1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/bio.h> 39 #include <sys/buf.h> 40 #include <sys/kernel.h> 41 #include <sys/mount.h> 42 #include <sys/rwlock.h> 43 #include <sys/vmmeter.h> 44 #include <sys/vnode.h> 45 46 #include <vm/vm.h> 47 #include <vm/vm_param.h> 48 #include <vm/vm_extern.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_pager.h> 52 #include <vm/vnode_pager.h> 53 54 #include <fs/nfs/nfsport.h> 55 #include <fs/nfsclient/nfsmount.h> 56 #include <fs/nfsclient/nfs.h> 57 #include <fs/nfsclient/nfsnode.h> 58 #include <fs/nfsclient/nfs_kdtrace.h> 59 60 extern int newnfs_directio_allow_mmap; 61 extern struct nfsstatsv1 nfsstatsv1; 62 extern struct mtx ncl_iod_mutex; 63 extern int ncl_numasync; 64 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 65 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 66 extern int newnfs_directio_enable; 67 extern int nfs_keep_dirty_on_error; 68 69 uma_zone_t ncl_pbuf_zone; 70 71 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 72 struct thread *td); 73 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 74 struct ucred *cred, int ioflag); 75 76 /* 77 * Vnode op for VM getpages. 78 */ 79 SYSCTL_DECL(_vfs_nfs); 80 static int use_buf_pager = 1; 81 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 82 &use_buf_pager, 0, 83 "Use buffer pager instead of direct readrpc call"); 84 85 static daddr_t 86 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 87 { 88 89 return (off / vp->v_bufobj.bo_bsize); 90 } 91 92 static int 93 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 94 { 95 struct nfsnode *np; 96 u_quad_t nsize; 97 int biosize, bcount; 98 99 np = VTONFS(vp); 100 NFSLOCKNODE(np); 101 nsize = np->n_size; 102 NFSUNLOCKNODE(np); 103 104 biosize = vp->v_bufobj.bo_bsize; 105 bcount = biosize; 106 if ((off_t)lbn * biosize >= nsize) 107 bcount = 0; 108 else if ((off_t)(lbn + 1) * biosize > nsize) 109 bcount = nsize - (off_t)lbn * biosize; 110 *sz = bcount; 111 return (0); 112 } 113 114 int 115 ncl_getpages(struct vop_getpages_args *ap) 116 { 117 int i, error, nextoff, size, toff, count, npages; 118 struct uio uio; 119 struct iovec iov; 120 vm_offset_t kva; 121 struct buf *bp; 122 struct vnode *vp; 123 struct thread *td; 124 struct ucred *cred; 125 struct nfsmount *nmp; 126 vm_object_t object; 127 vm_page_t *pages; 128 struct nfsnode *np; 129 130 vp = ap->a_vp; 131 np = VTONFS(vp); 132 td = curthread; 133 cred = curthread->td_ucred; 134 nmp = VFSTONFS(vp->v_mount); 135 pages = ap->a_m; 136 npages = ap->a_count; 137 138 if ((object = vp->v_object) == NULL) { 139 printf("ncl_getpages: called with non-merged cache vnode\n"); 140 return (VM_PAGER_ERROR); 141 } 142 143 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 144 NFSLOCKNODE(np); 145 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 146 NFSUNLOCKNODE(np); 147 printf("ncl_getpages: called on non-cacheable vnode\n"); 148 return (VM_PAGER_ERROR); 149 } else 150 NFSUNLOCKNODE(np); 151 } 152 153 mtx_lock(&nmp->nm_mtx); 154 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 155 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 156 mtx_unlock(&nmp->nm_mtx); 157 /* We'll never get here for v4, because we always have fsinfo */ 158 (void)ncl_fsinfo(nmp, vp, cred, td); 159 } else 160 mtx_unlock(&nmp->nm_mtx); 161 162 if (use_buf_pager) 163 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 164 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 165 166 /* 167 * If the requested page is partially valid, just return it and 168 * allow the pager to zero-out the blanks. Partially valid pages 169 * can only occur at the file EOF. 170 * 171 * XXXGL: is that true for NFS, where short read can occur??? 172 */ 173 VM_OBJECT_WLOCK(object); 174 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 175 goto out; 176 VM_OBJECT_WUNLOCK(object); 177 178 /* 179 * We use only the kva address for the buffer, but this is extremely 180 * convenient and fast. 181 */ 182 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 183 184 kva = (vm_offset_t) bp->b_data; 185 pmap_qenter(kva, pages, npages); 186 VM_CNT_INC(v_vnodein); 187 VM_CNT_ADD(v_vnodepgsin, npages); 188 189 count = npages << PAGE_SHIFT; 190 iov.iov_base = (caddr_t) kva; 191 iov.iov_len = count; 192 uio.uio_iov = &iov; 193 uio.uio_iovcnt = 1; 194 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 195 uio.uio_resid = count; 196 uio.uio_segflg = UIO_SYSSPACE; 197 uio.uio_rw = UIO_READ; 198 uio.uio_td = td; 199 200 error = ncl_readrpc(vp, &uio, cred); 201 pmap_qremove(kva, npages); 202 203 uma_zfree(ncl_pbuf_zone, bp); 204 205 if (error && (uio.uio_resid == count)) { 206 printf("ncl_getpages: error %d\n", error); 207 return (VM_PAGER_ERROR); 208 } 209 210 /* 211 * Calculate the number of bytes read and validate only that number 212 * of bytes. Note that due to pending writes, size may be 0. This 213 * does not mean that the remaining data is invalid! 214 */ 215 216 size = count - uio.uio_resid; 217 VM_OBJECT_WLOCK(object); 218 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 219 vm_page_t m; 220 nextoff = toff + PAGE_SIZE; 221 m = pages[i]; 222 223 if (nextoff <= size) { 224 /* 225 * Read operation filled an entire page 226 */ 227 vm_page_valid(m); 228 KASSERT(m->dirty == 0, 229 ("nfs_getpages: page %p is dirty", m)); 230 } else if (size > toff) { 231 /* 232 * Read operation filled a partial page. 233 */ 234 vm_page_invalid(m); 235 vm_page_set_valid_range(m, 0, size - toff); 236 KASSERT(m->dirty == 0, 237 ("nfs_getpages: page %p is dirty", m)); 238 } else { 239 /* 240 * Read operation was short. If no error 241 * occurred we may have hit a zero-fill 242 * section. We leave valid set to 0, and page 243 * is freed by vm_page_readahead_finish() if 244 * its index is not equal to requested, or 245 * page is zeroed and set valid by 246 * vm_pager_get_pages() for requested page. 247 */ 248 ; 249 } 250 } 251 out: 252 VM_OBJECT_WUNLOCK(object); 253 if (ap->a_rbehind) 254 *ap->a_rbehind = 0; 255 if (ap->a_rahead) 256 *ap->a_rahead = 0; 257 return (VM_PAGER_OK); 258 } 259 260 /* 261 * Vnode op for VM putpages. 262 */ 263 int 264 ncl_putpages(struct vop_putpages_args *ap) 265 { 266 struct uio uio; 267 struct iovec iov; 268 int i, error, npages, count; 269 off_t offset; 270 int *rtvals; 271 struct vnode *vp; 272 struct thread *td; 273 struct ucred *cred; 274 struct nfsmount *nmp; 275 struct nfsnode *np; 276 vm_page_t *pages; 277 278 vp = ap->a_vp; 279 np = VTONFS(vp); 280 td = curthread; /* XXX */ 281 /* Set the cred to n_writecred for the write rpcs. */ 282 if (np->n_writecred != NULL) 283 cred = crhold(np->n_writecred); 284 else 285 cred = crhold(curthread->td_ucred); /* XXX */ 286 nmp = VFSTONFS(vp->v_mount); 287 pages = ap->a_m; 288 count = ap->a_count; 289 rtvals = ap->a_rtvals; 290 npages = btoc(count); 291 offset = IDX_TO_OFF(pages[0]->pindex); 292 293 mtx_lock(&nmp->nm_mtx); 294 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 295 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 296 mtx_unlock(&nmp->nm_mtx); 297 (void)ncl_fsinfo(nmp, vp, cred, td); 298 } else 299 mtx_unlock(&nmp->nm_mtx); 300 301 NFSLOCKNODE(np); 302 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 303 