xref: /freebsd/sys/fs/nfsclient/nfs_clbio.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_kdtrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/rwlock.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vnode_pager.h>
57 
58 #include <fs/nfs/nfsport.h>
59 #include <fs/nfsclient/nfsmount.h>
60 #include <fs/nfsclient/nfs.h>
61 #include <fs/nfsclient/nfsnode.h>
62 #include <fs/nfsclient/nfs_kdtrace.h>
63 
64 extern int newnfs_directio_allow_mmap;
65 extern struct nfsstats newnfsstats;
66 extern struct mtx ncl_iod_mutex;
67 extern int ncl_numasync;
68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
70 extern int newnfs_directio_enable;
71 extern int nfs_keep_dirty_on_error;
72 
73 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
74 
75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
76     struct thread *td);
77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
78     struct ucred *cred, int ioflag);
79 
80 /*
81  * Vnode op for VM getpages.
82  */
83 int
84 ncl_getpages(struct vop_getpages_args *ap)
85 {
86 	int i, error, nextoff, size, toff, count, npages;
87 	struct uio uio;
88 	struct iovec iov;
89 	vm_offset_t kva;
90 	struct buf *bp;
91 	struct vnode *vp;
92 	struct thread *td;
93 	struct ucred *cred;
94 	struct nfsmount *nmp;
95 	vm_object_t object;
96 	vm_page_t *pages;
97 	struct nfsnode *np;
98 
99 	vp = ap->a_vp;
100 	np = VTONFS(vp);
101 	td = curthread;				/* XXX */
102 	cred = curthread->td_ucred;		/* XXX */
103 	nmp = VFSTONFS(vp->v_mount);
104 	pages = ap->a_m;
105 	count = ap->a_count;
106 
107 	if ((object = vp->v_object) == NULL) {
108 		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
109 		return (VM_PAGER_ERROR);
110 	}
111 
112 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
113 		mtx_lock(&np->n_mtx);
114 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
115 			mtx_unlock(&np->n_mtx);
116 			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
117 			return (VM_PAGER_ERROR);
118 		} else
119 			mtx_unlock(&np->n_mtx);
120 	}
121 
122 	mtx_lock(&nmp->nm_mtx);
123 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
124 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
125 		mtx_unlock(&nmp->nm_mtx);
126 		/* We'll never get here for v4, because we always have fsinfo */
127 		(void)ncl_fsinfo(nmp, vp, cred, td);
128 	} else
129 		mtx_unlock(&nmp->nm_mtx);
130 
131 	npages = btoc(count);
132 
133 	/*
134 	 * If the requested page is partially valid, just return it and
135 	 * allow the pager to zero-out the blanks.  Partially valid pages
136 	 * can only occur at the file EOF.
137 	 */
138 	VM_OBJECT_WLOCK(object);
139 	if (pages[ap->a_reqpage]->valid != 0) {
140 		for (i = 0; i < npages; ++i) {
141 			if (i != ap->a_reqpage) {
142 				vm_page_lock(pages[i]);
143 				vm_page_free(pages[i]);
144 				vm_page_unlock(pages[i]);
145 			}
146 		}
147 		VM_OBJECT_WUNLOCK(object);
148 		return (0);
149 	}
150 	VM_OBJECT_WUNLOCK(object);
151 
152 	/*
153 	 * We use only the kva address for the buffer, but this is extremely
154 	 * convienient and fast.
155 	 */
156 	bp = getpbuf(&ncl_pbuf_freecnt);
157 
158 	kva = (vm_offset_t) bp->b_data;
159 	pmap_qenter(kva, pages, npages);
160 	PCPU_INC(cnt.v_vnodein);
161 	PCPU_ADD(cnt.v_vnodepgsin, npages);
162 
163 	iov.iov_base = (caddr_t) kva;
164 	iov.iov_len = count;
165 	uio.uio_iov = &iov;
166 	uio.uio_iovcnt = 1;
167 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
168 	uio.uio_resid = count;
169 	uio.uio_segflg = UIO_SYSSPACE;
170 	uio.uio_rw = UIO_READ;
171 	uio.uio_td = td;
172 
173 	error = ncl_readrpc(vp, &uio, cred);
174 	pmap_qremove(kva, npages);
175 
176 	relpbuf(bp, &ncl_pbuf_freecnt);
177 
178 	if (error && (uio.uio_resid == count)) {
179 		ncl_printf("nfs_getpages: error %d\n", error);
180 		VM_OBJECT_WLOCK(object);
181 		for (i = 0; i < npages; ++i) {
182 			if (i != ap->a_reqpage) {
183 				vm_page_lock(pages[i]);
184 				vm_page_free(pages[i]);
185 				vm_page_unlock(pages[i]);
186 			}
187 		}
188 		VM_OBJECT_WUNLOCK(object);
189 		return (VM_PAGER_ERROR);
190 	}
191 
192 	/*
193 	 * Calculate the number of bytes read and validate only that number
194 	 * of bytes.  Note that due to pending writes, size may be 0.  This
195 	 * does not mean that the remaining data is invalid!
196 	 */
197 
198 	size = count - uio.uio_resid;
199 	VM_OBJECT_WLOCK(object);
200 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
201 		vm_page_t m;
202 		nextoff = toff + PAGE_SIZE;
203 		m = pages[i];
204 
205 		if (nextoff <= size) {
206 			/*
207 			 * Read operation filled an entire page
208 			 */
209 			m->valid = VM_PAGE_BITS_ALL;
210 			KASSERT(m->dirty == 0,
211 			    ("nfs_getpages: page %p is dirty", m));
212 		} else if (size > toff) {
213 			/*
214 			 * Read operation filled a partial page.
215 			 */
216 			m->valid = 0;
217 			vm_page_set_valid_range(m, 0, size - toff);
218 			KASSERT(m->dirty == 0,
219 			    ("nfs_getpages: page %p is dirty", m));
220 		} else {
221 			/*
222 			 * Read operation was short.  If no error
223 			 * occured we may have hit a zero-fill
224 			 * section.  We leave valid set to 0, and page
225 			 * is freed by vm_page_readahead_finish() if
226 			 * its index is not equal to requested, or
227 			 * page is zeroed and set valid by
228 			 * vm_pager_get_pages() for requested page.
229 			 */
230 			;
231 		}
232 		if (i != ap->a_reqpage)
233 			vm_page_readahead_finish(m);
234 	}
235 	VM_OBJECT_WUNLOCK(object);
236 	return (0);
237 }
238 
239 /*
240  * Vnode op for VM putpages.
241  */
242 int
243 ncl_putpages(struct vop_putpages_args *ap)
244 {
245 	struct uio uio;
246 	struct iovec iov;
247 	vm_offset_t kva;
248 	struct buf *bp;
249 	int iomode, must_commit, i, error, npages, count;
250 	off_t offset;
251 	int *rtvals;
252 	struct vnode *vp;
253 	struct thread *td;
254 	struct ucred *cred;
255 	struct nfsmount *nmp;
256 	struct nfsnode *np;
257 	vm_page_t *pages;
258 
259 	vp = ap->a_vp;
260 	np = VTONFS(vp);
261 	td = curthread;				/* XXX */
262 	/* Set the cred to n_writecred for the write rpcs. */
263 	if (np->n_writecred != NULL)
264 		cred = crhold(np->n_writecred);
265 	else
266 		cred = crhold(curthread->td_ucred);	/* XXX */
267 	nmp = VFSTONFS(vp->v_mount);
268 	pages = ap->a_m;
269 	count = ap->a_count;
270 	rtvals = ap->a_rtvals;
271 	npages = btoc(count);
272 	offset = IDX_TO_OFF(pages[0]->pindex);
273 
274 	mtx_lock(&nmp->nm_mtx);
275 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
276 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
277 		mtx_unlock(&nmp->nm_mtx);
278 		(void)ncl_fsinfo(nmp, vp, cred, td);
279 	} else
280 		mtx_unlock(&nmp->nm_mtx);
281 
282 	mtx_lock(&np->n_mtx);
283 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
284 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
285 		mtx_unlock(&np->n_mtx);
286 		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
287 		mtx_lock(&np->n_mtx);
288 	}
289 
290 	for (i = 0; i < npages; i++)
291 		rtvals[i] = VM_PAGER_ERROR;
292 
293 	/*
294 	 * When putting pages, do not extend file past EOF.
