1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/vmmeter.h> 45 #include <sys/vnode.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_extern.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_pager.h> 52 #include <vm/vnode_pager.h> 53 54 #include <fs/nfs/nfsport.h> 55 #include <fs/nfsclient/nfsmount.h> 56 #include <fs/nfsclient/nfs.h> 57 #include <fs/nfsclient/nfsnode.h> 58 59 extern int newnfs_directio_allow_mmap; 60 extern struct nfsstats newnfsstats; 61 extern struct mtx ncl_iod_mutex; 62 extern int ncl_numasync; 63 extern enum nfsiod_state ncl_iodwant[NFS_MAXRAHEAD]; 64 extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD]; 65 extern int newnfs_directio_enable; 66 67 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 68 69 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 70 struct thread *td); 71 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 72 struct ucred *cred, int ioflag); 73 74 /* 75 * Vnode op for VM getpages. 76 */ 77 int 78 ncl_getpages(struct vop_getpages_args *ap) 79 { 80 int i, error, nextoff, size, toff, count, npages; 81 struct uio uio; 82 struct iovec iov; 83 vm_offset_t kva; 84 struct buf *bp; 85 struct vnode *vp; 86 struct thread *td; 87 struct ucred *cred; 88 struct nfsmount *nmp; 89 vm_object_t object; 90 vm_page_t *pages; 91 struct nfsnode *np; 92 93 vp = ap->a_vp; 94 np = VTONFS(vp); 95 td = curthread; /* XXX */ 96 cred = curthread->td_ucred; /* XXX */ 97 nmp = VFSTONFS(vp->v_mount); 98 pages = ap->a_m; 99 count = ap->a_count; 100 101 if ((object = vp->v_object) == NULL) { 102 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 103 return (VM_PAGER_ERROR); 104 } 105 106 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 107 mtx_lock(&np->n_mtx); 108 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 109 mtx_unlock(&np->n_mtx); 110 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 111 return (VM_PAGER_ERROR); 112 } else 113 mtx_unlock(&np->n_mtx); 114 } 115 116 mtx_lock(&nmp->nm_mtx); 117 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 118 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 119 mtx_unlock(&nmp->nm_mtx); 120 /* We'll never get here for v4, because we always have fsinfo */ 121 (void)ncl_fsinfo(nmp, vp, cred, td); 122 } else 123 mtx_unlock(&nmp->nm_mtx); 124 125 npages = btoc(count); 126 127 /* 128 * If the requested page is partially valid, just return it and 129 * allow the pager to zero-out the blanks. Partially valid pages 130 * can only occur at the file EOF. 131 */ 132 VM_OBJECT_LOCK(object); 133 if (pages[ap->a_reqpage]->valid != 0) { 134 for (i = 0; i < npages; ++i) { 135 if (i != ap->a_reqpage) { 136 vm_page_lock(pages[i]); 137 vm_page_free(pages[i]); 138 vm_page_unlock(pages[i]); 139 } 140 } 141 VM_OBJECT_UNLOCK(object); 142 return (0); 143 } 144 VM_OBJECT_UNLOCK(object); 145 146 /* 147 * We use only the kva address for the buffer, but this is extremely 148 * convienient and fast. 149 */ 150 bp = getpbuf(&ncl_pbuf_freecnt); 151 152 kva = (vm_offset_t) bp->b_data; 153 pmap_qenter(kva, pages, npages); 154 PCPU_INC(cnt.v_vnodein); 155 PCPU_ADD(cnt.v_vnodepgsin, npages); 156 157 iov.iov_base = (caddr_t) kva; 158 iov.iov_len = count; 159 uio.uio_iov = &iov; 160 uio.uio_iovcnt = 1; 161 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 162 uio.uio_resid = count; 163 uio.uio_segflg = UIO_SYSSPACE; 164 uio.uio_rw = UIO_READ; 165 uio.uio_td = td; 166 167 error = ncl_readrpc(vp, &uio, cred); 168 pmap_qremove(kva, npages); 169 170 relpbuf(bp, &ncl_pbuf_freecnt); 171 172 if (error && (uio.uio_resid == count)) { 173 ncl_printf("nfs_getpages: error %d\n", error); 174 VM_OBJECT_LOCK(object); 175 for (i = 0; i < npages; ++i) { 176 if (i != ap->a_reqpage) { 177 vm_page_lock(pages[i]); 178 vm_page_free(pages[i]); 179 vm_page_unlock(pages[i]); 180 } 181 } 182 VM_OBJECT_UNLOCK(object); 183 return (VM_PAGER_ERROR); 184 } 185 186 /* 187 * Calculate the number of bytes read and validate only that number 188 * of bytes. Note that due to pending writes, size may be 0. This 189 * does not mean that the remaining data is invalid! 190 */ 191 192 size = count - uio.uio_resid; 193 VM_OBJECT_LOCK(object); 194 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 195 vm_page_t m; 196 nextoff = toff + PAGE_SIZE; 197 m = pages[i]; 198 199 if (nextoff <= size) { 200 /* 201 * Read operation filled an entire page 202 */ 203 m->valid = VM_PAGE_BITS_ALL; 204 KASSERT(m->dirty == 0, 205 ("nfs_getpages: page %p is dirty", m)); 206 } else if (size > toff) { 207 /* 208 * Read operation filled a partial page. 209 */ 210 m->valid = 0; 211 vm_page_set_valid(m, 0, size - toff); 212 KASSERT(m->dirty == 0, 213 ("nfs_getpages: page %p is dirty", m)); 214 } else { 215 /* 216 * Read operation was short. If no error occured 217 * we may have hit a zero-fill section. We simply 218 * leave valid set to 0. 219 */ 220 ; 221 } 222 if (i != ap->a_reqpage) { 223 /* 224 * Whether or not to leave the page activated is up in 225 * the air, but we should put the page on a page queue 226 * somewhere (it already is in the object). Result: 227 * It appears that emperical results show that 228 * deactivating pages is best. 229 */ 230 231 /* 232 * Just in case someone was asking for this page we 233 * now tell them that it is ok to use. 234 */ 235 if (!error) { 236 if (m->oflags & VPO_WANTED) { 237 vm_page_lock(m); 238 vm_page_activate(m); 239 vm_page_unlock(m); 240 } else { 241 vm_page_lock(m); 242 vm_page_deactivate(m); 243 vm_page_unlock(m); 244 } 245 vm_page_wakeup(m); 246 } else { 247 vm_page_lock(m); 248 vm_page_free(m); 249 vm_page_unlock(m); 250 } 251 } 252 } 253 VM_OBJECT_UNLOCK(object); 254 return (0); 255 } 256 257 /* 258 * Vnode op for VM putpages. 