1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/rwlock.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_pager.h> 54 #include <vm/vnode_pager.h> 55 56 #include <fs/nfs/nfsport.h> 57 #include <fs/nfsclient/nfsmount.h> 58 #include <fs/nfsclient/nfs.h> 59 #include <fs/nfsclient/nfsnode.h> 60 #include <fs/nfsclient/nfs_kdtrace.h> 61 62 extern int newnfs_directio_allow_mmap; 63 extern struct nfsstats newnfsstats; 64 extern struct mtx ncl_iod_mutex; 65 extern int ncl_numasync; 66 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 67 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 68 extern int newnfs_directio_enable; 69 extern int nfs_keep_dirty_on_error; 70 71 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 72 73 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 74 struct thread *td); 75 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 76 struct ucred *cred, int ioflag); 77 78 /* 79 * Vnode op for VM getpages. 80 */ 81 int 82 ncl_getpages(struct vop_getpages_args *ap) 83 { 84 int i, error, nextoff, size, toff, count, npages; 85 struct uio uio; 86 struct iovec iov; 87 vm_offset_t kva; 88 struct buf *bp; 89 struct vnode *vp; 90 struct thread *td; 91 struct ucred *cred; 92 struct nfsmount *nmp; 93 vm_object_t object; 94 vm_page_t *pages; 95 struct nfsnode *np; 96 97 vp = ap->a_vp; 98 np = VTONFS(vp); 99 td = curthread; /* XXX */ 100 cred = curthread->td_ucred; /* XXX */ 101 nmp = VFSTONFS(vp->v_mount); 102 pages = ap->a_m; 103 count = ap->a_count; 104 105 if ((object = vp->v_object) == NULL) { 106 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 107 return (VM_PAGER_ERROR); 108 } 109 110 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 111 mtx_lock(&np->n_mtx); 112 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 113 mtx_unlock(&np->n_mtx); 114 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 115 return (VM_PAGER_ERROR); 116 } else 117 mtx_unlock(&np->n_mtx); 118 } 119 120 mtx_lock(&nmp->nm_mtx); 121 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 122 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 123 mtx_unlock(&nmp->nm_mtx); 124 /* We'll never get here for v4, because we always have fsinfo */ 125 (void)ncl_fsinfo(nmp, vp, cred, td); 126 } else 127 mtx_unlock(&nmp->nm_mtx); 128 129 npages = btoc(count); 130 131 /* 132 * Since the caller has busied the requested page, that page's valid 133 * field will not be changed by other threads. 134 */ 135 vm_page_assert_xbusied(pages[ap->a_reqpage]); 136 137 /* 138 * If the requested page is partially valid, just return it and 139 * allow the pager to zero-out the blanks. Partially valid pages 140 * can only occur at the file EOF. 141 */ 142 if (pages[ap->a_reqpage]->valid != 0) { 143 vm_pager_free_nonreq(object, pages, ap->a_reqpage, npages, 144 FALSE); 145 return (VM_PAGER_OK); 146 } 147 148 /* 149 * We use only the kva address for the buffer, but this is extremely 150 * convienient and fast. 151 */ 152 bp = getpbuf(&ncl_pbuf_freecnt); 153 154 kva = (vm_offset_t) bp->b_data; 155 pmap_qenter(kva, pages, npages); 156 PCPU_INC(cnt.v_vnodein); 157 PCPU_ADD(cnt.v_vnodepgsin, npages); 158 159 iov.iov_base = (caddr_t) kva; 160 iov.iov_len = count; 161 uio.uio_iov = &iov; 162 uio.uio_iovcnt = 1; 163 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 164 uio.uio_resid = count; 165 uio.uio_segflg = UIO_SYSSPACE; 166 uio.uio_rw = UIO_READ; 167 uio.uio_td = td; 168 169 error = ncl_readrpc(vp, &uio, cred); 170 pmap_qremove(kva, npages); 171 172 relpbuf(bp, &ncl_pbuf_freecnt); 173 174 if (error && (uio.uio_resid == count)) { 175 ncl_printf("nfs_getpages: error %d\n", error); 176 vm_pager_free_nonreq(object, pages, ap->a_reqpage, npages, 177 FALSE); 178 return (VM_PAGER_ERROR); 179 } 180 181 /* 182 * Calculate the number of bytes read and validate only that number 183 * of bytes. Note that due to pending writes, size may be 0. This 184 * does not mean that the remaining data is invalid! 185 */ 186 187 size = count - uio.uio_resid; 188 VM_OBJECT_WLOCK(object); 189 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 190 vm_page_t m; 191 nextoff = toff + PAGE_SIZE; 192 m = pages[i]; 193 194 if (nextoff <= size) { 195 /* 196 * Read operation filled an entire page 197 */ 198 m->valid = VM_PAGE_BITS_ALL; 199 KASSERT(m->dirty == 0, 200 ("nfs_getpages: page %p is dirty", m)); 201 } else if (size > toff) { 202 /* 203 * Read operation filled a partial page. 204 */ 205 m->valid = 0; 206 vm_page_set_valid_range(m, 0, size - toff); 207 KASSERT(m->dirty == 0, 208 ("nfs_getpages: page %p is dirty", m)); 209 } else { 210 /* 211 * Read operation was short. If no error 212 * occured we may have hit a zero-fill 213 * section. We leave valid set to 0, and page 214 * is freed by vm_page_readahead_finish() if 215 * its index is not equal to requested, or 216 * page is zeroed and set valid by 217 * vm_pager_get_pages() for requested page. 218 */ 219 ; 220 } 221 if (i != ap->a_reqpage) 222 vm_page_readahead_finish(m); 223 } 224 VM_OBJECT_WUNLOCK(object); 225 return (0); 226 } 227 228 /* 229 * Vnode op for VM putpages. 230 */ 231 int 232 ncl_putpages(struct vop_putpages_args *ap) 233 { 234 struct uio uio; 235 struct iovec iov; 236 vm_offset_t kva; 237 struct buf *bp; 238 int iomode, must_commit, i, error, npages, count; 239 off_t offset; 240 int *rtvals; 241 struct vnode *vp; 242 struct thread *td; 243 struct ucred *cred; 244 struct nfsmount *nmp; 245 struct nfsnode *np; 246 vm_page_t *pages; 247 248 vp = ap->a_vp; 249 np = VTONFS(vp); 250 td = curthread; /* XXX */ 251 /* Set the cred to n_writecred for the write rpcs. */ 252 if (np->n_writecred != NULL) 253 cred = crhold(np->n_writecred); 254 else 255 cred = crhold(curthread->td_ucred); /* XXX */ 256 nmp = VFSTONFS(vp->v_mount); 257 pages = ap->a_m; 258 count = ap->a_count; 259 rtvals = ap->a_rtvals; 260 npages = btoc(count); 261 offset = IDX_TO_OFF(pages[0]->pindex); 262 263 mtx_lock(&nmp->nm_mtx); 264 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 265 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 266 mtx_unlock(&nmp->nm_mtx); 267 (void)ncl_fsinfo(nmp, vp, cred, td); 268 } else 269 mtx_unlock(&nmp->nm_mtx); 270 271 mtx_lock(&np->n_mtx); 272 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 273 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 274 mtx_unlock(&np->n_mtx); 275 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 276 mtx_lock(&np->n_mtx); 277 } 278 279 for (i = 0; i < npages; i++) 280 rtvals[i] = VM_PAGER_ERROR; 281 282 /* 283 * When putting pages, do not extend file past EOF. 284 */ 285 if (offset + count > np->n_size) { 286 count = np->n_size - offset; 287 if (count < 0) 288 count = 0; 289 } 290 mtx_unlock(&np->n_mtx); 291 292 /* 293 * We use only the kva address for the buffer, but this is