295 	 */
296 	if (offset + count > np->n_size) {
297 		count = np->n_size - offset;
298 		if (count < 0)
299 			count = 0;
300 	}
301 	mtx_unlock(&np->n_mtx);
302 
303 	/*
304 	 * We use only the kva address for the buffer, but this is extremely
305 	 * convienient and fast.
306 	 */
307 	bp = getpbuf(&ncl_pbuf_freecnt);
308 
309 	kva = (vm_offset_t) bp->b_data;
310 	pmap_qenter(kva, pages, npages);
311 	PCPU_INC(cnt.v_vnodeout);
312 	PCPU_ADD(cnt.v_vnodepgsout, count);
313 
314 	iov.iov_base = (caddr_t) kva;
315 	iov.iov_len = count;
316 	uio.uio_iov = &iov;
317 	uio.uio_iovcnt = 1;
318 	uio.uio_offset = offset;
319 	uio.uio_resid = count;
320 	uio.uio_segflg = UIO_SYSSPACE;
321 	uio.uio_rw = UIO_WRITE;
322 	uio.uio_td = td;
323 
324 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
325 	    iomode = NFSWRITE_UNSTABLE;
326 	else
327 	    iomode = NFSWRITE_FILESYNC;
328 
329 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
330 	crfree(cred);
331 
332 	pmap_qremove(kva, npages);
333 	relpbuf(bp, &ncl_pbuf_freecnt);
334 
335 	if (error == 0 || !nfs_keep_dirty_on_error) {
336 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
337 		if (must_commit)
338 			ncl_clearcommit(vp->v_mount);
339 	}
340 	return rtvals[0];
341 }
342 
343 /*
344  * For nfs, cache consistency can only be maintained approximately.
345  * Although RFC1094 does not specify the criteria, the following is
346  * believed to be compatible with the reference port.
347  * For nfs:
348  * If the file's modify time on the server has changed since the
349  * last read rpc or you have written to the file,
350  * you may have lost data cache consistency with the
351  * server, so flush all of the file's data out of the cache.
352  * Then force a getattr rpc to ensure that you have up to date
353  * attributes.
354  * NB: This implies that cache data can be read when up to
355  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
356  * attributes this could be forced by setting n_attrstamp to 0 before
357  * the VOP_GETATTR() call.
358  */
359 static inline int
360 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
361 {
362 	int error = 0;
363 	struct vattr vattr;
364 	struct nfsnode *np = VTONFS(vp);
365 	int old_lock;
366 
367 	/*
368 	 * Grab the exclusive lock before checking whether the cache is
369 	 * consistent.
370 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
371 	 * But for now, this suffices.
372 	 */
373 	old_lock = ncl_upgrade_vnlock(vp);
374 	if (vp->v_iflag & VI_DOOMED) {
375 		ncl_downgrade_vnlock(vp, old_lock);
376 		return (EBADF);
377 	}
378 
379 	mtx_lock(&np->n_mtx);
380 	if (np->n_flag & NMODIFIED) {
381 		mtx_unlock(&np->n_mtx);
382 		if (vp->v_type != VREG) {
383 			if (vp->v_type != VDIR)
384 				panic("nfs: bioread, not dir");
385 			ncl_invaldir(vp);
386 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
387 			if (error)
388 				goto out;
389 		}
390 		np->n_attrstamp = 0;
391 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
392 		error = VOP_GETATTR(vp, &vattr, cred);
393 		if (error)
394 			goto out;
395 		mtx_lock(&np->n_mtx);
396 		np->n_mtime = vattr.va_mtime;
397 		mtx_unlock(&np->n_mtx);
398 	} else {
399 		mtx_unlock(&np->n_mtx);
400 		error = VOP_GETATTR(vp, &vattr, cred);
401 		if (error)
402 			return (error);
403 		mtx_lock(&np->n_mtx);
404 		if ((np->n_flag & NSIZECHANGED)
405 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
406 			mtx_unlock(&np->n_mtx);
407 			if (vp->v_type == VDIR)
408 				ncl_invaldir(vp);
409 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
410 			if (error)
411 				goto out;
412 			mtx_lock(&np->n_mtx);
413 			np->n_mtime = vattr.va_mtime;
414 			np->n_flag &= ~NSIZECHANGED;
415 		}
416 		mtx_unlock(&np->n_mtx);
417 	}
418 out:
419 	ncl_downgrade_vnlock(vp, old_lock);
420 	return error;
421 }
422 
423 /*
424  * Vnode op for read using bio
425  */
426 int
427 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
428 {
429 	struct nfsnode *np = VTONFS(vp);
430 	int biosize, i;
431 	struct buf *bp, *rabp;
432 	struct thread *td;
433 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
434 	daddr_t lbn, rabn;
435 	int bcount;
436 	int seqcount;
437 	int nra, error = 0, n = 0, on = 0;
438 	off_t tmp_off;
439 
440 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
441 	if (uio->uio_resid == 0)
442 		return (0);
443 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
444 		return (EINVAL);
445 	td = uio->uio_td;
446 
447 	mtx_lock(&nmp->nm_mtx);
448 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
449 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
450 		mtx_unlock(&nmp->nm_mtx);
451 		(void)ncl_fsinfo(nmp, vp, cred, td);
452 		mtx_lock(&nmp->nm_mtx);
453 	}
454 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
455 		(void) newnfs_iosize(nmp);
456 
457 	tmp_off = uio->uio_offset + uio->uio_resid;
458 	if (vp->v_type != VDIR &&
459 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
460 		mtx_unlock(&nmp->nm_mtx);
461 		return (EFBIG);
462 	}
463 	mtx_unlock(&nmp->nm_mtx);
464 
465 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
466 		/* No caching/ no readaheads. Just read data into the user buffer */
467 		return ncl_readrpc(vp, uio, cred);
468 
469 	biosize = vp->v_bufobj.bo_bsize;
470 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
471 
472 	error = nfs_bioread_check_cons(vp, td, cred);
473 	if (error)
474 		return error;
475 
476 	do {
477 	    u_quad_t nsize;
478 
479 	    mtx_lock(&np->n_mtx);
480 	    nsize = np->n_size;
481 	    mtx_unlock(&np->n_mtx);
482 
483 	    switch (vp->v_type) {
484 	    case VREG:
485 		NFSINCRGLOBAL(newnfsstats.biocache_reads);
486 		lbn = uio->uio_offset / biosize;
487 		on = uio->uio_offset - (lbn * biosize);
488 
489 		/*
490 		 * Start the read ahead(s), as required.
491 		 */
492 		if (nmp->nm_readahead > 0) {
493 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
494 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
495 			rabn = lbn + 1 + nra;
496 			if (incore(&vp->v_bufobj, rabn) == NULL) {
497 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
498 			    if (!rabp) {
499 				error = newnfs_sigintr(nmp, td);
500 				return (error ? error : EINTR);
501 			    }
502 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
503 				rabp->b_flags |= B_ASYNC;
504 				rabp->b_iocmd = BIO_READ;
505 				vfs_busy_pages(rabp, 0);
506 				if (ncl_asyncio(nmp, rabp, cred, td)) {
507 				    rabp->b_flags |= B_INVAL;
508 				    rabp->b_ioflags |= BIO_ERROR;
509 				    vfs_unbusy_pages(rabp);
510 				    brelse(rabp);
511 				    break;
512 				}
513 			    } else {
514 				brelse(rabp);
515 			    }
516 			}
517 		    }
518 		}
519 
520 		/* Note that bcount is *not* DEV_BSIZE aligned. */
521 		bcount = biosize;
522 		if ((off_t)lbn * biosize >= nsize) {
523 			bcount = 0;
524 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
525 			bcount = nsize - (off_t)lbn * biosize;
526 		}
527 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
528 
529 		if (!bp) {
530 			error = newnfs_sigintr(nmp, td);
531 			return (error ? error : EINTR);
532 		}
533 
534 		/*
535 		 * If B_CACHE is not set, we must issue the read.  If this
536 		 * fails, we return an error.