259 */ 260 int 261 ncl_putpages(struct vop_putpages_args *ap) 262 { 263 struct uio uio; 264 struct iovec iov; 265 vm_offset_t kva; 266 struct buf *bp; 267 int iomode, must_commit, i, error, npages, count; 268 off_t offset; 269 int *rtvals; 270 struct vnode *vp; 271 struct thread *td; 272 struct ucred *cred; 273 struct nfsmount *nmp; 274 struct nfsnode *np; 275 vm_page_t *pages; 276 277 vp = ap->a_vp; 278 np = VTONFS(vp); 279 td = curthread; /* XXX */ 280 cred = curthread->td_ucred; /* XXX */ 281 nmp = VFSTONFS(vp->v_mount); 282 pages = ap->a_m; 283 count = ap->a_count; 284 rtvals = ap->a_rtvals; 285 npages = btoc(count); 286 offset = IDX_TO_OFF(pages[0]->pindex); 287 288 mtx_lock(&nmp->nm_mtx); 289 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 290 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 291 mtx_unlock(&nmp->nm_mtx); 292 (void)ncl_fsinfo(nmp, vp, cred, td); 293 } else 294 mtx_unlock(&nmp->nm_mtx); 295 296 mtx_lock(&np->n_mtx); 297 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 298 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 299 mtx_unlock(&np->n_mtx); 300 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 301 mtx_lock(&np->n_mtx); 302 } 303 304 for (i = 0; i < npages; i++) 305 rtvals[i] = VM_PAGER_AGAIN; 306 307 /* 308 * When putting pages, do not extend file past EOF. 309 */ 310 if (offset + count > np->n_size) { 311 count = np->n_size - offset; 312 if (count < 0) 313 count = 0; 314 } 315 mtx_unlock(&np->n_mtx); 316 317 /* 318 * We use only the kva address for the buffer, but this is extremely 319 * convienient and fast. 320 */ 321 bp = getpbuf(&ncl_pbuf_freecnt); 322 323 kva = (vm_offset_t) bp->b_data; 324 pmap_qenter(kva, pages, npages); 325 PCPU_INC(cnt.v_vnodeout); 326 PCPU_ADD(cnt.v_vnodepgsout, count); 327 328 iov.iov_base = (caddr_t) kva; 329 iov.iov_len = count; 330 uio.uio_iov = &iov; 331 uio.uio_iovcnt = 1; 332 uio.uio_offset = offset; 333 uio.uio_resid = count; 334 uio.uio_segflg = UIO_SYSSPACE; 335 uio.uio_rw = UIO_WRITE; 336 uio.uio_td = td; 337 338 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 339 iomode = NFSWRITE_UNSTABLE; 340 else 341 iomode = NFSWRITE_FILESYNC; 342 343 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0); 344 345 pmap_qremove(kva, npages); 346 relpbuf(bp, &ncl_pbuf_freecnt); 347 348 if (!error) { 349 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; 350 for (i = 0; i < nwritten; i++) { 351 rtvals[i] = VM_PAGER_OK; 352 vm_page_undirty(pages[i]); 353 } 354 if (must_commit) { 355 ncl_clearcommit(vp->v_mount); 356 } 357 } 358 return rtvals[0]; 359 } 360 361 /* 362 * For nfs, cache consistency can only be maintained approximately. 363 * Although RFC1094 does not specify the criteria, the following is 364 * believed to be compatible with the reference port. 365 * For nfs: 366 * If the file's modify time on the server has changed since the 367 * last read rpc or you have written to the file, 368 * you may have lost data cache consistency with the 369 * server, so flush all of the file's data out of the cache. 370 * Then force a getattr rpc to ensure that you have up to date 371 * attributes. 372 * NB: This implies that cache data can be read when up to 373 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 374 * attributes this could be forced by setting n_attrstamp to 0 before 375 * the VOP_GETATTR() call. 376 */ 377 static inline int 378 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 379 { 380 int error = 0; 381 struct vattr vattr; 382 struct nfsnode *np = VTONFS(vp); 383 int old_lock; 384 385 /* 386 * Grab the exclusive lock before checking whether the cache is 387 * consistent. 388 * XXX - We can make this cheaper later (by acquiring cheaper locks). 389 * But for now, this suffices. 390 */ 391 old_lock = ncl_upgrade_vnlock(vp); 392 if (vp->v_iflag & VI_DOOMED) { 393 ncl_downgrade_vnlock(vp, old_lock); 394 return (EBADF); 395 } 396 397 mtx_lock(&np->n_mtx); 398 if (np->n_flag & NMODIFIED) { 399 mtx_unlock(&np->n_mtx); 400 if (vp->v_type != VREG) { 401 if (vp->v_type != VDIR) 402 panic("nfs: bioread, not dir"); 403 ncl_invaldir(vp); 404 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 405 if (error) 406 goto out; 407 } 408 np->n_attrstamp = 0; 409 error = VOP_GETATTR(vp, &vattr, cred); 410 if (error) 411 goto out; 412 mtx_lock(&np->n_mtx); 413 np->n_mtime = vattr.va_mtime; 414 mtx_unlock(&np->n_mtx); 415 } else { 416 mtx_unlock(&np->n_mtx); 417 error = VOP_GETATTR(vp, &vattr, cred); 418 if (error) 419 return (error); 420 mtx_lock(&np->n_mtx); 421 if ((np->n_flag & NSIZECHANGED) 422 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 423 mtx_unlock(&np->n_mtx); 424 if (vp->v_type == VDIR) 425 ncl_invaldir(vp); 426 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 427 if (error) 428 goto out; 429 mtx_lock(&np->n_mtx); 430 np->n_mtime = vattr.va_mtime; 431 np->n_flag &= ~NSIZECHANGED; 432 } 433 mtx_unlock(&np->n_mtx); 434 } 435 out: 436 ncl_downgrade_vnlock(vp, old_lock); 437 return error; 438 } 439 440 /* 441 * Vnode op for read using bio 442 */ 443 int 444 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 445 { 446 struct nfsnode *np = VTONFS(vp); 447 int biosize, i; 448 struct buf *bp, *rabp; 449 struct thread *td; 450 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 451 daddr_t lbn, rabn; 452 int bcount; 453 int seqcount; 454 int nra, error = 0, n = 0, on = 0; 455 456 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 457 if (uio->uio_resid == 0) 458 return (0); 459 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 460 return (EINVAL); 461 td = uio->uio_td; 462 463 mtx_lock(&nmp->nm_mtx); 464 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 465 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 466 mtx_unlock(&nmp->nm_mtx); 467 (void)ncl_fsinfo(nmp, vp, cred, td); 468 mtx_lock(&nmp->nm_mtx); 469 } 470 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 471 (void) newnfs_iosize(nmp); 472 mtx_unlock(&nmp->nm_mtx); 473 474 if (vp->v_type != VDIR && 475 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 476 return (EFBIG); 477 478 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 479 /* No caching/ no readaheads. Just read data into the user buffer */ 480 return ncl_readrpc(vp, uio, cred); 481 482 biosize = vp->v_mount->mnt_stat.f_iosize; 483 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 484 485 error = nfs_bioread_check_cons(vp, td, cred); 486 if (error) 487 return error; 488 489 do { 490 u_quad_t nsize; 491 492 mtx_lock(&np->n_mtx); 493 nsize = np->n_size; 494 mtx_unlock(&np->n_mtx); 495 496 switch (vp->v_type) { 497 case VREG: 498 NFSINCRGLOBAL(newnfsstats.biocache_reads); 499 lbn = uio->uio_offset / biosize; 500 on = uio->uio_offset & (biosize - 1); 501 502 /* 503 * Start the read ahead(s), as required. 