1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 35 */ 36 37 #include <sys/cdefs.h> 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bio.h> 41 #include <sys/buf.h> 42 #include <sys/kernel.h> 43 #include <sys/mount.h> 44 #include <sys/rwlock.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_pager.h> 54 #include <vm/vnode_pager.h> 55 56 #include <fs/nfs/nfsport.h> 57 #include <fs/nfsclient/nfsmount.h> 58 #include <fs/nfsclient/nfs.h> 59 #include <fs/nfsclient/nfsnode.h> 60 #include <fs/nfsclient/nfs_kdtrace.h> 61 62 extern int newnfs_directio_allow_mmap; 63 extern struct nfsstatsv1 nfsstatsv1; 64 extern struct mtx ncl_iod_mutex; 65 extern int ncl_numasync; 66 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 67 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 68 extern int newnfs_directio_enable; 69 extern int nfs_keep_dirty_on_error; 70 71 uma_zone_t ncl_pbuf_zone; 72 73 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 74 struct thread *td); 75 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 76 struct ucred *cred, int ioflag); 77 78 /* 79 * Vnode op for VM getpages. 80 */ 81 SYSCTL_DECL(_vfs_nfs); 82 static int use_buf_pager = 1; 83 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 84 &use_buf_pager, 0, 85 "Use buffer pager instead of direct readrpc call"); 86 87 static daddr_t 88 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 89 { 90 91 return (off / vp->v_bufobj.bo_bsize); 92 } 93 94 static int 95 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 96 { 97 struct nfsnode *np; 98 u_quad_t nsize; 99 int biosize, bcount; 100 101 np = VTONFS(vp); 102 NFSLOCKNODE(np); 103 nsize = np->n_size; 104 NFSUNLOCKNODE(np); 105 106 biosize = vp->v_bufobj.bo_bsize; 107 bcount = biosize; 108 if ((off_t)lbn * biosize >= nsize) 109 bcount = 0; 110 else if ((off_t)(lbn + 1) * biosize > nsize) 111 bcount = nsize - (off_t)lbn * biosize; 112 *sz = bcount; 113 return (0); 114 } 115 116 int 117 ncl_getpages(struct vop_getpages_args *ap) 118 { 119 int i, error, nextoff, size, toff, count, npages; 120 struct uio uio; 121 struct iovec iov; 122 vm_offset_t kva; 123 struct buf *bp; 124 struct vnode *vp; 125 struct thread *td; 126 struct ucred *cred; 127 struct nfsmount *nmp; 128 vm_object_t object; 129 vm_page_t *pages; 130 struct nfsnode *np; 131 132 vp = ap->a_vp; 133 np = VTONFS(vp); 134 td = curthread; 135 cred = curthread->td_ucred; 136 nmp = VFSTONFS(vp->v_mount); 137 pages = ap->a_m; 138 npages = ap->a_count; 139 140 if ((object = vp->v_object) == NULL) { 141 printf("ncl_getpages: called with non-merged cache vnode\n"); 142 return (VM_PAGER_ERROR); 143 } 144 145 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 146 NFSLOCKNODE(np); 147 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 148 NFSUNLOCKNODE(np); 149 printf("ncl_getpages: called on non-cacheable vnode\n"); 150 return (VM_PAGER_ERROR); 151 } else 152 NFSUNLOCKNODE(np); 153 } 154 155 mtx_lock(&nmp->nm_mtx); 156 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 157 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 158 mtx_unlock(&nmp->nm_mtx); 159 /* We'll never get here for v4, because we always have fsinfo */ 160 (void)ncl_fsinfo(nmp, vp, cred, td); 161 } else 162 mtx_unlock(&nmp->nm_mtx); 163 164 if (use_buf_pager) 165 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 166 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 167 168 /* 169 * If the requested page is partially valid, just return it and 170 * allow the pager to zero-out the blanks. Partially valid pages 171 * can only occur at the file EOF. 172 * 173 * XXXGL: is that true for NFS, where short read can occur??? 174 */ 175 VM_OBJECT_WLOCK(object); 176 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 177 goto out; 178 VM_OBJECT_WUNLOCK(object); 179 180 /* 181 * We use only the kva address for the buffer, but this is extremely 182 * convenient and fast. 183 */ 184 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 185 186 kva = (vm_offset_t) bp->b_data; 187 pmap_qenter(kva, pages, npages); 188 VM_CNT_INC(v_vnodein); 189 VM_CNT_ADD(v_vnodepgsin, npages); 190 191 count = npages << PAGE_SHIFT; 192 iov.iov_base = (caddr_t) kva; 193 iov.iov_len = count; 194 uio.uio_iov = &iov; 195 uio.uio_iovcnt = 1; 196 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 197 uio.uio_resid = count; 198 uio.uio_segflg = UIO_SYSSPACE; 199 uio.uio_rw = UIO_READ; 200 uio.uio_td = td; 201 202 error = ncl_readrpc(vp, &uio, cred); 203 pmap_qremove(kva, npages); 204 205 uma_zfree(ncl_pbuf_zone, bp); 206 207 if (error && (uio.uio_resid == count)) { 208 printf("ncl_getpages: error %d\n", error); 209 return (VM_PAGER_ERROR); 210 } 211 212 /* 213 * Calculate the number of bytes read and validate only that number 214 * of bytes. Note that due to pending writes, size may be 0. This 215 * does not mean that the remaining data is invalid! 216 */ 217 218 size = count - uio.uio_resid; 219 VM_OBJECT_WLOCK(object); 220 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 221 vm_page_t m; 222 nextoff = toff + PAGE_SIZE; 223 m = pages[i]; 224 225 if (nextoff <= size) { 226 /* 227 * Read operation filled an entire page 228 */ 229 vm_page_valid(m); 230 KASSERT(m->dirty == 0, 231 ("nfs_getpages: page %p is dirty", m)); 232 } else if (size > toff) { 233 /* 234 * Read operation filled a partial page. 235 */ 236 vm_page_invalid(m); 237 vm_page_set_valid_range(m, 0, size - toff); 238 KASSERT(m->dirty == 0, 239 ("nfs_getpages: page %p is dirty", m)); 240 } else { 241 /* 242 * Read operation was short. If no error 243 * occurred we may have hit a zero-fill 244 * section. We leave valid set to 0, and page 245 * is freed by vm_page_readahead_finish() if 246 * its index is not equal to requested, or 247 * page is zeroed and set valid by 248 * vm_pager_get_pages() for requested page. 249 */ 250 ; 251 } 252 } 253 out: 254 VM_OBJECT_WUNLOCK(object); 255 if (ap->a_rbehind) 256 *ap->a_rbehind = 0; 257 if (ap->a_rahead) 258 *ap->a_rahead = 0; 259 return (VM_PAGER_OK); 260 } 261 262 /* 263 * Vnode op for VM putpages. 264 */ 265 int 266 ncl_putpages(struct vop_putpages_args *ap) 267 { 268 struct uio uio; 269 struct iovec iov; 270 int i, error, npages, count; 271 off_t offset; 272 int *rtvals; 273 struct vnode *vp; 274 struct thread *td; 275 struct ucred *cred; 276 struct nfsmount *nmp; 277 struct nfsnode *np; 278 vm_page_t *pages; 279 280 vp = ap->a_vp; 281 np = VTONFS(vp); 282 td = curthread; /* XXX */ 283 /* Set the cred to n_writecred for the write rpcs. */ 284 if (np->n_writecred != NULL) 285 cred = crhold(np->n_writecred); 286 else 287 cred = crhold(curthread->td_ucred); /* XXX */ 288 nmp = VFSTONFS(vp->v_mount); 289 pages = ap->a_m; 290 count = ap->a_count; 291 rtvals = ap->a_rtvals; 292 npages = btoc(count); 293 offset = IDX_TO_OFF(pages[0]->pindex); 294 295 mtx_lock(&nmp->nm_mtx); 296 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 297 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 298 mtx_unlock(&nmp->nm_mtx); 299 (void)ncl_fsinfo(nmp, vp, cred, td); 300 } else 301 mtx_unlock(&nmp->nm_mtx); 302 303 NFSLOCKNODE(np); 304 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 305 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 306 NFSUNLOCKNODE(np); 307 printf("ncl_putpages: called on noncache-able vnode\n"); 308 NFSLOCKNODE(np); 309 } 310 /* 311 * When putting pages, do not extend file past EOF. 312 */ 313 if (offset + count > np->n_size) { 314 count = np->n_size - offset; 315 if (count < 0) 316 count = 0; 317 } 318 NFSUNLOCKNODE(np); 319 320 for (i = 0; i < npages; i++) 321 rtvals[i] = VM_PAGER_ERROR; 322 323 VM_CNT_INC(v_vnodeout); 324 VM_CNT_ADD(v_vnodepgsout, count); 325 326 iov.iov_base = unmapped_buf; 327 iov.iov_len = count; 328 uio.uio_iov = &iov; 329 uio.uio_iovcnt = 1; 330 uio.uio_offset = offset; 331 uio.uio_resid = count; 332 uio.uio_segflg = UIO_NOCOPY; 333 uio.uio_rw = UIO_WRITE; 334 uio.uio_td = td; 335 336 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 337 cred); 338 crfree(cred); 339 340 if (error == 0 || !nfs_keep_dirty_on_error) { 341 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 342 np->n_size - offset, npages * PAGE_SIZE); 343 } 344 return (rtvals[0]); 345 } 346 347 /* 348 * For nfs, cache consistency can only be maintained approximately. 