xref: /freebsd/sys/fs/nfsclient/nfs_clbio.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bio.h>
41 #include <sys/buf.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/vmmeter.h>
45 #include <sys/vnode.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_extern.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_pager.h>
52 #include <vm/vnode_pager.h>
53 
54 #include <fs/nfs/nfsport.h>
55 #include <fs/nfsclient/nfsmount.h>
56 #include <fs/nfsclient/nfs.h>
57 #include <fs/nfsclient/nfsnode.h>
58 
59 extern int newnfs_directio_allow_mmap;
60 extern struct nfsstats newnfsstats;
61 extern struct mtx ncl_iod_mutex;
62 extern int ncl_numasync;
63 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
64 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
65 extern int newnfs_directio_enable;
66 
67 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
68 
69 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
70     struct thread *td);
71 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
72     struct ucred *cred, int ioflag);
73 
74 /*
75  * Vnode op for VM getpages.
76  */
77 int
78 ncl_getpages(struct vop_getpages_args *ap)
79 {
80 	int i, error, nextoff, size, toff, count, npages;
81 	struct uio uio;
82 	struct iovec iov;
83 	vm_offset_t kva;
84 	struct buf *bp;
85 	struct vnode *vp;
86 	struct thread *td;
87 	struct ucred *cred;
88 	struct nfsmount *nmp;
89 	vm_object_t object;
90 	vm_page_t *pages;
91 	struct nfsnode *np;
92 
93 	vp = ap->a_vp;
94 	np = VTONFS(vp);
95 	td = curthread;				/* XXX */
96 	cred = curthread->td_ucred;		/* XXX */
97 	nmp = VFSTONFS(vp->v_mount);
98 	pages = ap->a_m;
99 	count = ap->a_count;
100 
101 	if ((object = vp->v_object) == NULL) {
102 		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
103 		return (VM_PAGER_ERROR);
104 	}
105 
106 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
107 		mtx_lock(&np->n_mtx);
108 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
109 			mtx_unlock(&np->n_mtx);
110 			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
111 			return (VM_PAGER_ERROR);
112 		} else
113 			mtx_unlock(&np->n_mtx);
114 	}
115 
116 	mtx_lock(&nmp->nm_mtx);
117 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
118 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
119 		mtx_unlock(&nmp->nm_mtx);
120 		/* We'll never get here for v4, because we always have fsinfo */
121 		(void)ncl_fsinfo(nmp, vp, cred, td);
122 	} else
123 		mtx_unlock(&nmp->nm_mtx);
124 
125 	npages = btoc(count);
126 
127 	/*
128 	 * If the requested page is partially valid, just return it and
129 	 * allow the pager to zero-out the blanks.  Partially valid pages
130 	 * can only occur at the file EOF.
131 	 */
132 	VM_OBJECT_LOCK(object);
133 	if (pages[ap->a_reqpage]->valid != 0) {
134 		for (i = 0; i < npages; ++i) {
135 			if (i != ap->a_reqpage) {
136 				vm_page_lock(pages[i]);
137 				vm_page_free(pages[i]);
138 				vm_page_unlock(pages[i]);
139 			}
140 		}
141 		VM_OBJECT_UNLOCK(object);
142 		return (0);
143 	}
144 	VM_OBJECT_UNLOCK(object);
145 
146 	/*
147 	 * We use only the kva address for the buffer, but this is extremely
148 	 * convienient and fast.
149 	 */
150 	bp = getpbuf(&ncl_pbuf_freecnt);
151 
152 	kva = (vm_offset_t) bp->b_data;
153 	pmap_qenter(kva, pages, npages);
154 	PCPU_INC(cnt.v_vnodein);
155 	PCPU_ADD(cnt.v_vnodepgsin, npages);
156 
157 	iov.iov_base = (caddr_t) kva;
158 	iov.iov_len = count;
159 	uio.uio_iov = &iov;
160 	uio.uio_iovcnt = 1;
161 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 	uio.uio_resid = count;
163 	uio.uio_segflg = UIO_SYSSPACE;
164 	uio.uio_rw = UIO_READ;
165 	uio.uio_td = td;
166 
167 	error = ncl_readrpc(vp, &uio, cred);
168 	pmap_qremove(kva, npages);
169 
170 	relpbuf(bp, &ncl_pbuf_freecnt);
171 
172 	if (error && (uio.uio_resid == count)) {
173 		ncl_printf("nfs_getpages: error %d\n", error);
174 		VM_OBJECT_LOCK(object);
175 		for (i = 0; i < npages; ++i) {
176 			if (i != ap->a_reqpage) {
177 				vm_page_lock(pages[i]);
178 				vm_page_free(pages[i]);
179 				vm_page_unlock(pages[i]);
180 			}
181 		}
182 		VM_OBJECT_UNLOCK(object);
183 		return (VM_PAGER_ERROR);
184 	}
185 
186 	/*
187 	 * Calculate the number of bytes read and validate only that number
188 	 * of bytes.  Note that due to pending writes, size may be 0.  This
189 	 * does not mean that the remaining data is invalid!
190 	 */
191 
192 	size = count - uio.uio_resid;
193 	VM_OBJECT_LOCK(object);
194 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
195 		vm_page_t m;
196 		nextoff = toff + PAGE_SIZE;
197 		m = pages[i];
198 
199 		if (nextoff <= size) {
200 			/*
201 			 * Read operation filled an entire page
202 			 */
203 			m->valid = VM_PAGE_BITS_ALL;
204 			KASSERT(m->dirty == 0,
205 			    ("nfs_getpages: page %p is dirty", m));
206 		} else if (size > toff) {
207 			/*
208 			 * Read operation filled a partial page.
209 			 */
210 			m->valid = 0;
211 			vm_page_set_valid(m, 0, size - toff);
212 			KASSERT(m->dirty == 0,
213 			    ("nfs_getpages: page %p is dirty", m));
214 		} else {
215 			/*
216 			 * Read operation was short.  If no error occured
217 			 * we may have hit a zero-fill section.   We simply
218 			 * leave valid set to 0.
219 			 */
220 			;
221 		}
222 		if (i != ap->a_reqpage) {
223 			/*
224 			 * Whether or not to leave the page activated is up in
225 			 * the air, but we should put the page on a page queue
226 			 * somewhere (it already is in the object).  Result:
227 			 * It appears that emperical results show that
228 			 * deactivating pages is best.
229 			 */
230 
231 			/*
232 			 * Just in case someone was asking for this page we
233 			 * now tell them that it is ok to use.
234 			 */
235 			if (!error) {
236 				if (m->oflags & VPO_WANTED) {
237 					vm_page_lock(m);
238 					vm_page_activate(m);
239 					vm_page_unlock(m);
240 				} else {
241 					vm_page_lock(m);
242 					vm_page_deactivate(m);
243 					vm_page_unlock(m);
244 				}
245 				vm_page_wakeup(m);
246 			} else {
247 				vm_page_lock(m);
248 				vm_page_free(m);
249 				vm_page_unlock(m);
250 			}
251 		}
252 	}
253 	VM_OBJECT_UNLOCK(object);
254 	return (0);
255 }
256 
257 /*
258  * Vnode op for VM putpages.