504 */ 505 if (nmp->nm_readahead > 0) { 506 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 507 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 508 rabn = lbn + 1 + nra; 509 if (incore(&vp->v_bufobj, rabn) == NULL) { 510 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 511 if (!rabp) { 512 error = newnfs_sigintr(nmp, td); 513 if (error) 514 return (error); 515 else 516 break; 517 } 518 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 519 rabp->b_flags |= B_ASYNC; 520 rabp->b_iocmd = BIO_READ; 521 vfs_busy_pages(rabp, 0); 522 if (ncl_asyncio(nmp, rabp, cred, td)) { 523 rabp->b_flags |= B_INVAL; 524 rabp->b_ioflags |= BIO_ERROR; 525 vfs_unbusy_pages(rabp); 526 brelse(rabp); 527 break; 528 } 529 } else { 530 brelse(rabp); 531 } 532 } 533 } 534 } 535 536 /* Note that bcount is *not* DEV_BSIZE aligned. */ 537 bcount = biosize; 538 if ((off_t)lbn * biosize >= nsize) { 539 bcount = 0; 540 } else if ((off_t)(lbn + 1) * biosize > nsize) { 541 bcount = nsize - (off_t)lbn * biosize; 542 } 543 bp = nfs_getcacheblk(vp, lbn, bcount, td); 544 545 if (!bp) { 546 error = newnfs_sigintr(nmp, td); 547 return (error ? error : EINTR); 548 } 549 550 /* 551 * If B_CACHE is not set, we must issue the read. If this 552 * fails, we return an error. 553 */ 554 555 if ((bp->b_flags & B_CACHE) == 0) { 556 bp->b_iocmd = BIO_READ; 557 vfs_busy_pages(bp, 0); 558 error = ncl_doio(vp, bp, cred, td, 0); 559 if (error) { 560 brelse(bp); 561 return (error); 562 } 563 } 564 565 /* 566 * on is the offset into the current bp. Figure out how many 567 * bytes we can copy out of the bp. Note that bcount is 568 * NOT DEV_BSIZE aligned. 569 * 570 * Then figure out how many bytes we can copy into the uio. 571 */ 572 573 n = 0; 574 if (on < bcount) 575 n = min((unsigned)(bcount - on), uio->uio_resid); 576 break; 577 case VLNK: 578 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 579 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 580 if (!bp) { 581 error = newnfs_sigintr(nmp, td); 582 return (error ? error : EINTR); 583 } 584 if ((bp->b_flags & B_CACHE) == 0) { 585 bp->b_iocmd = BIO_READ; 586 vfs_busy_pages(bp, 0); 587 error = ncl_doio(vp, bp, cred, td, 0); 588 if (error) { 589 bp->b_ioflags |= BIO_ERROR; 590 brelse(bp); 591 return (error); 592 } 593 } 594 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 595 on = 0; 596 break; 597 case VDIR: 598 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 599 if (np->n_direofoffset 600 && uio->uio_offset >= np->n_direofoffset) { 601 return (0); 602 } 603 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 604 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 605 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 606 if (!bp) { 607 error = newnfs_sigintr(nmp, td); 608 return (error ? error : EINTR); 609 } 610 if ((bp->b_flags & B_CACHE) == 0) { 611 bp->b_iocmd = BIO_READ; 612 vfs_busy_pages(bp, 0); 613 error = ncl_doio(vp, bp, cred, td, 0); 614 if (error) { 615 brelse(bp); 616 } 617 while (error == NFSERR_BAD_COOKIE) { 618 ncl_invaldir(vp); 619 error = ncl_vinvalbuf(vp, 0, td, 1); 620 /* 621 * Yuck! The directory has been modified on the 622 * server. The only way to get the block is by 623 * reading from the beginning to get all the 624 * offset cookies. 625 * 626 * Leave the last bp intact unless there is an error. 627 * Loop back up to the while if the error is another 628 * NFSERR_BAD_COOKIE (double yuch!). 629 */ 630 for (i = 0; i <= lbn && !error; i++) { 631 if (np->n_direofoffset 632 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 633 return (0); 634 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 635 if (!bp) { 636 error = newnfs_sigintr(nmp, td); 637 return (error ? error : EINTR); 638 } 639 if ((bp->b_flags & B_CACHE) == 0) { 640 bp->b_iocmd = BIO_READ; 641 vfs_busy_pages(bp, 0); 642 error = ncl_doio(vp, bp, cred, td, 0); 643 /* 644 * no error + B_INVAL == directory EOF, 645 * use the block. 646 */ 647 if (error == 0 && (bp->b_flags & B_INVAL)) 648 break; 649 } 650 /* 651 * An error will throw away the block and the 652 * for loop will break out. If no error and this 653 * is not the block we want, we throw away the 654 * block and go for the next one via the for loop. 655 */ 656 if (error || i < lbn) 657 brelse(bp); 658 } 659 } 660 /* 661 * The above while is repeated if we hit another cookie 662 * error. If we hit an error and it wasn't a cookie error, 663 * we give up. 664 */ 665 if (error) 666 return (error); 667 } 668 669 /* 670 * If not eof and read aheads are enabled, start one. 671 * (You need the current block first, so that you have the 672 * directory offset cookie of the next block.) 673 */ 674 if (nmp->nm_readahead > 0 && 675 (bp->b_flags & B_INVAL) == 0 && 676 (np->n_direofoffset == 0 || 677 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 678 incore(&vp->v_bufobj, lbn + 1) == NULL) { 679 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 680 if (rabp) { 681 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 682 rabp->b_flags |= B_ASYNC; 683 rabp->b_iocmd = BIO_READ; 684 vfs_busy_pages(rabp, 0); 685 if (ncl_asyncio(nmp, rabp, cred, td)) { 686 rabp->b_flags |= B_INVAL; 687 rabp->b_ioflags |= BIO_ERROR; 688 vfs_unbusy_pages(rabp); 689 brelse(rabp); 690 } 691 } else { 692 brelse(rabp); 693 } 694 } 695 } 696 /* 697 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 698 * chopped for the EOF condition, we cannot tell how large 699 * NFS directories are going to be until we hit EOF. So 700 * an NFS directory buffer is *not* chopped to its EOF. Now, 701 * it just so happens that b_resid will effectively chop it 702 * to EOF. *BUT* this information is lost if the buffer goes 703 * away and is reconstituted into a B_CACHE state ( due to 704 * being VMIO ) later. So we keep track of the directory eof 705 * in np->n_direofoffset and chop it off as an extra step 706 * right here. 707 */ 708 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 709 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 710 n = np->n_direofoffset - uio->uio_offset; 711 break; 712 default: 713 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 714 bp = NULL; 715 break; 716 }; 717 718 if (n > 0) { 719 error = uiomove(bp->b_data + on, (int)n, uio); 720 } 721 if (vp->v_type == VLNK) 722 n = 0; 723 if (bp != NULL) 724 brelse(bp); 725 } while (error == 0 && uio->uio_resid > 0 && n > 0); 726 return (error); 727 } 728 729 /* 730 * The NFS write path cannot handle iovecs with len > 1. So we need to 731 * break up iovecs accordingly (restricting them to wsize). 732 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 733 * For the ASYNC case, 2 copies are needed. The first a copy from the 734 * user buffer to a staging buffer and then a second copy from the staging 735 * buffer to mbufs. This can be optimized by copying from the user buffer 736 * directly into mbufs and passing the chain down, but that requires a 737 * fair amount of re-working of the relevant codepaths (and can be done 738 * later). 