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 304 NFSUNLOCKNODE(np); 305 printf("ncl_putpages: called on noncache-able vnode\n"); 306 NFSLOCKNODE(np); 307 } 308 /* 309 * When putting pages, do not extend file past EOF. 310 */ 311 if (offset + count > np->n_size) { 312 count = np->n_size - offset; 313 if (count < 0) 314 count = 0; 315 } 316 NFSUNLOCKNODE(np); 317 318 for (i = 0; i < npages; i++) 319 rtvals[i] = VM_PAGER_ERROR; 320 321 VM_CNT_INC(v_vnodeout); 322 VM_CNT_ADD(v_vnodepgsout, count); 323 324 iov.iov_base = unmapped_buf; 325 iov.iov_len = count; 326 uio.uio_iov = &iov; 327 uio.uio_iovcnt = 1; 328 uio.uio_offset = offset; 329 uio.uio_resid = count; 330 uio.uio_segflg = UIO_NOCOPY; 331 uio.uio_rw = UIO_WRITE; 332 uio.uio_td = td; 333 334 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 335 cred); 336 crfree(cred); 337 338 if (error == 0 || !nfs_keep_dirty_on_error) { 339 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 340 np->n_size - offset, npages * PAGE_SIZE); 341 } 342 return (rtvals[0]); 343 } 344 345 /* 346 * For nfs, cache consistency can only be maintained approximately. 347 * Although RFC1094 does not specify the criteria, the following is 348 * believed to be compatible with the reference port. 349 * For nfs: 350 * If the file's modify time on the server has changed since the 351 * last read rpc or you have written to the file, 352 * you may have lost data cache consistency with the 353 * server, so flush all of the file's data out of the cache. 354 * Then force a getattr rpc to ensure that you have up to date 355 * attributes. 356 * NB: This implies that cache data can be read when up to 357 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 358 * attributes this could be forced by setting n_attrstamp to 0 before 359 * the VOP_GETATTR() call. 360 */ 361 static inline int 362 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 363 { 364 int error = 0; 365 struct vattr vattr; 366 struct nfsnode *np = VTONFS(vp); 367 bool old_lock; 368 369 /* 370 * Ensure the exclusove access to the node before checking 371 * whether the cache is consistent. 372 */ 373 old_lock = ncl_excl_start(vp); 374 NFSLOCKNODE(np); 375 if (np->n_flag & NMODIFIED) { 376 NFSUNLOCKNODE(np); 377 if (vp->v_type != VREG) { 378 if (vp->v_type != VDIR) 379 panic("nfs: bioread, not dir"); 380 ncl_invaldir(vp); 381 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 382 if (error != 0) 383 goto out; 384 } 385 np->n_attrstamp = 0; 386 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 387 error = VOP_GETATTR(vp, &vattr, cred); 388 if (error) 389 goto out; 390 NFSLOCKNODE(np); 391 np->n_mtime = vattr.va_mtime; 392 NFSUNLOCKNODE(np); 393 } else { 394 NFSUNLOCKNODE(np); 395 error = VOP_GETATTR(vp, &vattr, cred); 396 if (error) 397 goto out; 398 NFSLOCKNODE(np); 399 if ((np->n_flag & NSIZECHANGED) 400 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 401 NFSUNLOCKNODE(np); 402 if (vp->v_type == VDIR) 403 ncl_invaldir(vp); 404 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 405 if (error != 0) 406 goto out; 407 NFSLOCKNODE(np); 408 np->n_mtime = vattr.va_mtime; 409 np->n_flag &= ~NSIZECHANGED; 410 } 411 NFSUNLOCKNODE(np); 412 } 413 out: 414 ncl_excl_finish(vp, old_lock); 415 return (error); 416 } 417 418 /* 419 * Vnode op for read using bio 420 */ 421 int 422 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 423 { 424 struct nfsnode *np = VTONFS(vp); 425 struct buf *bp, *rabp; 426 struct thread *td; 427 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 428 daddr_t lbn, rabn; 429 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 430 off_t tmp_off; 431 432 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 433 if (uio->uio_resid == 0) 434 return (0); 435 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 436 return (EINVAL); 437 td = uio->uio_td; 438 439 mtx_lock(&nmp->nm_mtx); 440 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 441 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 442 mtx_unlock(&nmp->nm_mtx); 443 (void)ncl_fsinfo(nmp, vp, cred, td); 444 mtx_lock(&nmp->nm_mtx); 445 } 446 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 447 (void) newnfs_iosize(nmp); 448 449 tmp_off = uio->uio_offset + uio->uio_resid; 450 if (vp->v_type != VDIR && 451 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 452 mtx_unlock(&nmp->nm_mtx); 453 return (EFBIG); 454 } 455 mtx_unlock(&nmp->nm_mtx); 456 457 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 458 /* No caching/ no readaheads. Just read data into the user buffer */ 459 return ncl_readrpc(vp, uio, cred); 460 461 n = 0; 462 on = 0; 463 biosize = vp->v_bufobj.bo_bsize; 464 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 465 466 error = nfs_bioread_check_cons(vp, td, cred); 467 if (error) 468 return error; 469 470 save2 = curthread_pflags2_set(TDP2_SBPAGES); 471 do { 472 u_quad_t nsize; 473 474 NFSLOCKNODE(np); 475 nsize = np->n_size; 476 NFSUNLOCKNODE(np); 477 478 switch (vp->v_type) { 479 case VREG: 480 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 481 lbn = uio->uio_offset / biosize; 482 on = uio->uio_offset - (lbn * biosize); 483 484 /* 485 * Start the read ahead(s), as required. 486 */ 487 if (nmp->nm_readahead > 0) { 488 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 489 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 490 rabn = lbn + 1 + nra; 491 if (incore(&vp->v_bufobj, rabn) == NULL) { 492 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 493 if (!rabp) { 494 error = newnfs_sigintr(nmp, td); 495 if (error == 0) 496 error = EINTR; 497 goto out; 498 } 499 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 500 rabp->b_flags |= B_ASYNC; 501 rabp->b_iocmd = BIO_READ; 502 vfs_busy_pages(rabp, 0); 503 if (ncl_asyncio(nmp, rabp, cred, td)) { 504 rabp->b_flags |= B_INVAL; 505 rabp->b_ioflags |= BIO_ERROR; 506 vfs_unbusy_pages(rabp); 507 brelse(rabp); 508 break; 509 } 510 } else { 511 brelse(rabp); 512 } 513 } 514 } 515 } 516 517 /* Note that bcount is *not* DEV_BSIZE aligned. */ 518 bcount = biosize; 519 if ((off_t)lbn * biosize >= nsize) { 520 bcount = 0; 521 } else if ((off_t)(lbn + 1) * biosize > nsize) { 522 bcount = nsize - (off_t)lbn * biosize; 523 } 524 bp = nfs_getcacheblk(vp, lbn, bcount, td); 525 526 if (!bp) { 527 error = newnfs_sigintr(nmp, td); 528 if (error == 0) 529 error = EINTR; 530 goto out; 531 } 532 533 /* 534 * If B_CACHE is not set, we must issue the read. If this 535 * fails, we return an error. 536 */ 537 538 if ((bp->b_flags & B_CACHE) == 0) { 539 bp->b_iocmd = BIO_READ; 540 vfs_busy_pages(bp, 0); 541 error = ncl_doio(vp, bp, cred, td, 0); 542 if (error) { 543 brelse(bp); 544 goto out; 545 } 546 } 547 548 /* 549 * on is the offset into the current bp. Figure out how many 550 * bytes we can copy out of the bp. Note that bcount is 551 * NOT DEV_BSIZE aligned. 