537 		 */
538 
539 		if ((bp->b_flags & B_CACHE) == 0) {
540 		    bp->b_iocmd = BIO_READ;
541 		    vfs_busy_pages(bp, 0);
542 		    error = ncl_doio(vp, bp, cred, td, 0);
543 		    if (error) {
544 			brelse(bp);
545 			return (error);
546 		    }
547 		}
548 
549 		/*
550 		 * on is the offset into the current bp.  Figure out how many
551 		 * bytes we can copy out of the bp.  Note that bcount is
552 		 * NOT DEV_BSIZE aligned.
553 		 *
554 		 * Then figure out how many bytes we can copy into the uio.
555 		 */
556 
557 		n = 0;
558 		if (on < bcount)
559 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
560 		break;
561 	    case VLNK:
562 		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
563 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
564 		if (!bp) {
565 			error = newnfs_sigintr(nmp, td);
566 			return (error ? error : EINTR);
567 		}
568 		if ((bp->b_flags & B_CACHE) == 0) {
569 		    bp->b_iocmd = BIO_READ;
570 		    vfs_busy_pages(bp, 0);
571 		    error = ncl_doio(vp, bp, cred, td, 0);
572 		    if (error) {
573 			bp->b_ioflags |= BIO_ERROR;
574 			brelse(bp);
575 			return (error);
576 		    }
577 		}
578 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
579 		on = 0;
580 		break;
581 	    case VDIR:
582 		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
583 		if (np->n_direofoffset
584 		    && uio->uio_offset >= np->n_direofoffset) {
585 		    return (0);
586 		}
587 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
588 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
589 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
590 		if (!bp) {
591 		    error = newnfs_sigintr(nmp, td);
592 		    return (error ? error : EINTR);
593 		}
594 		if ((bp->b_flags & B_CACHE) == 0) {
595 		    bp->b_iocmd = BIO_READ;
596 		    vfs_busy_pages(bp, 0);
597 		    error = ncl_doio(vp, bp, cred, td, 0);
598 		    if (error) {
599 			    brelse(bp);
600 		    }
601 		    while (error == NFSERR_BAD_COOKIE) {
602 			ncl_invaldir(vp);
603 			error = ncl_vinvalbuf(vp, 0, td, 1);
604 			/*
605 			 * Yuck! The directory has been modified on the
606 			 * server. The only way to get the block is by
607 			 * reading from the beginning to get all the
608 			 * offset cookies.
609 			 *
610 			 * Leave the last bp intact unless there is an error.
611 			 * Loop back up to the while if the error is another
612 			 * NFSERR_BAD_COOKIE (double yuch!).
613 			 */
614 			for (i = 0; i <= lbn && !error; i++) {
615 			    if (np->n_direofoffset
616 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
617 				    return (0);
618 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
619 			    if (!bp) {
620 				error = newnfs_sigintr(nmp, td);
621 				return (error ? error : EINTR);
622 			    }
623 			    if ((bp->b_flags & B_CACHE) == 0) {
624 				    bp->b_iocmd = BIO_READ;
625 				    vfs_busy_pages(bp, 0);
626 				    error = ncl_doio(vp, bp, cred, td, 0);
627 				    /*
628 				     * no error + B_INVAL == directory EOF,
629 				     * use the block.
630 				     */
631 				    if (error == 0 && (bp->b_flags & B_INVAL))
632 					    break;
633 			    }
634 			    /*
635 			     * An error will throw away the block and the
636 			     * for loop will break out.  If no error and this
637 			     * is not the block we want, we throw away the
638 			     * block and go for the next one via the for loop.
639 			     */
640 			    if (error || i < lbn)
641 				    brelse(bp);
642 			}
643 		    }
644 		    /*
645 		     * The above while is repeated if we hit another cookie
646 		     * error.  If we hit an error and it wasn't a cookie error,
647 		     * we give up.
648 		     */
649 		    if (error)
650 			    return (error);
651 		}
652 
653 		/*
654 		 * If not eof and read aheads are enabled, start one.
655 		 * (You need the current block first, so that you have the
656 		 *  directory offset cookie of the next block.)
657 		 */
658 		if (nmp->nm_readahead > 0 &&
659 		    (bp->b_flags & B_INVAL) == 0 &&
660 		    (np->n_direofoffset == 0 ||
661 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
662 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
663 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
664 			if (rabp) {
665 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
666 				rabp->b_flags |= B_ASYNC;
667 				rabp->b_iocmd = BIO_READ;
668 				vfs_busy_pages(rabp, 0);
669 				if (ncl_asyncio(nmp, rabp, cred, td)) {
670 				    rabp->b_flags |= B_INVAL;
671 				    rabp->b_ioflags |= BIO_ERROR;
672 				    vfs_unbusy_pages(rabp);
673 				    brelse(rabp);
674 				}
675 			    } else {
676 				brelse(rabp);
677 			    }
678 			}
679 		}
680 		/*
681 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
682 		 * chopped for the EOF condition, we cannot tell how large
683 		 * NFS directories are going to be until we hit EOF.  So
684 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
685 		 * it just so happens that b_resid will effectively chop it
686 		 * to EOF.  *BUT* this information is lost if the buffer goes
687 		 * away and is reconstituted into a B_CACHE state ( due to
688 		 * being VMIO ) later.  So we keep track of the directory eof
689 		 * in np->n_direofoffset and chop it off as an extra step
690 		 * right here.
691 		 */
692 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
693 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
694 			n = np->n_direofoffset - uio->uio_offset;
695 		break;
696 	    default:
697 		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
698 		bp = NULL;
699 		break;
700 	    };
701 
702 	    if (n > 0) {
703 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
704 	    }
705 	    if (vp->v_type == VLNK)
706 		n = 0;
707 	    if (bp != NULL)
708 		brelse(bp);
709 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
710 	return (error);
711 }
712 
713 /*
714  * The NFS write path cannot handle iovecs with len > 1. So we need to
715  * break up iovecs accordingly (restricting them to wsize).
716  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
717  * For the ASYNC case, 2 copies are needed. The first a copy from the
718  * user buffer to a staging buffer and then a second copy from the staging
719  * buffer to mbufs. This can be optimized by copying from the user buffer
720  * directly into mbufs and passing the chain down, but that requires a
721  * fair amount of re-working of the relevant codepaths (and can be done
722  * later).