739 */ 740 static int 741 nfs_directio_write(vp, uiop, cred, ioflag) 742 struct vnode *vp; 743 struct uio *uiop; 744 struct ucred *cred; 745 int ioflag; 746 { 747 int error; 748 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 749 struct thread *td = uiop->uio_td; 750 int size; 751 int wsize; 752 753 mtx_lock(&nmp->nm_mtx); 754 wsize = nmp->nm_wsize; 755 mtx_unlock(&nmp->nm_mtx); 756 if (ioflag & IO_SYNC) { 757 int iomode, must_commit; 758 struct uio uio; 759 struct iovec iov; 760 do_sync: 761 while (uiop->uio_resid > 0) { 762 size = min(uiop->uio_resid, wsize); 763 size = min(uiop->uio_iov->iov_len, size); 764 iov.iov_base = uiop->uio_iov->iov_base; 765 iov.iov_len = size; 766 uio.uio_iov = &iov; 767 uio.uio_iovcnt = 1; 768 uio.uio_offset = uiop->uio_offset; 769 uio.uio_resid = size; 770 uio.uio_segflg = UIO_USERSPACE; 771 uio.uio_rw = UIO_WRITE; 772 uio.uio_td = td; 773 iomode = NFSWRITE_FILESYNC; 774 error = ncl_writerpc(vp, &uio, cred, &iomode, 775 &must_commit, 0); 776 KASSERT((must_commit == 0), 777 ("ncl_directio_write: Did not commit write")); 778 if (error) 779 return (error); 780 uiop->uio_offset += size; 781 uiop->uio_resid -= size; 782 if (uiop->uio_iov->iov_len <= size) { 783 uiop->uio_iovcnt--; 784 uiop->uio_iov++; 785 } else { 786 uiop->uio_iov->iov_base = 787 (char *)uiop->uio_iov->iov_base + size; 788 uiop->uio_iov->iov_len -= size; 789 } 790 } 791 } else { 792 struct uio *t_uio; 793 struct iovec *t_iov; 794 struct buf *bp; 795 796 /* 797 * Break up the write into blocksize chunks and hand these 798 * over to nfsiod's for write back. 799 * Unfortunately, this incurs a copy of the data. Since 800 * the user could modify the buffer before the write is 801 * initiated. 802 * 803 * The obvious optimization here is that one of the 2 copies 804 * in the async write path can be eliminated by copying the 805 * data here directly into mbufs and passing the mbuf chain 806 * down. But that will require a fair amount of re-working 807 * of the code and can be done if there's enough interest 808 * in NFS directio access. 809 */ 810 while (uiop->uio_resid > 0) { 811 size = min(uiop->uio_resid, wsize); 812 size = min(uiop->uio_iov->iov_len, size); 813 bp = getpbuf(&ncl_pbuf_freecnt); 814 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 815 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 816 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 817 t_iov->iov_len = size; 818 t_uio->uio_iov = t_iov; 819 t_uio->uio_iovcnt = 1; 820 t_uio->uio_offset = uiop->uio_offset; 821 t_uio->uio_resid = size; 822 t_uio->uio_segflg = UIO_SYSSPACE; 823 t_uio->uio_rw = UIO_WRITE; 824 t_uio->uio_td = td; 825 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size); 826 bp->b_flags |= B_DIRECT; 827 bp->b_iocmd = BIO_WRITE; 828 if (cred != NOCRED) { 829 crhold(cred); 830 bp->b_wcred = cred; 831 } else 832 bp->b_wcred = NOCRED; 833 bp->b_caller1 = (void *)t_uio; 834 bp->b_vp = vp; 835 error = ncl_asyncio(nmp, bp, NOCRED, td); 836 if (error) { 837 free(t_iov->iov_base, M_NFSDIRECTIO); 838 free(t_iov, M_NFSDIRECTIO); 839 free(t_uio, M_NFSDIRECTIO); 840 bp->b_vp = NULL; 841 relpbuf(bp, &ncl_pbuf_freecnt); 842 if (error == EINTR) 843 return (error); 844 goto do_sync; 845 } 846 uiop->uio_offset += size; 847 uiop->uio_resid -= size; 848 if (uiop->uio_iov->iov_len <= size) { 849 uiop->uio_iovcnt--; 850 uiop->uio_iov++; 851 } else { 852 uiop->uio_iov->iov_base = 853 (char *)uiop->uio_iov->iov_base + size; 854 uiop->uio_iov->iov_len -= size; 855 } 856 } 857 } 858 return (0); 859 } 860 861 /* 862 * Vnode op for write using bio 863 */ 864 int 865 ncl_write(struct vop_write_args *ap) 866 { 867 int biosize; 868 struct uio *uio = ap->a_uio; 869 struct thread *td = uio->uio_td; 870 struct vnode *vp = ap->a_vp; 871 struct nfsnode *np = VTONFS(vp); 872 struct ucred *cred = ap->a_cred; 873 int ioflag = ap->a_ioflag; 874 struct buf *bp; 875 struct vattr vattr; 876 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 877 daddr_t lbn; 878 int bcount; 879 int n, on, error = 0; 880 881 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 882 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 883 ("ncl_write proc")); 884 if (vp->v_type != VREG) 885 return (EIO); 886 mtx_lock(&np->n_mtx); 887 if (np->n_flag & NWRITEERR) { 888 np->n_flag &= ~NWRITEERR; 889 mtx_unlock(&np->n_mtx); 890 return (np->n_error); 891 } else 892 mtx_unlock(&np->n_mtx); 893 mtx_lock(&nmp->nm_mtx); 894 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 895 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 896 mtx_unlock(&nmp->nm_mtx); 897 (void)ncl_fsinfo(nmp, vp, cred, td); 898 mtx_lock(&nmp->nm_mtx); 899 } 900 if (nmp->nm_wsize == 0) 901 (void) newnfs_iosize(nmp); 902 mtx_unlock(&nmp->nm_mtx); 903 904 /* 905 * Synchronously flush pending buffers if we are in synchronous 906 * mode or if we are appending. 907 */ 908 if (ioflag & (IO_APPEND | IO_SYNC)) { 909 mtx_lock(&np->n_mtx); 910 if (np->n_flag & NMODIFIED) { 911 mtx_unlock(&np->n_mtx); 912 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 913 /* 914 * Require non-blocking, synchronous writes to 915 * dirty files to inform the program it needs 916 * to fsync(2) explicitly. 917 */ 918 if (ioflag & IO_NDELAY) 919 return (EAGAIN); 920 #endif 921 flush_and_restart: 922 np->n_attrstamp = 0; 923 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 924 if (error) 925 return (error); 926 } else 927 mtx_unlock(&np->n_mtx); 928 } 929 930 /* 931 * If IO_APPEND then load uio_offset. We restart here if we cannot 932 * get the append lock. 933 */ 934 if (ioflag & IO_APPEND) { 935 np->n_attrstamp = 0; 936 error = VOP_GETATTR(vp, &vattr, cred); 937 if (error) 938 return (error); 939 mtx_lock(&np->n_mtx); 940 uio->uio_offset = np->n_size; 941 mtx_unlock(&np->n_mtx); 942 } 943 944 if (uio->uio_offset < 0) 945 return (EINVAL); 946 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 947 return (EFBIG); 948 if (uio->uio_resid == 0) 949 return (0); 950 951 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 952 return nfs_directio_write(vp, uio, cred, ioflag); 953 954 /* 955 * Maybe this should be above the vnode op call, but so long as 956 * file servers have no limits, i don't think it matters 957 */ 958 if (vn_rlimit_fsize(vp, uio, td)) 959 return (EFBIG); 960 961 biosize = vp->v_mount->mnt_stat.f_iosize; 962 /* 963 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 964 * would exceed the local maximum per-file write commit size when 965 * combined with those, we must decide whether to flush, 966 * go synchronous, or return error. We don't bother checking 967 * IO_UNIT -- we just make all writes atomic anyway, as there's 968 * no point optimizing for something that really won't ever happen. 969 */ 970 if (!