552 * 553 * Then figure out how many bytes we can copy into the uio. 554 */ 555 556 n = 0; 557 if (on < bcount) 558 n = MIN((unsigned)(bcount - on), uio->uio_resid); 559 break; 560 case VLNK: 561 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 562 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 563 if (!bp) { 564 error = newnfs_sigintr(nmp, td); 565 if (error == 0) 566 error = EINTR; 567 goto out; 568 } 569 if ((bp->b_flags & B_CACHE) == 0) { 570 bp->b_iocmd = BIO_READ; 571 vfs_busy_pages(bp, 0); 572 error = ncl_doio(vp, bp, cred, td, 0); 573 if (error) { 574 bp->b_ioflags |= BIO_ERROR; 575 brelse(bp); 576 goto out; 577 } 578 } 579 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 580 on = 0; 581 break; 582 case VDIR: 583 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 584 NFSLOCKNODE(np); 585 if (np->n_direofoffset 586 && uio->uio_offset >= np->n_direofoffset) { 587 NFSUNLOCKNODE(np); 588 error = 0; 589 goto out; 590 } 591 NFSUNLOCKNODE(np); 592 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 593 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 594 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 595 if (!bp) { 596 error = newnfs_sigintr(nmp, td); 597 if (error == 0) 598 error = EINTR; 599 goto out; 600 } 601 if ((bp->b_flags & B_CACHE) == 0) { 602 bp->b_iocmd = BIO_READ; 603 vfs_busy_pages(bp, 0); 604 error = ncl_doio(vp, bp, cred, td, 0); 605 if (error) { 606 brelse(bp); 607 } 608 while (error == NFSERR_BAD_COOKIE) { 609 ncl_invaldir(vp); 610 error = ncl_vinvalbuf(vp, 0, td, 1); 611 612 /* 613 * Yuck! The directory has been modified on the 614 * server. The only way to get the block is by 615 * reading from the beginning to get all the 616 * offset cookies. 617 * 618 * Leave the last bp intact unless there is an error. 619 * Loop back up to the while if the error is another 620 * NFSERR_BAD_COOKIE (double yuch!). 621 */ 622 for (i = 0; i <= lbn && !error; i++) { 623 NFSLOCKNODE(np); 624 if (np->n_direofoffset 625 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 626 NFSUNLOCKNODE(np); 627 error = 0; 628 goto out; 629 } 630 NFSUNLOCKNODE(np); 631 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 632 if (!bp) { 633 error = newnfs_sigintr(nmp, td); 634 if (error == 0) 635 error = EINTR; 636 goto out; 637 } 638 if ((bp->b_flags & B_CACHE) == 0) { 639 bp->b_iocmd = BIO_READ; 640 vfs_busy_pages(bp, 0); 641 error = ncl_doio(vp, bp, cred, td, 0); 642 /* 643 * no error + B_INVAL == directory EOF, 644 * use the block. 645 */ 646 if (error == 0 && (bp->b_flags & B_INVAL)) 647 break; 648 } 649 /* 650 * An error will throw away the block and the 651 * for loop will break out. If no error and this 652 * is not the block we want, we throw away the 653 * block and go for the next one via the for loop. 654 */ 655 if (error || i < lbn) 656 brelse(bp); 657 } 658 } 659 /* 660 * The above while is repeated if we hit another cookie 661 * error. If we hit an error and it wasn't a cookie error, 662 * we give up. 663 */ 664 if (error) 665 goto out; 666 } 667 668 /* 669 * If not eof and read aheads are enabled, start one. 670 * (You need the current block first, so that you have the 671 * directory offset cookie of the next block.) 672 */ 673 NFSLOCKNODE(np); 674 if (nmp->nm_readahead > 0 && 675 (bp->b_flags & B_INVAL) == 0 && 676 (np->n_direofoffset == 0 || 677 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 678 incore(&vp->v_bufobj, lbn + 1) == NULL) { 679 NFSUNLOCKNODE(np); 680 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 681 if (rabp) { 682 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 683 rabp->b_flags |= B_ASYNC; 684 rabp->b_iocmd = BIO_READ; 685 vfs_busy_pages(rabp, 0); 686 if (ncl_asyncio(nmp, rabp, cred, td)) { 687 rabp->b_flags |= B_INVAL; 688 rabp->b_ioflags |= BIO_ERROR; 689 vfs_unbusy_pages(rabp); 690 brelse(rabp); 691 } 692 } else { 693 brelse(rabp); 694 } 695 } 696 NFSLOCKNODE(np); 697 } 698 /* 699 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 700 * chopped for the EOF condition, we cannot tell how large 701 * NFS directories are going to be until we hit EOF. So 702 * an NFS directory buffer is *not* chopped to its EOF. Now, 703 * it just so happens that b_resid will effectively chop it 704 * to EOF. *BUT* this information is lost if the buffer goes 705 * away and is reconstituted into a B_CACHE state ( due to 706 * being VMIO ) later. So we keep track of the directory eof 707 * in np->n_direofoffset and chop it off as an extra step 708 * right here. 709 */ 710 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 711 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 712 n = np->n_direofoffset - uio->uio_offset; 713 NFSUNLOCKNODE(np); 714 break; 715 default: 716 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 717 bp = NULL; 718 break; 719 } 720 721 if (n > 0) { 722 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 723 } 724 if (vp->v_type == VLNK) 725 n = 0; 726 if (bp != NULL) 727 brelse(bp); 728 } while (error == 0 && uio->uio_resid > 0 && n > 0); 729 out: 730 curthread_pflags2_restore(save2); 731 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 732 NFSLOCKNODE(np); 733 ncl_pager_setsize(vp, NULL); 734 } 735 return (error); 736 } 737 738 /* 739 * The NFS write path cannot handle iovecs with len > 1. So we need to 740 * break up iovecs accordingly (restricting them to wsize). 741 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 742 * For the ASYNC case, 2 copies are needed. The first a copy from the 743 * user buffer to a staging buffer and then a second copy from the staging 744 * buffer to mbufs. This can be optimized by copying from the user buffer 745 * directly into mbufs and passing the chain down, but that requires a 746 * fair amount of re-working of the relevant codepaths (and can be done 747 * later). 748 */ 749 static int 750 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred, 751 int ioflag) 752 { 753 int error; 754 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 755 struct thread *td = uiop->uio_td; 756 int size; 757 int wsize; 758 759 mtx_lock(&nmp->nm_mtx); 760 wsize = nmp->nm_wsize; 761 mtx_unlock(&nmp->nm_mtx); 762 if (ioflag & IO_SYNC) { 763 int iomode, must_commit; 764 struct uio uio; 765 struct iovec iov; 766 do_sync: 767 while (uiop->uio_resid > 0) { 768 size = MIN(uiop->uio_resid, wsize); 769 size = MIN(uiop->uio_iov->iov_len, size); 770 iov.iov_base = uiop->uio_iov->iov_base; 771 iov.iov_len = size; 772 uio.uio_iov = &iov; 773 uio.uio_iovcnt = 1; 774 uio.uio_offset = uiop->uio_offset; 775 uio.uio_resid = size; 776 uio.uio_segflg = uiop->uio_segflg; 777 uio.uio_rw = UIO_WRITE; 778 uio.uio_td = td; 779 iomode = NFSWRITE_FILESYNC; 780 /* 781 * When doing direct I/O we do not care if the 782 * server's write verifier has changed, but we 783 * do not want to update the verifier if it has 784 * changed, since that hides the change from 785 * writes being done through the buffer cache. 786 * By passing must_commit in set to two, the code 787 * in nfsrpc_writerpc() will not update the 788 * verifier on the mount point. 789 */ 790 must_commit = 2; 791 error = ncl_writerpc(vp, &uio, cred, &iomode, 792 &must_commit, 0, ioflag); 793 KASSERT((must_commit == 2), 794 ("ncl_directio_write: Updated write verifier")); 795 if (error) 796 return (error); 797 if (iomode != NFSWRITE_FILESYNC) 798 printf("nfs_directio_write: Broken server " 799 "did not reply FILE_SYNC\n"); 800 uiop->uio_offset += size; 801 uiop->uio_resid -= size; 802 if (uiop->uio_iov->iov_len <= size) { 803 uiop->uio_iovcnt--; 804 uiop->uio_iov++; 805 } else { 806 uiop->uio_iov->iov_base = 807 (char *)uiop->uio_iov->iov_base + size; 808 uiop->uio_iov->iov_len -= size; 809 } 810 } 811 } else { 812 struct uio *t_uio; 813 struct iovec *t_iov; 814 struct buf *bp; 815 816 /* 817 * Break up the write into blocksize chunks and hand these 818 * over to nfsiod's for write back. 819 * Unfortunately, this incurs a copy of the data. Since 820 * the user could modify the buffer before the write is 821 * initiated. 