259  */
260 int
261 ncl_putpages(struct vop_putpages_args *ap)
262 {
263 	struct uio uio;
264 	struct iovec iov;
265 	vm_offset_t kva;
266 	struct buf *bp;
267 	int iomode, must_commit, i, error, npages, count;
268 	off_t offset;
269 	int *rtvals;
270 	struct vnode *vp;
271 	struct thread *td;
272 	struct ucred *cred;
273 	struct nfsmount *nmp;
274 	struct nfsnode *np;
275 	vm_page_t *pages;
276 
277 	vp = ap->a_vp;
278 	np = VTONFS(vp);
279 	td = curthread;				/* XXX */
280 	cred = curthread->td_ucred;		/* XXX */
281 	nmp = VFSTONFS(vp->v_mount);
282 	pages = ap->a_m;
283 	count = ap->a_count;
284 	rtvals = ap->a_rtvals;
285 	npages = btoc(count);
286 	offset = IDX_TO_OFF(pages[0]->pindex);
287 
288 	mtx_lock(&nmp->nm_mtx);
289 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
290 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
291 		mtx_unlock(&nmp->nm_mtx);
292 		(void)ncl_fsinfo(nmp, vp, cred, td);
293 	} else
294 		mtx_unlock(&nmp->nm_mtx);
295 
296 	mtx_lock(&np->n_mtx);
297 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
298 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
299 		mtx_unlock(&np->n_mtx);
300 		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
301 		mtx_lock(&np->n_mtx);
302 	}
303 
304 	for (i = 0; i < npages; i++)
305 		rtvals[i] = VM_PAGER_ERROR;
306 
307 	/*
308 	 * When putting pages, do not extend file past EOF.
309 	 */
310 	if (offset + count > np->n_size) {
311 		count = np->n_size - offset;
312 		if (count < 0)
313 			count = 0;
314 	}
315 	mtx_unlock(&np->n_mtx);
316 
317 	/*
318 	 * We use only the kva address for the buffer, but this is extremely
319 	 * convienient and fast.
320 	 */
321 	bp = getpbuf(&ncl_pbuf_freecnt);
322 
323 	kva = (vm_offset_t) bp->b_data;
324 	pmap_qenter(kva, pages, npages);
325 	PCPU_INC(cnt.v_vnodeout);
326 	PCPU_ADD(cnt.v_vnodepgsout, count);
327 
328 	iov.iov_base = (caddr_t) kva;
329 	iov.iov_len = count;
330 	uio.uio_iov = &iov;
331 	uio.uio_iovcnt = 1;
332 	uio.uio_offset = offset;
333 	uio.uio_resid = count;
334 	uio.uio_segflg = UIO_SYSSPACE;
335 	uio.uio_rw = UIO_WRITE;
336 	uio.uio_td = td;
337 
338 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
339 	    iomode = NFSWRITE_UNSTABLE;
340 	else
341 	    iomode = NFSWRITE_FILESYNC;
342 
343 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
344 
345 	pmap_qremove(kva, npages);
346 	relpbuf(bp, &ncl_pbuf_freecnt);
347 
348 	vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
349 	if (must_commit)
350 		ncl_clearcommit(vp->v_mount);
351 	return rtvals[0];
352 }
353 
354 /*
355  * For nfs, cache consistency can only be maintained approximately.
356  * Although RFC1094 does not specify the criteria, the following is
357  * believed to be compatible with the reference port.
358  * For nfs:
359  * If the file's modify time on the server has changed since the
360  * last read rpc or you have written to the file,
361  * you may have lost data cache consistency with the
362  * server, so flush all of the file's data out of the cache.
363  * Then force a getattr rpc to ensure that you have up to date
364  * attributes.
365  * NB: This implies that cache data can be read when up to
366  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
367  * attributes this could be forced by setting n_attrstamp to 0 before
368  * the VOP_GETATTR() call.
369  */
370 static inline int
371 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
372 {
373 	int error = 0;
374 	struct vattr vattr;
375 	struct nfsnode *np = VTONFS(vp);
376 	int old_lock;
377 
378 	/*
379 	 * Grab the exclusive lock before checking whether the cache is
380 	 * consistent.
381 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
382 	 * But for now, this suffices.
383 	 */
384 	old_lock = ncl_upgrade_vnlock(vp);
385 	if (vp->v_iflag & VI_DOOMED) {
386 		ncl_downgrade_vnlock(vp, old_lock);
387 		return (EBADF);
388 	}
389 
390 	mtx_lock(&np->n_mtx);
391 	if (np->n_flag & NMODIFIED) {
392 		mtx_unlock(&np->n_mtx);
393 		if (vp->v_type != VREG) {
394 			if (vp->v_type != VDIR)
395 				panic("nfs: bioread, not dir");
396 			ncl_invaldir(vp);
397 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
398 			if (error)
399 				goto out;
400 		}
401 		np->n_attrstamp = 0;
402 		error = VOP_GETATTR(vp, &vattr, cred);
403 		if (error)
404 			goto out;
405 		mtx_lock(&np->n_mtx);
406 		np->n_mtime = vattr.va_mtime;
407 		mtx_unlock(&np->n_mtx);
408 	} else {
409 		mtx_unlock(&np->n_mtx);
410 		error = VOP_GETATTR(vp, &vattr, cred);
411 		if (error)
412 			return (error);
413 		mtx_lock(&np->n_mtx);
414 		if ((np->n_flag & NSIZECHANGED)
415 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
416 			mtx_unlock(&np->n_mtx);
417 			if (vp->v_type == VDIR)
418 				ncl_invaldir(vp);
419 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
420 			if (error)
421 				goto out;
422 			mtx_lock(&np->n_mtx);
423 			np->n_mtime = vattr.va_mtime;
424 			np->n_flag &= ~NSIZECHANGED;
425 		}
426 		mtx_unlock(&np->n_mtx);
427 	}
428 out:
429 	ncl_downgrade_vnlock(vp, old_lock);
430 	return error;
431 }
432 
433 /*
434  * Vnode op for read using bio
435  */
436 int
437 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
438 {
439 	struct nfsnode *np = VTONFS(vp);
440 	int biosize, i;
441 	struct buf *bp, *rabp;
442 	struct thread *td;
443 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
444 	daddr_t lbn, rabn;
445 	int bcount;
446 	int seqcount;
447 	int nra, error = 0, n = 0, on = 0;
448 	off_t tmp_off;
449 
450 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
451 	if (uio->uio_resid == 0)
452 		return (0);
453 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
454 		return (EINVAL);
455 	td = uio->uio_td;
456 
457 	mtx_lock(&nmp->nm_mtx);
458 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
459 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
460 		mtx_unlock(&nmp->nm_mtx);
461 		(void)ncl_fsinfo(nmp, vp, cred, td);
462 		mtx_lock(&nmp->nm_mtx);
463 	}
464 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
465 		(void) newnfs_iosize(nmp);
466 
467 	tmp_off = uio->uio_offset + uio->uio_resid;
468 	if (vp->v_type != VDIR &&
469 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
470 		mtx_unlock(&nmp->nm_mtx);
471 		return (EFBIG);
472 	}
473 	mtx_unlock(&nmp->nm_mtx);
474 
475 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
476 		/* No caching/ no readaheads. Just read data into the user buffer */
477 		return ncl_readrpc(vp, uio, cred);
478 
479 	biosize = vp->v_mount->mnt_stat.f_iosize;
480 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
481 
482 	error = nfs_bioread_check_cons(vp, td, cred);
483 	if (error)
484 		return error;
485 
486 	do {
487 	    u_quad_t nsize;
488 
489 	    mtx_lock(&np->n_mtx);
490 	    nsize = np->n_size;
491 	    mtx_unlock(&np->n_mtx);
492 
493 	    switch (vp->v_type) {
494 	    case VREG:
495 		NFSINCRGLOBAL(newnfsstats.biocache_reads);
496 		lbn = uio->uio_offset / biosize;
497 		on = uio->uio_offset & (biosize - 1);
498 
499 		/*
500 		 * Start the read ahead(s), as required.