extremely 294 * convienient and fast. 295 */ 296 bp = getpbuf(&ncl_pbuf_freecnt); 297 298 kva = (vm_offset_t) bp->b_data; 299 pmap_qenter(kva, pages, npages); 300 PCPU_INC(cnt.v_vnodeout); 301 PCPU_ADD(cnt.v_vnodepgsout, count); 302 303 iov.iov_base = (caddr_t) kva; 304 iov.iov_len = count; 305 uio.uio_iov = &iov; 306 uio.uio_iovcnt = 1; 307 uio.uio_offset = offset; 308 uio.uio_resid = count; 309 uio.uio_segflg = UIO_SYSSPACE; 310 uio.uio_rw = UIO_WRITE; 311 uio.uio_td = td; 312 313 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 314 iomode = NFSWRITE_UNSTABLE; 315 else 316 iomode = NFSWRITE_FILESYNC; 317 318 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0); 319 crfree(cred); 320 321 pmap_qremove(kva, npages); 322 relpbuf(bp, &ncl_pbuf_freecnt); 323 324 if (error == 0 || !nfs_keep_dirty_on_error) { 325 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid); 326 if (must_commit) 327 ncl_clearcommit(vp->v_mount); 328 } 329 return rtvals[0]; 330 } 331 332 /* 333 * For nfs, cache consistency can only be maintained approximately. 334 * Although RFC1094 does not specify the criteria, the following is 335 * believed to be compatible with the reference port. 336 * For nfs: 337 * If the file's modify time on the server has changed since the 338 * last read rpc or you have written to the file, 339 * you may have lost data cache consistency with the 340 * server, so flush all of the file's data out of the cache. 341 * Then force a getattr rpc to ensure that you have up to date 342 * attributes. 343 * NB: This implies that cache data can be read when up to 344 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 345 * attributes this could be forced by setting n_attrstamp to 0 before 346 * the VOP_GETATTR() call. 347 */ 348 static inline int 349 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 350 { 351 int error = 0; 352 struct vattr vattr; 353 struct nfsnode *np = VTONFS(vp); 354 int old_lock; 355 356 /* 357 * Grab the exclusive lock before checking whether the cache is 358 * consistent. 359 * XXX - We can make this cheaper later (by acquiring cheaper locks). 360 * But for now, this suffices. 361 */ 362 old_lock = ncl_upgrade_vnlock(vp); 363 if (vp->v_iflag & VI_DOOMED) { 364 ncl_downgrade_vnlock(vp, old_lock); 365 return (EBADF); 366 } 367 368 mtx_lock(&np->n_mtx); 369 if (np->n_flag & NMODIFIED) { 370 mtx_unlock(&np->n_mtx); 371 if (vp->v_type != VREG) { 372 if (vp->v_type != VDIR) 373 panic("nfs: bioread, not dir"); 374 ncl_invaldir(vp); 375 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 376 if (error) 377 goto out; 378 } 379 np->n_attrstamp = 0; 380 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 381 error = VOP_GETATTR(vp, &vattr, cred); 382 if (error) 383 goto out; 384 mtx_lock(&np->n_mtx); 385 np->n_mtime = vattr.va_mtime; 386 mtx_unlock(&np->n_mtx); 387 } else { 388 mtx_unlock(&np->n_mtx); 389 error = VOP_GETATTR(vp, &vattr, cred); 390 if (error) 391 return (error); 392 mtx_lock(&np->n_mtx); 393 if ((np->n_flag & NSIZECHANGED) 394 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 395 mtx_unlock(&np->n_mtx); 396 if (vp->v_type == VDIR) 397 ncl_invaldir(vp); 398 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 399 if (error) 400 goto out; 401 mtx_lock(&np->n_mtx); 402 np->n_mtime = vattr.va_mtime; 403 np->n_flag &= ~NSIZECHANGED; 404 } 405 mtx_unlock(&np->n_mtx); 406 } 407 out: 408 ncl_downgrade_vnlock(vp, old_lock); 409 return error; 410 } 411 412 /* 413 * Vnode op for read using bio 414 */ 415 int 416 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 417 { 418 struct nfsnode *np = VTONFS(vp); 419 int biosize, i; 420 struct buf *bp, *rabp; 421 struct thread *td; 422 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 423 daddr_t lbn, rabn; 424 int bcount; 425 int seqcount; 426 int nra, error = 0, n = 0, on = 0; 427 off_t tmp_off; 428 429 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 430 if (uio->uio_resid == 0) 431 return (0); 432 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 433 return (EINVAL); 434 td = uio->uio_td; 435 436 mtx_lock(&nmp->nm_mtx); 437 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 438 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 439 mtx_unlock(&nmp->nm_mtx); 440 (void)ncl_fsinfo(nmp, vp, cred, td); 441 mtx_lock(&nmp->nm_mtx); 442 } 443 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 444 (void) newnfs_iosize(nmp); 445 446 tmp_off = uio->uio_offset + uio->uio_resid; 447 if (vp->v_type != VDIR && 448 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 449 mtx_unlock(&nmp->nm_mtx); 450 return (EFBIG); 451 } 452 mtx_unlock(&nmp->nm_mtx); 453 454 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 455 /* No caching/ no readaheads. Just read data into the user buffer */ 456 return ncl_readrpc(vp, uio, cred); 457 458 biosize = vp->v_bufobj.bo_bsize; 459 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 460 461 error = nfs_bioread_check_cons(vp, td, cred); 462 if (error) 463 return error; 464 465 do { 466 u_quad_t nsize; 467 468 mtx_lock(&np->n_mtx); 469 nsize = np->n_size; 470 mtx_unlock(&np->n_mtx); 471 472 switch (vp->v_type) { 473 case VREG: 474 NFSINCRGLOBAL(newnfsstats.biocache_reads); 475 lbn = uio->uio_offset / biosize; 476 on = uio->uio_offset - (lbn * biosize); 477 478 /* 479 * Start the read ahead(s), as required. 480 */ 481 if (nmp->nm_readahead > 0) { 482 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 483 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 484 rabn = lbn + 1 + nra; 485 if (incore(&vp->v_bufobj, rabn) == NULL) { 486 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 487 if (!rabp) { 488 error = newnfs_sigintr(nmp, td); 489 return (error ? error : EINTR); 490 } 491 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 492 rabp->b_flags |= B_ASYNC; 493 rabp->b_iocmd = BIO_READ; 494 vfs_busy_pages(rabp, 0); 495 if (ncl_asyncio(nmp, rabp, cred, td)) { 496 rabp->b_flags |= B_INVAL; 497 rabp->b_ioflags |= BIO_ERROR; 498 vfs_unbusy_pages(rabp); 499 brelse(rabp); 500 break; 501 } 502 } else { 503 brelse(rabp); 504 } 505 } 506 } 507 } 508 509 /* Note that bcount is *not* DEV_BSIZE aligned. */ 510 bcount = biosize; 511 if ((off_t)lbn * biosize >= nsize) { 512 bcount = 0; 513 } else if ((off_t)(lbn + 1) * biosize > nsize) { 514 bcount = nsize - (off_t)lbn * biosize; 515 } 516 bp = nfs_getcacheblk(vp, lbn, bcount, td); 517 518 if (!bp) { 519 error = newnfs_sigintr(nmp, td); 520 return (error ? error : EINTR); 521 } 522 523 /* 524 * If B_CACHE is not set, we must issue the read. If this 525 * fails, we return an error. 526 */ 527 528 if ((bp->b_flags & B_CACHE) == 0) { 529 bp->b_iocmd = BIO_READ; 530 vfs_busy_pages(bp, 0); 531 error = ncl_doio(vp, bp, cred, td, 0); 532 if (error) { 533 brelse(bp); 534 return (error); 535 } 536 } 537 538 /* 539 * on is the offset into the current bp. Figure out how many 540 * bytes we can copy out of the bp. Note that bcount is 541 * NOT DEV_BSIZE aligned. 