1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_kdtrace.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/bio.h> 43 #include <sys/buf.h> 44 #include <sys/kernel.h> 45 #include <sys/mount.h> 46 #include <sys/rwlock.h> 47 #include <sys/vmmeter.h> 48 #include <sys/vnode.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vnode_pager.h> 57 58 #include <fs/nfs/nfsport.h> 59 #include <fs/nfsclient/nfsmount.h> 60 #include <fs/nfsclient/nfs.h> 61 #include <fs/nfsclient/nfsnode.h> 62 #include <fs/nfsclient/nfs_kdtrace.h> 63 64 extern int newnfs_directio_allow_mmap; 65 extern struct nfsstats newnfsstats; 66 extern struct mtx ncl_iod_mutex; 67 extern int ncl_numasync; 68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 70 extern int newnfs_directio_enable; 71 extern int nfs_keep_dirty_on_error; 72 73 int ncl_pbuf_freecnt = -1; /* start out unlimited */ 74 75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 76 struct thread *td); 77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 78 struct ucred *cred, int ioflag); 79 80 /* 81 * Vnode op for VM getpages. 82 */ 83 int 84 ncl_getpages(struct vop_getpages_args *ap) 85 { 86 int i, error, nextoff, size, toff, count, npages; 87 struct uio uio; 88 struct iovec iov; 89 vm_offset_t kva; 90 struct buf *bp; 91 struct vnode *vp; 92 struct thread *td; 93 struct ucred *cred; 94 struct nfsmount *nmp; 95 vm_object_t object; 96 vm_page_t *pages; 97 struct nfsnode *np; 98 99 vp = ap->a_vp; 100 np = VTONFS(vp); 101 td = curthread; /* XXX */ 102 cred = curthread->td_ucred; /* XXX */ 103 nmp = VFSTONFS(vp->v_mount); 104 pages = ap->a_m; 105 count = ap->a_count; 106 107 if ((object = vp->v_object) == NULL) { 108 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); 109 return (VM_PAGER_ERROR); 110 } 111 112 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 113 mtx_lock(&np->n_mtx); 114 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 115 mtx_unlock(&np->n_mtx); 116 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); 117 return (VM_PAGER_ERROR); 118 } else 119 mtx_unlock(&np->n_mtx); 120 } 121 122 mtx_lock(&nmp->nm_mtx); 123 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 124 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 125 mtx_unlock(&nmp->nm_mtx); 126 /* We'll never get here for v4, because we always have fsinfo */ 127 (void)ncl_fsinfo(nmp, vp, cred, td); 128 } else 129 mtx_unlock(&nmp->nm_mtx); 130 131 npages = btoc(count); 132 133 /* 134 * If the requested page is partially valid, just return it and 135 * allow the pager to zero-out the blanks. Partially valid pages 136 * can only occur at the file EOF. 137 */ 138 VM_OBJECT_WLOCK(object); 139 if (pages[ap->a_reqpage]->valid != 0) { 140 for (i = 0; i < npages; ++i) { 141 if (i != ap->a_reqpage) { 142 vm_page_lock(pages[i]); 143 vm_page_free(pages[i]); 144 vm_page_unlock(pages[i]); 145 } 146 } 147 VM_OBJECT_WUNLOCK(object); 148 return (0); 149 } 150 VM_OBJECT_WUNLOCK(object); 151 152 /* 153 * We use only the kva address for the buffer, but this is extremely 154 * convienient and fast. 155 */ 156 bp = getpbuf(&ncl_pbuf_freecnt); 157 158 kva = (vm_offset_t) bp->b_data; 159 pmap_qenter(kva, pages, npages); 160 PCPU_INC(cnt.v_vnodein); 161 PCPU_ADD(cnt.v_vnodepgsin, npages); 162 163 iov.iov_base = (caddr_t) kva; 164 iov.iov_len = count; 165 uio.uio_iov = &iov; 166 uio.uio_iovcnt = 1; 167 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 168 uio.uio_resid = count; 169 uio.uio_segflg = UIO_SYSSPACE; 170 uio.uio_rw = UIO_READ; 