723  */
724 static int
725 nfs_directio_write(vp, uiop, cred, ioflag)
726 	struct vnode *vp;
727 	struct uio *uiop;
728 	struct ucred *cred;
729 	int ioflag;
730 {
731 	int error;
732 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
733 	struct thread *td = uiop->uio_td;
734 	int size;
735 	int wsize;
736 
737 	mtx_lock(&nmp->nm_mtx);
738 	wsize = nmp->nm_wsize;
739 	mtx_unlock(&nmp->nm_mtx);
740 	if (ioflag & IO_SYNC) {
741 		int iomode, must_commit;
742 		struct uio uio;
743 		struct iovec iov;
744 do_sync:
745 		while (uiop->uio_resid > 0) {
746 			size = MIN(uiop->uio_resid, wsize);
747 			size = MIN(uiop->uio_iov->iov_len, size);
748 			iov.iov_base = uiop->uio_iov->iov_base;
749 			iov.iov_len = size;
750 			uio.uio_iov = &iov;
751 			uio.uio_iovcnt = 1;
752 			uio.uio_offset = uiop->uio_offset;
753 			uio.uio_resid = size;
754 			uio.uio_segflg = UIO_USERSPACE;
755 			uio.uio_rw = UIO_WRITE;
756 			uio.uio_td = td;
757 			iomode = NFSWRITE_FILESYNC;
758 			error = ncl_writerpc(vp, &uio, cred, &iomode,
759 			    &must_commit, 0);
760 			KASSERT((must_commit == 0),
761 				("ncl_directio_write: Did not commit write"));
762 			if (error)
763 				return (error);
764 			uiop->uio_offset += size;
765 			uiop->uio_resid -= size;
766 			if (uiop->uio_iov->iov_len <= size) {
767 				uiop->uio_iovcnt--;
768 				uiop->uio_iov++;
769 			} else {
770 				uiop->uio_iov->iov_base =
771 					(char *)uiop->uio_iov->iov_base + size;
772 				uiop->uio_iov->iov_len -= size;
773 			}
774 		}
775 	} else {
776 		struct uio *t_uio;
777 		struct iovec *t_iov;
778 		struct buf *bp;
779 
780 		/*
781 		 * Break up the write into blocksize chunks and hand these
782 		 * over to nfsiod's for write back.
783 		 * Unfortunately, this incurs a copy of the data. Since
784 		 * the user could modify the buffer before the write is
785 		 * initiated.
786 		 *
787 		 * The obvious optimization here is that one of the 2 copies
788 		 * in the async write path can be eliminated by copying the
789 		 * data here directly into mbufs and passing the mbuf chain
790 		 * down. But that will require a fair amount of re-working
791 		 * of the code and can be done if there's enough interest
792 		 * in NFS directio access.
793 		 */
794 		while (uiop->uio_resid > 0) {
795 			size = MIN(uiop->uio_resid, wsize);
796 			size = MIN(uiop->uio_iov->iov_len, size);
797 			bp = getpbuf(&ncl_pbuf_freecnt);
798 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
799 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
800 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
801 			t_iov->iov_len = size;
802 			t_uio->uio_iov = t_iov;
803 			t_uio->uio_iovcnt = 1;
804 			t_uio->uio_offset = uiop->uio_offset;
805 			t_uio->uio_resid = size;
806 			t_uio->uio_segflg = UIO_SYSSPACE;
807 			t_uio->uio_rw = UIO_WRITE;
808 			t_uio->uio_td = td;
809 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
810 			    uiop->uio_segflg == UIO_SYSSPACE,
811 			    ("nfs_directio_write: Bad uio_segflg"));
812 			if (uiop->uio_segflg == UIO_USERSPACE) {
813 				error = copyin(uiop->uio_iov->iov_base,
814 				    t_iov->iov_base, size);
815 				if (error != 0)
816 					goto err_free;
817 			} else
818 				/*
819 				 * UIO_SYSSPACE may never happen, but handle
820 				 * it just in case it does.
821 				 */
822 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
823 				    size);
824 			bp->b_flags |= B_DIRECT;
825 			bp->b_iocmd = BIO_WRITE;
826 			if (cred != NOCRED) {
827 				crhold(cred);
828 				bp->b_wcred = cred;
829 			} else
830 				bp->b_wcred = NOCRED;
831 			bp->b_caller1 = (void *)t_uio;
832 			bp->b_vp = vp;
833 			error = ncl_asyncio(nmp, bp, NOCRED, td);
834 err_free:
835 			if (error) {
836 				free(t_iov->iov_base, M_NFSDIRECTIO);
837 				free(t_iov, M_NFSDIRECTIO);
838 				free(t_uio, M_NFSDIRECTIO);
839 				bp->b_vp = NULL;
840 				relpbuf(bp, &ncl_pbuf_freecnt);
841 				if (error == EINTR)
842 					return (error);
843 				goto do_sync;
844 			}
845 			uiop->uio_offset += size;
846 			uiop->uio_resid -= size;
847 			if (uiop->uio_iov->iov_len <= size) {
848 				uiop->uio_iovcnt--;
849 				uiop->uio_iov++;
850 			} else {
851 				uiop->uio_iov->iov_base =
852 					(char *)uiop->uio_iov->iov_base + size;
853 				uiop->uio_iov->iov_len -= size;
854 			}
855 		}
856 	}
857 	return (0);
858 }
859 
860 /*
861  * Vnode op for write using bio
862  */
863 int
864 ncl_write(struct vop_write_args *ap)
865 {
866 	int biosize;
867 	struct uio *uio = ap->a_uio;
868 	struct thread *td = uio->uio_td;
869 	struct vnode *vp = ap->a_vp;
870 	struct nfsnode *np = VTONFS(vp);
871 	struct ucred *cred = ap->a_cred;
872 	int ioflag = ap->a_ioflag;
873 	struct buf *bp;
874 	struct vattr vattr;
875 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
876 	daddr_t lbn;
877 	int bcount;
878 	int bp_cached, n, on, error = 0, error1;
879 	size_t orig_resid, local_resid;
880 	off_t orig_size, tmp_off;
881 
882 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
883 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
884 	    ("ncl_write proc"));
885 	if (vp->v_type != VREG)
886 		return (EIO);
887 	mtx_lock(&np->n_mtx);
888 	if (np->n_flag & NWRITEERR) {
889 		np->n_flag &= ~NWRITEERR;
890 		mtx_unlock(&np->n_mtx);
891 		return (np->n_error);
892 	} else
893 		mtx_unlock(&np->n_mtx);
894 	mtx_lock(&nmp->nm_mtx);
895 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
896 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
897 		mtx_unlock(&nmp->nm_mtx);
898 		(void)ncl_fsinfo(nmp, vp, cred, td);
899 		mtx_lock(&nmp->nm_mtx);
900 	}
901 	if (nmp->nm_wsize == 0)
902 		(void) newnfs_iosize(nmp);
903 	mtx_unlock(&nmp->nm_mtx);
904 
905 	/*
906 	 * Synchronously flush pending buffers if we are in synchronous
907 	 * mode or if we are appending.
908 	 */
909 	if (ioflag & (IO_APPEND | IO_SYNC)) {
910 		mtx_lock(&np->n_mtx);
911 		if (np->n_flag & NMODIFIED) {
912 			mtx_unlock(&np->n_mtx);
913 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
914 			/*
915 			 * Require non-blocking, synchronous writes to
916 			 * dirty files to inform the program it needs
917 			 * to fsync(2) explicitly.
918 			 */
919 			if (ioflag & IO_NDELAY)
920 				return (EAGAIN);
921 #endif
922 flush_and_restart:
923 			np->n_attrstamp = 0;
924 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
925 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
926 			if (error)
927 				return (error);
928 		} else
929 			mtx_unlock(&np->n_mtx);
930 	}
931 
932 	orig_resid = uio->uio_resid;
933 	mtx_lock(&np->n_mtx);
934 	orig_size = np->n_size;
935 	mtx_unlock(&np->n_mtx);
936 
937 	/*
938 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
939 	 * get the append lock.
940 	 */
941 	if (ioflag & IO_APPEND) {
942 		np->n_attrstamp = 0;
943 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
944 		error = VOP_GETATTR(vp, &vattr, cred);
945 		if (error)
946 			return (error);
947 		mtx_lock(&np->n_mtx);
948 		uio->uio_offset = np->n_size;
949 		mtx_unlock(&np->n_mtx);
950 	}
951 
952 	if (uio->uio_offset < 0)
953 		return (EINVAL);
954 	tmp_off = uio->uio_offset + uio->uio_resid;
955 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
956 		return (EFBIG);
957 	if (uio->uio_resid == 0)
958 		return (0);
959 
960 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
961 		return nfs_directio_write(vp, uio, cred, ioflag);
962 
963 	/*
964 	 * Maybe this should be above the vnode op call, but so long as
965 	 * file servers have no limits, i don't think it matters
966 	 */
967 	if (vn_rlimit_fsize(vp, uio, td))
968 		return (EFBIG);
969 
970 	biosize = vp->v_bufobj.bo_bsize;
971 	/*
972 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
973 	 * would exceed the local maximum per-file write commit size when
974 	 * combined with those, we must decide whether to flush,
975 	 * go synchronous, or return error.  We don't bother checking
976 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
977 	 * no point optimizing for something that really won't ever happen.