542 * 543 * Then figure out how many bytes we can copy into the uio. 544 */ 545 546 n = 0; 547 if (on < bcount) 548 n = MIN((unsigned)(bcount - on), uio->uio_resid); 549 break; 550 case VLNK: 551 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 552 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 553 if (!bp) { 554 error = newnfs_sigintr(nmp, td); 555 return (error ? error : EINTR); 556 } 557 if ((bp->b_flags & B_CACHE) == 0) { 558 bp->b_iocmd = BIO_READ; 559 vfs_busy_pages(bp, 0); 560 error = ncl_doio(vp, bp, cred, td, 0); 561 if (error) { 562 bp->b_ioflags |= BIO_ERROR; 563 brelse(bp); 564 return (error); 565 } 566 } 567 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 568 on = 0; 569 break; 570 case VDIR: 571 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 572 if (np->n_direofoffset 573 && uio->uio_offset >= np->n_direofoffset) { 574 return (0); 575 } 576 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 577 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 578 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 579 if (!bp) { 580 error = newnfs_sigintr(nmp, td); 581 return (error ? error : EINTR); 582 } 583 if ((bp->b_flags & B_CACHE) == 0) { 584 bp->b_iocmd = BIO_READ; 585 vfs_busy_pages(bp, 0); 586 error = ncl_doio(vp, bp, cred, td, 0); 587 if (error) { 588 brelse(bp); 589 } 590 while (error == NFSERR_BAD_COOKIE) { 591 ncl_invaldir(vp); 592 error = ncl_vinvalbuf(vp, 0, td, 1); 593 /* 594 * Yuck! The directory has been modified on the 595 * server. The only way to get the block is by 596 * reading from the beginning to get all the 597 * offset cookies. 598 * 599 * Leave the last bp intact unless there is an error. 600 * Loop back up to the while if the error is another 601 * NFSERR_BAD_COOKIE (double yuch!). 602 */ 603 for (i = 0; i <= lbn && !error; i++) { 604 if (np->n_direofoffset 605 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 606 return (0); 607 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 608 if (!bp) { 609 error = newnfs_sigintr(nmp, td); 610 return (error ? error : EINTR); 611 } 612 if ((bp->b_flags & B_CACHE) == 0) { 613 bp->b_iocmd = BIO_READ; 614 vfs_busy_pages(bp, 0); 615 error = ncl_doio(vp, bp, cred, td, 0); 616 /* 617 * no error + B_INVAL == directory EOF, 618 * use the block. 619 */ 620 if (error == 0 && (bp->b_flags & B_INVAL)) 621 break; 622 } 623 /* 624 * An error will throw away the block and the 625 * for loop will break out. If no error and this 626 * is not the block we want, we throw away the 627 * block and go for the next one via the for loop. 628 */ 629 if (error || i < lbn) 630 brelse(bp); 631 } 632 } 633 /* 634 * The above while is repeated if we hit another cookie 635 * error. If we hit an error and it wasn't a cookie error, 636 * we give up. 637 */ 638 if (error) 639 return (error); 640 } 641 642 /* 643 * If not eof and read aheads are enabled, start one. 644 * (You need the current block first, so that you have the 645 * directory offset cookie of the next block.) 646 */ 647 if (nmp->nm_readahead > 0 && 648 (bp->b_flags & B_INVAL) == 0 && 649 (np->n_direofoffset == 0 || 650 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 651 incore(&vp->v_bufobj, lbn + 1) == NULL) { 652 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 653 if (rabp) { 654 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 655 rabp->b_flags |= B_ASYNC; 656 rabp->b_iocmd = BIO_READ; 657 vfs_busy_pages(rabp, 0); 658 if (ncl_asyncio(nmp, rabp, cred, td)) { 659 rabp->b_flags |= B_INVAL; 660 rabp->b_ioflags |= BIO_ERROR; 661 vfs_unbusy_pages(rabp); 662 brelse(rabp); 663 } 664 } else { 665 brelse(rabp); 666 } 667 } 668 } 669 /* 670 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 671 * chopped for the EOF condition, we cannot tell how large 672 * NFS directories are going to be until we hit EOF. So 673 * an NFS directory buffer is *not* chopped to its EOF. Now, 674 * it just so happens that b_resid will effectively chop it 675 * to EOF. *BUT* this information is lost if the buffer goes 676 * away and is reconstituted into a B_CACHE state ( due to 677 * being VMIO ) later. So we keep track of the directory eof 678 * in np->n_direofoffset and chop it off as an extra step 679 * right here. 680 */ 681 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 682 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 683 n = np->n_direofoffset - uio->uio_offset; 684 break; 685 default: 686 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 687 bp = NULL; 688 break; 689 }; 690 691 if (n > 0) { 692 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 693 } 694 if (vp->v_type == VLNK) 695 n = 0; 696 if (bp != NULL) 697 brelse(bp); 698 } while (error == 0 && uio->uio_resid > 0 && n > 0); 699 return (error); 700 } 701 702 /* 703 * The NFS write path cannot handle iovecs with len > 1. So we need to 704 * break up iovecs accordingly (restricting them to wsize). 705 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 706 * For the ASYNC case, 2 copies are needed. The first a copy from the 707 * user buffer to a staging buffer and then a second copy from the staging 708 * buffer to mbufs. This can be optimized by copying from the user buffer 709 * directly into mbufs and passing the chain down, but that requires a 710 * fair amount of re-working of the relevant codepaths (and can be done 711 * later). 712 */ 713 static int 714 nfs_directio_write(vp, uiop, cred, ioflag) 715 struct vnode *vp; 716 struct uio *uiop; 717 struct ucred *cred; 718 int ioflag; 719 { 720 int error; 721 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 722 struct thread *td = uiop->uio_td; 723 int size; 724 int wsize; 725 726 mtx_lock(&nmp->nm_mtx); 727 wsize = nmp->nm_wsize; 728 mtx_unlock(&nmp->nm_mtx); 729 if (ioflag & IO_SYNC) { 730 int iomode, must_commit; 731 struct uio uio; 732 struct iovec iov; 733 do_sync: 734 while (uiop->uio_resid > 0) { 735 size = MIN(uiop->uio_resid, wsize); 736 size = MIN(uiop->uio_iov->iov_len, size); 737 iov.iov_base = uiop->uio_iov->iov_base; 738 iov.iov_len = size; 739 uio.uio_iov = &iov; 740 uio.uio_iovcnt = 1; 741 uio.uio_offset = uiop->uio_offset; 742 uio.uio_resid = size; 743 uio.uio_segflg = UIO_USERSPACE; 744 uio.uio_rw = UIO_WRITE; 745 uio.uio_td = td; 746 iomode = NFSWRITE_FILESYNC; 747 error = ncl_writerpc(vp, &uio, cred, &iomode, 748 &must_commit, 0); 749 KASSERT((must_commit == 0), 750 ("ncl_directio_write: Did not commit write")); 751 if (error) 752 return (error); 753 uiop->uio_offset += size; 754 uiop->uio_resid -= size; 755 if (uiop->uio_iov->iov_len <= size) { 756 uiop->uio_iovcnt--; 757 uiop->uio_iov++; 758 } else { 759 uiop->uio_iov->iov_base = 760 (char *)uiop->uio_iov->iov_base + size; 761 uiop->uio_iov->iov_len -= size; 762 } 763 } 764 } else { 765 struct uio *t_uio; 766 struct iovec *t_iov; 767 struct buf *bp; 768 769 /* 770 * Break up the write into blocksize chunks and hand these 771 * over to nfsiod's for write back. 772 * Unfortunately, this incurs a copy of the data. Since 773 * the user could modify the buffer before the write is 774 * initiated. 