349 * Although RFC1094 does not specify the criteria, the following is 350 * believed to be compatible with the reference port. 351 * For nfs: 352 * If the file's modify time on the server has changed since the 353 * last read rpc or you have written to the file, 354 * you may have lost data cache consistency with the 355 * server, so flush all of the file's data out of the cache. 356 * Then force a getattr rpc to ensure that you have up to date 357 * attributes. 358 * NB: This implies that cache data can be read when up to 359 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 360 * attributes this could be forced by setting n_attrstamp to 0 before 361 * the VOP_GETATTR() call. 362 */ 363 static inline int 364 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 365 { 366 int error = 0; 367 struct vattr vattr; 368 struct nfsnode *np = VTONFS(vp); 369 bool old_lock; 370 371 /* 372 * Ensure the exclusove access to the node before checking 373 * whether the cache is consistent. 374 */ 375 old_lock = ncl_excl_start(vp); 376 NFSLOCKNODE(np); 377 if (np->n_flag & NMODIFIED) { 378 NFSUNLOCKNODE(np); 379 if (vp->v_type != VREG) { 380 if (vp->v_type != VDIR) 381 panic("nfs: bioread, not dir"); 382 ncl_invaldir(vp); 383 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 384 if (error != 0) 385 goto out; 386 } 387 np->n_attrstamp = 0; 388 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 389 error = VOP_GETATTR(vp, &vattr, cred); 390 if (error) 391 goto out; 392 NFSLOCKNODE(np); 393 np->n_mtime = vattr.va_mtime; 394 NFSUNLOCKNODE(np); 395 } else { 396 NFSUNLOCKNODE(np); 397 error = VOP_GETATTR(vp, &vattr, cred); 398 if (error) 399 goto out; 400 NFSLOCKNODE(np); 401 if ((np->n_flag & NSIZECHANGED) 402 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 403 NFSUNLOCKNODE(np); 404 if (vp->v_type == VDIR) 405 ncl_invaldir(vp); 406 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 407 if (error != 0) 408 goto out; 409 NFSLOCKNODE(np); 410 np->n_mtime = vattr.va_mtime; 411 np->n_flag &= ~NSIZECHANGED; 412 } 413 NFSUNLOCKNODE(np); 414 } 415 out: 416 ncl_excl_finish(vp, old_lock); 417 return (error); 418 } 419 420 /* 421 * Vnode op for read using bio 422 */ 423 int 424 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 425 { 426 struct nfsnode *np = VTONFS(vp); 427 struct buf *bp, *rabp; 428 struct thread *td; 429 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 430 daddr_t lbn, rabn; 431 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 432 off_t tmp_off; 433 434 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 435 if (uio->uio_resid == 0) 436 return (0); 437 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 438 return (EINVAL); 439 td = uio->uio_td; 440 441 mtx_lock(&nmp->nm_mtx); 442 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 443 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 444 mtx_unlock(&nmp->nm_mtx); 445 (void)ncl_fsinfo(nmp, vp, cred, td); 446 mtx_lock(&nmp->nm_mtx); 447 } 448 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 449 (void) newnfs_iosize(nmp); 450 451 tmp_off = uio->uio_offset + uio->uio_resid; 452 if (vp->v_type != VDIR && 453 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 454 mtx_unlock(&nmp->nm_mtx); 455 return (EFBIG); 456 } 457 mtx_unlock(&nmp->nm_mtx); 458 459 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 460 /* No caching/ no readaheads. Just read data into the user buffer */ 461 return ncl_readrpc(vp, uio, cred); 462 463 n = 0; 464 on = 0; 465 biosize = vp->v_bufobj.bo_bsize; 466 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 467 468 error = nfs_bioread_check_cons(vp, td, cred); 469 if (error) 470 return error; 471 472 save2 = curthread_pflags2_set(TDP2_SBPAGES); 473 do { 474 u_quad_t nsize; 475 476 NFSLOCKNODE(np); 477 nsize = np->n_size; 478 NFSUNLOCKNODE(np); 479 480 switch (vp->v_type) { 481 case VREG: 482 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 483 lbn = uio->uio_offset / biosize; 484 on = uio->uio_offset - (lbn * biosize); 485 486 /* 487 * Start the read ahead(s), as required. 488 */ 489 if (nmp->nm_readahead > 0) { 490 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 491 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 492 rabn = lbn + 1 + nra; 493 if (incore(&vp->v_bufobj, rabn) == NULL) { 494 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 495 if (!rabp) { 496 error = newnfs_sigintr(nmp, td); 497 if (error == 0) 498 error = EINTR; 499 goto out; 500 } 501 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 502 rabp->b_flags |= B_ASYNC; 503 rabp->b_iocmd = BIO_READ; 504 vfs_busy_pages(rabp, 0); 505 if (ncl_asyncio(nmp, rabp, cred, td)) { 506 rabp->b_flags |= B_INVAL; 507 rabp->b_ioflags |= BIO_ERROR; 508 vfs_unbusy_pages(rabp); 509 brelse(rabp); 510 break; 511 } 512 } else { 513 brelse(rabp); 514 } 515 } 516 } 517 } 518 519 /* Note that bcount is *not* DEV_BSIZE aligned. */ 520 bcount = biosize; 521 if ((off_t)lbn * biosize >= nsize) { 522 bcount = 0; 523 } else if ((off_t)(lbn + 1) * biosize > nsize) { 524 bcount = nsize - (off_t)lbn * biosize; 525 } 526 bp = nfs_getcacheblk(vp, lbn, bcount, td); 527 528 if (!bp) { 529 error = newnfs_sigintr(nmp, td); 530 if (error == 0) 531 error = EINTR; 532 goto out; 533 } 534 535 /* 536 * If B_CACHE is not set, we must issue the read. If this 537 * fails, we return an error. 538 */ 539 540 if ((bp->b_flags & B_CACHE) == 0) { 541 bp->b_iocmd = BIO_READ; 542 vfs_busy_pages(bp, 0); 543 error = ncl_doio(vp, bp, cred, td, 0); 544 if (error) { 545 brelse(bp); 546 goto out; 547 } 548 } 549 550 /* 551 * on is the offset into the current bp. Figure out how many 552 * bytes we can copy out of the bp. Note that bcount is 553 * NOT DEV_BSIZE aligned. 