978 	 */
979 	if (!(ioflag & IO_SYNC)) {
980 		int nflag;
981 
982 		mtx_lock(&np->n_mtx);
983 		nflag = np->n_flag;
984 		mtx_unlock(&np->n_mtx);
985 		int needrestart = 0;
986 		if (nmp->nm_wcommitsize < uio->uio_resid) {
987 			/*
988 			 * If this request could not possibly be completed
989 			 * without exceeding the maximum outstanding write
990 			 * commit size, see if we can convert it into a
991 			 * synchronous write operation.
992 			 */
993 			if (ioflag & IO_NDELAY)
994 				return (EAGAIN);
995 			ioflag |= IO_SYNC;
996 			if (nflag & NMODIFIED)
997 				needrestart = 1;
998 		} else if (nflag & NMODIFIED) {
999 			int wouldcommit = 0;
1000 			BO_LOCK(&vp->v_bufobj);
1001 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1002 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1003 				    b_bobufs) {
1004 					if (bp->b_flags & B_NEEDCOMMIT)
1005 						wouldcommit += bp->b_bcount;
1006 				}
1007 			}
1008 			BO_UNLOCK(&vp->v_bufobj);
1009 			/*
1010 			 * Since we're not operating synchronously and
1011 			 * bypassing the buffer cache, we are in a commit
1012 			 * and holding all of these buffers whether
1013 			 * transmitted or not.  If not limited, this
1014 			 * will lead to the buffer cache deadlocking,
1015 			 * as no one else can flush our uncommitted buffers.
1016 			 */
1017 			wouldcommit += uio->uio_resid;
1018 			/*
1019 			 * If we would initially exceed the maximum
1020 			 * outstanding write commit size, flush and restart.
1021 			 */
1022 			if (wouldcommit > nmp->nm_wcommitsize)
1023 				needrestart = 1;
1024 		}
1025 		if (needrestart)
1026 			goto flush_and_restart;
1027 	}
1028 
1029 	do {
1030 		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1031 		lbn = uio->uio_offset / biosize;
1032 		on = uio->uio_offset - (lbn * biosize);
1033 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1034 again:
1035 		/*
1036 		 * Handle direct append and file extension cases, calculate
1037 		 * unaligned buffer size.
1038 		 */
1039 		mtx_lock(&np->n_mtx);
1040 		if (uio->uio_offset == np->n_size && n) {
1041 			mtx_unlock(&np->n_mtx);
1042 			/*
1043 			 * Get the buffer (in its pre-append state to maintain
1044 			 * B_CACHE if it was previously set).  Resize the
1045 			 * nfsnode after we have locked the buffer to prevent
1046 			 * readers from reading garbage.
1047 			 */
1048 			bcount = on;
1049 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1050 
1051 			if (bp != NULL) {
1052 				long save;
1053 
1054 				mtx_lock(&np->n_mtx);
1055 				np->n_size = uio->uio_offset + n;
1056 				np->n_flag |= NMODIFIED;
1057 				vnode_pager_setsize(vp, np->n_size);
1058 				mtx_unlock(&np->n_mtx);
1059 
1060 				save = bp->b_flags & B_CACHE;
1061 				bcount += n;
1062 				allocbuf(bp, bcount);
1063 				bp->b_flags |= save;
1064 			}
1065 		} else {
1066 			/*
1067 			 * Obtain the locked cache block first, and then
1068 			 * adjust the file's size as appropriate.
1069 			 */
1070 			bcount = on + n;
1071 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1072 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1073 					bcount = biosize;
1074 				else
1075 					bcount = np->n_size - (off_t)lbn * biosize;
1076 			}
1077 			mtx_unlock(&np->n_mtx);
1078 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1079 			mtx_lock(&np->n_mtx);
1080 			if (uio->uio_offset + n > np->n_size) {
1081 				np->n_size = uio->uio_offset + n;
1082 				np->n_flag |= NMODIFIED;
1083 				vnode_pager_setsize(vp, np->n_size);
1084 			}
1085 			mtx_unlock(&np->n_mtx);
1086 		}
1087 
1088 		if (!bp) {
1089 			error = newnfs_sigintr(nmp, td);
1090 			if (!error)
1091 				error = EINTR;
1092 			break;
1093 		}
1094 
1095 		/*
1096 		 * Issue a READ if B_CACHE is not set.  In special-append
1097 		 * mode, B_CACHE is based on the buffer prior to the write
1098 		 * op and is typically set, avoiding the read.  If a read
1099 		 * is required in special append mode, the server will
1100 		 * probably send us a short-read since we extended the file
1101 		 * on our end, resulting in b_resid == 0 and, thusly,
1102 		 * B_CACHE getting set.
1103 		 *
1104 		 * We can also avoid issuing the read if the write covers
1105 		 * the entire buffer.  We have to make sure the buffer state
1106 		 * is reasonable in this case since we will not be initiating
1107 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1108 		 * more information.
1109 		 *
1110 		 * B_CACHE may also be set due to the buffer being cached
1111 		 * normally.
1112 		 */
1113 
1114 		bp_cached = 1;
1115 		if (on == 0 && n == bcount) {
1116 			if ((bp->b_flags & B_CACHE) == 0)
1117 				bp_cached = 0;
1118 			bp->b_flags |= B_CACHE;
1119 			bp->b_flags &= ~B_INVAL;
1120 			bp->b_ioflags &= ~BIO_ERROR;
1121 		}
1122 
1123 		if ((bp->b_flags & B_CACHE) == 0) {
1124 			bp->b_iocmd = BIO_READ;
1125 			vfs_busy_pages(bp, 0);
1126 			error = ncl_doio(vp, bp, cred, td, 0);
1127 			if (error) {
1128 				brelse(bp);
1129 				break;
1130 			}
1131 		}
1132 		if (bp->b_wcred == NOCRED)
1133 			bp->b_wcred = crhold(cred);
1134 		mtx_lock(&np->n_mtx);
1135 		np->n_flag |= NMODIFIED;
1136 		mtx_unlock(&np->n_mtx);
1137 
1138 		/*
1139 		 * If dirtyend exceeds file size, chop it down.  This should
1140 		 * not normally occur but there is an append race where it
1141 		 * might occur XXX, so we log it.
1142 		 *
1143 		 * If the chopping creates a reverse-indexed or degenerate
1144 		 * situation with dirtyoff/end, we 0 both of them.
1145 		 */
1146 
1147 		if (bp->b_dirtyend > bcount) {
1148 			ncl_printf("NFS append race @%lx:%d\n",
1149 			    (long)bp->b_blkno * DEV_BSIZE,
1150 			    bp->b_dirtyend - bcount);
1151 			bp->b_dirtyend = bcount;
1152 		}
1153 
1154 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1155 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1156 
1157 		/*
1158 		 * If the new write will leave a contiguous dirty
1159 		 * area, just update the b_dirtyoff and b_dirtyend,
1160 		 * otherwise force a write rpc of the old dirty area.
1161 		 *
1162 		 * While it is possible to merge discontiguous writes due to
1163 		 * our having a B_CACHE buffer ( and thus valid read data
1164 		 * for the hole), we don't because it could lead to
1165 		 * significant cache coherency problems with multiple clients,
1166 		 * especially if locking is implemented later on.
1167 		 *
1168 		 * As an optimization we could theoretically maintain
1169 		 * a linked list of discontinuous areas, but we would still
1170 		 * have to commit them separately so there isn't much
1171 		 * advantage to it except perhaps a bit of asynchronization.