775 * 776 * The obvious optimization here is that one of the 2 copies 777 * in the async write path can be eliminated by copying the 778 * data here directly into mbufs and passing the mbuf chain 779 * down. But that will require a fair amount of re-working 780 * of the code and can be done if there's enough interest 781 * in NFS directio access. 782 */ 783 while (uiop->uio_resid > 0) { 784 size = MIN(uiop->uio_resid, wsize); 785 size = MIN(uiop->uio_iov->iov_len, size); 786 bp = getpbuf(&ncl_pbuf_freecnt); 787 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 788 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 789 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 790 t_iov->iov_len = size; 791 t_uio->uio_iov = t_iov; 792 t_uio->uio_iovcnt = 1; 793 t_uio->uio_offset = uiop->uio_offset; 794 t_uio->uio_resid = size; 795 t_uio->uio_segflg = UIO_SYSSPACE; 796 t_uio->uio_rw = UIO_WRITE; 797 t_uio->uio_td = td; 798 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 799 uiop->uio_segflg == UIO_SYSSPACE, 800 ("nfs_directio_write: Bad uio_segflg")); 801 if (uiop->uio_segflg == UIO_USERSPACE) { 802 error = copyin(uiop->uio_iov->iov_base, 803 t_iov->iov_base, size); 804 if (error != 0) 805 goto err_free; 806 } else 807 /* 808 * UIO_SYSSPACE may never happen, but handle 809 * it just in case it does. 810 */ 811 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 812 size); 813 bp->b_flags |= B_DIRECT; 814 bp->b_iocmd = BIO_WRITE; 815 if (cred != NOCRED) { 816 crhold(cred); 817 bp->b_wcred = cred; 818 } else 819 bp->b_wcred = NOCRED; 820 bp->b_caller1 = (void *)t_uio; 821 bp->b_vp = vp; 822 error = ncl_asyncio(nmp, bp, NOCRED, td); 823 err_free: 824 if (error) { 825 free(t_iov->iov_base, M_NFSDIRECTIO); 826 free(t_iov, M_NFSDIRECTIO); 827 free(t_uio, M_NFSDIRECTIO); 828 bp->b_vp = NULL; 829 relpbuf(bp, &ncl_pbuf_freecnt); 830 if (error == EINTR) 831 return (error); 832 goto do_sync; 833 } 834 uiop->uio_offset += size; 835 uiop->uio_resid -= size; 836 if (uiop->uio_iov->iov_len <= size) { 837 uiop->uio_iovcnt--; 838 uiop->uio_iov++; 839 } else { 840 uiop->uio_iov->iov_base = 841 (char *)uiop->uio_iov->iov_base + size; 842 uiop->uio_iov->iov_len -= size; 843 } 844 } 845 } 846 return (0); 847 } 848 849 /* 850 * Vnode op for write using bio 851 */ 852 int 853 ncl_write(struct vop_write_args *ap) 854 { 855 int biosize; 856 struct uio *uio = ap->a_uio; 857 struct thread *td = uio->uio_td; 858 struct vnode *vp = ap->a_vp; 859 struct nfsnode *np = VTONFS(vp); 860 struct ucred *cred = ap->a_cred; 861 int ioflag = ap->a_ioflag; 862 struct buf *bp; 863 struct vattr vattr; 864 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 865 daddr_t lbn; 866 int bcount, noncontig_write, obcount; 867 int bp_cached, n, on, error = 0, error1, wouldcommit; 868 size_t orig_resid, local_resid; 869 off_t orig_size, tmp_off; 870 871 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 872 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 873 ("ncl_write proc")); 874 if (vp->v_type != VREG) 875 return (EIO); 876 mtx_lock(&np->n_mtx); 877 if (np->n_flag & NWRITEERR) { 878 np->n_flag &= ~NWRITEERR; 879 mtx_unlock(&np->n_mtx); 880 return (np->n_error); 881 } else 882 mtx_unlock(&np->n_mtx); 883 mtx_lock(&nmp->nm_mtx); 884 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 885 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 886 mtx_unlock(&nmp->nm_mtx); 887 (void)ncl_fsinfo(nmp, vp, cred, td); 888 mtx_lock(&nmp->nm_mtx); 889 } 890 if (nmp->nm_wsize == 0) 891 (void) newnfs_iosize(nmp); 892 mtx_unlock(&nmp->nm_mtx); 893 894 /* 895 * Synchronously flush pending buffers if we are in synchronous 896 * mode or if we are appending. 897 */ 898 if (ioflag & (IO_APPEND | IO_SYNC)) { 899 mtx_lock(&np->n_mtx); 900 if (np->n_flag & NMODIFIED) { 901 mtx_unlock(&np->n_mtx); 902 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 903 /* 904 * Require non-blocking, synchronous writes to 905 * dirty files to inform the program it needs 906 * to fsync(2) explicitly. 907 */ 908 if (ioflag & IO_NDELAY) 909 return (EAGAIN); 910 #endif 911 np->n_attrstamp = 0; 912 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 913 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 914 if (error) 915 return (error); 916 } else 917 mtx_unlock(&np->n_mtx); 918 } 919 920 orig_resid = uio->uio_resid; 921 mtx_lock(&np->n_mtx); 922 orig_size = np->n_size; 923 mtx_unlock(&np->n_mtx); 924 925 /* 926 * If IO_APPEND then load uio_offset. We restart here if we cannot 927 * get the append lock. 928 */ 929 if (ioflag & IO_APPEND) { 930 np->n_attrstamp = 0; 931 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 932 error = VOP_GETATTR(vp, &vattr, cred); 933 if (error) 934 return (error); 935 mtx_lock(&np->n_mtx); 936 uio->uio_offset = np->n_size; 937 mtx_unlock(&np->n_mtx); 938 } 939 940 if (uio->uio_offset < 0) 941 return (EINVAL); 942 tmp_off = uio->uio_offset + uio->uio_resid; 943 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 944 return (EFBIG); 945 if (uio->uio_resid == 0) 946 return (0); 947 948 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 949 return nfs_directio_write(vp, uio, cred, ioflag); 950 951 /* 952 * Maybe this should be above the vnode op call, but so long as 953 * file servers have no limits, i don't think it matters 954 */ 955 if (vn_rlimit_fsize(vp, uio, td)) 956 return (EFBIG); 957 958 biosize = vp->v_bufobj.bo_bsize; 959 /* 960 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 961 * would exceed the local maximum per-file write commit size when 962 * combined with those, we must decide whether to flush, 963 * go synchronous, or return error. We don't bother checking 964 * IO_UNIT -- we just make all writes atomic anyway, as there's 965 * no point optimizing for something that really won't ever happen. 966 */ 967 wouldcommit = 0; 968 if (!(ioflag & IO_SYNC)) { 969 int nflag; 970 971 mtx_lock(&np->n_mtx); 972 nflag = np->n_flag; 973 mtx_unlock(&np->n_mtx); 974 if (nflag & NMODIFIED) { 975 BO_LOCK(&vp->v_bufobj); 976 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 977 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 978 b_bobufs) { 979 if (bp->b_flags & B_NEEDCOMMIT) 980 wouldcommit += bp->b_bcount; 981 } 982 } 983 BO_UNLOCK(&vp->v_bufobj); 984 } 985 } 986 987 do { 988 if (!