(ioflag & IO_SYNC)) { 971 int nflag; 972 973 mtx_lock(&np->n_mtx); 974 nflag = np->n_flag; 975 mtx_unlock(&np->n_mtx); 976 int needrestart = 0; 977 if (nmp->nm_wcommitsize < uio->uio_resid) { 978 /* 979 * If this request could not possibly be completed 980 * without exceeding the maximum outstanding write 981 * commit size, see if we can convert it into a 982 * synchronous write operation. 983 */ 984 if (ioflag & IO_NDELAY) 985 return (EAGAIN); 986 ioflag |= IO_SYNC; 987 if (nflag & NMODIFIED) 988 needrestart = 1; 989 } else if (nflag & NMODIFIED) { 990 int wouldcommit = 0; 991 BO_LOCK(&vp->v_bufobj); 992 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 993 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 994 b_bobufs) { 995 if (bp->b_flags & B_NEEDCOMMIT) 996 wouldcommit += bp->b_bcount; 997 } 998 } 999 BO_UNLOCK(&vp->v_bufobj); 1000 /* 1001 * Since we're not operating synchronously and 1002 * bypassing the buffer cache, we are in a commit 1003 * and holding all of these buffers whether 1004 * transmitted or not. If not limited, this 1005 * will lead to the buffer cache deadlocking, 1006 * as no one else can flush our uncommitted buffers. 1007 */ 1008 wouldcommit += uio->uio_resid; 1009 /* 1010 * If we would initially exceed the maximum 1011 * outstanding write commit size, flush and restart. 1012 */ 1013 if (wouldcommit > nmp->nm_wcommitsize) 1014 needrestart = 1; 1015 } 1016 if (needrestart) 1017 goto flush_and_restart; 1018 } 1019 1020 do { 1021 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1022 lbn = uio->uio_offset / biosize; 1023 on = uio->uio_offset & (biosize-1); 1024 n = min((unsigned)(biosize - on), uio->uio_resid); 1025 again: 1026 /* 1027 * Handle direct append and file extension cases, calculate 1028 * unaligned buffer size. 1029 */ 1030 mtx_lock(&np->n_mtx); 1031 if (uio->uio_offset == np->n_size && n) { 1032 mtx_unlock(&np->n_mtx); 1033 /* 1034 * Get the buffer (in its pre-append state to maintain 1035 * B_CACHE if it was previously set). Resize the 1036 * nfsnode after we have locked the buffer to prevent 1037 * readers from reading garbage. 1038 */ 1039 bcount = on; 1040 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1041 1042 if (bp != NULL) { 1043 long save; 1044 1045 mtx_lock(&np->n_mtx); 1046 np->n_size = uio->uio_offset + n; 1047 np->n_flag |= NMODIFIED; 1048 vnode_pager_setsize(vp, np->n_size); 1049 mtx_unlock(&np->n_mtx); 1050 1051 save = bp->b_flags & B_CACHE; 1052 bcount += n; 1053 allocbuf(bp, bcount); 1054 bp->b_flags |= save; 1055 } 1056 } else { 1057 /* 1058 * Obtain the locked cache block first, and then 1059 * adjust the file's size as appropriate. 1060 */ 1061 bcount = on + n; 1062 if ((off_t)lbn * biosize + bcount < np->n_size) { 1063 if ((off_t)(lbn + 1) * biosize < np->n_size) 1064 bcount = biosize; 1065 else 1066 bcount = np->n_size - (off_t)lbn * biosize; 1067 } 1068 mtx_unlock(&np->n_mtx); 1069 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1070 mtx_lock(&np->n_mtx); 1071 if (uio->uio_offset + n > np->n_size) { 1072 np->n_size = uio->uio_offset + n; 1073 np->n_flag |= NMODIFIED; 1074 vnode_pager_setsize(vp, np->n_size); 1075 } 1076 mtx_unlock(&np->n_mtx); 1077 } 1078 1079 if (!bp) { 1080 error = newnfs_sigintr(nmp, td); 1081 if (!error) 1082 error = EINTR; 1083 break; 1084 } 1085 1086 /* 1087 * Issue a READ if B_CACHE is not set. In special-append 1088 * mode, B_CACHE is based on the buffer prior to the write 1089 * op and is typically set, avoiding the read. If a read 1090 * is required in special append mode, the server will 1091 * probably send us a short-read since we extended the file 1092 * on our end, resulting in b_resid == 0 and, thusly, 1093 * B_CACHE getting set. 1094 * 1095 * We can also avoid issuing the read if the write covers 1096 * the entire buffer. We have to make sure the buffer state 1097 * is reasonable in this case since we will not be initiating 1098 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1099 * more information. 1100 * 1101 * B_CACHE may also be set due to the buffer being cached 1102 * normally. 1103 */ 1104 1105 if (on == 0 && n == bcount) { 1106 bp->b_flags |= B_CACHE; 1107 bp->b_flags &= ~B_INVAL; 1108 bp->b_ioflags &= ~BIO_ERROR; 1109 } 1110 1111 if ((bp->b_flags & B_CACHE) == 0) { 1112 bp->b_iocmd = BIO_READ; 1113 vfs_busy_pages(bp, 0); 1114 error = ncl_doio(vp, bp, cred, td, 0); 1115 if (error) { 1116 brelse(bp); 1117 break; 1118 } 1119 } 1120 if (bp->b_wcred == NOCRED) 1121 bp->b_wcred = crhold(cred); 1122 mtx_lock(&np->n_mtx); 1123 np->n_flag |= NMODIFIED; 1124 mtx_unlock(&np->n_mtx); 1125 1126 /* 1127 * If dirtyend exceeds file size, chop it down. This should 1128 * not normally occur but there is an append race where it 1129 * might occur XXX, so we log it. 1130 * 1131 * If the chopping creates a reverse-indexed or degenerate 1132 * situation with dirtyoff/end, we 0 both of them. 1133 */ 1134 1135 if (bp->b_dirtyend > bcount) { 1136 ncl_printf("NFS append race @%lx:%d\n", 1137 (long)bp->b_blkno * DEV_BSIZE, 1138 bp->b_dirtyend - bcount); 1139 bp->b_dirtyend = bcount; 1140 } 1141 1142 if (bp->b_dirtyoff >= bp->b_dirtyend) 1143 bp->b_dirtyoff = bp->b_dirtyend = 0; 1144 1145 /* 1146 * If the new write will leave a contiguous dirty 1147 * area, just update the b_dirtyoff and b_dirtyend, 1148 * otherwise force a write rpc of the old dirty area. 1149 * 1150 * While it is possible to merge discontiguous writes due to 1151 * our having a B_CACHE buffer ( and thus valid read data 1152 * for the hole), we don't because it could lead to 1153 * significant cache coherency problems with multiple clients, 1154 * especially if locking is implemented later on. 1155 * 1156 * as an optimization we could theoretically maintain 1157 * a linked list of discontinuous areas, but we would still 1158 * have to commit them separately so there isn't much 1159 * advantage to it except perhaps a bit of asynchronization. 1160 */ 1161 1162 if (bp->b_dirtyend > 0 && 1163 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1164 if (bwrite(bp) == EINTR) { 1165 error = EINTR; 1166 break; 1167 } 1168 goto again; 1169 } 1170 1171 error = uiomove((char *)bp->b_data + on, n, uio); 1172 1173 /* 1174 * Since this block is being modified, it must be written 1175 * again and not just committed. Since write clustering does 1176 * not work for the stage 1 data write, only the stage 2 1177 * commit rpc, we have to clear B_CLUSTEROK as well. 1178 */ 1179 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1180 1181 if (error) { 1182 bp->b_ioflags |= BIO_ERROR; 1183 brelse(bp); 1184 break; 1185 } 1186 1187 /* 1188 * Only update dirtyoff/dirtyend if not a degenerate 1189 * condition. 