501 		 */
502 		if (nmp->nm_readahead > 0) {
503 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
504 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
505 			rabn = lbn + 1 + nra;
506 			if (incore(&vp->v_bufobj, rabn) == NULL) {
507 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
508 			    if (!rabp) {
509 				error = newnfs_sigintr(nmp, td);
510 				return (error ? error : EINTR);
511 			    }
512 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
513 				rabp->b_flags |= B_ASYNC;
514 				rabp->b_iocmd = BIO_READ;
515 				vfs_busy_pages(rabp, 0);
516 				if (ncl_asyncio(nmp, rabp, cred, td)) {
517 				    rabp->b_flags |= B_INVAL;
518 				    rabp->b_ioflags |= BIO_ERROR;
519 				    vfs_unbusy_pages(rabp);
520 				    brelse(rabp);
521 				    break;
522 				}
523 			    } else {
524 				brelse(rabp);
525 			    }
526 			}
527 		    }
528 		}
529 
530 		/* Note that bcount is *not* DEV_BSIZE aligned. */
531 		bcount = biosize;
532 		if ((off_t)lbn * biosize >= nsize) {
533 			bcount = 0;
534 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
535 			bcount = nsize - (off_t)lbn * biosize;
536 		}
537 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
538 
539 		if (!bp) {
540 			error = newnfs_sigintr(nmp, td);
541 			return (error ? error : EINTR);
542 		}
543 
544 		/*
545 		 * If B_CACHE is not set, we must issue the read.  If this
546 		 * fails, we return an error.
547 		 */
548 
549 		if ((bp->b_flags & B_CACHE) == 0) {
550 		    bp->b_iocmd = BIO_READ;
551 		    vfs_busy_pages(bp, 0);
552 		    error = ncl_doio(vp, bp, cred, td, 0);
553 		    if (error) {
554 			brelse(bp);
555 			return (error);
556 		    }
557 		}
558 
559 		/*
560 		 * on is the offset into the current bp.  Figure out how many
561 		 * bytes we can copy out of the bp.  Note that bcount is
562 		 * NOT DEV_BSIZE aligned.
563 		 *
564 		 * Then figure out how many bytes we can copy into the uio.
565 		 */
566 
567 		n = 0;
568 		if (on < bcount)
569 			n = min((unsigned)(bcount - on), uio->uio_resid);
570 		break;
571 	    case VLNK:
572 		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
573 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
574 		if (!bp) {
575 			error = newnfs_sigintr(nmp, td);
576 			return (error ? error : EINTR);
577 		}
578 		if ((bp->b_flags & B_CACHE) == 0) {
579 		    bp->b_iocmd = BIO_READ;
580 		    vfs_busy_pages(bp, 0);
581 		    error = ncl_doio(vp, bp, cred, td, 0);
582 		    if (error) {
583 			bp->b_ioflags |= BIO_ERROR;
584 			brelse(bp);
585 			return (error);
586 		    }
587 		}
588 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
589 		on = 0;
590 		break;
591 	    case VDIR:
592 		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
593 		if (np->n_direofoffset
594 		    && uio->uio_offset >= np->n_direofoffset) {
595 		    return (0);
596 		}
597 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
598 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
599 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
600 		if (!bp) {
601 		    error = newnfs_sigintr(nmp, td);
602 		    return (error ? error : EINTR);
603 		}
604 		if ((bp->b_flags & B_CACHE) == 0) {
605 		    bp->b_iocmd = BIO_READ;
606 		    vfs_busy_pages(bp, 0);
607 		    error = ncl_doio(vp, bp, cred, td, 0);
608 		    if (error) {
609 			    brelse(bp);
610 		    }
611 		    while (error == NFSERR_BAD_COOKIE) {
612 			ncl_invaldir(vp);
613 			error = ncl_vinvalbuf(vp, 0, td, 1);
614 			/*
615 			 * Yuck! The directory has been modified on the
616 			 * server. The only way to get the block is by
617 			 * reading from the beginning to get all the
618 			 * offset cookies.
619 			 *
620 			 * Leave the last bp intact unless there is an error.
621 			 * Loop back up to the while if the error is another
622 			 * NFSERR_BAD_COOKIE (double yuch!).
623 			 */
624 			for (i = 0; i <= lbn && !error; i++) {
625 			    if (np->n_direofoffset
626 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
627 				    return (0);
628 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
629 			    if (!bp) {
630 				error = newnfs_sigintr(nmp, td);
631 				return (error ? error : EINTR);
632 			    }
633 			    if ((bp->b_flags & B_CACHE) == 0) {
634 				    bp->b_iocmd = BIO_READ;
635 				    vfs_busy_pages(bp, 0);
636 				    error = ncl_doio(vp, bp, cred, td, 0);
637 				    /*
638 				     * no error + B_INVAL == directory EOF,
639 				     * use the block.
640 				     */
641 				    if (error == 0 && (bp->b_flags & B_INVAL))
642 					    break;
643 			    }
644 			    /*
645 			     * An error will throw away the block and the
646 			     * for loop will break out.  If no error and this
647 			     * is not the block we want, we throw away the
648 			     * block and go for the next one via the for loop.
649 			     */
650 			    if (error || i < lbn)
651 				    brelse(bp);
652 			}
653 		    }
654 		    /*
655 		     * The above while is repeated if we hit another cookie
656 		     * error.  If we hit an error and it wasn't a cookie error,
657 		     * we give up.
658 		     */
659 		    if (error)
660 			    return (error);
661 		}
662 
663 		/*
664 		 * If not eof and read aheads are enabled, start one.
665 		 * (You need the current block first, so that you have the
666 		 *  directory offset cookie of the next block.)
667 		 */
668 		if (nmp->nm_readahead > 0 &&
669 		    (bp->b_flags & B_INVAL) == 0 &&
670 		    (np->n_direofoffset == 0 ||
671 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
672 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
673 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
674 			if (rabp) {
675 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
676 				rabp->b_flags |= B_ASYNC;
677 				rabp->b_iocmd = BIO_READ;
678 				vfs_busy_pages(rabp, 0);
679 				if (ncl_asyncio(nmp, rabp, cred, td)) {
680 				    rabp->b_flags |= B_INVAL;
681 				    rabp->b_ioflags |= BIO_ERROR;
682 				    vfs_unbusy_pages(rabp);
683 				    brelse(rabp);
684 				}
685 			    } else {
686 				brelse(rabp);
687 			    }
688 			}
689 		}
690 		/*
691 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
692 		 * chopped for the EOF condition, we cannot tell how large
693 		 * NFS directories are going to be until we hit EOF.  So
694 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
695 		 * it just so happens that b_resid will effectively chop it
696 		 * to EOF.  *BUT* this information is lost if the buffer goes
697 		 * away and is reconstituted into a B_CACHE state ( due to
698 		 * being VMIO ) later.  So we keep track of the directory eof
699 		 * in np->n_direofoffset and chop it off as an extra step
700 		 * right here.
701 		 */
702 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
703 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
704 			n = np->n_direofoffset - uio->uio_offset;
705 		break;
706 	    default:
707 		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
708 		bp = NULL;
709 		break;
710 	    };
711 
712 	    if (n > 0) {
713 		    error = uiomove(bp->b_data + on, (int)n, uio);
714 	    }
715 	    if (vp->v_type == VLNK)
716 		n = 0;
717 	    if (bp != NULL)
718 		brelse(bp);
719 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
720 	return (error);
721 }
722 
723 /*
724  * The NFS write path cannot handle iovecs with len > 1. So we need to
725  * break up iovecs accordingly (restricting them to wsize).