1172 		 */
1173 
1174 		if (bp->b_dirtyend > 0 &&
1175 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1176 			if (bwrite(bp) == EINTR) {
1177 				error = EINTR;
1178 				break;
1179 			}
1180 			goto again;
1181 		}
1182 
1183 		local_resid = uio->uio_resid;
1184 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1185 
1186 		if (error != 0 && !bp_cached) {
1187 			/*
1188 			 * This block has no other content then what
1189 			 * possibly was written by the faulty uiomove.
1190 			 * Release it, forgetting the data pages, to
1191 			 * prevent the leak of uninitialized data to
1192 			 * usermode.
1193 			 */
1194 			bp->b_ioflags |= BIO_ERROR;
1195 			brelse(bp);
1196 			uio->uio_offset -= local_resid - uio->uio_resid;
1197 			uio->uio_resid = local_resid;
1198 			break;
1199 		}
1200 
1201 		/*
1202 		 * Since this block is being modified, it must be written
1203 		 * again and not just committed.  Since write clustering does
1204 		 * not work for the stage 1 data write, only the stage 2
1205 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1206 		 */
1207 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1208 
1209 		/*
1210 		 * Get the partial update on the progress made from
1211 		 * uiomove, if an error occured.
1212 		 */
1213 		if (error != 0)
1214 			n = local_resid - uio->uio_resid;
1215 
1216 		/*
1217 		 * Only update dirtyoff/dirtyend if not a degenerate
1218 		 * condition.
1219 		 */
1220 		if (n > 0) {
1221 			if (bp->b_dirtyend > 0) {
1222 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1223 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1224 			} else {
1225 				bp->b_dirtyoff = on;
1226 				bp->b_dirtyend = on + n;
1227 			}
1228 			vfs_bio_set_valid(bp, on, n);
1229 		}
1230 
1231 		/*
1232 		 * If IO_SYNC do bwrite().
1233 		 *
1234 		 * IO_INVAL appears to be unused.  The idea appears to be
1235 		 * to turn off caching in this case.  Very odd.  XXX
1236 		 */
1237 		if ((ioflag & IO_SYNC)) {
1238 			if (ioflag & IO_INVAL)
1239 				bp->b_flags |= B_NOCACHE;
1240 			error1 = bwrite(bp);
1241 			if (error1 != 0) {
1242 				if (error == 0)
1243 					error = error1;
1244 				break;
1245 			}
1246 		} else if ((n + on) == biosize) {
1247 			bp->b_flags |= B_ASYNC;
1248 			(void) ncl_writebp(bp, 0, NULL);
1249 		} else {
1250 			bdwrite(bp);
1251 		}
1252 
1253 		if (error != 0)
1254 			break;
1255 	} while (uio->uio_resid > 0 && n > 0);
1256 
1257 	if (error != 0) {
1258 		if (ioflag & IO_UNIT) {
1259 			VATTR_NULL(&vattr);
1260 			vattr.va_size = orig_size;
1261 			/* IO_SYNC is handled implicitely */
1262 			(void)VOP_SETATTR(vp, &vattr, cred);
1263 			uio->uio_offset -= orig_resid - uio->uio_resid;
1264 			uio->uio_resid = orig_resid;
1265 		}
1266 	}
1267 
1268 	return (error);
1269 }
1270 
1271 /*
1272  * Get an nfs cache block.
1273  *
1274  * Allocate a new one if the block isn't currently in the cache
1275  * and return the block marked busy. If the calling process is
1276  * interrupted by a signal for an interruptible mount point, return
1277  * NULL.
1278  *
1279  * The caller must carefully deal with the possible B_INVAL state of
1280  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1281  * indirectly), so synchronous reads can be issued without worrying about
1282  * the B_INVAL state.  We have to be a little more careful when dealing
1283  * with writes (see comments in nfs_write()) when extending a file past
1284  * its EOF.
1285  */
1286 static struct buf *
1287 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1288 {
1289 	struct buf *bp;
1290 	struct mount *mp;
1291 	struct nfsmount *nmp;
1292 
1293 	mp = vp->v_mount;
1294 	nmp = VFSTONFS(mp);
1295 
1296 	if (nmp->nm_flag & NFSMNT_INT) {
1297 		sigset_t oldset;
1298 
1299 		newnfs_set_sigmask(td, &oldset);
1300 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1301 		newnfs_restore_sigmask(td, &oldset);
1302 		while (bp == NULL) {
1303 			if (newnfs_sigintr(nmp, td))
1304 				return (NULL);
1305 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1306 		}
1307 	} else {
1308 		bp = getblk(vp, bn, size, 0, 0, 0);
1309 	}
1310 
1311 	if (vp->v_type == VREG)
1312 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1313 	return (bp);
1314 }
1315 
1316 /*
1317  * Flush and invalidate all dirty buffers. If another process is already
1318  * doing the flush, just wait for completion.
1319  */
1320 int
1321 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1322 {
1323 	struct nfsnode *np = VTONFS(vp);
1324 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1325 	int error = 0, slpflag, slptimeo;
1326 	int old_lock = 0;
1327 
1328 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1329 
1330 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1331 		intrflg = 0;
1332 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1333 		intrflg = 1;
1334 	if (intrflg) {
1335 		slpflag = PCATCH;
1336 		slptimeo = 2 * hz;
1337 	} else {
1338 		slpflag = 0;
1339 		slptimeo = 0;
1340 	}
1341 
1342 	old_lock = ncl_upgrade_vnlock(vp);
1343 	if (vp->v_iflag & VI_DOOMED) {
1344 		/*
1345 		 * Since vgonel() uses the generic vinvalbuf() to flush
1346 		 * dirty buffers and it does not call this function, it
1347 		 * is safe to just return OK when VI_DOOMED is set.
1348 		 */
1349 		ncl_downgrade_vnlock(vp, old_lock);
1350 		return (0);
1351 	}
1352 
1353 	/*
1354 	 * Now, flush as required.
1355 	 */
1356 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1357 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1358 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1359 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1360 		/*
1361 		 * If the page clean was interrupted, fail the invalidation.
1362 		 * Not doing so, we run the risk of losing dirty pages in the
1363 		 * vinvalbuf() call below.
1364 		 */
1365 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1366 			goto out;
1367 	}
1368 
1369 	error = vinvalbuf(vp, flags, slpflag, 0);
1370 	while (error) {
1371 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1372 			goto out;
1373 		error = vinvalbuf(vp, flags, 0, slptimeo);
1374 	}
1375 	if (NFSHASPNFS(nmp)) {
1376 		nfscl_layoutcommit(vp, td);
1377 		/*
1378 		 * Invalidate the attribute cache, since writes to a DS
1379 		 * won't update the size attribute.
1380 		 */
1381 		mtx_lock(&np->n_mtx);
1382 		np->n_attrstamp = 0;
1383 	} else
1384 		mtx_lock(&np->n_mtx);
1385 	if (np->n_directio_asyncwr == 0)
1386 		np->n_flag &= ~NMODIFIED;
1387 	mtx_unlock(&np->n_mtx);
1388 out:
1389 	ncl_downgrade_vnlock(vp, old_lock);
1390 	return error;
1391 }
1392 
1393 /*
1394  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1395  * This is mainly to avoid queueing async I/O requests when the nfsiods
1396  * are all hung on a dead server.
1397  *
1398  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1399  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1400  */
1401 int
1402 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1403 {
1404 	int iod;
1405 	int gotiod;
1406 	int slpflag = 0;
1407 	int slptimeo = 0;
1408 	int error, error2;
1409 
1410 	/*
1411 	 * Commits are usually short and sweet so lets save some cpu and
1412 	 * leave the async daemons for more important rpc's (such as reads
1413 	 * and writes).
1414 	 *
1415 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1416 	 * in the directory in order to update attributes. This can deadlock
1417 	 * with another thread that is waiting for async I/O to be done by
1418 	 * an nfsiod thread while holding a lock on one of these vnodes.
1419 	 * To avoid this deadlock, don't allow the async nfsiod threads to
1420 	 * perform Readdirplus RPCs.