554 * 555 * Then figure out how many bytes we can copy into the uio. 556 */ 557 558 n = 0; 559 if (on < bcount) 560 n = MIN((unsigned)(bcount - on), uio->uio_resid); 561 break; 562 case VLNK: 563 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 564 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 565 if (!bp) { 566 error = newnfs_sigintr(nmp, td); 567 if (error == 0) 568 error = EINTR; 569 goto out; 570 } 571 if ((bp->b_flags & B_CACHE) == 0) { 572 bp->b_iocmd = BIO_READ; 573 vfs_busy_pages(bp, 0); 574 error = ncl_doio(vp, bp, cred, td, 0); 575 if (error) { 576 bp->b_ioflags |= BIO_ERROR; 577 brelse(bp); 578 goto out; 579 } 580 } 581 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 582 on = 0; 583 break; 584 case VDIR: 585 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 586 NFSLOCKNODE(np); 587 if (np->n_direofoffset 588 && uio->uio_offset >= np->n_direofoffset) { 589 NFSUNLOCKNODE(np); 590 error = 0; 591 goto out; 592 } 593 NFSUNLOCKNODE(np); 594 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 595 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 596 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 597 if (!bp) { 598 error = newnfs_sigintr(nmp, td); 599 if (error == 0) 600 error = EINTR; 601 goto out; 602 } 603 if ((bp->b_flags & B_CACHE) == 0) { 604 bp->b_iocmd = BIO_READ; 605 vfs_busy_pages(bp, 0); 606 error = ncl_doio(vp, bp, cred, td, 0); 607 if (error) { 608 brelse(bp); 609 } 610 while (error == NFSERR_BAD_COOKIE) { 611 ncl_invaldir(vp); 612 error = ncl_vinvalbuf(vp, 0, td, 1); 613 614 /* 615 * Yuck! The directory has been modified on the 616 * server. The only way to get the block is by 617 * reading from the beginning to get all the 618 * offset cookies. 619 * 620 * Leave the last bp intact unless there is an error. 621 * Loop back up to the while if the error is another 622 * NFSERR_BAD_COOKIE (double yuch!). 623 */ 624 for (i = 0; i <= lbn && !error; i++) { 625 NFSLOCKNODE(np); 626 if (np->n_direofoffset 627 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 628 NFSUNLOCKNODE(np); 629 error = 0; 630 goto out; 631 } 632 NFSUNLOCKNODE(np); 633 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 634 if (!bp) { 635 error = newnfs_sigintr(nmp, td); 636 if (error == 0) 637 error = EINTR; 638 goto out; 639 } 640 if ((bp->b_flags & B_CACHE) == 0) { 641 bp->b_iocmd = BIO_READ; 642 vfs_busy_pages(bp, 0); 643 error = ncl_doio(vp, bp, cred, td, 0); 644 /* 645 * no error + B_INVAL == directory EOF, 646 * use the block. 647 */ 648 if (error == 0 && (bp->b_flags & B_INVAL)) 649 break; 650 } 651 /* 652 * An error will throw away the block and the 653 * for loop will break out. If no error and this 654 * is not the block we want, we throw away the 655 * block and go for the next one via the for loop. 656 */ 657 if (error || i < lbn) 658 brelse(bp); 659 } 660 } 661 /* 662 * The above while is repeated if we hit another cookie 663 * error. If we hit an error and it wasn't a cookie error, 664 * we give up. 665 */ 666 if (error) 667 goto out; 668 } 669 670 /* 671 * If not eof and read aheads are enabled, start one. 672 * (You need the current block first, so that you have the 673 * directory offset cookie of the next block.) 674 */ 675 NFSLOCKNODE(np); 676 if (nmp->nm_readahead > 0 && 677 (bp->b_flags & B_INVAL) == 0 && 678 (np->n_direofoffset == 0 || 679 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 680 incore(&vp->v_bufobj, lbn + 1) == NULL) { 681 NFSUNLOCKNODE(np); 682 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 683 if (rabp) { 684 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 685 rabp->b_flags |= B_ASYNC; 686 rabp->b_iocmd = BIO_READ; 687 vfs_busy_pages(rabp, 0); 688 if (ncl_asyncio(nmp, rabp, cred, td)) { 689 rabp->b_flags |= B_INVAL; 690 rabp->b_ioflags |= BIO_ERROR; 691 vfs_unbusy_pages(rabp); 692 brelse(rabp); 693 } 694 } else { 695 brelse(rabp); 696 } 697 } 698 NFSLOCKNODE(np); 699 } 700 /* 701 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 702 * chopped for the EOF condition, we cannot tell how large 703 * NFS directories are going to be until we hit EOF. So 704 * an NFS directory buffer is *not* chopped to its EOF. Now, 705 * it just so happens that b_resid will effectively chop it 706 * to EOF. *BUT* this information is lost if the buffer goes 707 * away and is reconstituted into a B_CACHE state ( due to 708 * being VMIO ) later. So we keep track of the directory eof 709 * in np->n_direofoffset and chop it off as an extra step 710 * right here. 711 */ 712 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 713 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 714 n = np->n_direofoffset - uio->uio_offset; 715 NFSUNLOCKNODE(np); 716 break; 717 default: 718 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 719 bp = NULL; 720 break; 721 } 722 723 if (n > 0) { 724 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 725 } 726 if (vp->v_type == VLNK) 727 n = 0; 728 if (bp != NULL) 729 brelse(bp); 730 } while (error == 0 && uio->uio_resid > 0 && n > 0); 731 out: 732 curthread_pflags2_restore(save2); 733 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 734 NFSLOCKNODE(np); 735 ncl_pager_setsize(vp, NULL); 736 } 737 return (error); 738 } 739 740 /* 741 * The NFS write path cannot handle iovecs with len > 1. So we need to 742 * break up iovecs accordingly (restricting them to wsize). 743 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 744 * For the ASYNC case, 2 copies are needed. The first a copy from the 745 * user buffer to a staging buffer and then a second copy from the staging 746 * buffer to mbufs. This can be optimized by copying from the user buffer 747 * directly into mbufs and passing the chain down, but that requires a 748 * fair amount of re-working of the relevant codepaths (and can be done 749 * later). 750 */ 751 static int 752 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred, 753 int ioflag) 754 { 755 int error; 756 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 757 struct thread *td = uiop->uio_td; 758 int size; 759 int wsize; 760 761 mtx_lock(&nmp->nm_mtx); 762 wsize = nmp->nm_wsize; 763 mtx_unlock(&nmp->nm_mtx); 764 if (ioflag & IO_SYNC) { 765 int iomode, must_commit; 766 struct uio uio; 767 struct iovec iov; 768 do_sync: 769 while (uiop->uio_resid > 0) { 770 size = MIN(uiop->uio_resid, wsize); 771 size = MIN(uiop->uio_iov->iov_len, size); 772 iov.iov_base = uiop->uio_iov->iov_base; 773 iov.iov_len = size; 774 uio.uio_iov = &iov; 775 uio.uio_iovcnt = 1; 776 uio.uio_offset = uiop->uio_offset; 777 uio.uio_resid = size; 778 uio.uio_segflg = uiop->uio_segflg; 779 uio.uio_rw = UIO_WRITE; 780 uio.uio_td = td; 781 iomode = NFSWRITE_FILESYNC; 782 /* 783 * When doing direct I/O we do not care if the 784 * server's write verifier has changed, but we 785 * do not want to update the verifier if it has 786 * changed, since that hides the change from 787 * writes being done through the buffer cache. 788 * By passing must_commit in set to two, the code 789 * in nfsrpc_writerpc() will not update the 790 * verifier on the mount point. 791 */ 792 must_commit = 2; 793 error = ncl_writerpc(vp, &uio, cred, &iomode, 794 &must_commit, 0, ioflag); 795 KASSERT((must_commit == 2), 796 ("ncl_directio_write: Updated write verifier")); 797 if (error) 798 return (error); 799 if (iomode != NFSWRITE_FILESYNC) 800 printf("nfs_directio_write: Broken server " 801 "did not reply FILE_SYNC\n"); 802 uiop->uio_offset += size; 803 uiop->uio_resid -= size; 804 if (uiop->uio_iov->iov_len <= size) { 805 uiop->uio_iovcnt--; 806 uiop->uio_iov++; 807 } else { 808 uiop->uio_iov->iov_base = 809 (char *)uiop->uio_iov->iov_base + size; 810 uiop->uio_iov->iov_len -= size; 811 } 812 } 813 } else { 814 struct uio *t_uio; 815 struct iovec *t_iov; 816 struct buf *bp; 817 818 /* 819 * Break up the write into blocksize chunks and hand these 820 * over to nfsiod's for write back. 821 * Unfortunately, this incurs a copy of the data. Since 822 * the user could modify the buffer before the write is 823 * initiated. 