171 uio.uio_td = td; 172 173 error = ncl_readrpc(vp, &uio, cred); 174 pmap_qremove(kva, npages); 175 176 relpbuf(bp, &ncl_pbuf_freecnt); 177 178 if (error && (uio.uio_resid == count)) { 179 ncl_printf("nfs_getpages: error %d\n", error); 180 VM_OBJECT_WLOCK(object); 181 for (i = 0; i < npages; ++i) { 182 if (i != ap->a_reqpage) { 183 vm_page_lock(pages[i]); 184 vm_page_free(pages[i]); 185 vm_page_unlock(pages[i]); 186 } 187 } 188 VM_OBJECT_WUNLOCK(object); 189 return (VM_PAGER_ERROR); 190 } 191 192 /* 193 * Calculate the number of bytes read and validate only that number 194 * of bytes. Note that due to pending writes, size may be 0. This 195 * does not mean that the remaining data is invalid! 196 */ 197 198 size = count - uio.uio_resid; 199 VM_OBJECT_WLOCK(object); 200 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 201 vm_page_t m; 202 nextoff = toff + PAGE_SIZE; 203 m = pages[i]; 204 205 if (nextoff <= size) { 206 /* 207 * Read operation filled an entire page 208 */ 209 m->valid = VM_PAGE_BITS_ALL; 210 KASSERT(m->dirty == 0, 211 ("nfs_getpages: page %p is dirty", m)); 212 } else if (size > toff) { 213 /* 214 * Read operation filled a partial page. 215 */ 216 m->valid = 0; 217 vm_page_set_valid_range(m, 0, size - toff); 218 KASSERT(m->dirty == 0, 219 ("nfs_getpages: page %p is dirty", m)); 220 } else { 221 /* 222 * Read operation was short. If no error 223 * occured we may have hit a zero-fill 224 * section. We leave valid set to 0, and page 225 * is freed by vm_page_readahead_finish() if 226 * its index is not equal to requested, or 227 * page is zeroed and set valid by 228 * vm_pager_get_pages() for requested page. 229 */ 230 ; 231 } 232 if (i != ap->a_reqpage) 233 vm_page_readahead_finish(m); 234 } 235 VM_OBJECT_WUNLOCK(object); 236 return (0); 237 } 238 239 /* 240 * Vnode op for VM putpages. 241 */ 242 int 243 ncl_putpages(struct vop_putpages_args *ap) 244 { 245 struct uio uio; 246 struct iovec iov; 247 vm_offset_t kva; 248 struct buf *bp; 249 int iomode, must_commit, i, error, npages, count; 250 off_t offset; 251 int *rtvals; 252 struct vnode *vp; 253 struct thread *td; 254 struct ucred *cred; 255 struct nfsmount *nmp; 256 struct nfsnode *np; 257 vm_page_t *pages; 258 259 vp = ap->a_vp; 260 np = VTONFS(vp); 261 td = curthread; /* XXX */ 262 /* Set the cred to n_writecred for the write rpcs. */ 263 if (np->n_writecred != NULL) 264 cred = crhold(np->n_writecred); 265 else 266 cred = crhold(curthread->td_ucred); /* XXX */ 267 nmp = VFSTONFS(vp->v_mount); 268 pages = ap->a_m; 269 count = ap->a_count; 270 rtvals = ap->a_rtvals; 271 npages = btoc(count); 272 offset = IDX_TO_OFF(pages[0]->pindex); 273 274 mtx_lock(&nmp->nm_mtx); 275 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 276 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 277 mtx_unlock(&nmp->nm_mtx); 278 (void)ncl_fsinfo(nmp, vp, cred, td); 279 } else 280 mtx_unlock(&nmp->nm_mtx); 281 282 mtx_lock(&np->n_mtx); 283 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 284 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 285 mtx_unlock(&np->n_mtx); 286 ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); 287 mtx_lock(&np->n_mtx); 288 } 289 290 for (i = 0; i < npages; i++) 291 rtvals[i] = VM_PAGER_ERROR; 292 293 /* 294 * When putting pages, do not extend file past EOF. 295 */ 296 if (offset + count > np->n_size) { 297 count = np->n_size - offset; 298 if (count < 0) 299 count = 0; 300 } 301 mtx_unlock(&np->n_mtx); 302 303 /* 304 * We use only the kva address for