1421 	 */
1422 	mtx_lock(&ncl_iod_mutex);
1423 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1424 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1425 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1426 		mtx_unlock(&ncl_iod_mutex);
1427 		return(EIO);
1428 	}
1429 again:
1430 	if (nmp->nm_flag & NFSMNT_INT)
1431 		slpflag = PCATCH;
1432 	gotiod = FALSE;
1433 
1434 	/*
1435 	 * Find a free iod to process this request.
1436 	 */
1437 	for (iod = 0; iod < ncl_numasync; iod++)
1438 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1439 			gotiod = TRUE;
1440 			break;
1441 		}
1442 
1443 	/*
1444 	 * Try to create one if none are free.
1445 	 */
1446 	if (!gotiod)
1447 		ncl_nfsiodnew();
1448 	else {
1449 		/*
1450 		 * Found one, so wake it up and tell it which
1451 		 * mount to process.
1452 		 */
1453 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1454 		    iod, nmp));
1455 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1456 		ncl_iodmount[iod] = nmp;
1457 		nmp->nm_bufqiods++;
1458 		wakeup(&ncl_iodwant[iod]);
1459 	}
1460 
1461 	/*
1462 	 * If none are free, we may already have an iod working on this mount
1463 	 * point.  If so, it will process our request.
1464 	 */
1465 	if (!gotiod) {
1466 		if (nmp->nm_bufqiods > 0) {
1467 			NFS_DPF(ASYNCIO,
1468 				("ncl_asyncio: %d iods are already processing mount %p\n",
1469 				 nmp->nm_bufqiods, nmp));
1470 			gotiod = TRUE;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * If we have an iod which can process the request, then queue
1476 	 * the buffer.
1477 	 */
1478 	if (gotiod) {
1479 		/*
1480 		 * Ensure that the queue never grows too large.  We still want
1481 		 * to asynchronize so we block rather then return EIO.
1482 		 */
1483 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1484 			NFS_DPF(ASYNCIO,
1485 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1486 			nmp->nm_bufqwant = TRUE;
1487 			error = newnfs_msleep(td, &nmp->nm_bufq,
1488 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1489 			   slptimeo);
1490 			if (error) {
1491 				error2 = newnfs_sigintr(nmp, td);
1492 				if (error2) {
1493 					mtx_unlock(&ncl_iod_mutex);
1494 					return (error2);
1495 				}
1496 				if (slpflag == PCATCH) {
1497 					slpflag = 0;
1498 					slptimeo = 2 * hz;
1499 				}
1500 			}
1501 			/*
1502 			 * We might have lost our iod while sleeping,
1503 			 * so check and loop if nescessary.
1504 			 */
1505 			goto again;
1506 		}
1507 
1508 		/* We might have lost our nfsiod */
1509 		if (nmp->nm_bufqiods == 0) {
1510 			NFS_DPF(ASYNCIO,
1511 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1512 			goto again;
1513 		}
1514 
1515 		if (bp->b_iocmd == BIO_READ) {
1516 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1517 				bp->b_rcred = crhold(cred);
1518 		} else {
1519 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1520 				bp->b_wcred = crhold(cred);
1521 		}
1522 
1523 		if (bp->b_flags & B_REMFREE)
1524 			bremfreef(bp);
1525 		BUF_KERNPROC(bp);
1526 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1527 		nmp->nm_bufqlen++;
1528 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1529 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1530 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1531 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1532 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1533 		}
1534 		mtx_unlock(&ncl_iod_mutex);
1535 		return (0);
1536 	}
1537 
1538 	mtx_unlock(&ncl_iod_mutex);
1539 
1540 	/*
1541 	 * All the iods are busy on other mounts, so return EIO to
1542 	 * force the caller to process the i/o synchronously.
1543 	 */
1544 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1545 	return (EIO);
1546 }
1547 
1548 void
1549 ncl_doio_directwrite(struct buf *bp)
1550 {
1551 	int iomode, must_commit;
1552 	struct uio *uiop = (struct uio *)bp->b_caller1;
1553 	char *iov_base = uiop->uio_iov->iov_base;
1554 
1555 	iomode = NFSWRITE_FILESYNC;
1556 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1557 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1558 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1559 	free(iov_base, M_NFSDIRECTIO);
1560 	free(uiop->uio_iov, M_NFSDIRECTIO);
1561 	free(uiop, M_NFSDIRECTIO);
1562 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1563 		struct nfsnode *np = VTONFS(bp->b_vp);
1564 		mtx_lock(&np->n_mtx);
1565 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1566 			/*
1567 			 * Invalidate the attribute cache, since writes to a DS
1568 			 * won't update the size attribute.
1569 			 */
1570 			np->n_attrstamp = 0;
1571 		}
1572 		np->n_directio_asyncwr--;
1573 		if (np->n_directio_asyncwr == 0) {
1574 			np->n_flag &= ~NMODIFIED;
1575 			if ((np->n_flag & NFSYNCWAIT)) {
1576 				np->n_flag &= ~NFSYNCWAIT;
1577 				wakeup((caddr_t)&np->n_directio_asyncwr);
1578 			}
1579 		}
1580 		mtx_unlock(&np->n_mtx);
1581 	}
1582 	bp->b_vp = NULL;
1583 	relpbuf(bp, &ncl_pbuf_freecnt);
1584 }
1585 
1586 /*
1587  * Do an I/O operation to/from a cache block. This may be called
1588  * synchronously or from an nfsiod.
1589  */
1590 int
1591 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1592     int called_from_strategy)
1593 {
1594 	struct uio *uiop;
1595 	struct nfsnode *np;
1596 	struct nfsmount *nmp;
1597 	int error = 0, iomode, must_commit = 0;
1598 	struct uio uio;
1599 	struct iovec io;
1600 	struct proc *p = td ? td->td_proc : NULL;
1601 	uint8_t	iocmd;
1602 
1603 	np = VTONFS(vp);
1604 	nmp = VFSTONFS(vp->v_mount);
1605 	uiop = &uio;
1606 	uiop->uio_iov = &io;
1607 	uiop->uio_iovcnt = 1;
1608 	uiop->uio_segflg = UIO_SYSSPACE;
1609 	uiop->uio_td = td;
1610 
1611 	/*
1612 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1613 	 * do this here so we do not have to do it in all the code that
1614 	 * calls us.
1615 	 */
1616 	bp->b_flags &= ~B_INVAL;
1617 	bp->b_ioflags &= ~BIO_ERROR;
1618 
1619 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1620 	iocmd = bp->b_iocmd;
1621 	if (iocmd == BIO_READ) {
1622 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1623 	    io.iov_base = bp->b_data;
1624 	    uiop->uio_rw = UIO_READ;
1625 
1626 	    switch (vp->v_type) {
1627 	    case VREG:
1628 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1629 		NFSINCRGLOBAL(newnfsstats.read_bios);
1630 		error = ncl_readrpc(vp, uiop, cr);
1631 
1632 		if (!error) {
1633 		    if (uiop->uio_resid) {
1634 			/*
1635 			 * If we had a short read with no error, we must have
1636 			 * hit a file hole.  We should zero-fill the remainder.
1637 			 * This can also occur if the server hits the file EOF.
1638 			 *
1639 			 * Holes used to be able to occur due to pending
1640 			 * writes, but that is not possible any longer.