824 * 825 * The obvious optimization here is that one of the 2 copies 826 * in the async write path can be eliminated by copying the 827 * data here directly into mbufs and passing the mbuf chain 828 * down. But that will require a fair amount of re-working 829 * of the code and can be done if there's enough interest 830 * in NFS directio access. 831 */ 832 while (uiop->uio_resid > 0) { 833 size = MIN(uiop->uio_resid, wsize); 834 size = MIN(uiop->uio_iov->iov_len, size); 835 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 836 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 837 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 838 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 839 t_iov->iov_len = size; 840 t_uio->uio_iov = t_iov; 841 t_uio->uio_iovcnt = 1; 842 t_uio->uio_offset = uiop->uio_offset; 843 t_uio->uio_resid = size; 844 t_uio->uio_segflg = UIO_SYSSPACE; 845 t_uio->uio_rw = UIO_WRITE; 846 t_uio->uio_td = td; 847 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 848 uiop->uio_segflg == UIO_SYSSPACE, 849 ("nfs_directio_write: Bad uio_segflg")); 850 if (uiop->uio_segflg == UIO_USERSPACE) { 851 error = copyin(uiop->uio_iov->iov_base, 852 t_iov->iov_base, size); 853 if (error != 0) 854 goto err_free; 855 } else 856 /* 857 * UIO_SYSSPACE may never happen, but handle 858 * it just in case it does. 859 */ 860 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 861 size); 862 bp->b_flags |= B_DIRECT; 863 bp->b_iocmd = BIO_WRITE; 864 if (cred != NOCRED) { 865 crhold(cred); 866 bp->b_wcred = cred; 867 } else 868 bp->b_wcred = NOCRED; 869 bp->b_caller1 = (void *)t_uio; 870 bp->b_vp = vp; 871 error = ncl_asyncio(nmp, bp, NOCRED, td); 872 err_free: 873 if (error) { 874 free(t_iov->iov_base, M_NFSDIRECTIO); 875 free(t_iov, M_NFSDIRECTIO); 876 free(t_uio, M_NFSDIRECTIO); 877 bp->b_vp = NULL; 878 uma_zfree(ncl_pbuf_zone, bp); 879 if (error == EINTR) 880 return (error); 881 goto do_sync; 882 } 883 uiop->uio_offset += size; 884 uiop->uio_resid -= size; 885 if (uiop->uio_iov->iov_len <= size) { 886 uiop->uio_iovcnt--; 887 uiop->uio_iov++; 888 } else { 889 uiop->uio_iov->iov_base = 890 (char *)uiop->uio_iov->iov_base + size; 891 uiop->uio_iov->iov_len -= size; 892 } 893 } 894 } 895 return (0); 896 } 897 898 /* 899 * Vnode op for write using bio 900 */ 901 int 902 ncl_write(struct vop_write_args *ap) 903 { 904 int biosize; 905 struct uio *uio = ap->a_uio; 906 struct thread *td = uio->uio_td; 907 struct vnode *vp = ap->a_vp; 908 struct nfsnode *np = VTONFS(vp); 909 struct ucred *cred = ap->a_cred; 910 int ioflag = ap->a_ioflag; 911 struct buf *bp; 912 struct vattr vattr; 913 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 914 daddr_t lbn; 915 int bcount, noncontig_write, obcount; 916 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 917 size_t orig_resid, local_resid; 918 off_t orig_size, tmp_off; 919 struct timespec ts; 920 921 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 922 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 923 ("ncl_write proc")); 924 if (vp->v_type != VREG) 925 return (EIO); 926 NFSLOCKNODE(np); 927 if (np->n_flag & NWRITEERR) { 928 np->n_flag &= ~NWRITEERR; 929 NFSUNLOCKNODE(np); 930 return (np->n_error); 931 } else 932 NFSUNLOCKNODE(np); 933 mtx_lock(&nmp->nm_mtx); 934 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 935 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 936 mtx_unlock(&nmp->nm_mtx); 937 (void)ncl_fsinfo(nmp, vp, cred, td); 938 mtx_lock(&nmp->nm_mtx); 939 } 940 if (nmp->nm_wsize == 0) 941 (void) newnfs_iosize(nmp); 942 mtx_unlock(&nmp->nm_mtx); 943 944 /* 945 * Synchronously flush pending buffers if we are in synchronous 946 * mode or if we are appending. 947 */ 948 if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag & 949 NMODIFIED))) { 950 /* 951 * For the case where IO_APPEND is being done using a 952 * direct output (to the NFS server) RPC and 953 * newnfs_directio_enable is 0, all buffer cache buffers, 954 * including ones not modified, must be invalidated. 955 * This ensures that stale data is not read out of the 956 * buffer cache. The call also invalidates all mapped 957 * pages and, since the exclusive lock is held on the vnode, 958 * new pages cannot be faulted in. 959 * 960 * For the case where newnfs_directio_enable is set 961 * (which is not the default), it is not obvious that 962 * stale data should be left in the buffer cache, but 963 * the code has been this way for over a decade without 964 * complaints. Note that, unlike doing IO_APPEND via 965 * a direct write RPC when newnfs_directio_enable is not set, 966 * when newnfs_directio_enable is set, reading is done via 967 * direct to NFS server RPCs as well. 968 */ 969 np->n_attrstamp = 0; 970 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 971 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 972 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 973 if (error != 0) 974 return (error); 975 } 976 977 orig_resid = uio->uio_resid; 978 NFSLOCKNODE(np); 979 orig_size = np->n_size; 980 NFSUNLOCKNODE(np); 981 982 /* 983 * If IO_APPEND then load uio_offset. We restart here if we cannot 984 * get the append lock. 985 */ 986 if (ioflag & IO_APPEND) { 987 /* 988 * For NFSv4, the AppendWrite will Verify the size against 989 * the file's size on the server. If not the same, the 990 * write will then be retried, using the file size returned 991 * by the AppendWrite. However, for NFSv2 and NFSv3, the 992 * size must be acquired here via a Getattr RPC. 993 * The AppendWrite is not done for a pNFS mount. 994 */ 995 if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) { 996 np->n_attrstamp = 0; 997 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 998 error = VOP_GETATTR(vp, &vattr, cred); 999 if (error) 1000 return (error); 1001 } 1002 NFSLOCKNODE(np); 1003 uio->uio_offset = np->n_size; 1004 NFSUNLOCKNODE(np); 1005 } 1006 1007 if (uio->uio_offset < 0) 1008 return (EINVAL); 1009 tmp_off = uio->uio_offset + uio->uio_resid; 1010 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 1011 return (EFBIG); 1012 if (uio->uio_resid == 0) 1013 return (0); 1014 1015 /* 1016 * Do IO_APPEND writing via a synchronous direct write. 1017 * This can result in a significant performance improvement. 1018 */ 1019 if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) || 1020 (ioflag & IO_APPEND)) { 1021 /* 1022 * Direct writes to the server must be done NFSWRITE_FILESYNC, 1023 * because the write data is not cached and, therefore, the 1024 * write cannot be redone after a server reboot. 1025 * Set IO_SYNC to make this happen. 