the buffer, but this is extremely 305 * convienient and fast. 306 */ 307 bp = getpbuf(&ncl_pbuf_freecnt); 308 309 kva = (vm_offset_t) bp->b_data; 310 pmap_qenter(kva, pages, npages); 311 PCPU_INC(cnt.v_vnodeout); 312 PCPU_ADD(cnt.v_vnodepgsout, count); 313 314 iov.iov_base = (caddr_t) kva; 315 iov.iov_len = count; 316 uio.uio_iov = &iov; 317 uio.uio_iovcnt = 1; 318 uio.uio_offset = offset; 319 uio.uio_resid = count; 320 uio.uio_segflg = UIO_SYSSPACE; 321 uio.uio_rw = UIO_WRITE; 322 uio.uio_td = td; 323 324 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 325 iomode = NFSWRITE_UNSTABLE; 326 else 327 iomode = NFSWRITE_FILESYNC; 328 329 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0); 330 crfree(cred); 331 332 pmap_qremove(kva, npages); 333 relpbuf(bp, &ncl_pbuf_freecnt); 334 335 if (error == 0 || !nfs_keep_dirty_on_error) { 336 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid); 337 if (must_commit) 338 ncl_clearcommit(vp->v_mount); 339 } 340 return rtvals[0]; 341 } 342 343 /* 344 * For nfs, cache consistency can only be maintained approximately. 345 * Although RFC1094 does not specify the criteria, the following is 346 * believed to be compatible with the reference port. 347 * For nfs: 348 * If the file's modify time on the server has changed since the 349 * last read rpc or you have written to the file, 350 * you may have lost data cache consistency with the 351 * server, so flush all of the file's data out of the cache. 352 * Then force a getattr rpc to ensure that you have up to date 353 * attributes. 354 * NB: This implies that cache data can be read when up to 355 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 356 * attributes this could be forced by setting n_attrstamp to 0 before 357 * the VOP_GETATTR() call. 358 */ 359 static inline int 360 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 361 { 362 int error = 0; 363 struct vattr vattr; 364 struct nfsnode *np = VTONFS(vp); 365 int old_lock; 366 367 /* 368 * Grab the exclusive lock before checking whether the cache is 369 * consistent. 370 * XXX - We can make this cheaper later (by acquiring cheaper locks). 371 * But for now, this suffices. 372 */ 373 old_lock = ncl_upgrade_vnlock(vp); 374 if (vp->v_iflag & VI_DOOMED) { 375 ncl_downgrade_vnlock(vp, old_lock); 376 return (EBADF); 377 } 378 379 mtx_lock(&np->n_mtx); 380 if (np->n_flag & NMODIFIED) { 381 mtx_unlock(&np->n_mtx); 382 if (vp->v_type != VREG) { 383 if (vp->v_type != VDIR) 384 panic("nfs: bioread, not dir"); 385 ncl_invaldir(vp); 386 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 387 if (error) 388 goto out; 389 } 390 np->n_attrstamp = 0; 391 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 392 error = VOP_GETATTR(vp, &vattr, cred); 393 if (error) 394 goto out; 395 mtx_lock(&np->n_mtx); 396 np->n_mtime = vattr.va_mtime; 397 mtx_unlock(&np->n_mtx); 398 } else { 399 mtx_unlock(&np->n_mtx); 400 error = VOP_GETATTR(vp, &vattr, cred); 401 if (error) 402 return (error); 403 mtx_lock(&np->n_mtx); 404 if ((np->n_flag & NSIZECHANGED) 405 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 406 mtx_unlock(&np->n_mtx); 407 if (vp->v_type == VDIR) 408 ncl_invaldir(vp); 409 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 410 if (error) 411 goto out; 412 mtx_lock(&np->n_mtx); 413 np->n_mtime = vattr.va_mtime; 414 np->n_flag &= ~NSIZECHANGED; 415 } 416 mtx_unlock(&np->n_mtx); 417 } 418 out: 419 ncl_downgrade_vnlock(vp, old_lock); 420 return error; 421 } 422 423 /* 424 * Vnode op for read using bio 