726  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
727  * For the ASYNC case, 2 copies are needed. The first a copy from the
728  * user buffer to a staging buffer and then a second copy from the staging
729  * buffer to mbufs. This can be optimized by copying from the user buffer
730  * directly into mbufs and passing the chain down, but that requires a
731  * fair amount of re-working of the relevant codepaths (and can be done
732  * later).
733  */
734 static int
735 nfs_directio_write(vp, uiop, cred, ioflag)
736 	struct vnode *vp;
737 	struct uio *uiop;
738 	struct ucred *cred;
739 	int ioflag;
740 {
741 	int error;
742 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
743 	struct thread *td = uiop->uio_td;
744 	int size;
745 	int wsize;
746 
747 	mtx_lock(&nmp->nm_mtx);
748 	wsize = nmp->nm_wsize;
749 	mtx_unlock(&nmp->nm_mtx);
750 	if (ioflag & IO_SYNC) {
751 		int iomode, must_commit;
752 		struct uio uio;
753 		struct iovec iov;
754 do_sync:
755 		while (uiop->uio_resid > 0) {
756 			size = min(uiop->uio_resid, wsize);
757 			size = min(uiop->uio_iov->iov_len, size);
758 			iov.iov_base = uiop->uio_iov->iov_base;
759 			iov.iov_len = size;
760 			uio.uio_iov = &iov;
761 			uio.uio_iovcnt = 1;
762 			uio.uio_offset = uiop->uio_offset;
763 			uio.uio_resid = size;
764 			uio.uio_segflg = UIO_USERSPACE;
765 			uio.uio_rw = UIO_WRITE;
766 			uio.uio_td = td;
767 			iomode = NFSWRITE_FILESYNC;
768 			error = ncl_writerpc(vp, &uio, cred, &iomode,
769 			    &must_commit, 0);
770 			KASSERT((must_commit == 0),
771 				("ncl_directio_write: Did not commit write"));
772 			if (error)
773 				return (error);
774 			uiop->uio_offset += size;
775 			uiop->uio_resid -= size;
776 			if (uiop->uio_iov->iov_len <= size) {
777 				uiop->uio_iovcnt--;
778 				uiop->uio_iov++;
779 			} else {
780 				uiop->uio_iov->iov_base =
781 					(char *)uiop->uio_iov->iov_base + size;
782 				uiop->uio_iov->iov_len -= size;
783 			}
784 		}
785 	} else {
786 		struct uio *t_uio;
787 		struct iovec *t_iov;
788 		struct buf *bp;
789 
790 		/*
791 		 * Break up the write into blocksize chunks and hand these
792 		 * over to nfsiod's for write back.
793 		 * Unfortunately, this incurs a copy of the data. Since
794 		 * the user could modify the buffer before the write is
795 		 * initiated.
796 		 *
797 		 * The obvious optimization here is that one of the 2 copies
798 		 * in the async write path can be eliminated by copying the
799 		 * data here directly into mbufs and passing the mbuf chain
800 		 * down. But that will require a fair amount of re-working
801 		 * of the code and can be done if there's enough interest
802 		 * in NFS directio access.
803 		 */
804 		while (uiop->uio_resid > 0) {
805 			size = min(uiop->uio_resid, wsize);
806 			size = min(uiop->uio_iov->iov_len, size);
807 			bp = getpbuf(&ncl_pbuf_freecnt);
808 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
809 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
810 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
811 			t_iov->iov_len = size;
812 			t_uio->uio_iov = t_iov;
813 			t_uio->uio_iovcnt = 1;
814 			t_uio->uio_offset = uiop->uio_offset;
815 			t_uio->uio_resid = size;
816 			t_uio->uio_segflg = UIO_SYSSPACE;
817 			t_uio->uio_rw = UIO_WRITE;
818 			t_uio->uio_td = td;
819 			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
820 			bp->b_flags |= B_DIRECT;
821 			bp->b_iocmd = BIO_WRITE;
822 			if (cred != NOCRED) {
823 				crhold(cred);
824 				bp->b_wcred = cred;
825 			} else
826 				bp->b_wcred = NOCRED;
827 			bp->b_caller1 = (void *)t_uio;
828 			bp->b_vp = vp;
829 			error = ncl_asyncio(nmp, bp, NOCRED, td);
830 			if (error) {
831 				free(t_iov->iov_base, M_NFSDIRECTIO);
832 				free(t_iov, M_NFSDIRECTIO);
833 				free(t_uio, M_NFSDIRECTIO);
834 				bp->b_vp = NULL;
835 				relpbuf(bp, &ncl_pbuf_freecnt);
836 				if (error == EINTR)
837 					return (error);
838 				goto do_sync;
839 			}
840 			uiop->uio_offset += size;
841 			uiop->uio_resid -= size;
842 			if (uiop->uio_iov->iov_len <= size) {
843 				uiop->uio_iovcnt--;
844 				uiop->uio_iov++;
845 			} else {
846 				uiop->uio_iov->iov_base =
847 					(char *)uiop->uio_iov->iov_base + size;
848 				uiop->uio_iov->iov_len -= size;
849 			}
850 		}
851 	}
852 	return (0);
853 }
854 
855 /*
856  * Vnode op for write using bio
857  */
858 int
859 ncl_write(struct vop_write_args *ap)
860 {
861 	int biosize;
862 	struct uio *uio = ap->a_uio;
863 	struct thread *td = uio->uio_td;
864 	struct vnode *vp = ap->a_vp;
865 	struct nfsnode *np = VTONFS(vp);
866 	struct ucred *cred = ap->a_cred;
867 	int ioflag = ap->a_ioflag;
868 	struct buf *bp;
869 	struct vattr vattr;
870 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
871 	daddr_t lbn;
872 	int bcount;
873 	int n, on, error = 0;
874 	off_t tmp_off;
875 
876 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
877 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
878 	    ("ncl_write proc"));
879 	if (vp->v_type != VREG)
880 		return (EIO);
881 	mtx_lock(&np->n_mtx);
882 	if (np->n_flag & NWRITEERR) {
883 		np->n_flag &= ~NWRITEERR;
884 		mtx_unlock(&np->n_mtx);
885 		return (np->n_error);
886 	} else
887 		mtx_unlock(&np->n_mtx);
888 	mtx_lock(&nmp->nm_mtx);
889 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
890 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
891 		mtx_unlock(&nmp->nm_mtx);
892 		(void)ncl_fsinfo(nmp, vp, cred, td);
893 		mtx_lock(&nmp->nm_mtx);
894 	}
895 	if (nmp->nm_wsize == 0)
896 		(void) newnfs_iosize(nmp);
897 	mtx_unlock(&nmp->nm_mtx);
898 
899 	/*
900 	 * Synchronously flush pending buffers if we are in synchronous
901 	 * mode or if we are appending.
902 	 */
903 	if (ioflag & (IO_APPEND | IO_SYNC)) {
904 		mtx_lock(&np->n_mtx);
905 		if (np->n_flag & NMODIFIED) {
906 			mtx_unlock(&np->n_mtx);
907 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
908 			/*
909 			 * Require non-blocking, synchronous writes to
910 			 * dirty files to inform the program it needs
911 			 * to fsync(2) explicitly.
912 			 */
913 			if (ioflag & IO_NDELAY)
914 				return (EAGAIN);
915 #endif
916 flush_and_restart:
917 			np->n_attrstamp = 0;
918 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
919 			if (error)
920 				return (error);
921 		} else
922 			mtx_unlock(&np->n_mtx);
923 	}
924 
925 	/*
926 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
927 	 * get the append lock.