(ioflag & IO_SYNC)) { 989 wouldcommit += biosize; 990 if (wouldcommit > nmp->nm_wcommitsize) { 991 np->n_attrstamp = 0; 992 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 993 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 994 if (error) 995 return (error); 996 wouldcommit = biosize; 997 } 998 } 999 1000 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1001 lbn = uio->uio_offset / biosize; 1002 on = uio->uio_offset - (lbn * biosize); 1003 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1004 again: 1005 /* 1006 * Handle direct append and file extension cases, calculate 1007 * unaligned buffer size. 1008 */ 1009 mtx_lock(&np->n_mtx); 1010 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1011 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1012 noncontig_write = 1; 1013 else 1014 noncontig_write = 0; 1015 if ((uio->uio_offset == np->n_size || 1016 (noncontig_write != 0 && 1017 lbn == (np->n_size / biosize) && 1018 uio->uio_offset + n > np->n_size)) && n) { 1019 mtx_unlock(&np->n_mtx); 1020 /* 1021 * Get the buffer (in its pre-append state to maintain 1022 * B_CACHE if it was previously set). Resize the 1023 * nfsnode after we have locked the buffer to prevent 1024 * readers from reading garbage. 1025 */ 1026 obcount = np->n_size - (lbn * biosize); 1027 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1028 1029 if (bp != NULL) { 1030 long save; 1031 1032 mtx_lock(&np->n_mtx); 1033 np->n_size = uio->uio_offset + n; 1034 np->n_flag |= NMODIFIED; 1035 vnode_pager_setsize(vp, np->n_size); 1036 mtx_unlock(&np->n_mtx); 1037 1038 save = bp->b_flags & B_CACHE; 1039 bcount = on + n; 1040 allocbuf(bp, bcount); 1041 bp->b_flags |= save; 1042 if (noncontig_write != 0 && on > obcount) 1043 vfs_bio_bzero_buf(bp, obcount, on - 1044 obcount); 1045 } 1046 } else { 1047 /* 1048 * Obtain the locked cache block first, and then 1049 * adjust the file's size as appropriate. 1050 */ 1051 bcount = on + n; 1052 if ((off_t)lbn * biosize + bcount < np->n_size) { 1053 if ((off_t)(lbn + 1) * biosize < np->n_size) 1054 bcount = biosize; 1055 else 1056 bcount = np->n_size - (off_t)lbn * biosize; 1057 } 1058 mtx_unlock(&np->n_mtx); 1059 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1060 mtx_lock(&np->n_mtx); 1061 if (uio->uio_offset + n > np->n_size) { 1062 np->n_size = uio->uio_offset + n; 1063 np->n_flag |= NMODIFIED; 1064 vnode_pager_setsize(vp, np->n_size); 1065 } 1066 mtx_unlock(&np->n_mtx); 1067 } 1068 1069 if (!bp) { 1070 error = newnfs_sigintr(nmp, td); 1071 if (!error) 1072 error = EINTR; 1073 break; 1074 } 1075 1076 /* 1077 * Issue a READ if B_CACHE is not set. In special-append 1078 * mode, B_CACHE is based on the buffer prior to the write 1079 * op and is typically set, avoiding the read. If a read 1080 * is required in special append mode, the server will 1081 * probably send us a short-read since we extended the file 1082 * on our end, resulting in b_resid == 0 and, thusly, 1083 * B_CACHE getting set. 1084 * 1085 * We can also avoid issuing the read if the write covers 1086 * the entire buffer. We have to make sure the buffer state 1087 * is reasonable in this case since we will not be initiating 1088 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1089 * more information. 1090 * 1091 * B_CACHE may also be set due to the buffer being cached 1092 * normally. 1093 */ 1094 1095 bp_cached = 1; 1096 if (on == 0 && n == bcount) { 1097 if ((bp->b_flags & B_CACHE) == 0) 1098 bp_cached = 0; 1099 bp->b_flags |= B_CACHE; 1100 bp->b_flags &= ~B_INVAL; 1101 bp->b_ioflags &= ~BIO_ERROR; 1102 } 1103 1104 if ((bp->b_flags & B_CACHE) == 0) { 1105 bp->b_iocmd = BIO_READ; 1106 vfs_busy_pages(bp, 0); 1107 error = ncl_doio(vp, bp, cred, td, 0); 1108 if (error) { 1109 brelse(bp); 1110 break; 1111 } 1112 } 1113 if (bp->b_wcred == NOCRED) 1114 bp->b_wcred = crhold(cred); 1115 mtx_lock(&np->n_mtx); 1116 np->n_flag |= NMODIFIED; 1117 mtx_unlock(&np->n_mtx); 1118 1119 /* 1120 * If dirtyend exceeds file size, chop it down. This should 1121 * not normally occur but there is an append race where it 1122 * might occur XXX, so we log it. 1123 * 1124 * If the chopping creates a reverse-indexed or degenerate 1125 * situation with dirtyoff/end, we 0 both of them. 1126 */ 1127 1128 if (bp->b_dirtyend > bcount) { 1129 ncl_printf("NFS append race @%lx:%d\n", 1130 (long)bp->b_blkno * DEV_BSIZE, 1131 bp->b_dirtyend - bcount); 1132 bp->b_dirtyend = bcount; 1133 } 1134 1135 if (bp->b_dirtyoff >= bp->b_dirtyend) 1136 bp->b_dirtyoff = bp->b_dirtyend = 0; 1137 1138 /* 1139 * If the new write will leave a contiguous dirty 1140 * area, just update the b_dirtyoff and b_dirtyend, 1141 * otherwise force a write rpc of the old dirty area. 1142 * 1143 * If there has been a file lock applied to this file 1144 * or vfs.nfs.old_noncontig_writing is set, do the following: 1145 * While it is possible to merge discontiguous writes due to 1146 * our having a B_CACHE buffer ( and thus valid read data 1147 * for the hole), we don't because it could lead to 1148 * significant cache coherency problems with multiple clients, 1149 * especially if locking is implemented later on. 1150 * 1151 * If vfs.nfs.old_noncontig_writing is not set and there has 1152 * not been file locking done on this file: 1153 * Relax coherency a bit for the sake of performance and 1154 * expand the current dirty region to contain the new 1155 * write even if it means we mark some non-dirty data as 1156 * dirty. 1157 */ 1158 1159 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1160 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1161 if (bwrite(bp) == EINTR) { 1162 error = EINTR; 1163 break; 1164 } 1165 goto again; 1166 } 1167 1168 local_resid = uio->uio_resid; 1169 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1170 1171 if (error != 0 && !bp_cached) { 1172 /* 1173 * This block has no other content then what 1174 * possibly was written by the faulty uiomove. 1175 * Release it, forgetting the data pages, to 1176 * prevent the leak of uninitialized data to 1177 * usermode. 1178 */ 1179 bp->b_ioflags |= BIO_ERROR; 1180 brelse(bp); 1181 uio->uio_offset -= local_resid - uio->uio_resid; 1182 uio->uio_resid = local_resid; 1183 break; 1184 } 1185 1186 /* 1187 * Since this block is being modified, it must be written 1188 * again and not just committed. Since write clustering does 1189 * not work for the stage 1 data write, only the stage 2 1190 * commit rpc, we have to clear B_CLUSTEROK as well. 1191 */ 1192 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1193 1194 /* 1195 * Get the partial update on the progress made from 1196 * uiomove, if an error occured. 1197 */ 1198 if (error != 0) 1199 n = local_resid - uio->uio_resid; 1200 1201 /* 1202 * Only update dirtyoff/dirtyend if not a degenerate 1203 * condition. 