425 */ 426 int 427 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 428 { 429 struct nfsnode *np = VTONFS(vp); 430 int biosize, i; 431 struct buf *bp, *rabp; 432 struct thread *td; 433 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 434 daddr_t lbn, rabn; 435 int bcount; 436 int seqcount; 437 int nra, error = 0, n = 0, on = 0; 438 off_t tmp_off; 439 440 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 441 if (uio->uio_resid == 0) 442 return (0); 443 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 444 return (EINVAL); 445 td = uio->uio_td; 446 447 mtx_lock(&nmp->nm_mtx); 448 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 449 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 450 mtx_unlock(&nmp->nm_mtx); 451 (void)ncl_fsinfo(nmp, vp, cred, td); 452 mtx_lock(&nmp->nm_mtx); 453 } 454 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 455 (void) newnfs_iosize(nmp); 456 457 tmp_off = uio->uio_offset + uio->uio_resid; 458 if (vp->v_type != VDIR && 459 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 460 mtx_unlock(&nmp->nm_mtx); 461 return (EFBIG); 462 } 463 mtx_unlock(&nmp->nm_mtx); 464 465 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 466 /* No caching/ no readaheads. Just read data into the user buffer */ 467 return ncl_readrpc(vp, uio, cred); 468 469 biosize = vp->v_bufobj.bo_bsize; 470 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 471 472 error = nfs_bioread_check_cons(vp, td, cred); 473 if (error) 474 return error; 475 476 do { 477 u_quad_t nsize; 478 479 mtx_lock(&np->n_mtx); 480 nsize = np->n_size; 481 mtx_unlock(&np->n_mtx); 482 483 switch (vp->v_type) { 484 case VREG: 485 NFSINCRGLOBAL(newnfsstats.biocache_reads); 486 lbn = uio->uio_offset / biosize; 487 on = uio->uio_offset - (lbn * biosize); 488 489 /* 490 * Start the read ahead(s), as required. 491 */ 492 if (nmp->nm_readahead > 0) { 493 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 494 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 495 rabn = lbn + 1 + nra; 496 if (incore(&vp->v_bufobj, rabn) == NULL) { 497 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 498 if (!rabp) { 499 error = newnfs_sigintr(nmp, td); 500 return (error ? error : EINTR); 501 } 502 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 503 rabp->b_flags |= B_ASYNC; 504 rabp->b_iocmd = BIO_READ; 505 vfs_busy_pages(rabp, 0); 506 if (ncl_asyncio(nmp, rabp, cred, td)) { 507 rabp->b_flags |= B_INVAL; 508 rabp->b_ioflags |= BIO_ERROR; 509 vfs_unbusy_pages(rabp); 510 brelse(rabp); 511 break; 512 } 513 } else { 514 brelse(rabp); 515 } 516 } 517 } 518 } 519 520 /* Note that bcount is *not* DEV_BSIZE aligned. */ 521 bcount = biosize; 522 if ((off_t)lbn * biosize >= nsize) { 523 bcount = 0; 524 } else if ((off_t)(lbn + 1) * biosize > nsize) { 525 bcount = nsize - (off_t)lbn * biosize; 526 } 527 bp = nfs_getcacheblk(vp, lbn, bcount, td); 528 529 if (!bp) { 530 error = newnfs_sigintr(nmp, td); 531 return (error ? error : EINTR); 532 } 533 534 /* 535 * If B_CACHE is not set, we must issue the read. If this 536 * fails, we return an error. 537 */ 538 539 if ((bp->b_flags & B_CACHE) == 0) { 540 bp->b_iocmd = BIO_READ; 541 vfs_busy_pages(bp, 0); 542 error = ncl_doio(vp, bp, cred, td, 0); 543 if (error) { 544 brelse(bp); 545 return (error); 546 } 547 } 548 549 /* 550 * on is the offset into the current bp. Figure out how many 551 * bytes we can copy out of the bp. Note that bcount is 552 * NOT DEV_BSIZE aligned. 