1026 */ 1027 ioflag |= IO_SYNC; 1028 return (nfs_directio_write(vp, uio, cred, ioflag)); 1029 } 1030 1031 /* 1032 * Maybe this should be above the vnode op call, but so long as 1033 * file servers have no limits, i don't think it matters 1034 */ 1035 error = vn_rlimit_fsize(vp, uio, td); 1036 if (error != 0) 1037 return (error); 1038 1039 save2 = curthread_pflags2_set(TDP2_SBPAGES); 1040 biosize = vp->v_bufobj.bo_bsize; 1041 /* 1042 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1043 * would exceed the local maximum per-file write commit size when 1044 * combined with those, we must decide whether to flush, 1045 * go synchronous, or return error. We don't bother checking 1046 * IO_UNIT -- we just make all writes atomic anyway, as there's 1047 * no point optimizing for something that really won't ever happen. 1048 */ 1049 wouldcommit = 0; 1050 if (!(ioflag & IO_SYNC)) { 1051 int nflag; 1052 1053 NFSLOCKNODE(np); 1054 nflag = np->n_flag; 1055 NFSUNLOCKNODE(np); 1056 if (nflag & NMODIFIED) { 1057 BO_LOCK(&vp->v_bufobj); 1058 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1059 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1060 b_bobufs) { 1061 if (bp->b_flags & B_NEEDCOMMIT) 1062 wouldcommit += bp->b_bcount; 1063 } 1064 } 1065 BO_UNLOCK(&vp->v_bufobj); 1066 } 1067 } 1068 1069 do { 1070 if (!(ioflag & IO_SYNC)) { 1071 wouldcommit += biosize; 1072 if (wouldcommit > nmp->nm_wcommitsize) { 1073 np->n_attrstamp = 0; 1074 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1075 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1076 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1077 if (error != 0) 1078 goto out; 1079 wouldcommit = biosize; 1080 } 1081 } 1082 1083 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1084 lbn = uio->uio_offset / biosize; 1085 on = uio->uio_offset - (lbn * biosize); 1086 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1087 again: 1088 /* 1089 * Handle direct append and file extension cases, calculate 1090 * unaligned buffer size. 1091 */ 1092 NFSLOCKNODE(np); 1093 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1094 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1095 noncontig_write = 1; 1096 else 1097 noncontig_write = 0; 1098 if ((uio->uio_offset == np->n_size || 1099 (noncontig_write != 0 && 1100 lbn == (np->n_size / biosize) && 1101 uio->uio_offset + n > np->n_size)) && n) { 1102 NFSUNLOCKNODE(np); 1103 /* 1104 * Get the buffer (in its pre-append state to maintain 1105 * B_CACHE if it was previously set). Resize the 1106 * nfsnode after we have locked the buffer to prevent 1107 * readers from reading garbage. 1108 */ 1109 obcount = np->n_size - (lbn * biosize); 1110 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1111 1112 if (bp != NULL) { 1113 long save; 1114 1115 NFSLOCKNODE(np); 1116 np->n_size = uio->uio_offset + n; 1117 np->n_flag |= NMODIFIED; 1118 np->n_flag &= ~NVNSETSZSKIP; 1119 vnode_pager_setsize(vp, np->n_size); 1120 NFSUNLOCKNODE(np); 1121 1122 save = bp->b_flags & B_CACHE; 1123 bcount = on + n; 1124 allocbuf(bp, bcount); 1125 bp->b_flags |= save; 1126 if (noncontig_write != 0 && on > obcount) 1127 vfs_bio_bzero_buf(bp, obcount, on - 1128 obcount); 1129 } 1130 } else { 1131 /* 1132 * Obtain the locked cache block first, and then 1133 * adjust the file's size as appropriate. 1134 */ 1135 bcount = on + n; 1136 if ((off_t)lbn * biosize + bcount < np->n_size) { 1137 if ((off_t)(lbn + 1) * biosize < np->n_size) 1138 bcount = biosize; 1139 else 1140 bcount = np->n_size - (off_t)lbn * biosize; 1141 } 1142 NFSUNLOCKNODE(np); 1143 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1144 NFSLOCKNODE(np); 1145 if (uio->uio_offset + n > np->n_size) { 1146 np->n_size = uio->uio_offset + n; 1147 np->n_flag |= NMODIFIED; 1148 np->n_flag &= ~NVNSETSZSKIP; 1149 vnode_pager_setsize(vp, np->n_size); 1150 } 1151 NFSUNLOCKNODE(np); 1152 } 1153 1154 if (!bp) { 1155 error = newnfs_sigintr(nmp, td); 1156 if (!error) 1157 error = EINTR; 1158 break; 1159 } 1160 1161 /* 1162 * Issue a READ if B_CACHE is not set. In special-append 1163 * mode, B_CACHE is based on the buffer prior to the write 1164 * op and is typically set, avoiding the read. If a read 1165 * is required in special append mode, the server will 1166 * probably send us a short-read since we extended the file 1167 * on our end, resulting in b_resid == 0 and, thusly, 1168 * B_CACHE getting set. 1169 * 1170 * We can also avoid issuing the read if the write covers 1171 * the entire buffer. We have to make sure the buffer state 1172 * is reasonable in this case since we will not be initiating 1173 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1174 * more information. 1175 * 1176 * B_CACHE may also be set due to the buffer being cached 1177 * normally. 1178 */ 1179 1180 bp_cached = 1; 1181 if (on == 0 && n == bcount) { 1182 if ((bp->b_flags & B_CACHE) == 0) 1183 bp_cached = 0; 1184 bp->b_flags |= B_CACHE; 1185 bp->b_flags &= ~B_INVAL; 1186 bp->b_ioflags &= ~BIO_ERROR; 1187 } 1188 1189 if ((bp->b_flags & B_CACHE) == 0) { 1190 bp->b_iocmd = BIO_READ; 1191 vfs_busy_pages(bp, 0); 1192 error = ncl_doio(vp, bp, cred, td, 0); 1193 if (error) { 1194 brelse(bp); 1195 break; 1196 } 1197 } 1198 if (bp->b_wcred == NOCRED) 1199 bp->b_wcred = crhold(cred); 1200 NFSLOCKNODE(np); 1201 np->n_flag |= NMODIFIED; 1202 NFSUNLOCKNODE(np); 1203 1204 /* 1205 * If dirtyend exceeds file size, chop it down. This should 1206 * not normally occur but there is an append race where it 1207 * might occur XXX, so we log it. 1208 * 1209 * If the chopping creates a reverse-indexed or degenerate 1210 * situation with dirtyoff/end, we 0 both of them. 1211 */ 1212 1213 if (bp->b_dirtyend > bcount) { 1214 printf("NFS append race @%lx:%d\n", 1215 (long)bp->b_blkno * DEV_BSIZE, 1216 bp->b_dirtyend - bcount); 1217 bp->b_dirtyend = bcount; 1218 } 1219 1220 if (bp->b_dirtyoff >= bp->b_dirtyend) 1221 bp->b_dirtyoff = bp->b_dirtyend = 0; 1222 1223 /* 1224 * If the new write will leave a contiguous dirty 1225 * area, just update the b_dirtyoff and b_dirtyend, 1226 * otherwise force a write rpc of the old dirty area. 1227 * 1228 * If there has been a file lock applied to this file 1229 * or vfs.nfs.old_noncontig_writing is set, do the following: 1230 * While it is possible to merge discontiguous writes due to 1231 * our having a B_CACHE buffer ( and thus valid read data 1232 * for the hole), we don't because it could lead to 1233 * significant cache coherency problems with multiple clients, 1234 * especially if locking is implemented later on. 1235 * 1236 * If vfs.nfs.old_noncontig_writing is not set and there has 1237 * not been file locking done on this file: 1238 * Relax coherency a bit for the sake of performance and 1239 * expand the current dirty region to contain the new 1240 * write even if it means we mark some non-dirty data as 1241 * dirty. 1242 */ 1243 1244 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1245 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1246 if (bwrite(bp) == EINTR) { 1247 error = EINTR; 1248 break; 1249 } 1250 goto again; 1251 } 1252 1253 local_resid = uio->uio_resid; 1254 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1255 1256 if (error != 0 && !bp_cached) { 1257 /* 1258 * This block has no other content then what 1259 * possibly was written by the faulty uiomove. 1260 * Release it, forgetting the data pages, to 1261 * prevent the leak of uninitialized data to 1262 * usermode. 