629 if (error == NFSERR_NOTSUPP) 1630 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1631 } 1632 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1633 error = ncl_readdirrpc(vp, uiop, cr, td); 1634 /* 1635 * end-of-directory sets B_INVAL but does not generate an 1636 * error. 1637 */ 1638 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1639 bp->b_flags |= B_INVAL; 1640 break; 1641 default: 1642 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1643 break; 1644 }; 1645 if (error) { 1646 bp->b_ioflags |= BIO_ERROR; 1647 bp->b_error = error; 1648 } 1649 } else { 1650 /* 1651 * If we only need to commit, try to commit 1652 */ 1653 if (bp->b_flags & B_NEEDCOMMIT) { 1654 int retv; 1655 off_t off; 1656 1657 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1658 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1659 bp->b_wcred, td); 1660 if (retv == 0) { 1661 bp->b_dirtyoff = bp->b_dirtyend = 0; 1662 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1663 bp->b_resid = 0; 1664 bufdone(bp); 1665 return (0); 1666 } 1667 if (retv == NFSERR_STALEWRITEVERF) { 1668 ncl_clearcommit(vp->v_mount); 1669 } 1670 } 1671 1672 /* 1673 * Setup for actual write 1674 */ 1675 mtx_lock(&np->n_mtx); 1676 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1677 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1678 mtx_unlock(&np->n_mtx); 1679 1680 if (bp->b_dirtyend > bp->b_dirtyoff) { 1681 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1682 - bp->b_dirtyoff; 1683 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1684 + bp->b_dirtyoff; 1685 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1686 uiop->uio_rw = UIO_WRITE; 1687 NFSINCRGLOBAL(newnfsstats.write_bios); 1688 1689 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1690 iomode = NFSWRITE_UNSTABLE; 1691 else 1692 iomode = NFSWRITE_FILESYNC; 1693 1694 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1695 called_from_strategy); 1696 1697 /* 1698 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1699 * to cluster the buffers needing commit. This will allow 1700 * the system to submit a single commit rpc for the whole 1701 * cluster. We can do this even if the buffer is not 100% 1702 * dirty (relative to the NFS blocksize), so we optimize the 1703 * append-to-file-case. 1704 * 1705 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1706 * cleared because write clustering only works for commit 1707 * rpc's, not for the data portion of the write). 1708 */ 1709 1710 if (!error && iomode == NFSWRITE_UNSTABLE) { 1711 bp->b_flags |= B_NEEDCOMMIT; 1712 if (bp->b_dirtyoff == 0 1713 && bp->b_dirtyend == bp->b_bcount) 1714 bp->b_flags |= B_CLUSTEROK; 1715 } else { 1716 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1717 } 1718 1719 /* 1720 * For an interrupted write, the buffer is still valid 1721 * and the write hasn't been pushed to the server yet, 1722 * so we can't set BIO_ERROR and report the interruption 1723 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1724 * is not relevant, so the rpc attempt is essentially 1725 * a noop. For the case of a V3 write rpc not being 1726 * committed to stable storage, the block is still 1727 * dirty and requires either a commit rpc or another 1728 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1729 * the block is reused. This is indicated by setting 1730 * the B_DELWRI and B_NEEDCOMMIT flags. 1731 * 1732 * EIO is returned by ncl_writerpc() to indicate a recoverable 1733 * write error and is handled as above, except that 1734 * B_EINTR isn't set. One cause of this is a stale stateid 1735 * error for the RPC that indicates recovery is required, 1736 * when called with called_from_strategy != 0. 1737 * 1738 * If the buffer is marked B_PAGING, it does not reside on 1739 * the vp's paging queues so we cannot call bdirty(). The 1740 * bp in this case is not an NFS cache block so we should 1741 * be safe. XXX 1742 * 1743 * The logic below breaks up errors into recoverable and 1744 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1745 * and keep the buffer around for potential write retries. 1746 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1747 * and save the error in the nfsnode. This is less than ideal 1748 * but necessary. Keeping such buffers around could potentially 1749 * cause buffer exhaustion eventually (they can never be written 1750 * out, so will get constantly be re-dirtied). It also causes 1751 * all sorts of vfs panics. For non-recoverable write errors, 1752 * also invalidate the attrcache, so we'll be forced to go over 1753 * the wire for this object, returning an error to user on next 1754 * call (most of the time). 1755 */ 1756 if (error == EINTR || error == EIO || error == ETIMEDOUT 1757 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1758 int s; 1759 1760 s = splbio(); 1761 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1762 if ((bp->b_flags & B_PAGING) == 0) { 1763 bdirty(bp); 1764 bp->b_flags &= ~B_DONE; 1765 } 1766 if ((error == EINTR || error == ETIMEDOUT) && 1767 (bp->b_flags & B_ASYNC) == 0) 1768 bp->b_flags |= B_EINTR; 1769 splx(s); 1770 } else { 1771 if (error) { 1772 bp->b_ioflags |= BIO_ERROR; 1773 bp->b_flags |= B_INVAL; 1774 bp->b_error = np->n_error = error; 1775 mtx_lock(&np->n_mtx); 1776 np->n_flag |= NWRITEERR; 1777 np->n_attrstamp = 0; 1778 mtx_unlock(&np->n_mtx); 1779 } 1780 bp->b_dirtyoff = bp->b_dirtyend = 0; 1781 } 1782 } else { 1783 bp->b_resid = 0; 1784 bufdone(bp); 1785 return (0); 1786 } 1787 } 1788 bp->b_resid = uiop->uio_resid; 1789 if (must_commit) 1790 ncl_clearcommit(vp->v_mount); 1791 bufdone(bp); 1792 return (error); 1793 } 1794 1795 /* 1796 * Used to aid in handling ftruncate() operations on the NFS client side. 1797 * Truncation creates a number of special problems for NFS. We have to 1798 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1799 * we have to properly handle VM pages or (potentially dirty) buffers 1800 * that straddle the truncation point. 1801 */ 1802 1803 int 1804 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1805 { 1806 struct nfsnode *np = VTONFS(vp); 1807 u_quad_t tsize; 1808 int biosize = vp->v_mount->mnt_stat.f_iosize; 1809 int error = 0; 1810 1811 mtx_lock(&np->n_mtx); 1812 tsize = np->n_size; 1813 np->n_size = nsize; 1814 mtx_unlock(&np->n_mtx); 1815 1816 if (nsize < tsize) { 1817 struct buf *bp; 1818 daddr_t lbn; 1819 int bufsize; 1820 1821 /* 1822 * vtruncbuf() doesn't get the buffer overlapping the 1823 * truncation point. We may have a B_DELWRI and/or B_CACHE 1824 * buffer that now needs to be truncated. 1825 */ 1826 error = vtruncbuf(vp, cred, td, nsize, biosize); 1827 lbn = nsize / biosize; 1828 bufsize = nsize & (biosize - 1); 1829 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1830 if (!bp) 1831 return EINTR; 1832 if (bp->b_dirtyoff > bp->b_bcount) 1833 bp->b_dirtyoff = bp->b_bcount; 1834 if (bp->b_dirtyend > bp->b_bcount) 1835 bp->b_dirtyend = bp->b_bcount; 1836 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1837 brelse(bp); 1838 } else { 1839 vnode_pager_setsize(vp, nsize); 1840 } 1841 return(error); 1842 } 1843 1844