553 * 554 * Then figure out how many bytes we can copy into the uio. 555 */ 556 557 n = 0; 558 if (on < bcount) 559 n = MIN((unsigned)(bcount - on), uio->uio_resid); 560 break; 561 case VLNK: 562 NFSINCRGLOBAL(newnfsstats.biocache_readlinks); 563 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 564 if (!bp) { 565 error = newnfs_sigintr(nmp, td); 566 return (error ? error : EINTR); 567 } 568 if ((bp->b_flags & B_CACHE) == 0) { 569 bp->b_iocmd = BIO_READ; 570 vfs_busy_pages(bp, 0); 571 error = ncl_doio(vp, bp, cred, td, 0); 572 if (error) { 573 bp->b_ioflags |= BIO_ERROR; 574 brelse(bp); 575 return (error); 576 } 577 } 578 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 579 on = 0; 580 break; 581 case VDIR: 582 NFSINCRGLOBAL(newnfsstats.biocache_readdirs); 583 if (np->n_direofoffset 584 && uio->uio_offset >= np->n_direofoffset) { 585 return (0); 586 } 587 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 588 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 589 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 590 if (!bp) { 591 error = newnfs_sigintr(nmp, td); 592 return (error ? error : EINTR); 593 } 594 if ((bp->b_flags & B_CACHE) == 0) { 595 bp->b_iocmd = BIO_READ; 596 vfs_busy_pages(bp, 0); 597 error = ncl_doio(vp, bp, cred, td, 0); 598 if (error) { 599 brelse(bp); 600 } 601 while (error == NFSERR_BAD_COOKIE) { 602 ncl_invaldir(vp); 603 error = ncl_vinvalbuf(vp, 0, td, 1); 604 /* 605 * Yuck! The directory has been modified on the 606 * server. The only way to get the block is by 607 * reading from the beginning to get all the 608 * offset cookies. 609 * 610 * Leave the last bp intact unless there is an error. 611 * Loop back up to the while if the error is another 612 * NFSERR_BAD_COOKIE (double yuch!). 613 */ 614 for (i = 0; i <= lbn && !error; i++) { 615 if (np->n_direofoffset 616 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 617 return (0); 618 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 619 if (!bp) { 620 error = newnfs_sigintr(nmp, td); 621 return (error ? error : EINTR); 622 } 623 if ((bp->b_flags & B_CACHE) == 0) { 624 bp->b_iocmd = BIO_READ; 625 vfs_busy_pages(bp, 0); 626 error = ncl_doio(vp, bp, cred, td, 0); 627 /* 628 * no error + B_INVAL == directory EOF, 629 * use the block. 630 */ 631 if (error == 0 && (bp->b_flags & B_INVAL)) 632 break; 633 } 634 /* 635 * An error will throw away the block and the 636 * for loop will break out. If no error and this 637 * is not the block we want, we throw away the 638 * block and go for the next one via the for loop. 639 */ 640 if (error || i < lbn) 641 brelse(bp); 642 } 643 } 644 /* 645 * The above while is repeated if we hit another cookie 646 * error. If we hit an error and it wasn't a cookie error, 647 * we give up. 648 */ 649 if (error) 650 return (error); 651 } 652 653 /* 654 * If not eof and read aheads are enabled, start one. 655 * (You need the current block first, so that you have the 656 * directory offset cookie of the next block.) 657 */ 658 if (nmp->nm_readahead > 0 && 659 (bp->b_flags & B_INVAL) == 0 && 660 (np->n_direofoffset == 0 || 661 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 662 incore(&vp->v_bufobj, lbn + 1) == NULL) { 663 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 664 if (rabp) { 665 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 666 rabp->b_flags |= B_ASYNC; 667 rabp->b_iocmd = BIO_READ; 668 vfs_busy_pages(rabp, 0); 669 if (ncl_asyncio(nmp, rabp, cred, td)) { 670 rabp->b_flags |= B_INVAL; 671 rabp->b_ioflags |= BIO_ERROR; 672 vfs_unbusy_pages(rabp); 