1190 */ 1191 if (n) { 1192 if (bp->b_dirtyend > 0) { 1193 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1194 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1195 } else { 1196 bp->b_dirtyoff = on; 1197 bp->b_dirtyend = on + n; 1198 } 1199 vfs_bio_set_valid(bp, on, n); 1200 } 1201 1202 /* 1203 * If IO_SYNC do bwrite(). 1204 * 1205 * IO_INVAL appears to be unused. The idea appears to be 1206 * to turn off caching in this case. Very odd. XXX 1207 */ 1208 if ((ioflag & IO_SYNC)) { 1209 if (ioflag & IO_INVAL) 1210 bp->b_flags |= B_NOCACHE; 1211 error = bwrite(bp); 1212 if (error) 1213 break; 1214 } else if ((n + on) == biosize) { 1215 bp->b_flags |= B_ASYNC; 1216 (void) ncl_writebp(bp, 0, NULL); 1217 } else { 1218 bdwrite(bp); 1219 } 1220 } while (uio->uio_resid > 0 && n > 0); 1221 1222 return (error); 1223 } 1224 1225 /* 1226 * Get an nfs cache block. 1227 * 1228 * Allocate a new one if the block isn't currently in the cache 1229 * and return the block marked busy. If the calling process is 1230 * interrupted by a signal for an interruptible mount point, return 1231 * NULL. 1232 * 1233 * The caller must carefully deal with the possible B_INVAL state of 1234 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1235 * indirectly), so synchronous reads can be issued without worrying about 1236 * the B_INVAL state. We have to be a little more careful when dealing 1237 * with writes (see comments in nfs_write()) when extending a file past 1238 * its EOF. 1239 */ 1240 static struct buf * 1241 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1242 { 1243 struct buf *bp; 1244 struct mount *mp; 1245 struct nfsmount *nmp; 1246 1247 mp = vp->v_mount; 1248 nmp = VFSTONFS(mp); 1249 1250 if (nmp->nm_flag & NFSMNT_INT) { 1251 sigset_t oldset; 1252 1253 newnfs_set_sigmask(td, &oldset); 1254 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0); 1255 newnfs_restore_sigmask(td, &oldset); 1256 while (bp == NULL) { 1257 if (newnfs_sigintr(nmp, td)) 1258 return (NULL); 1259 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1260 } 1261 } else { 1262 bp = getblk(vp, bn, size, 0, 0, 0); 1263 } 1264 1265 if (vp->v_type == VREG) { 1266 int biosize; 1267 1268 biosize = mp->mnt_stat.f_iosize; 1269 bp->b_blkno = bn * (biosize / DEV_BSIZE); 1270 } 1271 return (bp); 1272 } 1273 1274 /* 1275 * Flush and invalidate all dirty buffers. If another process is already 1276 * doing the flush, just wait for completion. 1277 */ 1278 int 1279 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1280 { 1281 struct nfsnode *np = VTONFS(vp); 1282 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1283 int error = 0, slpflag, slptimeo; 1284 int old_lock = 0; 1285 1286 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1287 1288 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1289 intrflg = 0; 1290 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1291 intrflg = 1; 1292 if (intrflg) { 1293 slpflag = NFS_PCATCH; 1294 slptimeo = 2 * hz; 1295 } else { 1296 slpflag = 0; 1297 slptimeo = 0; 1298 } 1299 1300 old_lock = ncl_upgrade_vnlock(vp); 1301 if (vp->v_iflag & VI_DOOMED) { 1302 /* 1303 * Since vgonel() uses the generic vinvalbuf() to flush 1304 * dirty buffers and it does not call this function, it 1305 * is safe to just return OK when VI_DOOMED is set. 1306 */ 1307 ncl_downgrade_vnlock(vp, old_lock); 1308 return (0); 1309 } 1310 1311 /* 1312 * Now, flush as required. 1313 */ 1314 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1315 VM_OBJECT_LOCK(vp->v_bufobj.bo_object); 1316 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1317 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object); 1318 /* 1319 * If the page clean was interrupted, fail the invalidation. 1320 * Not doing so, we run the risk of losing dirty pages in the 1321 * vinvalbuf() call below. 1322 */ 1323 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1324 goto out; 1325 } 1326 1327 error = vinvalbuf(vp, flags, slpflag, 0); 1328 while (error) { 1329 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1330 goto out; 1331 error = vinvalbuf(vp, flags, 0, slptimeo); 1332 } 1333 mtx_lock(&np->n_mtx); 1334 if (np->n_directio_asyncwr == 0) 1335 np->n_flag &= ~NMODIFIED; 1336 mtx_unlock(&np->n_mtx); 1337 out: 1338 ncl_downgrade_vnlock(vp, old_lock); 1339 return error; 1340 } 1341 1342 /* 1343 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1344 * This is mainly to avoid queueing async I/O requests when the nfsiods 1345 * are all hung on a dead server. 1346 * 1347 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1348 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1349 */ 1350 int 1351 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1352 { 1353 int iod; 1354 int gotiod; 1355 int slpflag = 0; 1356 int slptimeo = 0; 1357 int error, error2; 1358 1359 /* 1360 * Unless iothreadcnt is set > 0, don't bother with async I/O 1361 * threads. For LAN environments, they don't buy any significant 1362 * performance improvement that you can't get with large block 1363 * sizes. 1364 */ 1365 if (nmp->nm_readahead == 0) 1366 return (EPERM); 1367 1368 /* 1369 * Commits are usually short and sweet so lets save some cpu and 1370 * leave the async daemons for more important rpc's (such as reads 1371 * and writes). 1372 */ 1373 mtx_lock(&ncl_iod_mutex); 1374 if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1375 (nmp->nm_bufqiods > ncl_numasync / 2)) { 1376 mtx_unlock(&ncl_iod_mutex); 1377 return(EIO); 1378 } 1379 again: 1380 if (nmp->nm_flag & NFSMNT_INT) 1381 slpflag = NFS_PCATCH; 1382 gotiod = FALSE; 1383 1384 /* 1385 * Find a free iod to process this request. 1386 */ 1387 for (iod = 0; iod < ncl_numasync; iod++) 1388 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1389 gotiod = TRUE; 1390 break; 1391 } 1392 1393 /* 1394 * Try to create one if none are free. 1395 */ 1396 if (!gotiod) { 1397 iod = ncl_nfsiodnew(1); 1398 if (iod != -1) 1399 gotiod = TRUE; 1400 } 1401 1402 if (gotiod) { 1403 /* 1404 * Found one, so wake it up and tell it which 1405 * mount to process. 1406 */ 1407 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1408 iod, nmp)); 1409 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1410 ncl_iodmount[iod] = nmp; 1411 nmp->nm_bufqiods++; 1412 wakeup(&ncl_iodwant[iod]); 1413 } 1414 1415 /* 1416 * If none are free, we may already have an iod working on this mount 1417 * point. If so, it will process our request. 