822 * 823 * The obvious optimization here is that one of the 2 copies 824 * in the async write path can be eliminated by copying the 825 * data here directly into mbufs and passing the mbuf chain 826 * down. But that will require a fair amount of re-working 827 * of the code and can be done if there's enough interest 828 * in NFS directio access. 829 */ 830 while (uiop->uio_resid > 0) { 831 size = MIN(uiop->uio_resid, wsize); 832 size = MIN(uiop->uio_iov->iov_len, size); 833 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 834 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 835 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 836 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 837 t_iov->iov_len = size; 838 t_uio->uio_iov = t_iov; 839 t_uio->uio_iovcnt = 1; 840 t_uio->uio_offset = uiop->uio_offset; 841 t_uio->uio_resid = size; 842 t_uio->uio_segflg = UIO_SYSSPACE; 843 t_uio->uio_rw = UIO_WRITE; 844 t_uio->uio_td = td; 845 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 846 uiop->uio_segflg == UIO_SYSSPACE, 847 ("nfs_directio_write: Bad uio_segflg")); 848 if (uiop->uio_segflg == UIO_USERSPACE) { 849 error = copyin(uiop->uio_iov->iov_base, 850 t_iov->iov_base, size); 851 if (error != 0) 852 goto err_free; 853 } else 854 /* 855 * UIO_SYSSPACE may never happen, but handle 856 * it just in case it does. 857 */ 858 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 859 size); 860 bp->b_flags |= B_DIRECT; 861 bp->b_iocmd = BIO_WRITE; 862 if (cred != NOCRED) { 863 crhold(cred); 864 bp->b_wcred = cred; 865 } else 866 bp->b_wcred = NOCRED; 867 bp->b_caller1 = (void *)t_uio; 868 bp->b_vp = vp; 869 error = ncl_asyncio(nmp, bp, NOCRED, td); 870 err_free: 871 if (error) { 872 free(t_iov->iov_base, M_NFSDIRECTIO); 873 free(t_iov, M_NFSDIRECTIO); 874 free(t_uio, M_NFSDIRECTIO); 875 bp->b_vp = NULL; 876 uma_zfree(ncl_pbuf_zone, bp); 877 if (error == EINTR) 878 return (error); 879 goto do_sync; 880 } 881 uiop->uio_offset += size; 882 uiop->uio_resid -= size; 883 if (uiop->uio_iov->iov_len <= size) { 884 uiop->uio_iovcnt--; 885 uiop->uio_iov++; 886 } else { 887 uiop->uio_iov->iov_base = 888 (char *)uiop->uio_iov->iov_base + size; 889 uiop->uio_iov->iov_len -= size; 890 } 891 } 892 } 893 return (0); 894 } 895 896 /* 897 * Vnode op for write using bio 898 */ 899 int 900 ncl_write(struct vop_write_args *ap) 901 { 902 int biosize; 903 struct uio *uio = ap->a_uio; 904 struct thread *td = uio->uio_td; 905 struct vnode *vp = ap->a_vp; 906 struct nfsnode *np = VTONFS(vp); 907 struct ucred *cred = ap->a_cred; 908 int ioflag = ap->a_ioflag; 909 struct buf *bp; 910 struct vattr vattr; 911 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 912 daddr_t lbn; 913 int bcount, noncontig_write, obcount; 914 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 915 size_t orig_resid, local_resid; 916 off_t orig_size, tmp_off; 917 struct timespec ts; 918 919 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 920 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 921 ("ncl_write proc")); 922 if (vp->v_type != VREG) 923 return (EIO); 924 NFSLOCKNODE(np); 925 if (np->n_flag & NWRITEERR) { 926 np->n_flag &= ~NWRITEERR; 927 NFSUNLOCKNODE(np); 928 return (np->n_error); 929 } else 930 NFSUNLOCKNODE(np); 931 mtx_lock(&nmp->nm_mtx); 932 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 933 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 934 mtx_unlock(&nmp->nm_mtx); 935 (void)ncl_fsinfo(nmp, vp, cred, td); 936 mtx_lock(&nmp->nm_mtx); 937 } 938 if (nmp->nm_wsize == 0) 939 (void) newnfs_iosize(nmp); 940 mtx_unlock(&nmp->nm_mtx); 941 942 /* 943 * Synchronously flush pending buffers if we are in synchronous 944 * mode or if we are appending. 945 */ 946 if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag & 947 NMODIFIED))) { 948 /* 949 * For the case where IO_APPEND is being done using a 950 * direct output (to the NFS server) RPC and 951 * newnfs_directio_enable is 0, all buffer cache buffers, 952 * including ones not modified, must be invalidated. 953 * This ensures that stale data is not read out of the 954 * buffer cache. The call also invalidates all mapped 955 * pages and, since the exclusive lock is held on the vnode, 956 * new pages cannot be faulted in. 957 * 958 * For the case where newnfs_directio_enable is set 959 * (which is not the default), it is not obvious that 960 * stale data should be left in the buffer cache, but 961 * the code has been this way for over a decade without 962 * complaints. Note that, unlike doing IO_APPEND via 963 * a direct write RPC when newnfs_directio_enable is not set, 964 * when newnfs_directio_enable is set, reading is done via 965 * direct to NFS server RPCs as well. 966 */ 967 np->n_attrstamp = 0; 968 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 969 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 970 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 971 if (error != 0) 972 return (error); 973 } 974 975 orig_resid = uio->uio_resid; 976 NFSLOCKNODE(np); 977 orig_size = np->n_size; 978 NFSUNLOCKNODE(np); 979 980 /* 981 * If IO_APPEND then load uio_offset. We restart here if we cannot 982 * get the append lock. 983 */ 984 if (ioflag & IO_APPEND) { 985 /* 986 * For NFSv4, the AppendWrite will Verify the size against 987 * the file's size on the server. If not the same, the 988 * write will then be retried, using the file size returned 989 * by the AppendWrite. However, for NFSv2 and NFSv3, the 990 * size must be acquired here via a Getattr RPC. 991 * The AppendWrite is not done for a pNFS mount. 992 */ 993 if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) { 994 np->n_attrstamp = 0; 995 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 996 error = VOP_GETATTR(vp, &vattr, cred); 997 if (error) 998 return (error); 999 } 1000 NFSLOCKNODE(np); 1001 uio->uio_offset = np->n_size; 1002 NFSUNLOCKNODE(np); 1003 } 1004 1005 if (uio->uio_offset < 0) 1006 return (EINVAL); 1007 tmp_off = uio->uio_offset + uio->uio_resid; 1008 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 1009 return (EFBIG); 1010 if (uio->uio_resid == 0) 1011 return (0); 1012 1013 /* 1014 * Do IO_APPEND writing via a synchronous direct write. 1015 * This can result in a significant performance improvement. 1016 */ 1017 if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) || 1018 (ioflag & IO_APPEND)) { 1019 /* 1020 * Direct writes to the server must be done NFSWRITE_FILESYNC, 1021 * because the write data is not cached and, therefore, the 1022 * write cannot be redone after a server reboot. 1023 * Set IO_SYNC to make this happen. 