928 	 */
929 	if (ioflag & IO_APPEND) {
930 		np->n_attrstamp = 0;
931 		error = VOP_GETATTR(vp, &vattr, cred);
932 		if (error)
933 			return (error);
934 		mtx_lock(&np->n_mtx);
935 		uio->uio_offset = np->n_size;
936 		mtx_unlock(&np->n_mtx);
937 	}
938 
939 	if (uio->uio_offset < 0)
940 		return (EINVAL);
941 	tmp_off = uio->uio_offset + uio->uio_resid;
942 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
943 		return (EFBIG);
944 	if (uio->uio_resid == 0)
945 		return (0);
946 
947 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
948 		return nfs_directio_write(vp, uio, cred, ioflag);
949 
950 	/*
951 	 * Maybe this should be above the vnode op call, but so long as
952 	 * file servers have no limits, i don't think it matters
953 	 */
954 	if (vn_rlimit_fsize(vp, uio, td))
955 		return (EFBIG);
956 
957 	biosize = vp->v_mount->mnt_stat.f_iosize;
958 	/*
959 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
960 	 * would exceed the local maximum per-file write commit size when
961 	 * combined with those, we must decide whether to flush,
962 	 * go synchronous, or return error.  We don't bother checking
963 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
964 	 * no point optimizing for something that really won't ever happen.
965 	 */
966 	if (!(ioflag & IO_SYNC)) {
967 		int nflag;
968 
969 		mtx_lock(&np->n_mtx);
970 		nflag = np->n_flag;
971 		mtx_unlock(&np->n_mtx);
972 		int needrestart = 0;
973 		if (nmp->nm_wcommitsize < uio->uio_resid) {
974 			/*
975 			 * If this request could not possibly be completed
976 			 * without exceeding the maximum outstanding write
977 			 * commit size, see if we can convert it into a
978 			 * synchronous write operation.
979 			 */
980 			if (ioflag & IO_NDELAY)
981 				return (EAGAIN);
982 			ioflag |= IO_SYNC;
983 			if (nflag & NMODIFIED)
984 				needrestart = 1;
985 		} else if (nflag & NMODIFIED) {
986 			int wouldcommit = 0;
987 			BO_LOCK(&vp->v_bufobj);
988 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
989 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
990 				    b_bobufs) {
991 					if (bp->b_flags & B_NEEDCOMMIT)
992 						wouldcommit += bp->b_bcount;
993 				}
994 			}
995 			BO_UNLOCK(&vp->v_bufobj);
996 			/*
997 			 * Since we're not operating synchronously and
998 			 * bypassing the buffer cache, we are in a commit
999 			 * and holding all of these buffers whether
1000 			 * transmitted or not.  If not limited, this
1001 			 * will lead to the buffer cache deadlocking,
1002 			 * as no one else can flush our uncommitted buffers.
1003 			 */
1004 			wouldcommit += uio->uio_resid;
1005 			/*
1006 			 * If we would initially exceed the maximum
1007 			 * outstanding write commit size, flush and restart.
1008 			 */
1009 			if (wouldcommit > nmp->nm_wcommitsize)
1010 				needrestart = 1;
1011 		}
1012 		if (needrestart)
1013 			goto flush_and_restart;
1014 	}
1015 
1016 	do {
1017 		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1018 		lbn = uio->uio_offset / biosize;
1019 		on = uio->uio_offset & (biosize-1);
1020 		n = min((unsigned)(biosize - on), uio->uio_resid);
1021 again:
1022 		/*
1023 		 * Handle direct append and file extension cases, calculate
1024 		 * unaligned buffer size.
1025 		 */
1026 		mtx_lock(&np->n_mtx);
1027 		if (uio->uio_offset == np->n_size && n) {
1028 			mtx_unlock(&np->n_mtx);
1029 			/*
1030 			 * Get the buffer (in its pre-append state to maintain
1031 			 * B_CACHE if it was previously set).  Resize the
1032 			 * nfsnode after we have locked the buffer to prevent
1033 			 * readers from reading garbage.
1034 			 */
1035 			bcount = on;
1036 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1037 
1038 			if (bp != NULL) {
1039 				long save;
1040 
1041 				mtx_lock(&np->n_mtx);
1042 				np->n_size = uio->uio_offset + n;
1043 				np->n_flag |= NMODIFIED;
1044 				vnode_pager_setsize(vp, np->n_size);
1045 				mtx_unlock(&np->n_mtx);
1046 
1047 				save = bp->b_flags & B_CACHE;
1048 				bcount += n;
1049 				allocbuf(bp, bcount);
1050 				bp->b_flags |= save;
1051 			}
1052 		} else {
1053 			/*
1054 			 * Obtain the locked cache block first, and then
1055 			 * adjust the file's size as appropriate.
1056 			 */
1057 			bcount = on + n;
1058 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1059 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1060 					bcount = biosize;
1061 				else
1062 					bcount = np->n_size - (off_t)lbn * biosize;
1063 			}
1064 			mtx_unlock(&np->n_mtx);
1065 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1066 			mtx_lock(&np->n_mtx);
1067 			if (uio->uio_offset + n > np->n_size) {
1068 				np->n_size = uio->uio_offset + n;
1069 				np->n_flag |= NMODIFIED;
1070 				vnode_pager_setsize(vp, np->n_size);
1071 			}
1072 			mtx_unlock(&np->n_mtx);
1073 		}
1074 
1075 		if (!bp) {
1076 			error = newnfs_sigintr(nmp, td);
1077 			if (!error)
1078 				error = EINTR;
1079 			break;
1080 		}
1081 
1082 		/*
1083 		 * Issue a READ if B_CACHE is not set.  In special-append
1084 		 * mode, B_CACHE is based on the buffer prior to the write
1085 		 * op and is typically set, avoiding the read.  If a read
1086 		 * is required in special append mode, the server will
1087 		 * probably send us a short-read since we extended the file
1088 		 * on our end, resulting in b_resid == 0 and, thusly,
1089 		 * B_CACHE getting set.
1090 		 *
1091 		 * We can also avoid issuing the read if the write covers
1092 		 * the entire buffer.  We have to make sure the buffer state
1093 		 * is reasonable in this case since we will not be initiating
1094 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1095 		 * more information.
1096 		 *
1097 		 * B_CACHE may also be set due to the buffer being cached
1098 		 * normally.
1099 		 */
1100 
1101 		if (on == 0 && n == bcount) {
1102 			bp->b_flags |= B_CACHE;
1103 			bp->b_flags &= ~B_INVAL;
1104 			bp->b_ioflags &= ~BIO_ERROR;
1105 		}
1106 
1107 		if ((bp->b_flags & B_CACHE) == 0) {
1108 			bp->b_iocmd = BIO_READ;
1109 			vfs_busy_pages(bp, 0);
1110 			error = ncl_doio(vp, bp, cred, td, 0);
1111 			if (error) {
1112 				brelse(bp);
1113 				break;
1114 			}
1115 		}
1116 		if (bp->b_wcred == NOCRED)
1117 			bp->b_wcred = crhold(cred);
1118 		mtx_lock(&np->n_mtx);
1119 		np->n_flag |= NMODIFIED;
1120 		mtx_unlock(&np->n_mtx);
1121 
1122 		/*
1123 		 * If dirtyend exceeds file size, chop it down.  This should
1124 		 * not normally occur but there is an append race where it
1125 		 * might occur XXX, so we log it.
1126 		 *
1127 		 * If the chopping creates a reverse-indexed or degenerate
1128 		 * situation with dirtyoff/end, we 0 both of them.