673 brelse(rabp); 674 } 675 } else { 676 brelse(rabp); 677 } 678 } 679 } 680 /* 681 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 682 * chopped for the EOF condition, we cannot tell how large 683 * NFS directories are going to be until we hit EOF. So 684 * an NFS directory buffer is *not* chopped to its EOF. Now, 685 * it just so happens that b_resid will effectively chop it 686 * to EOF. *BUT* this information is lost if the buffer goes 687 * away and is reconstituted into a B_CACHE state ( due to 688 * being VMIO ) later. So we keep track of the directory eof 689 * in np->n_direofoffset and chop it off as an extra step 690 * right here. 691 */ 692 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 693 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 694 n = np->n_direofoffset - uio->uio_offset; 695 break; 696 default: 697 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 698 bp = NULL; 699 break; 700 }; 701 702 if (n > 0) { 703 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 704 } 705 if (vp->v_type == VLNK) 706 n = 0; 707 if (bp != NULL) 708 brelse(bp); 709 } while (error == 0 && uio->uio_resid > 0 && n > 0); 710 return (error); 711 } 712 713 /* 714 * The NFS write path cannot handle iovecs with len > 1. So we need to 715 * break up iovecs accordingly (restricting them to wsize). 716 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 717 * For the ASYNC case, 2 copies are needed. The first a copy from the 718 * user buffer to a staging buffer and then a second copy from the staging 719 * buffer to mbufs. This can be optimized by copying from the user buffer 720 * directly into mbufs and passing the chain down, but that requires a 721 * fair amount of re-working of the relevant codepaths (and can be done 722 * later). 723 */ 724 static int 725 nfs_directio_write(vp, uiop, cred, ioflag) 726 struct vnode *vp; 727 struct uio *uiop; 728 struct ucred *cred; 729 int ioflag; 730 { 731 int error; 732 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 733 struct thread *td = uiop->uio_td; 734 int size; 735 int wsize; 736 737 mtx_lock(&nmp->nm_mtx); 738 wsize = nmp->nm_wsize; 739 mtx_unlock(&nmp->nm_mtx); 740 if (ioflag & IO_SYNC) { 741 int iomode, must_commit; 742 struct uio uio; 743 struct iovec iov; 744 do_sync: 745 while (uiop->uio_resid > 0) { 746 size = MIN(uiop->uio_resid, wsize); 747 size = MIN(uiop->uio_iov->iov_len, size); 748 iov.iov_base = uiop->uio_iov->iov_base; 749 iov.iov_len = size; 750 uio.uio_iov = &iov; 751 uio.uio_iovcnt = 1; 752 uio.uio_offset = uiop->uio_offset; 753 uio.uio_resid = size; 754 uio.uio_segflg = UIO_USERSPACE; 755 uio.uio_rw = UIO_WRITE; 756 uio.uio_td = td; 757 iomode = NFSWRITE_FILESYNC; 758 error = ncl_writerpc(vp, &uio, cred, &iomode, 759 &must_commit, 0); 760 KASSERT((must_commit == 0), 761 ("ncl_directio_write: Did not commit write")); 762 if (error) 763 return (error); 764 uiop->uio_offset += size; 765 uiop->uio_resid -= size; 766 if (uiop->uio_iov->iov_len <= size) { 767 uiop->uio_iovcnt--; 768 uiop->uio_iov++; 769 } else { 770 uiop->uio_iov->iov_base = 771 (char *)uiop->uio_iov->iov_base + size; 772 uiop->uio_iov->iov_len -= size; 773 } 774 } 775 } else { 776 struct uio *t_uio; 777 struct iovec *t_iov; 778 struct buf *bp; 779 780 /* 781 * Break up the write into blocksize chunks and hand these 782 * over to nfsiod's for write back. 783 * Unfortunately, this incurs a copy of the data. Since 784 * the user could modify the buffer before the write is 785 * initiated. 