1263 */ 1264 bp->b_ioflags |= BIO_ERROR; 1265 brelse(bp); 1266 uio->uio_offset -= local_resid - uio->uio_resid; 1267 uio->uio_resid = local_resid; 1268 break; 1269 } 1270 1271 /* 1272 * Since this block is being modified, it must be written 1273 * again and not just committed. Since write clustering does 1274 * not work for the stage 1 data write, only the stage 2 1275 * commit rpc, we have to clear B_CLUSTEROK as well. 1276 */ 1277 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1278 1279 /* 1280 * Get the partial update on the progress made from 1281 * uiomove, if an error occurred. 1282 */ 1283 if (error != 0) 1284 n = local_resid - uio->uio_resid; 1285 1286 /* 1287 * Only update dirtyoff/dirtyend if not a degenerate 1288 * condition. 1289 */ 1290 if (n > 0) { 1291 if (bp->b_dirtyend > 0) { 1292 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1293 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1294 } else { 1295 bp->b_dirtyoff = on; 1296 bp->b_dirtyend = on + n; 1297 } 1298 vfs_bio_set_valid(bp, on, n); 1299 } 1300 1301 /* 1302 * If IO_SYNC do bwrite(). 1303 * 1304 * IO_INVAL appears to be unused. The idea appears to be 1305 * to turn off caching in this case. Very odd. XXX 1306 */ 1307 if ((ioflag & IO_SYNC)) { 1308 if (ioflag & IO_INVAL) 1309 bp->b_flags |= B_NOCACHE; 1310 error1 = bwrite(bp); 1311 if (error1 != 0) { 1312 if (error == 0) 1313 error = error1; 1314 break; 1315 } 1316 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1317 bp->b_flags |= B_ASYNC; 1318 (void) ncl_writebp(bp, 0, NULL); 1319 } else { 1320 bdwrite(bp); 1321 } 1322 1323 if (error != 0) 1324 break; 1325 } while (uio->uio_resid > 0 && n > 0); 1326 1327 if (error == 0) { 1328 nanouptime(&ts); 1329 NFSLOCKNODE(np); 1330 np->n_localmodtime = ts; 1331 NFSUNLOCKNODE(np); 1332 } else { 1333 if (ioflag & IO_UNIT) { 1334 VATTR_NULL(&vattr); 1335 vattr.va_size = orig_size; 1336 /* IO_SYNC is handled implicitely */ 1337 (void)VOP_SETATTR(vp, &vattr, cred); 1338 uio->uio_offset -= orig_resid - uio->uio_resid; 1339 uio->uio_resid = orig_resid; 1340 } 1341 } 1342 1343 out: 1344 curthread_pflags2_restore(save2); 1345 return (error); 1346 } 1347 1348 /* 1349 * Get an nfs cache block. 1350 * 1351 * Allocate a new one if the block isn't currently in the cache 1352 * and return the block marked busy. If the calling process is 1353 * interrupted by a signal for an interruptible mount point, return 1354 * NULL. 1355 * 1356 * The caller must carefully deal with the possible B_INVAL state of 1357 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1358 * indirectly), so synchronous reads can be issued without worrying about 1359 * the B_INVAL state. We have to be a little more careful when dealing 1360 * with writes (see comments in nfs_write()) when extending a file past 1361 * its EOF. 1362 */ 1363 static struct buf * 1364 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1365 { 1366 struct buf *bp; 1367 struct mount *mp; 1368 struct nfsmount *nmp; 1369 1370 mp = vp->v_mount; 1371 nmp = VFSTONFS(mp); 1372 1373 if (nmp->nm_flag & NFSMNT_INT) { 1374 sigset_t oldset; 1375 1376 newnfs_set_sigmask(td, &oldset); 1377 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1378 newnfs_restore_sigmask(td, &oldset); 1379 while (bp == NULL) { 1380 if (newnfs_sigintr(nmp, td)) 1381 return (NULL); 1382 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1383 } 1384 } else { 1385 bp = getblk(vp, bn, size, 0, 0, 0); 1386 } 1387 1388 if (vp->v_type == VREG) 1389 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1390 return (bp); 1391 } 1392 1393 /* 1394 * Flush and invalidate all dirty buffers. If another process is already 1395 * doing the flush, just wait for completion. 1396 */ 1397 int 1398 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1399 { 1400 struct nfsnode *np = VTONFS(vp); 1401 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1402 int error = 0, slpflag, slptimeo; 1403 bool old_lock; 1404 struct timespec ts; 1405 1406 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1407 1408 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1409 intrflg = 0; 1410 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1411 intrflg = 1; 1412 if (intrflg) { 1413 slpflag = PCATCH; 1414 slptimeo = 2 * hz; 1415 } else { 1416 slpflag = 0; 1417 slptimeo = 0; 1418 } 1419 1420 old_lock = ncl_excl_start(vp); 1421 if (old_lock) 1422 flags |= V_ALLOWCLEAN; 1423 1424 /* 1425 * Now, flush as required. 1426 */ 1427 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE && 1428 vp->v_bufobj.bo_object != NULL) { 1429 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1430 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1431 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1432 /* 1433 * If the page clean was interrupted, fail the invalidation. 1434 * Not doing so, we run the risk of losing dirty pages in the 1435 * vinvalbuf() call below. 1436 */ 1437 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1438 goto out; 1439 } 1440 1441 error = vinvalbuf(vp, flags, slpflag, 0); 1442 while (error) { 1443 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1444 goto out; 1445 error = vinvalbuf(vp, flags, 0, slptimeo); 1446 } 1447 if (NFSHASPNFS(nmp)) { 1448 nfscl_layoutcommit(vp, td); 1449 nanouptime(&ts); 1450 /* 1451 * Invalidate the attribute cache, since writes to a DS 1452 * won't update the size attribute. 1453 */ 1454 NFSLOCKNODE(np); 1455 np->n_attrstamp = 0; 1456 } else { 1457 nanouptime(&ts); 1458 NFSLOCKNODE(np); 1459 } 1460 if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) { 1461 np->n_localmodtime = ts; 1462 np->n_flag &= ~NMODIFIED; 1463 } 1464 NFSUNLOCKNODE(np); 1465 out: 1466 ncl_excl_finish(vp, old_lock); 1467 return error; 1468 } 1469 1470 /* 1471 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1472 * This is mainly to avoid queueing async I/O requests when the nfsiods 1473 * are all hung on a dead server. 1474 * 1475 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1476 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1477 */ 1478 int 1479 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1480 { 1481 int iod; 1482 int gotiod; 1483 int slpflag = 0; 1484 int slptimeo = 0; 1485 int error, error2; 1486 1487 /* 1488 * Commits are usually short and sweet so lets save some cpu and 1489 * leave the async daemons for more important rpc's (such as reads 1490 * and writes). 1491 * 1492 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1493 * in the directory in order to update attributes. This can deadlock 1494 * with another thread that is waiting for async I/O to be done by 1495 * an nfsiod thread while holding a lock on one of these vnodes. 1496 * To avoid this deadlock, don't allow the async nfsiod threads to 1497 * perform Readdirplus RPCs. 1498 */ 1499 NFSLOCKIOD(); 1500 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1501 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1502 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1503 NFSUNLOCKIOD(); 1504 return(EIO); 1505 } 1506 again: 1507 if (nmp->nm_flag & NFSMNT_INT) 1508 slpflag = PCATCH; 1509 gotiod = FALSE; 1510 1511 /* 1512 * Find a free iod to process this request. 