1204 */ 1205 if (n > 0) { 1206 if (bp->b_dirtyend > 0) { 1207 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1208 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1209 } else { 1210 bp->b_dirtyoff = on; 1211 bp->b_dirtyend = on + n; 1212 } 1213 vfs_bio_set_valid(bp, on, n); 1214 } 1215 1216 /* 1217 * If IO_SYNC do bwrite(). 1218 * 1219 * IO_INVAL appears to be unused. The idea appears to be 1220 * to turn off caching in this case. Very odd. XXX 1221 */ 1222 if ((ioflag & IO_SYNC)) { 1223 if (ioflag & IO_INVAL) 1224 bp->b_flags |= B_NOCACHE; 1225 error1 = bwrite(bp); 1226 if (error1 != 0) { 1227 if (error == 0) 1228 error = error1; 1229 break; 1230 } 1231 } else if ((n + on) == biosize) { 1232 bp->b_flags |= B_ASYNC; 1233 (void) ncl_writebp(bp, 0, NULL); 1234 } else { 1235 bdwrite(bp); 1236 } 1237 1238 if (error != 0) 1239 break; 1240 } while (uio->uio_resid > 0 && n > 0); 1241 1242 if (error != 0) { 1243 if (ioflag & IO_UNIT) { 1244 VATTR_NULL(&vattr); 1245 vattr.va_size = orig_size; 1246 /* IO_SYNC is handled implicitely */ 1247 (void)VOP_SETATTR(vp, &vattr, cred); 1248 uio->uio_offset -= orig_resid - uio->uio_resid; 1249 uio->uio_resid = orig_resid; 1250 } 1251 } 1252 1253 return (error); 1254 } 1255 1256 /* 1257 * Get an nfs cache block. 1258 * 1259 * Allocate a new one if the block isn't currently in the cache 1260 * and return the block marked busy. If the calling process is 1261 * interrupted by a signal for an interruptible mount point, return 1262 * NULL. 1263 * 1264 * The caller must carefully deal with the possible B_INVAL state of 1265 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1266 * indirectly), so synchronous reads can be issued without worrying about 1267 * the B_INVAL state. We have to be a little more careful when dealing 1268 * with writes (see comments in nfs_write()) when extending a file past 1269 * its EOF. 1270 */ 1271 static struct buf * 1272 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1273 { 1274 struct buf *bp; 1275 struct mount *mp; 1276 struct nfsmount *nmp; 1277 1278 mp = vp->v_mount; 1279 nmp = VFSTONFS(mp); 1280 1281 if (nmp->nm_flag & NFSMNT_INT) { 1282 sigset_t oldset; 1283 1284 newnfs_set_sigmask(td, &oldset); 1285 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1286 newnfs_restore_sigmask(td, &oldset); 1287 while (bp == NULL) { 1288 if (newnfs_sigintr(nmp, td)) 1289 return (NULL); 1290 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1291 } 1292 } else { 1293 bp = getblk(vp, bn, size, 0, 0, 0); 1294 } 1295 1296 if (vp->v_type == VREG) 1297 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1298 return (bp); 1299 } 1300 1301 /* 1302 * Flush and invalidate all dirty buffers. If another process is already 1303 * doing the flush, just wait for completion. 1304 */ 1305 int 1306 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1307 { 1308 struct nfsnode *np = VTONFS(vp); 1309 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1310 int error = 0, slpflag, slptimeo; 1311 int old_lock = 0; 1312 1313 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1314 1315 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1316 intrflg = 0; 1317 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1318 intrflg = 1; 1319 if (intrflg) { 1320 slpflag = PCATCH; 1321 slptimeo = 2 * hz; 1322 } else { 1323 slpflag = 0; 1324 slptimeo = 0; 1325 } 1326 1327 old_lock = ncl_upgrade_vnlock(vp); 1328 if (vp->v_iflag & VI_DOOMED) { 1329 /* 1330 * Since vgonel() uses the generic vinvalbuf() to flush 1331 * dirty buffers and it does not call this function, it 1332 * is safe to just return OK when VI_DOOMED is set. 1333 */ 1334 ncl_downgrade_vnlock(vp, old_lock); 1335 return (0); 1336 } 1337 1338 /* 1339 * Now, flush as required. 1340 */ 1341 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1342 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1343 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1344 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1345 /* 1346 * If the page clean was interrupted, fail the invalidation. 1347 * Not doing so, we run the risk of losing dirty pages in the 1348 * vinvalbuf() call below. 1349 */ 1350 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1351 goto out; 1352 } 1353 1354 error = vinvalbuf(vp, flags, slpflag, 0); 1355 while (error) { 1356 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1357 goto out; 1358 error = vinvalbuf(vp, flags, 0, slptimeo); 1359 } 1360 if (NFSHASPNFS(nmp)) { 1361 nfscl_layoutcommit(vp, td); 1362 /* 1363 * Invalidate the attribute cache, since writes to a DS 1364 * won't update the size attribute. 1365 */ 1366 mtx_lock(&np->n_mtx); 1367 np->n_attrstamp = 0; 1368 } else 1369 mtx_lock(&np->n_mtx); 1370 if (np->n_directio_asyncwr == 0) 1371 np->n_flag &= ~NMODIFIED; 1372 mtx_unlock(&np->n_mtx); 1373 out: 1374 ncl_downgrade_vnlock(vp, old_lock); 1375 return error; 1376 } 1377 1378 /* 1379 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1380 * This is mainly to avoid queueing async I/O requests when the nfsiods 1381 * are all hung on a dead server. 1382 * 1383 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1384 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1385 */ 1386 int 1387 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1388 { 1389 int iod; 1390 int gotiod; 1391 int slpflag = 0; 1392 int slptimeo = 0; 1393 int error, error2; 1394 1395 /* 1396 * Commits are usually short and sweet so lets save some cpu and 1397 * leave the async daemons for more important rpc's (such as reads 1398 * and writes). 1399 * 1400 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1401 * in the directory in order to update attributes. This can deadlock 1402 * with another thread that is waiting for async I/O to be done by 1403 * an nfsiod thread while holding a lock on one of these vnodes. 1404 * To avoid this deadlock, don't allow the async nfsiod threads to 1405 * perform Readdirplus RPCs. 1406 */ 1407 mtx_lock(&ncl_iod_mutex); 1408 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1409 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1410 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1411 mtx_unlock(&ncl_iod_mutex); 1412 return(EIO); 1413 } 1414 again: 1415 if (nmp->nm_flag & NFSMNT_INT) 1416 slpflag = PCATCH; 1417 gotiod = FALSE; 1418 1419 /* 1420 * Find a free iod to process this request. 1421 */ 1422 for (iod = 0; iod < ncl_numasync; iod++) 1423 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1424 gotiod = TRUE; 1425 break; 1426 } 1427 1428 /* 1429 * Try to create one if none are free. 1430 */ 1431 if (!gotiod) 1432 ncl_nfsiodnew(); 1433 else { 1434 /* 1435 * Found one, so wake it up and tell it which 1436 * mount to process. 