1641 			 */
1642 			int nread = bp->b_bcount - uiop->uio_resid;
1643 			ssize_t left = uiop->uio_resid;
1644 
1645 			if (left > 0)
1646 				bzero((char *)bp->b_data + nread, left);
1647 			uiop->uio_resid = 0;
1648 		    }
1649 		}
1650 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1651 		if (p && (vp->v_vflag & VV_TEXT)) {
1652 			mtx_lock(&np->n_mtx);
1653 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1654 				mtx_unlock(&np->n_mtx);
1655 				PROC_LOCK(p);
1656 				killproc(p, "text file modification");
1657 				PROC_UNLOCK(p);
1658 			} else
1659 				mtx_unlock(&np->n_mtx);
1660 		}
1661 		break;
1662 	    case VLNK:
1663 		uiop->uio_offset = (off_t)0;
1664 		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1665 		error = ncl_readlinkrpc(vp, uiop, cr);
1666 		break;
1667 	    case VDIR:
1668 		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1669 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1670 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1671 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1672 			if (error == NFSERR_NOTSUPP)
1673 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1674 		}
1675 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1676 			error = ncl_readdirrpc(vp, uiop, cr, td);
1677 		/*
1678 		 * end-of-directory sets B_INVAL but does not generate an
1679 		 * error.
1680 		 */
1681 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1682 			bp->b_flags |= B_INVAL;
1683 		break;
1684 	    default:
1685 		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1686 		break;
1687 	    };
1688 	    if (error) {
1689 		bp->b_ioflags |= BIO_ERROR;
1690 		bp->b_error = error;
1691 	    }
1692 	} else {
1693 	    /*
1694 	     * If we only need to commit, try to commit
1695 	     */
1696 	    if (bp->b_flags & B_NEEDCOMMIT) {
1697 		    int retv;
1698 		    off_t off;
1699 
1700 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1701 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1702 			bp->b_wcred, td);
1703 		    if (retv == 0) {
1704 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1705 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1706 			    bp->b_resid = 0;
1707 			    bufdone(bp);
1708 			    return (0);
1709 		    }
1710 		    if (retv == NFSERR_STALEWRITEVERF) {
1711 			    ncl_clearcommit(vp->v_mount);
1712 		    }
1713 	    }
1714 
1715 	    /*
1716 	     * Setup for actual write
1717 	     */
1718 	    mtx_lock(&np->n_mtx);
1719 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1720 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1721 	    mtx_unlock(&np->n_mtx);
1722 
1723 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1724 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1725 		    - bp->b_dirtyoff;
1726 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1727 		    + bp->b_dirtyoff;
1728 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1729 		uiop->uio_rw = UIO_WRITE;
1730 		NFSINCRGLOBAL(newnfsstats.write_bios);
1731 
1732 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1733 		    iomode = NFSWRITE_UNSTABLE;
1734 		else
1735 		    iomode = NFSWRITE_FILESYNC;
1736 
1737 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1738 		    called_from_strategy);
1739 
1740 		/*
1741 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1742 		 * to cluster the buffers needing commit.  This will allow
1743 		 * the system to submit a single commit rpc for the whole
1744 		 * cluster.  We can do this even if the buffer is not 100%
1745 		 * dirty (relative to the NFS blocksize), so we optimize the
1746 		 * append-to-file-case.
1747 		 *
1748 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1749 		 * cleared because write clustering only works for commit
1750 		 * rpc's, not for the data portion of the write).
1751 		 */
1752 
1753 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1754 		    bp->b_flags |= B_NEEDCOMMIT;
1755 		    if (bp->b_dirtyoff == 0
1756 			&& bp->b_dirtyend == bp->b_bcount)
1757 			bp->b_flags |= B_CLUSTEROK;
1758 		} else {
1759 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1760 		}
1761 
1762 		/*
1763 		 * For an interrupted write, the buffer is still valid
1764 		 * and the write hasn't been pushed to the server yet,
1765 		 * so we can't set BIO_ERROR and report the interruption
1766 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1767 		 * is not relevant, so the rpc attempt is essentially
1768 		 * a noop.  For the case of a V3 write rpc not being
1769 		 * committed to stable storage, the block is still
1770 		 * dirty and requires either a commit rpc or another
1771 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1772 		 * the block is reused. This is indicated by setting
1773 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1774 		 *
1775 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1776 		 * write error and is handled as above, except that
1777 		 * B_EINTR isn't set. One cause of this is a stale stateid
1778 		 * error for the RPC that indicates recovery is required,
1779 		 * when called with called_from_strategy != 0.
1780 		 *
1781 		 * If the buffer is marked B_PAGING, it does not reside on
1782 		 * the vp's paging queues so we cannot call bdirty().  The
1783 		 * bp in this case is not an NFS cache block so we should
1784 		 * be safe. XXX
1785 		 *
1786 		 * The logic below breaks up errors into recoverable and
1787 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1788 		 * and keep the buffer around for potential write retries.
1789 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1790 		 * and save the error in the nfsnode. This is less than ideal
1791 		 * but necessary. Keeping such buffers around could potentially
1792 		 * cause buffer exhaustion eventually (they can never be written
1793 		 * out, so will get constantly be re-dirtied). It also causes
1794 		 * all sorts of vfs panics. For non-recoverable write errors,
1795 		 * also invalidate the attrcache, so we'll be forced to go over
1796 		 * the wire for this object, returning an error to user on next
1797 		 * call (most of the time).
1798 		 */
1799 		if (error == EINTR || error == EIO || error == ETIMEDOUT
1800 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1801 			int s;
1802 
1803 			s = splbio();
1804 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1805 			if ((bp->b_flags & B_PAGING) == 0) {
1806 			    bdirty(bp);
1807 			    bp->b_flags &= ~B_DONE;
1808 			}
1809 			if ((error == EINTR || error == ETIMEDOUT) &&
1810 			    (bp->b_flags & B_ASYNC) == 0)
1811 			    bp->b_flags |= B_EINTR;
1812 			splx(s);
1813 		} else {
1814 		    if (error) {
1815 			bp->b_ioflags |= BIO_ERROR;
1816 			bp->b_flags |= B_INVAL;
1817 			bp->b_error = np->n_error = error;
1818 			mtx_lock(&np->n_mtx);
1819 			np->n_flag |= NWRITEERR;
1820 			np->n_attrstamp = 0;
1821 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1822 			mtx_unlock(&np->n_mtx);
1823 		    }
1824 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1825 		}
1826 	    } else {
1827 		bp->b_resid = 0;
1828 		bufdone(bp);
1829 		return (0);
1830 	    }
1831 	}
1832 	bp->b_resid = uiop->uio_resid;
1833 	if (must_commit)
1834 	    ncl_clearcommit(vp->v_mount);
1835 	bufdone(bp);
1836 	return (error);
1837 }
1838 
1839 /*
1840  * Used to aid in handling ftruncate() operations on the NFS client side.
1841  * Truncation creates a number of special problems for NFS.  We have to
1842  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1843  * we have to properly handle VM pages or (potentially dirty) buffers
1844  * that straddle the truncation point.
1845  */
1846 
1847 int
1848 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1849 {
1850 	struct nfsnode *np = VTONFS(vp);
1851 	u_quad_t tsize;
1852 	int biosize = vp->v_bufobj.bo_bsize;
1853 	int error = 0;
1854 
1855 	mtx_lock(&np->n_mtx);
1856 	tsize = np->n_size;
1857 	np->n_size = nsize;
1858 	mtx_unlock(&np->n_mtx);
1859 
1860 	if (nsize < tsize) {
1861 		struct buf *bp;
1862 		daddr_t lbn;
1863 		int bufsize;
1864 
1865 		/*
1866 		 * vtruncbuf() doesn't get the buffer overlapping the
1867 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1868 		 * buffer that now needs to be truncated.
1869 		 */
1870 		error = vtruncbuf(vp, cred, nsize, biosize);
1871 		lbn = nsize / biosize;
1872 		bufsize = nsize - (lbn * biosize);
1873 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1874 		if (!bp)
1875 			return EINTR;
1876 		if (bp->b_dirtyoff > bp->b_bcount)
1877 			bp->b_dirtyoff = bp->b_bcount;
1878 		if (bp->b_dirtyend > bp->b_bcount)
1879 			bp->b_dirtyend = bp->b_bcount;
1880 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1881 		brelse(bp);
1882 	} else {
1883 		vnode_pager_setsize(vp, nsize);
1884 	}
1885 	return(error);
1886 }
1887 
1888