1513 */ 1514 for (iod = 0; iod < ncl_numasync; iod++) 1515 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1516 gotiod = TRUE; 1517 break; 1518 } 1519 1520 /* 1521 * Try to create one if none are free. 1522 */ 1523 if (!gotiod) 1524 ncl_nfsiodnew(); 1525 else { 1526 /* 1527 * Found one, so wake it up and tell it which 1528 * mount to process. 1529 */ 1530 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1531 iod, nmp)); 1532 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1533 ncl_iodmount[iod] = nmp; 1534 nmp->nm_bufqiods++; 1535 wakeup(&ncl_iodwant[iod]); 1536 } 1537 1538 /* 1539 * If none are free, we may already have an iod working on this mount 1540 * point. If so, it will process our request. 1541 */ 1542 if (!gotiod) { 1543 if (nmp->nm_bufqiods > 0) { 1544 NFS_DPF(ASYNCIO, 1545 ("ncl_asyncio: %d iods are already processing mount %p\n", 1546 nmp->nm_bufqiods, nmp)); 1547 gotiod = TRUE; 1548 } 1549 } 1550 1551 /* 1552 * If we have an iod which can process the request, then queue 1553 * the buffer. 1554 */ 1555 if (gotiod) { 1556 /* 1557 * Ensure that the queue never grows too large. We still want 1558 * to asynchronize so we block rather then return EIO. 1559 */ 1560 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1561 NFS_DPF(ASYNCIO, 1562 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1563 nmp->nm_bufqwant = TRUE; 1564 error = newnfs_msleep(td, &nmp->nm_bufq, 1565 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1566 slptimeo); 1567 if (error) { 1568 error2 = newnfs_sigintr(nmp, td); 1569 if (error2) { 1570 NFSUNLOCKIOD(); 1571 return (error2); 1572 } 1573 if (slpflag == PCATCH) { 1574 slpflag = 0; 1575 slptimeo = 2 * hz; 1576 } 1577 } 1578 /* 1579 * We might have lost our iod while sleeping, 1580 * so check and loop if necessary. 1581 */ 1582 goto again; 1583 } 1584 1585 /* We might have lost our nfsiod */ 1586 if (nmp->nm_bufqiods == 0) { 1587 NFS_DPF(ASYNCIO, 1588 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1589 goto again; 1590 } 1591 1592 if (bp->b_iocmd == BIO_READ) { 1593 if (bp->b_rcred == NOCRED && cred != NOCRED) 1594 bp->b_rcred = crhold(cred); 1595 } else { 1596 if (bp->b_wcred == NOCRED && cred != NOCRED) 1597 bp->b_wcred = crhold(cred); 1598 } 1599 1600 if (bp->b_flags & B_REMFREE) 1601 bremfreef(bp); 1602 BUF_KERNPROC(bp); 1603 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1604 nmp->nm_bufqlen++; 1605 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1606 NFSLOCKNODE(VTONFS(bp->b_vp)); 1607 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1608 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1609 NFSUNLOCKNODE(VTONFS(bp->b_vp)); 1610 } 1611 NFSUNLOCKIOD(); 1612 return (0); 1613 } 1614 1615 NFSUNLOCKIOD(); 1616 1617 /* 1618 * All the iods are busy on other mounts, so return EIO to 1619 * force the caller to process the i/o synchronously. 1620 */ 1621 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1622 return (EIO); 1623 } 1624 1625 void 1626 ncl_doio_directwrite(struct buf *bp) 1627 { 1628 int iomode, must_commit; 1629 struct uio *uiop = (struct uio *)bp->b_caller1; 1630 char *iov_base = uiop->uio_iov->iov_base; 1631 1632 iomode = NFSWRITE_FILESYNC; 1633 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1634 /* 1635 * When doing direct I/O we do not care if the 1636 * server's write verifier has changed, but we 1637 * do not want to update the verifier if it has 1638 * changed, since that hides the change from 1639 * writes being done through the buffer cache. 1640 * By passing must_commit in set to two, the code 1641 * in nfsrpc_writerpc() will not update the 1642 * verifier on the mount point. 1643 */ 1644 must_commit = 2; 1645 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0, 0); 1646 KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write" 1647 " verifier")); 1648 if (iomode != NFSWRITE_FILESYNC) 1649 printf("ncl_doio_directwrite: Broken server " 1650 "did not reply FILE_SYNC\n"); 1651 free(iov_base, M_NFSDIRECTIO); 1652 free(uiop->uio_iov, M_NFSDIRECTIO); 1653 free(uiop, M_NFSDIRECTIO); 1654 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1655 struct nfsnode *np = VTONFS(bp->b_vp); 1656 NFSLOCKNODE(np); 1657 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) { 1658 /* 1659 * Invalidate the attribute cache, since writes to a DS 1660 * won't update the size attribute. 1661 */ 1662 np->n_attrstamp = 0; 1663 } 1664 np->n_directio_asyncwr--; 1665 if (np->n_directio_asyncwr == 0) { 1666 np->n_flag &= ~NMODIFIED; 1667 if ((np->n_flag & NFSYNCWAIT)) { 1668 np->n_flag &= ~NFSYNCWAIT; 1669 wakeup((caddr_t)&np->n_directio_asyncwr); 1670 } 1671 } 1672 NFSUNLOCKNODE(np); 1673 } 1674 bp->b_vp = NULL; 1675 uma_zfree(ncl_pbuf_zone, bp); 1676 } 1677 1678 /* 1679 * Do an I/O operation to/from a cache block. This may be called 1680 * synchronously or from an nfsiod. 1681 */ 1682 int 1683 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1684 int called_from_strategy) 1685 { 1686 struct uio *uiop; 1687 struct nfsnode *np; 1688 struct nfsmount *nmp; 1689 int error = 0, iomode, must_commit = 0; 1690 struct uio uio; 1691 struct iovec io; 1692 struct proc *p = td ? td->td_proc : NULL; 1693 uint8_t iocmd; 1694 1695 np = VTONFS(vp); 1696 nmp = VFSTONFS(vp->v_mount); 1697 uiop = &uio; 1698 uiop->uio_iov = &io; 1699 uiop->uio_iovcnt = 1; 1700 uiop->uio_segflg = UIO_SYSSPACE; 1701 uiop->uio_td = td; 1702 1703 /* 1704 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1705 * do this here so we do not have to do it in all the code that 1706 * calls us. 1707 */ 1708 bp->b_flags &= ~B_INVAL; 1709 bp->b_ioflags &= ~BIO_ERROR; 1710 1711 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1712 iocmd = bp->b_iocmd; 1713 if (iocmd == BIO_READ) { 1714 io.iov_len = uiop->uio_resid = bp->b_bcount; 1715 io.iov_base = bp->b_data; 1716 uiop->uio_rw = UIO_READ; 1717 1718 switch (vp->v_type) { 1719 case VREG: 1720 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1721 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1722 error = ncl_readrpc(vp, uiop, cr); 1723 1724 if (!error) { 1725 if (uiop->uio_resid) { 1726 /* 1727 * If we had a short read with no error, we must have 1728 * hit a file hole. We should zero-fill the remainder. 1729 * This can also occur if the server hits the file EOF. 1730 * 1731 * Holes used to be able to occur due to pending 1732 * writes, but that is not possible any longer. 1733 */ 1734 int nread = bp->b_bcount - uiop->uio_resid; 1735 ssize_t left = uiop->uio_resid; 1736 1737 if (left > 0) 1738 bzero((char *)bp->b_data + nread, left); 1739 uiop->uio_resid = 0; 1740 } 1741 } 1742 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1743 if (p && vp->v_writecount <= -1) { 1744 NFSLOCKNODE(np); 1745 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1746 NFSUNLOCKNODE(np); 1747 PROC_LOCK(p); 1748 killproc(p, "text file modification"); 1749 PROC_UNLOCK(p); 1750 } else 1751 NFSUNLOCKNODE(np); 1752 } 1753 break; 1754 case VLNK: 1755 uiop->uio_offset = (off_t)0; 1756 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1757 error = ncl_readlinkrpc(vp, uiop, cr); 1758 break; 1759 case VDIR: 1760 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1761 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1762 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1763 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1764 if (error == NFSERR_NOTSUPP) 1765 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1766 } 1767 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1768 error = ncl_readdirrpc(vp, uiop, cr, td); 1769 /* 1770 * end-of-directory sets B_INVAL but does not generate an 1771 * error. 