786 * 787 * The obvious optimization here is that one of the 2 copies 788 * in the async write path can be eliminated by copying the 789 * data here directly into mbufs and passing the mbuf chain 790 * down. But that will require a fair amount of re-working 791 * of the code and can be done if there's enough interest 792 * in NFS directio access. 793 */ 794 while (uiop->uio_resid > 0) { 795 size = MIN(uiop->uio_resid, wsize); 796 size = MIN(uiop->uio_iov->iov_len, size); 797 bp = getpbuf(&ncl_pbuf_freecnt); 798 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 799 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 800 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 801 t_iov->iov_len = size; 802 t_uio->uio_iov = t_iov; 803 t_uio->uio_iovcnt = 1; 804 t_uio->uio_offset = uiop->uio_offset; 805 t_uio->uio_resid = size; 806 t_uio->uio_segflg = UIO_SYSSPACE; 807 t_uio->uio_rw = UIO_WRITE; 808 t_uio->uio_td = td; 809 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 810 uiop->uio_segflg == UIO_SYSSPACE, 811 ("nfs_directio_write: Bad uio_segflg")); 812 if (uiop->uio_segflg == UIO_USERSPACE) { 813 error = copyin(uiop->uio_iov->iov_base, 814 t_iov->iov_base, size); 815 if (error != 0) 816 goto err_free; 817 } else 818 /* 819 * UIO_SYSSPACE may never happen, but handle 820 * it just in case it does. 821 */ 822 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 823 size); 824 bp->b_flags |= B_DIRECT; 825 bp->b_iocmd = BIO_WRITE; 826 if (cred != NOCRED) { 827 crhold(cred); 828 bp->b_wcred = cred; 829 } else 830 bp->b_wcred = NOCRED; 831 bp->b_caller1 = (void *)t_uio; 832 bp->b_vp = vp; 833 error = ncl_asyncio(nmp, bp, NOCRED, td); 834 err_free: 835 if (error) { 836 free(t_iov->iov_base, M_NFSDIRECTIO); 837 free(t_iov, M_NFSDIRECTIO); 838 free(t_uio, M_NFSDIRECTIO); 839 bp->b_vp = NULL; 840 relpbuf(bp, &ncl_pbuf_freecnt); 841 if (error == EINTR) 842 return (error); 843 goto do_sync; 844 } 845 uiop->uio_offset += size; 846 uiop->uio_resid -= size; 847 if (uiop->uio_iov->iov_len <= size) { 848 uiop->uio_iovcnt--; 849 uiop->uio_iov++; 850 } else { 851 uiop->uio_iov->iov_base = 852 (char *)uiop->uio_iov->iov_base + size; 853 uiop->uio_iov->iov_len -= size; 854 } 855 } 856 } 857 return (0); 858 } 859 860 /* 861 * Vnode op for write using bio 862 */ 863 int 864 ncl_write(struct vop_write_args *ap) 865 { 866 int biosize; 867 struct uio *uio = ap->a_uio; 868 struct thread *td = uio->uio_td; 869 struct vnode *vp = ap->a_vp; 870 struct nfsnode *np = VTONFS(vp); 871 struct ucred *cred = ap->a_cred; 872 int ioflag = ap->a_ioflag; 873 struct buf *bp; 874 struct vattr vattr; 875 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 876 daddr_t lbn; 877 int bcount; 878 int bp_cached, n, on, error = 0, error1; 879 size_t orig_resid, local_resid; 880 off_t orig_size, tmp_off; 881 882 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 883 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 884 ("ncl_write proc")); 885 if (vp->v_type != VREG) 886 return (EIO); 887 mtx_lock(&np->n_mtx); 888 if (np->n_flag & NWRITEERR) { 889 np->n_flag &= ~NWRITEERR; 890 mtx_unlock(&np->n_mtx); 891 return (np->n_error); 892 } else 893 mtx_unlock(&np->n_mtx); 894 mtx_lock(&nmp->nm_mtx); 895 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 896 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 897 mtx_unlock(&nmp->nm_mtx); 898 (void)ncl_fsinfo(nmp, vp, cred, td); 899 mtx_lock(&nmp->nm_mtx); 900 } 901 if (nmp->nm_wsize == 0) 902 (void) newnfs_iosize(nmp); 903 mtx_unlock(&nmp->nm_mtx); 904 905 /* 906 * Synchronously flush pending buffers if we are in synchronous 907 * mode or if we are appending. 