1024 */ 1025 ioflag |= IO_SYNC; 1026 return (nfs_directio_write(vp, uio, cred, ioflag)); 1027 } 1028 1029 /* 1030 * Maybe this should be above the vnode op call, but so long as 1031 * file servers have no limits, i don't think it matters 1032 */ 1033 error = vn_rlimit_fsize(vp, uio, td); 1034 if (error != 0) 1035 return (error); 1036 1037 save2 = curthread_pflags2_set(TDP2_SBPAGES); 1038 biosize = vp->v_bufobj.bo_bsize; 1039 /* 1040 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1041 * would exceed the local maximum per-file write commit size when 1042 * combined with those, we must decide whether to flush, 1043 * go synchronous, or return error. We don't bother checking 1044 * IO_UNIT -- we just make all writes atomic anyway, as there's 1045 * no point optimizing for something that really won't ever happen. 1046 */ 1047 wouldcommit = 0; 1048 if (!(ioflag & IO_SYNC)) { 1049 int nflag; 1050 1051 NFSLOCKNODE(np); 1052 nflag = np->n_flag; 1053 NFSUNLOCKNODE(np); 1054 if (nflag & NMODIFIED) { 1055 BO_LOCK(&vp->v_bufobj); 1056 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1057 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1058 b_bobufs) { 1059 if (bp->b_flags & B_NEEDCOMMIT) 1060 wouldcommit += bp->b_bcount; 1061 } 1062 } 1063 BO_UNLOCK(&vp->v_bufobj); 1064 } 1065 } 1066 1067 do { 1068 if (!(ioflag & IO_SYNC)) { 1069 wouldcommit += biosize; 1070 if (wouldcommit > nmp->nm_wcommitsize) { 1071 np->n_attrstamp = 0; 1072 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1073 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1074 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1075 if (error != 0) 1076 goto out; 1077 wouldcommit = biosize; 1078 } 1079 } 1080 1081 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1082 lbn = uio->uio_offset / biosize; 1083 on = uio->uio_offset - (lbn * biosize); 1084 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1085 again: 1086 /* 1087 * Handle direct append and file extension cases, calculate 1088 * unaligned buffer size. 1089 */ 1090 NFSLOCKNODE(np); 1091 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1092 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1093 noncontig_write = 1; 1094 else 1095 noncontig_write = 0; 1096 if ((uio->uio_offset == np->n_size || 1097 (noncontig_write != 0 && 1098 lbn == (np->n_size / biosize) && 1099 uio->uio_offset + n > np->n_size)) && n) { 1100 NFSUNLOCKNODE(np); 1101 /* 1102 * Get the buffer (in its pre-append state to maintain 1103 * B_CACHE if it was previously set). Resize the 1104 * nfsnode after we have locked the buffer to prevent 1105 * readers from reading garbage. 1106 */ 1107 obcount = np->n_size - (lbn * biosize); 1108 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1109 1110 if (bp != NULL) { 1111 long save; 1112 1113 NFSLOCKNODE(np); 1114 np->n_size = uio->uio_offset + n; 1115 np->n_flag |= NMODIFIED; 1116 np->n_flag &= ~NVNSETSZSKIP; 1117 vnode_pager_setsize(vp, np->n_size); 1118 NFSUNLOCKNODE(np); 1119 1120 save = bp->b_flags & B_CACHE; 1121 bcount = on + n; 1122 allocbuf(bp, bcount); 1123 bp->b_flags |= save; 1124 if (noncontig_write != 0 && on > obcount) 1125 vfs_bio_bzero_buf(bp, obcount, on - 1126 obcount); 1127 } 1128 } else { 1129 /* 1130 * Obtain the locked cache block first, and then 1131 * adjust the file's size as appropriate. 1132 */ 1133 bcount = on + n; 1134 if ((off_t)lbn * biosize + bcount < np->n_size) { 1135 if ((off_t)(lbn + 1) * biosize < np->n_size) 1136 bcount = biosize; 1137 else 1138 bcount = np->n_size - (off_t)lbn * biosize; 1139 } 1140 NFSUNLOCKNODE(np); 1141 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1142 NFSLOCKNODE(np); 1143 if (uio->uio_offset + n > np->n_size) { 1144 np->n_size = uio->uio_offset + n; 1145 np->n_flag |= NMODIFIED; 1146 np->n_flag &= ~NVNSETSZSKIP; 1147 vnode_pager_setsize(vp, np->n_size); 1148 } 1149 NFSUNLOCKNODE(np); 1150 } 1151 1152 if (!bp) { 1153 error = newnfs_sigintr(nmp, td); 1154 if (!error) 1155 error = EINTR; 1156 break; 1157 } 1158 1159 /* 1160 * Issue a READ if B_CACHE is not set. In special-append 1161 * mode, B_CACHE is based on the buffer prior to the write 1162 * op and is typically set, avoiding the read. If a read 1163 * is required in special append mode, the server will 1164 * probably send us a short-read since we extended the file 1165 * on our end, resulting in b_resid == 0 and, thusly, 1166 * B_CACHE getting set. 1167 * 1168 * We can also avoid issuing the read if the write covers 1169 * the entire buffer. We have to make sure the buffer state 1170 * is reasonable in this case since we will not be initiating 1171 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1172 * more information. 1173 * 1174 * B_CACHE may also be set due to the buffer being cached 1175 * normally. 1176 */ 1177 1178 bp_cached = 1; 1179 if (on == 0 && n == bcount) { 1180 if ((bp->b_flags & B_CACHE) == 0) 1181 bp_cached = 0; 1182 bp->b_flags |= B_CACHE; 1183 bp->b_flags &= ~B_INVAL; 1184 bp->b_ioflags &= ~BIO_ERROR; 1185 } 1186 1187 if ((bp->b_flags & B_CACHE) == 0) { 1188 bp->b_iocmd = BIO_READ; 1189 vfs_busy_pages(bp, 0); 1190 error = ncl_doio(vp, bp, cred, td, 0); 1191 if (error) { 1192 brelse(bp); 1193 break; 1194 } 1195 } 1196 if (bp->b_wcred == NOCRED) 1197 bp->b_wcred = crhold(cred); 1198 NFSLOCKNODE(np); 1199 np->n_flag |= NMODIFIED; 1200 NFSUNLOCKNODE(np); 1201 1202 /* 1203 * If dirtyend exceeds file size, chop it down. This should 1204 * not normally occur but there is an append race where it 1205 * might occur XXX, so we log it. 1206 * 1207 * If the chopping creates a reverse-indexed or degenerate 1208 * situation with dirtyoff/end, we 0 both of them. 1209 */ 1210 1211 if (bp->b_dirtyend > bcount) { 1212 printf("NFS append race @%lx:%d\n", 1213 (long)bp->b_blkno * DEV_BSIZE, 1214 bp->b_dirtyend - bcount); 1215 bp->b_dirtyend = bcount; 1216 } 1217 1218 if (bp->b_dirtyoff >= bp->b_dirtyend) 1219 bp->b_dirtyoff = bp->b_dirtyend = 0; 1220 1221 /* 1222 * If the new write will leave a contiguous dirty 1223 * area, just update the b_dirtyoff and b_dirtyend, 1224 * otherwise force a write rpc of the old dirty area. 1225 * 1226 * If there has been a file lock applied to this file 1227 * or vfs.nfs.old_noncontig_writing is set, do the following: 1228 * While it is possible to merge discontiguous writes due to 1229 * our having a B_CACHE buffer ( and thus valid read data 1230 * for the hole), we don't because it could lead to 1231 * significant cache coherency problems with multiple clients, 1232 * especially if locking is implemented later on. 1233 * 1234 * If vfs.nfs.old_noncontig_writing is not set and there has 1235 * not been file locking done on this file: 1236 * Relax coherency a bit for the sake of performance and 1237 * expand the current dirty region to contain the new 1238 * write even if it means we mark some non-dirty data as 1239 * dirty. 1240 */ 1241 1242 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1243 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1244 if (bwrite(bp) == EINTR) { 1245 error = EINTR; 1246 break; 1247 } 1248 goto again; 1249 } 1250 1251 local_resid = uio->uio_resid; 1252 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1253 1254 if (error != 0 && !bp_cached) { 1255 /* 1256 * This block has no other content then what 1257 * possibly was written by the faulty uiomove. 1258 * Release it, forgetting the data pages, to 1259 * prevent the leak of uninitialized data to 1260 * usermode. 