1418 */ 1419 if (!gotiod) { 1420 if (nmp->nm_bufqiods > 0) { 1421 NFS_DPF(ASYNCIO, 1422 ("ncl_asyncio: %d iods are already processing mount %p\n", 1423 nmp->nm_bufqiods, nmp)); 1424 gotiod = TRUE; 1425 } 1426 } 1427 1428 /* 1429 * If we have an iod which can process the request, then queue 1430 * the buffer. 1431 */ 1432 if (gotiod) { 1433 /* 1434 * Ensure that the queue never grows too large. We still want 1435 * to asynchronize so we block rather then return EIO. 1436 */ 1437 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1438 NFS_DPF(ASYNCIO, 1439 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1440 nmp->nm_bufqwant = TRUE; 1441 error = newnfs_msleep(td, &nmp->nm_bufq, 1442 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1443 slptimeo); 1444 if (error) { 1445 error2 = newnfs_sigintr(nmp, td); 1446 if (error2) { 1447 mtx_unlock(&ncl_iod_mutex); 1448 return (error2); 1449 } 1450 if (slpflag == NFS_PCATCH) { 1451 slpflag = 0; 1452 slptimeo = 2 * hz; 1453 } 1454 } 1455 /* 1456 * We might have lost our iod while sleeping, 1457 * so check and loop if nescessary. 1458 */ 1459 if (nmp->nm_bufqiods == 0) { 1460 NFS_DPF(ASYNCIO, 1461 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1462 goto again; 1463 } 1464 } 1465 1466 /* We might have lost our nfsiod */ 1467 if (nmp->nm_bufqiods == 0) { 1468 NFS_DPF(ASYNCIO, 1469 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1470 goto again; 1471 } 1472 1473 if (bp->b_iocmd == BIO_READ) { 1474 if (bp->b_rcred == NOCRED && cred != NOCRED) 1475 bp->b_rcred = crhold(cred); 1476 } else { 1477 if (bp->b_wcred == NOCRED && cred != NOCRED) 1478 bp->b_wcred = crhold(cred); 1479 } 1480 1481 if (bp->b_flags & B_REMFREE) 1482 bremfreef(bp); 1483 BUF_KERNPROC(bp); 1484 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1485 nmp->nm_bufqlen++; 1486 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1487 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1488 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1489 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1490 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1491 } 1492 mtx_unlock(&ncl_iod_mutex); 1493 return (0); 1494 } 1495 1496 mtx_unlock(&ncl_iod_mutex); 1497 1498 /* 1499 * All the iods are busy on other mounts, so return EIO to 1500 * force the caller to process the i/o synchronously. 1501 */ 1502 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1503 return (EIO); 1504 } 1505 1506 void 1507 ncl_doio_directwrite(struct buf *bp) 1508 { 1509 int iomode, must_commit; 1510 struct uio *uiop = (struct uio *)bp->b_caller1; 1511 char *iov_base = uiop->uio_iov->iov_base; 1512 1513 iomode = NFSWRITE_FILESYNC; 1514 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1515 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1516 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1517 free(iov_base, M_NFSDIRECTIO); 1518 free(uiop->uio_iov, M_NFSDIRECTIO); 1519 free(uiop, M_NFSDIRECTIO); 1520 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1521 struct nfsnode *np = VTONFS(bp->b_vp); 1522 mtx_lock(&np->n_mtx); 1523 np->n_directio_asyncwr--; 1524 if (np->n_directio_asyncwr == 0) { 1525 np->n_flag &= ~NMODIFIED; 1526 if ((np->n_flag & NFSYNCWAIT)) { 1527 np->n_flag &= ~NFSYNCWAIT; 1528 wakeup((caddr_t)&np->n_directio_asyncwr); 1529 } 1530 } 1531 mtx_unlock(&np->n_mtx); 1532 } 1533 bp->b_vp = NULL; 1534 relpbuf(bp, &ncl_pbuf_freecnt); 1535 } 1536 1537 /* 1538 * Do an I/O operation to/from a cache block. This may be called 1539 * synchronously or from an nfsiod. 1540 */ 1541 int 1542 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1543 int called_from_strategy) 1544 { 1545 struct uio *uiop; 1546 struct nfsnode *np; 1547 struct nfsmount *nmp; 1548 int error = 0, iomode, must_commit = 0; 1549 struct uio uio; 1550 struct iovec io; 1551 struct proc *p = td ? td->td_proc : NULL; 1552 uint8_t iocmd; 1553 1554 np = VTONFS(vp); 1555 nmp = VFSTONFS(vp->v_mount); 1556 uiop = &uio; 1557 uiop->uio_iov = &io; 1558 uiop->uio_iovcnt = 1; 1559 uiop->uio_segflg = UIO_SYSSPACE; 1560 uiop->uio_td = td; 1561 1562 /* 1563 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1564 * do this here so we do not have to do it in all the code that 1565 * calls us. 1566 */ 1567 bp->b_flags &= ~B_INVAL; 1568 bp->b_ioflags &= ~BIO_ERROR; 1569 1570 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1571 iocmd = bp->b_iocmd; 1572 if (iocmd == BIO_READ) { 1573 io.iov_len = uiop->uio_resid = bp->b_bcount; 1574 io.iov_base = bp->b_data; 1575 uiop->uio_rw = UIO_READ; 1576 1577 switch (vp->v_type) { 1578 case VREG: 1579 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1580 NFSINCRGLOBAL(newnfsstats.read_bios); 1581 error = ncl_readrpc(vp, uiop, cr); 1582 1583 if (!error) { 1584 if (uiop->uio_resid) { 1585 /* 1586 * If we had a short read with no error, we must have 1587 * hit a file hole. We should zero-fill the remainder. 1588 * This can also occur if the server hits the file EOF. 1589 * 1590 * Holes used to be able to occur due to pending 1591 * writes, but that is not possible any longer. 1592 */ 1593 int nread = bp->b_bcount - uiop->uio_resid; 1594 int left = uiop->uio_resid; 1595 1596 if (left > 0) 1597 bzero((char *)bp->b_data + nread, left); 1598 uiop->uio_resid = 0; 1599 } 1600 } 1601 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1602 if (p && (vp->v_vflag & VV_TEXT)) { 1603 mtx_lock(&np->n_mtx); 1604 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1605 mtx_unlock(&np->n_mtx); 1606 PROC_LOCK(p); 1607 killproc(p, "text file modification"); 1608 PROC_UNLOCK(p); 1609 } else 1610 mtx_unlock(&np->n_mtx); 1611 } 1612 break; 1613 case VLNK: 1614 uiop->uio_offset = (off_t)0; 1615 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1616 error = ncl_readlinkrpc(vp, uiop, cr); 1617 break; 1618 case VDIR: 1619 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1620 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1621 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1622 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1623 if (error == NFSERR_NOTSUPP) 1624 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1625 } 1626 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1627 error = ncl_readdirrpc(vp, uiop, cr, td); 1628 /* 1629 * end-of-directory sets B_INVAL but does not generate an 1630 * error. 