1129 		 */
1130 
1131 		if (bp->b_dirtyend > bcount) {
1132 			ncl_printf("NFS append race @%lx:%d\n",
1133 			    (long)bp->b_blkno * DEV_BSIZE,
1134 			    bp->b_dirtyend - bcount);
1135 			bp->b_dirtyend = bcount;
1136 		}
1137 
1138 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1139 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1140 
1141 		/*
1142 		 * If the new write will leave a contiguous dirty
1143 		 * area, just update the b_dirtyoff and b_dirtyend,
1144 		 * otherwise force a write rpc of the old dirty area.
1145 		 *
1146 		 * While it is possible to merge discontiguous writes due to
1147 		 * our having a B_CACHE buffer ( and thus valid read data
1148 		 * for the hole), we don't because it could lead to
1149 		 * significant cache coherency problems with multiple clients,
1150 		 * especially if locking is implemented later on.
1151 		 *
1152 		 * as an optimization we could theoretically maintain
1153 		 * a linked list of discontinuous areas, but we would still
1154 		 * have to commit them separately so there isn't much
1155 		 * advantage to it except perhaps a bit of asynchronization.
1156 		 */
1157 
1158 		if (bp->b_dirtyend > 0 &&
1159 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1160 			if (bwrite(bp) == EINTR) {
1161 				error = EINTR;
1162 				break;
1163 			}
1164 			goto again;
1165 		}
1166 
1167 		error = uiomove((char *)bp->b_data + on, n, uio);
1168 
1169 		/*
1170 		 * Since this block is being modified, it must be written
1171 		 * again and not just committed.  Since write clustering does
1172 		 * not work for the stage 1 data write, only the stage 2
1173 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1174 		 */
1175 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1176 
1177 		if (error) {
1178 			bp->b_ioflags |= BIO_ERROR;
1179 			brelse(bp);
1180 			break;
1181 		}
1182 
1183 		/*
1184 		 * Only update dirtyoff/dirtyend if not a degenerate
1185 		 * condition.
1186 		 */
1187 		if (n) {
1188 			if (bp->b_dirtyend > 0) {
1189 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1190 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1191 			} else {
1192 				bp->b_dirtyoff = on;
1193 				bp->b_dirtyend = on + n;
1194 			}
1195 			vfs_bio_set_valid(bp, on, n);
1196 		}
1197 
1198 		/*
1199 		 * If IO_SYNC do bwrite().
1200 		 *
1201 		 * IO_INVAL appears to be unused.  The idea appears to be
1202 		 * to turn off caching in this case.  Very odd.  XXX
1203 		 */
1204 		if ((ioflag & IO_SYNC)) {
1205 			if (ioflag & IO_INVAL)
1206 				bp->b_flags |= B_NOCACHE;
1207 			error = bwrite(bp);
1208 			if (error)
1209 				break;
1210 		} else if ((n + on) == biosize) {
1211 			bp->b_flags |= B_ASYNC;
1212 			(void) ncl_writebp(bp, 0, NULL);
1213 		} else {
1214 			bdwrite(bp);
1215 		}
1216 	} while (uio->uio_resid > 0 && n > 0);
1217 
1218 	return (error);
1219 }
1220 
1221 /*
1222  * Get an nfs cache block.
1223  *
1224  * Allocate a new one if the block isn't currently in the cache
1225  * and return the block marked busy. If the calling process is
1226  * interrupted by a signal for an interruptible mount point, return
1227  * NULL.
1228  *
1229  * The caller must carefully deal with the possible B_INVAL state of
1230  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1231  * indirectly), so synchronous reads can be issued without worrying about
1232  * the B_INVAL state.  We have to be a little more careful when dealing
1233  * with writes (see comments in nfs_write()) when extending a file past
1234  * its EOF.
1235  */
1236 static struct buf *
1237 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1238 {
1239 	struct buf *bp;
1240 	struct mount *mp;
1241 	struct nfsmount *nmp;
1242 
1243 	mp = vp->v_mount;
1244 	nmp = VFSTONFS(mp);
1245 
1246 	if (nmp->nm_flag & NFSMNT_INT) {
1247  		sigset_t oldset;
1248 
1249  		newnfs_set_sigmask(td, &oldset);
1250 		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1251  		newnfs_restore_sigmask(td, &oldset);
1252 		while (bp == NULL) {
1253 			if (newnfs_sigintr(nmp, td))
1254 				return (NULL);
1255 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1256 		}
1257 	} else {
1258 		bp = getblk(vp, bn, size, 0, 0, 0);
1259 	}
1260 
1261 	if (vp->v_type == VREG) {
1262 		int biosize;
1263 
1264 		biosize = mp->mnt_stat.f_iosize;
1265 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1266 	}
1267 	return (bp);
1268 }
1269 
1270 /*
1271  * Flush and invalidate all dirty buffers. If another process is already
1272  * doing the flush, just wait for completion.
1273  */
1274 int
1275 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1276 {
1277 	struct nfsnode *np = VTONFS(vp);
1278 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1279 	int error = 0, slpflag, slptimeo;
1280  	int old_lock = 0;
1281 
1282 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1283 
1284 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1285 		intrflg = 0;
1286 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1287 		intrflg = 1;
1288 	if (intrflg) {
1289 		slpflag = NFS_PCATCH;
1290 		slptimeo = 2 * hz;
1291 	} else {
1292 		slpflag = 0;
1293 		slptimeo = 0;
1294 	}
1295 
1296 	old_lock = ncl_upgrade_vnlock(vp);
1297 	if (vp->v_iflag & VI_DOOMED) {
1298 		/*
1299 		 * Since vgonel() uses the generic vinvalbuf() to flush
1300 		 * dirty buffers and it does not call this function, it
1301 		 * is safe to just return OK when VI_DOOMED is set.
1302 		 */
1303 		ncl_downgrade_vnlock(vp, old_lock);
1304 		return (0);
1305 	}
1306 
1307 	/*
1308 	 * Now, flush as required.
1309 	 */
1310 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1311 		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1312 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1313 		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1314 		/*
1315 		 * If the page clean was interrupted, fail the invalidation.
1316 		 * Not doing so, we run the risk of losing dirty pages in the
1317 		 * vinvalbuf() call below.
1318 		 */
1319 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1320 			goto out;
1321 	}
1322 
1323 	error = vinvalbuf(vp, flags, slpflag, 0);
1324 	while (error) {
1325 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1326 			goto out;
1327 		error = vinvalbuf(vp, flags, 0, slptimeo);
1328 	}
1329 	mtx_lock(&np->n_mtx);
1330 	if (np->n_directio_asyncwr == 0)
1331 		np->n_flag &= ~NMODIFIED;
1332 	mtx_unlock(&np->n_mtx);
1333 out:
1334 	ncl_downgrade_vnlock(vp, old_lock);
1335 	return error;
1336 }
1337 
1338 /*
1339  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1340  * This is mainly to avoid queueing async I/O requests when the nfsiods
1341  * are all hung on a dead server.
1342  *
1343  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1344  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1345  */
1346 int
1347 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1348 {
1349 	int iod;
1350 	int gotiod;
1351 	int slpflag = 0;
1352 	int slptimeo = 0;
1353 	int error, error2;
1354 
1355 	/*
1356 	 * Commits are usually short and sweet so lets save some cpu and
1357 	 * leave the async daemons for more important rpc's (such as reads
1358 	 * and writes).
1359 	 */
1360 	mtx_lock(&ncl_iod_mutex);
1361 	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1362 	    (nmp->nm_bufqiods > ncl_numasync / 2)) {
1363 		mtx_unlock(&ncl_iod_mutex);
1364 		return(EIO);
1365 	}
1366 again:
1367 	if (nmp->nm_flag & NFSMNT_INT)
1368 		slpflag = NFS_PCATCH;
1369 	gotiod = FALSE;
1370 
1371 	/*
1372 	 * Find a free iod to process this request.