1261 */ 1262 bp->b_ioflags |= BIO_ERROR; 1263 brelse(bp); 1264 uio->uio_offset -= local_resid - uio->uio_resid; 1265 uio->uio_resid = local_resid; 1266 break; 1267 } 1268 1269 /* 1270 * Since this block is being modified, it must be written 1271 * again and not just committed. Since write clustering does 1272 * not work for the stage 1 data write, only the stage 2 1273 * commit rpc, we have to clear B_CLUSTEROK as well. 1274 */ 1275 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1276 1277 /* 1278 * Get the partial update on the progress made from 1279 * uiomove, if an error occurred. 1280 */ 1281 if (error != 0) 1282 n = local_resid - uio->uio_resid; 1283 1284 /* 1285 * Only update dirtyoff/dirtyend if not a degenerate 1286 * condition. 1287 */ 1288 if (n > 0) { 1289 if (bp->b_dirtyend > 0) { 1290 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1291 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1292 } else { 1293 bp->b_dirtyoff = on; 1294 bp->b_dirtyend = on + n; 1295 } 1296 vfs_bio_set_valid(bp, on, n); 1297 } 1298 1299 /* 1300 * If IO_SYNC do bwrite(). 1301 * 1302 * IO_INVAL appears to be unused. The idea appears to be 1303 * to turn off caching in this case. Very odd. XXX 1304 */ 1305 if ((ioflag & IO_SYNC)) { 1306 if (ioflag & IO_INVAL) 1307 bp->b_flags |= B_NOCACHE; 1308 error1 = bwrite(bp); 1309 if (error1 != 0) { 1310 if (error == 0) 1311 error = error1; 1312 break; 1313 } 1314 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1315 bp->b_flags |= B_ASYNC; 1316 (void) ncl_writebp(bp, 0, NULL); 1317 } else { 1318 bdwrite(bp); 1319 } 1320 1321 if (error != 0) 1322 break; 1323 } while (uio->uio_resid > 0 && n > 0); 1324 1325 if (error == 0) { 1326 nanouptime(&ts); 1327 NFSLOCKNODE(np); 1328 np->n_localmodtime = ts; 1329 NFSUNLOCKNODE(np); 1330 } else { 1331 if (ioflag & IO_UNIT) { 1332 VATTR_NULL(&vattr); 1333 vattr.va_size = orig_size; 1334 /* IO_SYNC is handled implicitely */ 1335 (void)VOP_SETATTR(vp, &vattr, cred); 1336 uio->uio_offset -= orig_resid - uio->uio_resid; 1337 uio->uio_resid = orig_resid; 1338 } 1339 } 1340 1341 out: 1342 curthread_pflags2_restore(save2); 1343 return (error); 1344 } 1345 1346 /* 1347 * Get an nfs cache block. 1348 * 1349 * Allocate a new one if the block isn't currently in the cache 1350 * and return the block marked busy. If the calling process is 1351 * interrupted by a signal for an interruptible mount point, return 1352 * NULL. 1353 * 1354 * The caller must carefully deal with the possible B_INVAL state of 1355 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1356 * indirectly), so synchronous reads can be issued without worrying about 1357 * the B_INVAL state. We have to be a little more careful when dealing 1358 * with writes (see comments in nfs_write()) when extending a file past 1359 * its EOF. 1360 */ 1361 static struct buf * 1362 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1363 { 1364 struct buf *bp; 1365 struct mount *mp; 1366 struct nfsmount *nmp; 1367 1368 mp = vp->v_mount; 1369 nmp = VFSTONFS(mp); 1370 1371 if (nmp->nm_flag & NFSMNT_INT) { 1372 sigset_t oldset; 1373 1374 newnfs_set_sigmask(td, &oldset); 1375 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1376 newnfs_restore_sigmask(td, &oldset); 1377 while (bp == NULL) { 1378 if (newnfs_sigintr(nmp, td)) 1379 return (NULL); 1380 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1381 } 1382 } else { 1383 bp = getblk(vp, bn, size, 0, 0, 0); 1384 } 1385 1386 if (vp->v_type == VREG) 1387 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1388 return (bp); 1389 } 1390 1391 /* 1392 * Flush and invalidate all dirty buffers. If another process is already 1393 * doing the flush, just wait for completion. 1394 */ 1395 int 1396 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1397 { 1398 struct nfsnode *np = VTONFS(vp); 1399 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1400 int error = 0, slpflag, slptimeo; 1401 bool old_lock; 1402 struct timespec ts; 1403 1404 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1405 1406 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1407 intrflg = 0; 1408 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1409 intrflg = 1; 1410 if (intrflg) { 1411 slpflag = PCATCH; 1412 slptimeo = 2 * hz; 1413 } else { 1414 slpflag = 0; 1415 slptimeo = 0; 1416 } 1417 1418 old_lock = ncl_excl_start(vp); 1419 if (old_lock) 1420 flags |= V_ALLOWCLEAN; 1421 1422 /* 1423 * Now, flush as required. 1424 */ 1425 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE && 1426 vp->v_bufobj.bo_object != NULL) { 1427 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1428 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1429 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1430 /* 1431 * If the page clean was interrupted, fail the invalidation. 1432 * Not doing so, we run the risk of losing dirty pages in the 1433 * vinvalbuf() call below. 1434 */ 1435 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1436 goto out; 1437 } 1438 1439 error = vinvalbuf(vp, flags, slpflag, 0); 1440 while (error) { 1441 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1442 goto out; 1443 error = vinvalbuf(vp, flags, 0, slptimeo); 1444 } 1445 if (NFSHASPNFS(nmp)) { 1446 nfscl_layoutcommit(vp, td); 1447 nanouptime(&ts); 1448 /* 1449 * Invalidate the attribute cache, since writes to a DS 1450 * won't update the size attribute. 1451 */ 1452 NFSLOCKNODE(np); 1453 np->n_attrstamp = 0; 1454 } else { 1455 nanouptime(&ts); 1456 NFSLOCKNODE(np); 1457 } 1458 if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) { 1459 np->n_localmodtime = ts; 1460 np->n_flag &= ~NMODIFIED; 1461 } 1462 NFSUNLOCKNODE(np); 1463 out: 1464 ncl_excl_finish(vp, old_lock); 1465 return error; 1466 } 1467 1468 /* 1469 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1470 * This is mainly to avoid queueing async I/O requests when the nfsiods 1471 * are all hung on a dead server. 1472 * 1473 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1474 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1475 */ 1476 int 1477 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1478 { 1479 int iod; 1480 int gotiod; 1481 int slpflag = 0; 1482 int slptimeo = 0; 1483 int error, error2; 1484 1485 /* 1486 * Commits are usually short and sweet so lets save some cpu and 1487 * leave the async daemons for more important rpc's (such as reads 1488 * and writes). 1489 * 1490 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1491 * in the directory in order to update attributes. This can deadlock 1492 * with another thread that is waiting for async I/O to be done by 1493 * an nfsiod thread while holding a lock on one of these vnodes. 1494 * To avoid this deadlock, don't allow the async nfsiod threads to 1495 * perform Readdirplus RPCs. 1496 */ 1497 NFSLOCKIOD(); 1498 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1499 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1500 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1501 NFSUNLOCKIOD(); 1502 return(EIO); 1503 } 1504 again: 1505 if (nmp->nm_flag & NFSMNT_INT) 1506 slpflag = PCATCH; 1507 gotiod = FALSE; 1508 1509 /* 1510 * Find a free iod to process this request. 