1772 */ 1773 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1774 bp->b_flags |= B_INVAL; 1775 break; 1776 default: 1777 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1778 break; 1779 } 1780 if (error) { 1781 bp->b_ioflags |= BIO_ERROR; 1782 bp->b_error = error; 1783 } 1784 } else { 1785 /* 1786 * If we only need to commit, try to commit 1787 */ 1788 if (bp->b_flags & B_NEEDCOMMIT) { 1789 int retv; 1790 off_t off; 1791 1792 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1793 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1794 bp->b_wcred, td); 1795 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) { 1796 bp->b_dirtyoff = bp->b_dirtyend = 0; 1797 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1798 bp->b_resid = 0; 1799 bufdone(bp); 1800 return (0); 1801 } 1802 if (retv == NFSERR_STALEWRITEVERF) { 1803 ncl_clearcommit(vp->v_mount); 1804 } 1805 } 1806 1807 /* 1808 * Setup for actual write 1809 */ 1810 NFSLOCKNODE(np); 1811 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1812 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1813 NFSUNLOCKNODE(np); 1814 1815 if (bp->b_dirtyend > bp->b_dirtyoff) { 1816 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1817 - bp->b_dirtyoff; 1818 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1819 + bp->b_dirtyoff; 1820 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1821 uiop->uio_rw = UIO_WRITE; 1822 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1823 1824 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1825 iomode = NFSWRITE_UNSTABLE; 1826 else 1827 iomode = NFSWRITE_FILESYNC; 1828 1829 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1830 called_from_strategy, 0); 1831 1832 /* 1833 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1834 * to cluster the buffers needing commit. This will allow 1835 * the system to submit a single commit rpc for the whole 1836 * cluster. We can do this even if the buffer is not 100% 1837 * dirty (relative to the NFS blocksize), so we optimize the 1838 * append-to-file-case. 1839 * 1840 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1841 * cleared because write clustering only works for commit 1842 * rpc's, not for the data portion of the write). 1843 */ 1844 1845 if (!error && iomode == NFSWRITE_UNSTABLE) { 1846 bp->b_flags |= B_NEEDCOMMIT; 1847 if (bp->b_dirtyoff == 0 1848 && bp->b_dirtyend == bp->b_bcount) 1849 bp->b_flags |= B_CLUSTEROK; 1850 } else { 1851 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1852 } 1853 1854 /* 1855 * For an interrupted write, the buffer is still valid 1856 * and the write hasn't been pushed to the server yet, 1857 * so we can't set BIO_ERROR and report the interruption 1858 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1859 * is not relevant, so the rpc attempt is essentially 1860 * a noop. For the case of a V3 write rpc not being 1861 * committed to stable storage, the block is still 1862 * dirty and requires either a commit rpc or another 1863 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1864 * the block is reused. This is indicated by setting 1865 * the B_DELWRI and B_NEEDCOMMIT flags. 1866 * 1867 * EIO is returned by ncl_writerpc() to indicate a recoverable 1868 * write error and is handled as above, except that 1869 * B_EINTR isn't set. One cause of this is a stale stateid 1870 * error for the RPC that indicates recovery is required, 1871 * when called with called_from_strategy != 0. 1872 * 1873 * If the buffer is marked B_PAGING, it does not reside on 1874 * the vp's paging queues so we cannot call bdirty(). The 1875 * bp in this case is not an NFS cache block so we should 1876 * be safe. XXX 1877 * 1878 * The logic below breaks up errors into recoverable and 1879 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1880 * and keep the buffer around for potential write retries. 1881 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1882 * and save the error in the nfsnode. This is less than ideal 1883 * but necessary. Keeping such buffers around could potentially 1884 * cause buffer exhaustion eventually (they can never be written 1885 * out, so will get constantly be re-dirtied). It also causes 1886 * all sorts of vfs panics. For non-recoverable write errors, 1887 * also invalidate the attrcache, so we'll be forced to go over 1888 * the wire for this object, returning an error to user on next 1889 * call (most of the time). 1890 */ 1891 if (error == EINTR || error == EIO || error == ETIMEDOUT 1892 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1893 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1894 if ((bp->b_flags & B_PAGING) == 0) { 1895 bdirty(bp); 1896 bp->b_flags &= ~B_DONE; 1897 } 1898 if ((error == EINTR || error == ETIMEDOUT) && 1899 (bp->b_flags & B_ASYNC) == 0) 1900 bp->b_flags |= B_EINTR; 1901 } else { 1902 if (error) { 1903 bp->b_ioflags |= BIO_ERROR; 1904 bp->b_flags |= B_INVAL; 1905 bp->b_error = np->n_error = error; 1906 NFSLOCKNODE(np); 1907 np->n_flag |= NWRITEERR; 1908 np->n_attrstamp = 0; 1909 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1910 NFSUNLOCKNODE(np); 1911 } 1912 bp->b_dirtyoff = bp->b_dirtyend = 0; 1913 } 1914 } else { 1915 bp->b_resid = 0; 1916 bufdone(bp); 1917 return (0); 1918 } 1919 } 1920 bp->b_resid = uiop->uio_resid; 1921 if (must_commit == 1) 1922 ncl_clearcommit(vp->v_mount); 1923 bufdone(bp); 1924 return (error); 1925 } 1926 1927 /* 1928 * Used to aid in handling ftruncate() operations on the NFS client side. 1929 * Truncation creates a number of special problems for NFS. We have to 1930 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1931 * we have to properly handle VM pages or (potentially dirty) buffers 1932 * that straddle the truncation point. 1933 */ 1934 1935 int 1936 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1937 { 1938 struct nfsnode *np = VTONFS(vp); 1939 u_quad_t tsize; 1940 int biosize = vp->v_bufobj.bo_bsize; 1941 int error = 0; 1942 1943 NFSLOCKNODE(np); 1944 tsize = np->n_size; 1945 np->n_size = nsize; 1946 NFSUNLOCKNODE(np); 1947 1948 if (nsize < tsize) { 1949 struct buf *bp; 1950 daddr_t lbn; 1951 int bufsize; 1952 1953 /* 1954 * vtruncbuf() doesn't get the buffer overlapping the 1955 * truncation point. We may have a B_DELWRI and/or B_CACHE 1956 * buffer that now needs to be truncated. 1957 */ 1958 error = vtruncbuf(vp, nsize, biosize); 1959 lbn = nsize / biosize; 1960 bufsize = nsize - (lbn * biosize); 1961 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1962 if (!bp) 1963 return EINTR; 1964 if (bp->b_dirtyoff > bp->b_bcount) 1965 bp->b_dirtyoff = bp->b_bcount; 1966 if (bp->b_dirtyend > bp->b_bcount) 1967 bp->b_dirtyend = bp->b_bcount; 1968 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1969 brelse(bp); 1970 } else { 1971 vnode_pager_setsize(vp, nsize); 1972 } 1973 return(error); 1974 } 1975