1631 */ 1632 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1633 bp->b_flags |= B_INVAL; 1634 break; 1635 default: 1636 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1637 break; 1638 }; 1639 if (error) { 1640 bp->b_ioflags |= BIO_ERROR; 1641 bp->b_error = error; 1642 } 1643 } else { 1644 /* 1645 * If we only need to commit, try to commit 1646 */ 1647 if (bp->b_flags & B_NEEDCOMMIT) { 1648 int retv; 1649 off_t off; 1650 1651 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1652 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1653 bp->b_wcred, td); 1654 if (retv == 0) { 1655 bp->b_dirtyoff = bp->b_dirtyend = 0; 1656 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1657 bp->b_resid = 0; 1658 bufdone(bp); 1659 return (0); 1660 } 1661 if (retv == NFSERR_STALEWRITEVERF) { 1662 ncl_clearcommit(vp->v_mount); 1663 } 1664 } 1665 1666 /* 1667 * Setup for actual write 1668 */ 1669 mtx_lock(&np->n_mtx); 1670 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1671 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1672 mtx_unlock(&np->n_mtx); 1673 1674 if (bp->b_dirtyend > bp->b_dirtyoff) { 1675 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1676 - bp->b_dirtyoff; 1677 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1678 + bp->b_dirtyoff; 1679 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1680 uiop->uio_rw = UIO_WRITE; 1681 NFSINCRGLOBAL(newnfsstats.write_bios); 1682 1683 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1684 iomode = NFSWRITE_UNSTABLE; 1685 else 1686 iomode = NFSWRITE_FILESYNC; 1687 1688 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1689 called_from_strategy); 1690 1691 /* 1692 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1693 * to cluster the buffers needing commit. This will allow 1694 * the system to submit a single commit rpc for the whole 1695 * cluster. We can do this even if the buffer is not 100% 1696 * dirty (relative to the NFS blocksize), so we optimize the 1697 * append-to-file-case. 1698 * 1699 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1700 * cleared because write clustering only works for commit 1701 * rpc's, not for the data portion of the write). 1702 */ 1703 1704 if (!error && iomode == NFSWRITE_UNSTABLE) { 1705 bp->b_flags |= B_NEEDCOMMIT; 1706 if (bp->b_dirtyoff == 0 1707 && bp->b_dirtyend == bp->b_bcount) 1708 bp->b_flags |= B_CLUSTEROK; 1709 } else { 1710 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1711 } 1712 1713 /* 1714 * For an interrupted write, the buffer is still valid 1715 * and the write hasn't been pushed to the server yet, 1716 * so we can't set BIO_ERROR and report the interruption 1717 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1718 * is not relevant, so the rpc attempt is essentially 1719 * a noop. For the case of a V3 write rpc not being 1720 * committed to stable storage, the block is still 1721 * dirty and requires either a commit rpc or another 1722 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1723 * the block is reused. This is indicated by setting 1724 * the B_DELWRI and B_NEEDCOMMIT flags. 1725 * 1726 * EIO is returned by ncl_writerpc() to indicate a recoverable 1727 * write error and is handled as above, except that 1728 * B_EINTR isn't set. One cause of this is a stale stateid 1729 * error for the RPC that indicates recovery is required, 1730 * when called with called_from_strategy != 0. 1731 * 1732 * If the buffer is marked B_PAGING, it does not reside on 1733 * the vp's paging queues so we cannot call bdirty(). The 1734 * bp in this case is not an NFS cache block so we should 1735 * be safe. XXX 1736 * 1737 * The logic below breaks up errors into recoverable and 1738 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1739 * and keep the buffer around for potential write retries. 1740 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1741 * and save the error in the nfsnode. This is less than ideal 1742 * but necessary. Keeping such buffers around could potentially 1743 * cause buffer exhaustion eventually (they can never be written 1744 * out, so will get constantly be re-dirtied). It also causes 1745 * all sorts of vfs panics. For non-recoverable write errors, 1746 * also invalidate the attrcache, so we'll be forced to go over 1747 * the wire for this object, returning an error to user on next 1748 * call (most of the time). 1749 */ 1750 if (error == EINTR || error == EIO || error == ETIMEDOUT 1751 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1752 int s; 1753 1754 s = splbio(); 1755 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1756 if ((bp->b_flags & B_PAGING) == 0) { 1757 bdirty(bp); 1758 bp->b_flags &= ~B_DONE; 1759 } 1760 if ((error == EINTR || error == ETIMEDOUT) && 1761 (bp->b_flags & B_ASYNC) == 0) 1762 bp->b_flags |= B_EINTR; 1763 splx(s); 1764 } else { 1765 if (error) { 1766 bp->b_ioflags |= BIO_ERROR; 1767 bp->b_flags |= B_INVAL; 1768 bp->b_error = np->n_error = error; 1769 mtx_lock(&np->n_mtx); 1770 np->n_flag |= NWRITEERR; 1771 np->n_attrstamp = 0; 1772 mtx_unlock(&np->n_mtx); 1773 } 1774 bp->b_dirtyoff = bp->b_dirtyend = 0; 1775 } 1776 } else { 1777 bp->b_resid = 0; 1778 bufdone(bp); 1779 return (0); 1780 } 1781 } 1782 bp->b_resid = uiop->uio_resid; 1783 if (must_commit) 1784 ncl_clearcommit(vp->v_mount); 1785 bufdone(bp); 1786 return (error); 1787 } 1788 1789 /* 1790 * Used to aid in handling ftruncate() operations on the NFS client side. 1791 * Truncation creates a number of special problems for NFS. We have to 1792 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1793 * we have to properly handle VM pages or (potentially dirty) buffers 1794 * that straddle the truncation point. 1795 */ 1796 1797 int 1798 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1799 { 1800 struct nfsnode *np = VTONFS(vp); 1801 u_quad_t tsize; 1802 int biosize = vp->v_mount->mnt_stat.f_iosize; 1803 int error = 0; 1804 1805 mtx_lock(&np->n_mtx); 1806 tsize = np->n_size; 1807 np->n_size = nsize; 1808 mtx_unlock(&np->n_mtx); 1809 1810 if (nsize < tsize) { 1811 struct buf *bp; 1812 daddr_t lbn; 1813 int bufsize; 1814 1815 /* 1816 * vtruncbuf() doesn't get the buffer overlapping the 1817 * truncation point. We may have a B_DELWRI and/or B_CACHE 1818 * buffer that now needs to be truncated. 1819 */ 1820 error = vtruncbuf(vp, cred, td, nsize, biosize); 1821 lbn = nsize / biosize; 1822 bufsize = nsize & (biosize - 1); 1823 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1824 if (!bp) 1825 return EINTR; 1826 if (bp->b_dirtyoff > bp->b_bcount) 1827 bp->b_dirtyoff = bp->b_bcount; 1828 if (bp->b_dirtyend > bp->b_bcount) 1829 bp->b_dirtyend = bp->b_bcount; 1830 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1831 brelse(bp); 1832 } else { 1833 vnode_pager_setsize(vp, nsize); 1834 } 1835 return(error); 1836 } 1837 1838