1437 */ 1438 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1439 iod, nmp)); 1440 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1441 ncl_iodmount[iod] = nmp; 1442 nmp->nm_bufqiods++; 1443 wakeup(&ncl_iodwant[iod]); 1444 } 1445 1446 /* 1447 * If none are free, we may already have an iod working on this mount 1448 * point. If so, it will process our request. 1449 */ 1450 if (!gotiod) { 1451 if (nmp->nm_bufqiods > 0) { 1452 NFS_DPF(ASYNCIO, 1453 ("ncl_asyncio: %d iods are already processing mount %p\n", 1454 nmp->nm_bufqiods, nmp)); 1455 gotiod = TRUE; 1456 } 1457 } 1458 1459 /* 1460 * If we have an iod which can process the request, then queue 1461 * the buffer. 1462 */ 1463 if (gotiod) { 1464 /* 1465 * Ensure that the queue never grows too large. We still want 1466 * to asynchronize so we block rather then return EIO. 1467 */ 1468 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1469 NFS_DPF(ASYNCIO, 1470 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1471 nmp->nm_bufqwant = TRUE; 1472 error = newnfs_msleep(td, &nmp->nm_bufq, 1473 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1474 slptimeo); 1475 if (error) { 1476 error2 = newnfs_sigintr(nmp, td); 1477 if (error2) { 1478 mtx_unlock(&ncl_iod_mutex); 1479 return (error2); 1480 } 1481 if (slpflag == PCATCH) { 1482 slpflag = 0; 1483 slptimeo = 2 * hz; 1484 } 1485 } 1486 /* 1487 * We might have lost our iod while sleeping, 1488 * so check and loop if nescessary. 1489 */ 1490 goto again; 1491 } 1492 1493 /* We might have lost our nfsiod */ 1494 if (nmp->nm_bufqiods == 0) { 1495 NFS_DPF(ASYNCIO, 1496 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1497 goto again; 1498 } 1499 1500 if (bp->b_iocmd == BIO_READ) { 1501 if (bp->b_rcred == NOCRED && cred != NOCRED) 1502 bp->b_rcred = crhold(cred); 1503 } else { 1504 if (bp->b_wcred == NOCRED && cred != NOCRED) 1505 bp->b_wcred = crhold(cred); 1506 } 1507 1508 if (bp->b_flags & B_REMFREE) 1509 bremfreef(bp); 1510 BUF_KERNPROC(bp); 1511 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1512 nmp->nm_bufqlen++; 1513 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1514 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1515 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1516 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1517 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1518 } 1519 mtx_unlock(&ncl_iod_mutex); 1520 return (0); 1521 } 1522 1523 mtx_unlock(&ncl_iod_mutex); 1524 1525 /* 1526 * All the iods are busy on other mounts, so return EIO to 1527 * force the caller to process the i/o synchronously. 1528 */ 1529 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1530 return (EIO); 1531 } 1532 1533 void 1534 ncl_doio_directwrite(struct buf *bp) 1535 { 1536 int iomode, must_commit; 1537 struct uio *uiop = (struct uio *)bp->b_caller1; 1538 char *iov_base = uiop->uio_iov->iov_base; 1539 1540 iomode = NFSWRITE_FILESYNC; 1541 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1542 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1543 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1544 free(iov_base, M_NFSDIRECTIO); 1545 free(uiop->uio_iov, M_NFSDIRECTIO); 1546 free(uiop, M_NFSDIRECTIO); 1547 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1548 struct nfsnode *np = VTONFS(bp->b_vp); 1549 mtx_lock(&np->n_mtx); 1550 if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) { 1551 /* 1552 * Invalidate the attribute cache, since writes to a DS 1553 * won't update the size attribute. 1554 */ 1555 np->n_attrstamp = 0; 1556 } 1557 np->n_directio_asyncwr--; 1558 if (np->n_directio_asyncwr == 0) { 1559 np->n_flag &= ~NMODIFIED; 1560 if ((np->n_flag & NFSYNCWAIT)) { 1561 np->n_flag &= ~NFSYNCWAIT; 1562 wakeup((caddr_t)&np->n_directio_asyncwr); 1563 } 1564 } 1565 mtx_unlock(&np->n_mtx); 1566 } 1567 bp->b_vp = NULL; 1568 relpbuf(bp, &ncl_pbuf_freecnt); 1569 } 1570 1571 /* 1572 * Do an I/O operation to/from a cache block. This may be called 1573 * synchronously or from an nfsiod. 1574 */ 1575 int 1576 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1577 int called_from_strategy) 1578 { 1579 struct uio *uiop; 1580 struct nfsnode *np; 1581 struct nfsmount *nmp; 1582 int error = 0, iomode, must_commit = 0; 1583 struct uio uio; 1584 struct iovec io; 1585 struct proc *p = td ? td->td_proc : NULL; 1586 uint8_t iocmd; 1587 1588 np = VTONFS(vp); 1589 nmp = VFSTONFS(vp->v_mount); 1590 uiop = &uio; 1591 uiop->uio_iov = &io; 1592 uiop->uio_iovcnt = 1; 1593 uiop->uio_segflg = UIO_SYSSPACE; 1594 uiop->uio_td = td; 1595 1596 /* 1597 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1598 * do this here so we do not have to do it in all the code that 1599 * calls us. 1600 */ 1601 bp->b_flags &= ~B_INVAL; 1602 bp->b_ioflags &= ~BIO_ERROR; 1603 1604 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1605 iocmd = bp->b_iocmd; 1606 if (iocmd == BIO_READ) { 1607 io.iov_len = uiop->uio_resid = bp->b_bcount; 1608 io.iov_base = bp->b_data; 1609 uiop->uio_rw = UIO_READ; 1610 1611 switch (vp->v_type) { 1612 case VREG: 1613 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1614 NFSINCRGLOBAL(newnfsstats.read_bios); 1615 error = ncl_readrpc(vp, uiop, cr); 1616 1617 if (!error) { 1618 if (uiop->uio_resid) { 1619 /* 1620 * If we had a short read with no error, we must have 1621 * hit a file hole. We should zero-fill the remainder. 1622 * This can also occur if the server hits the file EOF. 1623 * 1624 * Holes used to be able to occur due to pending 1625 * writes, but that is not possible any longer. 1626 */ 1627 int nread = bp->b_bcount - uiop->uio_resid; 1628 ssize_t left = uiop->uio_resid; 1629 1630 if (left > 0) 1631 bzero((char *)bp->b_data + nread, left); 1632 uiop->uio_resid = 0; 1633 } 1634 } 1635 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1636 if (p && (vp->v_vflag & VV_TEXT)) { 1637 mtx_lock(&np->n_mtx); 1638 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1639 mtx_unlock(&np->n_mtx); 1640 PROC_LOCK(p); 1641 killproc(p, "text file modification"); 1642 PROC_UNLOCK(p); 1643 } else 1644 mtx_unlock(&np->n_mtx); 1645 } 1646 break; 1647 case VLNK: 1648 uiop->uio_offset = (off_t)0; 1649 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1650 error = ncl_readlinkrpc(vp, uiop, cr); 1651 break; 1652 case VDIR: 1653 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1654 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1655 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1656 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1657 if (error == NFSERR_NOTSUPP) 1658 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1659 } 1660 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1661 error = ncl_readdirrpc(vp, uiop, cr, td); 1662 /* 1663 * end-of-directory sets B_INVAL but does not generate an 1664 * error. 