1511 */ 1512 for (iod = 0; iod < ncl_numasync; iod++) 1513 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1514 gotiod = TRUE; 1515 break; 1516 } 1517 1518 /* 1519 * Try to create one if none are free. 1520 */ 1521 if (!gotiod) 1522 ncl_nfsiodnew(); 1523 else { 1524 /* 1525 * Found one, so wake it up and tell it which 1526 * mount to process. 1527 */ 1528 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1529 iod, nmp)); 1530 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1531 ncl_iodmount[iod] = nmp; 1532 nmp->nm_bufqiods++; 1533 wakeup(&ncl_iodwant[iod]); 1534 } 1535 1536 /* 1537 * If none are free, we may already have an iod working on this mount 1538 * point. If so, it will process our request. 1539 */ 1540 if (!gotiod) { 1541 if (nmp->nm_bufqiods > 0) { 1542 NFS_DPF(ASYNCIO, 1543 ("ncl_asyncio: %d iods are already processing mount %p\n", 1544 nmp->nm_bufqiods, nmp)); 1545 gotiod = TRUE; 1546 } 1547 } 1548 1549 /* 1550 * If we have an iod which can process the request, then queue 1551 * the buffer. 1552 */ 1553 if (gotiod) { 1554 /* 1555 * Ensure that the queue never grows too large. We still want 1556 * to asynchronize so we block rather then return EIO. 1557 */ 1558 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1559 NFS_DPF(ASYNCIO, 1560 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1561 nmp->nm_bufqwant = TRUE; 1562 error = newnfs_msleep(td, &nmp->nm_bufq, 1563 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1564 slptimeo); 1565 if (error) { 1566 error2 = newnfs_sigintr(nmp, td); 1567 if (error2) { 1568 NFSUNLOCKIOD(); 1569 return (error2); 1570 } 1571 if (slpflag == PCATCH) { 1572 slpflag = 0; 1573 slptimeo = 2 * hz; 1574 } 1575 } 1576 /* 1577 * We might have lost our iod while sleeping, 1578 * so check and loop if necessary. 1579 */ 1580 goto again; 1581 } 1582 1583 /* We might have lost our nfsiod */ 1584 if (nmp->nm_bufqiods == 0) { 1585 NFS_DPF(ASYNCIO, 1586 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1587 goto again; 1588 } 1589 1590 if (bp->b_iocmd == BIO_READ) { 1591 if (bp->b_rcred == NOCRED && cred != NOCRED) 1592 bp->b_rcred = crhold(cred); 1593 } else { 1594 if (bp->b_wcred == NOCRED && cred != NOCRED) 1595 bp->b_wcred = crhold(cred); 1596 } 1597 1598 if (bp->b_flags & B_REMFREE) 1599 bremfreef(bp); 1600 BUF_KERNPROC(bp); 1601 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1602 nmp->nm_bufqlen++; 1603 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1604 NFSLOCKNODE(VTONFS(bp->b_vp)); 1605 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1606 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1607 NFSUNLOCKNODE(VTONFS(bp->b_vp)); 1608 } 1609 NFSUNLOCKIOD(); 1610 return (0); 1611 } 1612 1613 NFSUNLOCKIOD(); 1614 1615 /* 1616 * All the iods are busy on other mounts, so return EIO to 1617 * force the caller to process the i/o synchronously. 1618 */ 1619 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1620 return (EIO); 1621 } 1622 1623 void 1624 ncl_doio_directwrite(struct buf *bp) 1625 { 1626 int iomode, must_commit; 1627 struct uio *uiop = (struct uio *)bp->b_caller1; 1628 char *iov_base = uiop->uio_iov->iov_base; 1629 1630 iomode = NFSWRITE_FILESYNC; 1631 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1632 /* 1633 * When doing direct I/O we do not care if the 1634 * server's write verifier has changed, but we 1635 * do not want to update the verifier if it has 1636 * changed, since that hides the change from 1637 * writes being done through the buffer cache. 1638 * By passing must_commit in set to two, the code 1639 * in nfsrpc_writerpc() will not update the 1640 * verifier on the mount point. 1641 */ 1642 must_commit = 2; 1643 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0, 0); 1644 KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write" 1645 " verifier")); 1646 if (iomode != NFSWRITE_FILESYNC) 1647 printf("ncl_doio_directwrite: Broken server " 1648 "did not reply FILE_SYNC\n"); 1649 free(iov_base, M_NFSDIRECTIO); 1650 free(uiop->uio_iov, M_NFSDIRECTIO); 1651 free(uiop, M_NFSDIRECTIO); 1652 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1653 struct nfsnode *np = VTONFS(bp->b_vp); 1654 NFSLOCKNODE(np); 1655 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) { 1656 /* 1657 * Invalidate the attribute cache, since writes to a DS 1658 * won't update the size attribute. 1659 */ 1660 np->n_attrstamp = 0; 1661 } 1662 np->n_directio_asyncwr--; 1663 if (np->n_directio_asyncwr == 0) { 1664 np->n_flag &= ~NMODIFIED; 1665 if ((np->n_flag & NFSYNCWAIT)) { 1666 np->n_flag &= ~NFSYNCWAIT; 1667 wakeup((caddr_t)&np->n_directio_asyncwr); 1668 } 1669 } 1670 NFSUNLOCKNODE(np); 1671 } 1672 bp->b_vp = NULL; 1673 uma_zfree(ncl_pbuf_zone, bp); 1674 } 1675 1676 /* 1677 * Do an I/O operation to/from a cache block. This may be called 1678 * synchronously or from an nfsiod. 1679 */ 1680 int 1681 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1682 int called_from_strategy) 1683 { 1684 struct uio *uiop; 1685 struct nfsnode *np; 1686 struct nfsmount *nmp; 1687 int error = 0, iomode, must_commit = 0; 1688 struct uio uio; 1689 struct iovec io; 1690 struct proc *p = td ? td->td_proc : NULL; 1691 uint8_t iocmd; 1692 1693 np = VTONFS(vp); 1694 nmp = VFSTONFS(vp->v_mount); 1695 uiop = &uio; 1696 uiop->uio_iov = &io; 1697 uiop->uio_iovcnt = 1; 1698 uiop->uio_segflg = UIO_SYSSPACE; 1699 uiop->uio_td = td; 1700 1701 /* 1702 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1703 * do this here so we do not have to do it in all the code that 1704 * calls us. 1705 */ 1706 bp->b_flags &= ~B_INVAL; 1707 bp->b_ioflags &= ~BIO_ERROR; 1708 1709 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1710 iocmd = bp->b_iocmd; 1711 if (iocmd == BIO_READ) { 1712 io.iov_len = uiop->uio_resid = bp->b_bcount; 1713 io.iov_base = bp->b_data; 1714 uiop->uio_rw = UIO_READ; 1715 1716 switch (vp->v_type) { 1717 case VREG: 1718 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1719 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1720 error = ncl_readrpc(vp, uiop, cr); 1721 1722 if (!error) { 1723 if (uiop->uio_resid) { 1724 /* 1725 * If we had a short read with no error, we must have 1726 * hit a file hole. We should zero-fill the remainder. 1727 * This can also occur if the server hits the file EOF. 1728 * 1729 * Holes used to be able to occur due to pending 1730 * writes, but that is not possible any longer. 1731 */ 1732 int nread = bp->b_bcount - uiop->uio_resid; 1733 ssize_t left = uiop->uio_resid; 1734 1735 if (left > 0) 1736 bzero((char *)bp->b_data + nread, left); 1737 uiop->uio_resid = 0; 1738 } 1739 } 1740 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1741 if (p && vp->v_writecount <= -1) { 1742 NFSLOCKNODE(np); 1743 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1744 NFSUNLOCKNODE(np); 1745 PROC_LOCK(p); 1746 killproc(p, "text file modification"); 1747 PROC_UNLOCK(p); 1748 } else 1749 NFSUNLOCKNODE(np); 1750 } 1751 break; 1752 case VLNK: 1753 uiop->uio_offset = (off_t)0; 1754 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1755 error = ncl_readlinkrpc(vp, uiop, cr); 1756 break; 1757 case VDIR: 1758 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1759 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1760 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1761 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1762 if (error == NFSERR_NOTSUPP) 1763 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1764 } 1765 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1766 error = ncl_readdirrpc(vp, uiop, cr, td); 1767 /* 1768 * end-of-directory sets B_INVAL but does not generate an 1769 * error. 