1373 	 */
1374 	for (iod = 0; iod < ncl_numasync; iod++)
1375 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1376 			gotiod = TRUE;
1377 			break;
1378 		}
1379 
1380 	/*
1381 	 * Try to create one if none are free.
1382 	 */
1383 	if (!gotiod)
1384 		ncl_nfsiodnew();
1385 	else {
1386 		/*
1387 		 * Found one, so wake it up and tell it which
1388 		 * mount to process.
1389 		 */
1390 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1391 		    iod, nmp));
1392 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1393 		ncl_iodmount[iod] = nmp;
1394 		nmp->nm_bufqiods++;
1395 		wakeup(&ncl_iodwant[iod]);
1396 	}
1397 
1398 	/*
1399 	 * If none are free, we may already have an iod working on this mount
1400 	 * point.  If so, it will process our request.
1401 	 */
1402 	if (!gotiod) {
1403 		if (nmp->nm_bufqiods > 0) {
1404 			NFS_DPF(ASYNCIO,
1405 				("ncl_asyncio: %d iods are already processing mount %p\n",
1406 				 nmp->nm_bufqiods, nmp));
1407 			gotiod = TRUE;
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * If we have an iod which can process the request, then queue
1413 	 * the buffer.
1414 	 */
1415 	if (gotiod) {
1416 		/*
1417 		 * Ensure that the queue never grows too large.  We still want
1418 		 * to asynchronize so we block rather then return EIO.
1419 		 */
1420 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1421 			NFS_DPF(ASYNCIO,
1422 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1423 			nmp->nm_bufqwant = TRUE;
1424  			error = newnfs_msleep(td, &nmp->nm_bufq,
1425 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1426   			   slptimeo);
1427 			if (error) {
1428 				error2 = newnfs_sigintr(nmp, td);
1429 				if (error2) {
1430 					mtx_unlock(&ncl_iod_mutex);
1431 					return (error2);
1432 				}
1433 				if (slpflag == NFS_PCATCH) {
1434 					slpflag = 0;
1435 					slptimeo = 2 * hz;
1436 				}
1437 			}
1438 			/*
1439 			 * We might have lost our iod while sleeping,
1440 			 * so check and loop if nescessary.
1441 			 */
1442 			goto again;
1443 		}
1444 
1445 		/* We might have lost our nfsiod */
1446 		if (nmp->nm_bufqiods == 0) {
1447 			NFS_DPF(ASYNCIO,
1448 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1449 			goto again;
1450 		}
1451 
1452 		if (bp->b_iocmd == BIO_READ) {
1453 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1454 				bp->b_rcred = crhold(cred);
1455 		} else {
1456 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1457 				bp->b_wcred = crhold(cred);
1458 		}
1459 
1460 		if (bp->b_flags & B_REMFREE)
1461 			bremfreef(bp);
1462 		BUF_KERNPROC(bp);
1463 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1464 		nmp->nm_bufqlen++;
1465 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1466 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1467 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1468 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1469 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1470 		}
1471 		mtx_unlock(&ncl_iod_mutex);
1472 		return (0);
1473 	}
1474 
1475 	mtx_unlock(&ncl_iod_mutex);
1476 
1477 	/*
1478 	 * All the iods are busy on other mounts, so return EIO to
1479 	 * force the caller to process the i/o synchronously.
1480 	 */
1481 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1482 	return (EIO);
1483 }
1484 
1485 void
1486 ncl_doio_directwrite(struct buf *bp)
1487 {
1488 	int iomode, must_commit;
1489 	struct uio *uiop = (struct uio *)bp->b_caller1;
1490 	char *iov_base = uiop->uio_iov->iov_base;
1491 
1492 	iomode = NFSWRITE_FILESYNC;
1493 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1494 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1495 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1496 	free(iov_base, M_NFSDIRECTIO);
1497 	free(uiop->uio_iov, M_NFSDIRECTIO);
1498 	free(uiop, M_NFSDIRECTIO);
1499 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1500 		struct nfsnode *np = VTONFS(bp->b_vp);
1501 		mtx_lock(&np->n_mtx);
1502 		np->n_directio_asyncwr--;
1503 		if (np->n_directio_asyncwr == 0) {
1504 			np->n_flag &= ~NMODIFIED;
1505 			if ((np->n_flag & NFSYNCWAIT)) {
1506 				np->n_flag &= ~NFSYNCWAIT;
1507 				wakeup((caddr_t)&np->n_directio_asyncwr);
1508 			}
1509 		}
1510 		mtx_unlock(&np->n_mtx);
1511 	}
1512 	bp->b_vp = NULL;
1513 	relpbuf(bp, &ncl_pbuf_freecnt);
1514 }
1515 
1516 /*
1517  * Do an I/O operation to/from a cache block. This may be called
1518  * synchronously or from an nfsiod.
1519  */
1520 int
1521 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1522     int called_from_strategy)
1523 {
1524 	struct uio *uiop;
1525 	struct nfsnode *np;
1526 	struct nfsmount *nmp;
1527 	int error = 0, iomode, must_commit = 0;
1528 	struct uio uio;
1529 	struct iovec io;
1530 	struct proc *p = td ? td->td_proc : NULL;
1531 	uint8_t	iocmd;
1532 
1533 	np = VTONFS(vp);
1534 	nmp = VFSTONFS(vp->v_mount);
1535 	uiop = &uio;
1536 	uiop->uio_iov = &io;
1537 	uiop->uio_iovcnt = 1;
1538 	uiop->uio_segflg = UIO_SYSSPACE;
1539 	uiop->uio_td = td;
1540 
1541 	/*
1542 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1543 	 * do this here so we do not have to do it in all the code that
1544 	 * calls us.
1545 	 */
1546 	bp->b_flags &= ~B_INVAL;
1547 	bp->b_ioflags &= ~BIO_ERROR;
1548 
1549 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1550 	iocmd = bp->b_iocmd;
1551 	if (iocmd == BIO_READ) {
1552 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1553 	    io.iov_base = bp->b_data;
1554 	    uiop->uio_rw = UIO_READ;
1555 
1556 	    switch (vp->v_type) {
1557 	    case VREG:
1558 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1559 		NFSINCRGLOBAL(newnfsstats.read_bios);
1560 		error = ncl_readrpc(vp, uiop, cr);
1561 
1562 		if (!error) {
1563 		    if (uiop->uio_resid) {
1564 			/*
1565 			 * If we had a short read with no error, we must have
1566 			 * hit a file hole.  We should zero-fill the remainder.
1567 			 * This can also occur if the server hits the file EOF.
1568 			 *
1569 			 * Holes used to be able to occur due to pending
1570 			 * writes, but that is not possible any longer.
1571 			 */
1572 			int nread = bp->b_bcount - uiop->uio_resid;
1573 			int left  = uiop->uio_resid;
1574 
1575 			if (left > 0)
1576 				bzero((char *)bp->b_data + nread, left);
1577 			uiop->uio_resid = 0;
1578 		    }
1579 		}
1580 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1581 		if (p && (vp->v_vflag & VV_TEXT)) {
1582 			mtx_lock(&np->n_mtx);
1583 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1584 				mtx_unlock(&np->n_mtx);
1585 				PROC_LOCK(p);
1586 				killproc(p, "text file modification");
1587 				PROC_UNLOCK(p);
1588 			} else
1589 				mtx_unlock(&np->n_mtx);
1590 		}
1591 		break;
1592 	    case VLNK:
1593 		uiop->uio_offset = (off_t)0;
1594 		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1595 		error = ncl_readlinkrpc(vp, uiop, cr);
1596 		break;
1597 	    case VDIR:
1598 		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1599 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1600 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1601 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1602 			if (error == NFSERR_NOTSUPP)
1603 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1604 		}
1605 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1606 			error = ncl_readdirrpc(vp, uiop, cr, td);
1607 		/*
1608 		 * end-of-directory sets B_INVAL but does not generate an
1609 		 * error.