1665 */ 1666 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1667 bp->b_flags |= B_INVAL; 1668 break; 1669 default: 1670 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1671 break; 1672 }; 1673 if (error) { 1674 bp->b_ioflags |= BIO_ERROR; 1675 bp->b_error = error; 1676 } 1677 } else { 1678 /* 1679 * If we only need to commit, try to commit 1680 */ 1681 if (bp->b_flags & B_NEEDCOMMIT) { 1682 int retv; 1683 off_t off; 1684 1685 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1686 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1687 bp->b_wcred, td); 1688 if (retv == 0) { 1689 bp->b_dirtyoff = bp->b_dirtyend = 0; 1690 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1691 bp->b_resid = 0; 1692 bufdone(bp); 1693 return (0); 1694 } 1695 if (retv == NFSERR_STALEWRITEVERF) { 1696 ncl_clearcommit(vp->v_mount); 1697 } 1698 } 1699 1700 /* 1701 * Setup for actual write 1702 */ 1703 mtx_lock(&np->n_mtx); 1704 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1705 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1706 mtx_unlock(&np->n_mtx); 1707 1708 if (bp->b_dirtyend > bp->b_dirtyoff) { 1709 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1710 - bp->b_dirtyoff; 1711 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1712 + bp->b_dirtyoff; 1713 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1714 uiop->uio_rw = UIO_WRITE; 1715 NFSINCRGLOBAL(newnfsstats.write_bios); 1716 1717 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1718 iomode = NFSWRITE_UNSTABLE; 1719 else 1720 iomode = NFSWRITE_FILESYNC; 1721 1722 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1723 called_from_strategy); 1724 1725 /* 1726 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1727 * to cluster the buffers needing commit. This will allow 1728 * the system to submit a single commit rpc for the whole 1729 * cluster. We can do this even if the buffer is not 100% 1730 * dirty (relative to the NFS blocksize), so we optimize the 1731 * append-to-file-case. 1732 * 1733 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1734 * cleared because write clustering only works for commit 1735 * rpc's, not for the data portion of the write). 1736 */ 1737 1738 if (!error && iomode == NFSWRITE_UNSTABLE) { 1739 bp->b_flags |= B_NEEDCOMMIT; 1740 if (bp->b_dirtyoff == 0 1741 && bp->b_dirtyend == bp->b_bcount) 1742 bp->b_flags |= B_CLUSTEROK; 1743 } else { 1744 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1745 } 1746 1747 /* 1748 * For an interrupted write, the buffer is still valid 1749 * and the write hasn't been pushed to the server yet, 1750 * so we can't set BIO_ERROR and report the interruption 1751 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1752 * is not relevant, so the rpc attempt is essentially 1753 * a noop. For the case of a V3 write rpc not being 1754 * committed to stable storage, the block is still 1755 * dirty and requires either a commit rpc or another 1756 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1757 * the block is reused. This is indicated by setting 1758 * the B_DELWRI and B_NEEDCOMMIT flags. 1759 * 1760 * EIO is returned by ncl_writerpc() to indicate a recoverable 1761 * write error and is handled as above, except that 1762 * B_EINTR isn't set. One cause of this is a stale stateid 1763 * error for the RPC that indicates recovery is required, 1764 * when called with called_from_strategy != 0. 1765 * 1766 * If the buffer is marked B_PAGING, it does not reside on 1767 * the vp's paging queues so we cannot call bdirty(). The 1768 * bp in this case is not an NFS cache block so we should 1769 * be safe. XXX 1770 * 1771 * The logic below breaks up errors into recoverable and 1772 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1773 * and keep the buffer around for potential write retries. 1774 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1775 * and save the error in the nfsnode. This is less than ideal 1776 * but necessary. Keeping such buffers around could potentially 1777 * cause buffer exhaustion eventually (they can never be written 1778 * out, so will get constantly be re-dirtied). It also causes 1779 * all sorts of vfs panics. For non-recoverable write errors, 1780 * also invalidate the attrcache, so we'll be forced to go over 1781 * the wire for this object, returning an error to user on next 1782 * call (most of the time). 1783 */ 1784 if (error == EINTR || error == EIO || error == ETIMEDOUT 1785 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1786 int s; 1787 1788 s = splbio(); 1789 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1790 if ((bp->b_flags & B_PAGING) == 0) { 1791 bdirty(bp); 1792 bp->b_flags &= ~B_DONE; 1793 } 1794 if ((error == EINTR || error == ETIMEDOUT) && 1795 (bp->b_flags & B_ASYNC) == 0) 1796 bp->b_flags |= B_EINTR; 1797 splx(s); 1798 } else { 1799 if (error) { 1800 bp->b_ioflags |= BIO_ERROR; 1801 bp->b_flags |= B_INVAL; 1802 bp->b_error = np->n_error = error; 1803 mtx_lock(&np->n_mtx); 1804 np->n_flag |= NWRITEERR; 1805 np->n_attrstamp = 0; 1806 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1807 mtx_unlock(&np->n_mtx); 1808 } 1809 bp->b_dirtyoff = bp->b_dirtyend = 0; 1810 } 1811 } else { 1812 bp->b_resid = 0; 1813 bufdone(bp); 1814 return (0); 1815 } 1816 } 1817 bp->b_resid = uiop->uio_resid; 1818 if (must_commit) 1819 ncl_clearcommit(vp->v_mount); 1820 bufdone(bp); 1821 return (error); 1822 } 1823 1824 /* 1825 * Used to aid in handling ftruncate() operations on the NFS client side. 1826 * Truncation creates a number of special problems for NFS. We have to 1827 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1828 * we have to properly handle VM pages or (potentially dirty) buffers 1829 * that straddle the truncation point. 1830 */ 1831 1832 int 1833 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1834 { 1835 struct nfsnode *np = VTONFS(vp); 1836 u_quad_t tsize; 1837 int biosize = vp->v_bufobj.bo_bsize; 1838 int error = 0; 1839 1840 mtx_lock(&np->n_mtx); 1841 tsize = np->n_size; 1842 np->n_size = nsize; 1843 mtx_unlock(&np->n_mtx); 1844 1845 if (nsize < tsize) { 1846 struct buf *bp; 1847 daddr_t lbn; 1848 int bufsize; 1849 1850 /* 1851 * vtruncbuf() doesn't get the buffer overlapping the 1852 * truncation point. We may have a B_DELWRI and/or B_CACHE 1853 * buffer that now needs to be truncated. 1854 */ 1855 error = vtruncbuf(vp, cred, nsize, biosize); 1856 lbn = nsize / biosize; 1857 bufsize = nsize - (lbn * biosize); 1858 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1859 if (!bp) 1860 return EINTR; 1861 if (bp->b_dirtyoff > bp->b_bcount) 1862 bp->b_dirtyoff = bp->b_bcount; 1863 if (bp->b_dirtyend > bp->b_bcount) 1864 bp->b_dirtyend = bp->b_bcount; 1865 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1866 brelse(bp); 1867 } else { 1868 vnode_pager_setsize(vp, nsize); 1869 } 1870 return(error); 1871 } 1872 1873