1770 */ 1771 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1772 bp->b_flags |= B_INVAL; 1773 break; 1774 default: 1775 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1776 break; 1777 } 1778 if (error) { 1779 bp->b_ioflags |= BIO_ERROR; 1780 bp->b_error = error; 1781 } 1782 } else { 1783 /* 1784 * If we only need to commit, try to commit 1785 */ 1786 if (bp->b_flags & B_NEEDCOMMIT) { 1787 int retv; 1788 off_t off; 1789 1790 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1791 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1792 bp->b_wcred, td); 1793 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) { 1794 bp->b_dirtyoff = bp->b_dirtyend = 0; 1795 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1796 bp->b_resid = 0; 1797 bufdone(bp); 1798 return (0); 1799 } 1800 if (retv == NFSERR_STALEWRITEVERF) { 1801 ncl_clearcommit(vp->v_mount); 1802 } 1803 } 1804 1805 /* 1806 * Setup for actual write 1807 */ 1808 NFSLOCKNODE(np); 1809 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1810 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1811 NFSUNLOCKNODE(np); 1812 1813 if (bp->b_dirtyend > bp->b_dirtyoff) { 1814 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1815 - bp->b_dirtyoff; 1816 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1817 + bp->b_dirtyoff; 1818 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1819 uiop->uio_rw = UIO_WRITE; 1820 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1821 1822 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1823 iomode = NFSWRITE_UNSTABLE; 1824 else 1825 iomode = NFSWRITE_FILESYNC; 1826 1827 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1828 called_from_strategy, 0); 1829 1830 /* 1831 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1832 * to cluster the buffers needing commit. This will allow 1833 * the system to submit a single commit rpc for the whole 1834 * cluster. We can do this even if the buffer is not 100% 1835 * dirty (relative to the NFS blocksize), so we optimize the 1836 * append-to-file-case. 1837 * 1838 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1839 * cleared because write clustering only works for commit 1840 * rpc's, not for the data portion of the write). 1841 */ 1842 1843 if (!error && iomode == NFSWRITE_UNSTABLE) { 1844 bp->b_flags |= B_NEEDCOMMIT; 1845 if (bp->b_dirtyoff == 0 1846 && bp->b_dirtyend == bp->b_bcount) 1847 bp->b_flags |= B_CLUSTEROK; 1848 } else { 1849 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1850 } 1851 1852 /* 1853 * For an interrupted write, the buffer is still valid 1854 * and the write hasn't been pushed to the server yet, 1855 * so we can't set BIO_ERROR and report the interruption 1856 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1857 * is not relevant, so the rpc attempt is essentially 1858 * a noop. For the case of a V3 write rpc not being 1859 * committed to stable storage, the block is still 1860 * dirty and requires either a commit rpc or another 1861 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1862 * the block is reused. This is indicated by setting 1863 * the B_DELWRI and B_NEEDCOMMIT flags. 1864 * 1865 * EIO is returned by ncl_writerpc() to indicate a recoverable 1866 * write error and is handled as above, except that 1867 * B_EINTR isn't set. One cause of this is a stale stateid 1868 * error for the RPC that indicates recovery is required, 1869 * when called with called_from_strategy != 0. 1870 * 1871 * If the buffer is marked B_PAGING, it does not reside on 1872 * the vp's paging queues so we cannot call bdirty(). The 1873 * bp in this case is not an NFS cache block so we should 1874 * be safe. XXX 1875 * 1876 * The logic below breaks up errors into recoverable and 1877 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1878 * and keep the buffer around for potential write retries. 1879 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1880 * and save the error in the nfsnode. This is less than ideal 1881 * but necessary. Keeping such buffers around could potentially 1882 * cause buffer exhaustion eventually (they can never be written 1883 * out, so will get constantly be re-dirtied). It also causes 1884 * all sorts of vfs panics. For non-recoverable write errors, 1885 * also invalidate the attrcache, so we'll be forced to go over 1886 * the wire for this object, returning an error to user on next 1887 * call (most of the time). 1888 */ 1889 if (error == EINTR || error == EIO || error == ETIMEDOUT 1890 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1891 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1892 if ((bp->b_flags & B_PAGING) == 0) { 1893 bdirty(bp); 1894 bp->b_flags &= ~B_DONE; 1895 } 1896 if ((error == EINTR || error == ETIMEDOUT) && 1897 (bp->b_flags & B_ASYNC) == 0) 1898 bp->b_flags |= B_EINTR; 1899 } else { 1900 if (error) { 1901 bp->b_ioflags |= BIO_ERROR; 1902 bp->b_flags |= B_INVAL; 1903 bp->b_error = np->n_error = error; 1904 NFSLOCKNODE(np); 1905 np->n_flag |= NWRITEERR; 1906 np->n_attrstamp = 0; 1907 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1908 NFSUNLOCKNODE(np); 1909 } 1910 bp->b_dirtyoff = bp->b_dirtyend = 0; 1911 } 1912 } else { 1913 bp->b_resid = 0; 1914 bufdone(bp); 1915 return (0); 1916 } 1917 } 1918 bp->b_resid = uiop->uio_resid; 1919 if (must_commit == 1) 1920 ncl_clearcommit(vp->v_mount); 1921 bufdone(bp); 1922 return (error); 1923 } 1924 1925 /* 1926 * Used to aid in handling ftruncate() operations on the NFS client side. 1927 * Truncation creates a number of special problems for NFS. We have to 1928 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1929 * we have to properly handle VM pages or (potentially dirty) buffers 1930 * that straddle the truncation point. 1931 */ 1932 1933 int 1934 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1935 { 1936 struct nfsnode *np = VTONFS(vp); 1937 u_quad_t tsize; 1938 int biosize = vp->v_bufobj.bo_bsize; 1939 int error = 0; 1940 1941 NFSLOCKNODE(np); 1942 tsize = np->n_size; 1943 np->n_size = nsize; 1944 NFSUNLOCKNODE(np); 1945 1946 if (nsize < tsize) { 1947 struct buf *bp; 1948 daddr_t lbn; 1949 int bufsize; 1950 1951 /* 1952 * vtruncbuf() doesn't get the buffer overlapping the 1953 * truncation point. We may have a B_DELWRI and/or B_CACHE 1954 * buffer that now needs to be truncated. 1955 */ 1956 error = vtruncbuf(vp, nsize, biosize); 1957 lbn = nsize / biosize; 1958 bufsize = nsize - (lbn * biosize); 1959 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1960 if (!bp) 1961 return EINTR; 1962 if (bp->b_dirtyoff > bp->b_bcount) 1963 bp->b_dirtyoff = bp->b_bcount; 1964 if (bp->b_dirtyend > bp->b_bcount) 1965 bp->b_dirtyend = bp->b_bcount; 1966 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1967 brelse(bp); 1968 } else { 1969 vnode_pager_setsize(vp, nsize); 1970 } 1971 return(error); 1972 } 1973