1610 		 */
1611 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1612 			bp->b_flags |= B_INVAL;
1613 		break;
1614 	    default:
1615 		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1616 		break;
1617 	    };
1618 	    if (error) {
1619 		bp->b_ioflags |= BIO_ERROR;
1620 		bp->b_error = error;
1621 	    }
1622 	} else {
1623 	    /*
1624 	     * If we only need to commit, try to commit
1625 	     */
1626 	    if (bp->b_flags & B_NEEDCOMMIT) {
1627 		    int retv;
1628 		    off_t off;
1629 
1630 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1631 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1632 			bp->b_wcred, td);
1633 		    if (retv == 0) {
1634 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1635 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1636 			    bp->b_resid = 0;
1637 			    bufdone(bp);
1638 			    return (0);
1639 		    }
1640 		    if (retv == NFSERR_STALEWRITEVERF) {
1641 			    ncl_clearcommit(vp->v_mount);
1642 		    }
1643 	    }
1644 
1645 	    /*
1646 	     * Setup for actual write
1647 	     */
1648 	    mtx_lock(&np->n_mtx);
1649 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1650 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1651 	    mtx_unlock(&np->n_mtx);
1652 
1653 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1654 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1655 		    - bp->b_dirtyoff;
1656 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1657 		    + bp->b_dirtyoff;
1658 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1659 		uiop->uio_rw = UIO_WRITE;
1660 		NFSINCRGLOBAL(newnfsstats.write_bios);
1661 
1662 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1663 		    iomode = NFSWRITE_UNSTABLE;
1664 		else
1665 		    iomode = NFSWRITE_FILESYNC;
1666 
1667 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1668 		    called_from_strategy);
1669 
1670 		/*
1671 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1672 		 * to cluster the buffers needing commit.  This will allow
1673 		 * the system to submit a single commit rpc for the whole
1674 		 * cluster.  We can do this even if the buffer is not 100%
1675 		 * dirty (relative to the NFS blocksize), so we optimize the
1676 		 * append-to-file-case.
1677 		 *
1678 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1679 		 * cleared because write clustering only works for commit
1680 		 * rpc's, not for the data portion of the write).
1681 		 */
1682 
1683 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1684 		    bp->b_flags |= B_NEEDCOMMIT;
1685 		    if (bp->b_dirtyoff == 0
1686 			&& bp->b_dirtyend == bp->b_bcount)
1687 			bp->b_flags |= B_CLUSTEROK;
1688 		} else {
1689 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1690 		}
1691 
1692 		/*
1693 		 * For an interrupted write, the buffer is still valid
1694 		 * and the write hasn't been pushed to the server yet,
1695 		 * so we can't set BIO_ERROR and report the interruption
1696 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1697 		 * is not relevant, so the rpc attempt is essentially
1698 		 * a noop.  For the case of a V3 write rpc not being
1699 		 * committed to stable storage, the block is still
1700 		 * dirty and requires either a commit rpc or another
1701 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1702 		 * the block is reused. This is indicated by setting
1703 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1704 		 *
1705 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1706 		 * write error and is handled as above, except that
1707 		 * B_EINTR isn't set. One cause of this is a stale stateid
1708 		 * error for the RPC that indicates recovery is required,
1709 		 * when called with called_from_strategy != 0.
1710 		 *
1711 		 * If the buffer is marked B_PAGING, it does not reside on
1712 		 * the vp's paging queues so we cannot call bdirty().  The
1713 		 * bp in this case is not an NFS cache block so we should
1714 		 * be safe. XXX
1715 		 *
1716 		 * The logic below breaks up errors into recoverable and
1717 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1718 		 * and keep the buffer around for potential write retries.
1719 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1720 		 * and save the error in the nfsnode. This is less than ideal
1721 		 * but necessary. Keeping such buffers around could potentially
1722 		 * cause buffer exhaustion eventually (they can never be written
1723 		 * out, so will get constantly be re-dirtied). It also causes
1724 		 * all sorts of vfs panics. For non-recoverable write errors,
1725 		 * also invalidate the attrcache, so we'll be forced to go over
1726 		 * the wire for this object, returning an error to user on next
1727 		 * call (most of the time).
1728 		 */
1729     		if (error == EINTR || error == EIO || error == ETIMEDOUT
1730 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1731 			int s;
1732 
1733 			s = splbio();
1734 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1735 			if ((bp->b_flags & B_PAGING) == 0) {
1736 			    bdirty(bp);
1737 			    bp->b_flags &= ~B_DONE;
1738 			}
1739 			if ((error == EINTR || error == ETIMEDOUT) &&
1740 			    (bp->b_flags & B_ASYNC) == 0)
1741 			    bp->b_flags |= B_EINTR;
1742 			splx(s);
1743 	    	} else {
1744 		    if (error) {
1745 			bp->b_ioflags |= BIO_ERROR;
1746 			bp->b_flags |= B_INVAL;
1747 			bp->b_error = np->n_error = error;
1748 			mtx_lock(&np->n_mtx);
1749 			np->n_flag |= NWRITEERR;
1750 			np->n_attrstamp = 0;
1751 			mtx_unlock(&np->n_mtx);
1752 		    }
1753 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1754 		}
1755 	    } else {
1756 		bp->b_resid = 0;
1757 		bufdone(bp);
1758 		return (0);
1759 	    }
1760 	}
1761 	bp->b_resid = uiop->uio_resid;
1762 	if (must_commit)
1763 	    ncl_clearcommit(vp->v_mount);
1764 	bufdone(bp);
1765 	return (error);
1766 }
1767 
1768 /*
1769  * Used to aid in handling ftruncate() operations on the NFS client side.
1770  * Truncation creates a number of special problems for NFS.  We have to
1771  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1772  * we have to properly handle VM pages or (potentially dirty) buffers
1773  * that straddle the truncation point.
1774  */
1775 
1776 int
1777 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1778 {
1779 	struct nfsnode *np = VTONFS(vp);
1780 	u_quad_t tsize;
1781 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1782 	int error = 0;
1783 
1784 	mtx_lock(&np->n_mtx);
1785 	tsize = np->n_size;
1786 	np->n_size = nsize;
1787 	mtx_unlock(&np->n_mtx);
1788 
1789 	if (nsize < tsize) {
1790 		struct buf *bp;
1791 		daddr_t lbn;
1792 		int bufsize;
1793 
1794 		/*
1795 		 * vtruncbuf() doesn't get the buffer overlapping the
1796 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1797 		 * buffer that now needs to be truncated.
1798 		 */
1799 		error = vtruncbuf(vp, cred, td, nsize, biosize);
1800 		lbn = nsize / biosize;
1801 		bufsize = nsize & (biosize - 1);
1802 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1803  		if (!bp)
1804  			return EINTR;
1805 		if (bp->b_dirtyoff > bp->b_bcount)
1806 			bp->b_dirtyoff = bp->b_bcount;
1807 		if (bp->b_dirtyend > bp->b_bcount)
1808 			bp->b_dirtyend = bp->b_bcount;
1809 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1810 		brelse(bp);
1811 	} else {
1812 		vnode_pager_setsize(vp, nsize);
1813 	}
1814 	return(error);
1815 }
1816 
1817