908 */ 909 if (ioflag & (IO_APPEND | IO_SYNC)) { 910 mtx_lock(&np->n_mtx); 911 if (np->n_flag & NMODIFIED) { 912 mtx_unlock(&np->n_mtx); 913 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ 914 /* 915 * Require non-blocking, synchronous writes to 916 * dirty files to inform the program it needs 917 * to fsync(2) explicitly. 918 */ 919 if (ioflag & IO_NDELAY) 920 return (EAGAIN); 921 #endif 922 flush_and_restart: 923 np->n_attrstamp = 0; 924 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 925 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 926 if (error) 927 return (error); 928 } else 929 mtx_unlock(&np->n_mtx); 930 } 931 932 orig_resid = uio->uio_resid; 933 mtx_lock(&np->n_mtx); 934 orig_size = np->n_size; 935 mtx_unlock(&np->n_mtx); 936 937 /* 938 * If IO_APPEND then load uio_offset. We restart here if we cannot 939 * get the append lock. 940 */ 941 if (ioflag & IO_APPEND) { 942 np->n_attrstamp = 0; 943 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 944 error = VOP_GETATTR(vp, &vattr, cred); 945 if (error) 946 return (error); 947 mtx_lock(&np->n_mtx); 948 uio->uio_offset = np->n_size; 949 mtx_unlock(&np->n_mtx); 950 } 951 952 if (uio->uio_offset < 0) 953 return (EINVAL); 954 tmp_off = uio->uio_offset + uio->uio_resid; 955 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 956 return (EFBIG); 957 if (uio->uio_resid == 0) 958 return (0); 959 960 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) 961 return nfs_directio_write(vp, uio, cred, ioflag); 962 963 /* 964 * Maybe this should be above the vnode op call, but so long as 965 * file servers have no limits, i don't think it matters 966 */ 967 if (vn_rlimit_fsize(vp, uio, td)) 968 return (EFBIG); 969 970 biosize = vp->v_bufobj.bo_bsize; 971 /* 972 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 973 * would exceed the local maximum per-file write commit size when 974 * combined with those, we must decide whether to flush, 975 * go synchronous, or return error. We don't bother checking 976 * IO_UNIT -- we just make all writes atomic anyway, as there's 977 * no point optimizing for something that really won't ever happen. 978 */ 979 if (!(ioflag & IO_SYNC)) { 980 int nflag; 981 982 mtx_lock(&np->n_mtx); 983 nflag = np->n_flag; 984 mtx_unlock(&np->n_mtx); 985 int needrestart = 0; 986 if (nmp->nm_wcommitsize < uio->uio_resid) { 987 /* 988 * If this request could not possibly be completed 989 * without exceeding the maximum outstanding write 990 * commit size, see if we can convert it into a 991 * synchronous write operation. 992 */ 993 if (ioflag & IO_NDELAY) 994 return (EAGAIN); 995 ioflag |= IO_SYNC; 996 if (nflag & NMODIFIED) 997 needrestart = 1; 998 } else if (nflag & NMODIFIED) { 999 int wouldcommit = 0; 1000 BO_LOCK(&vp->v_bufobj); 1001 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1002 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1003 b_bobufs) { 1004 if (bp->b_flags & B_NEEDCOMMIT) 1005 wouldcommit += bp->b_bcount; 1006 } 1007 } 1008 BO_UNLOCK(&vp->v_bufobj); 1009 /* 1010 * Since we're not operating synchronously and 1011 * bypassing the buffer cache, we are in a commit 1012 * and holding all of these buffers whether 1013 * transmitted or not. If not limited, this 1014 * will lead to the buffer cache deadlocking, 1015 * as no one else can flush our uncommitted buffers. 1016 */ 1017 wouldcommit += uio->uio_resid; 1018 /* 1019 * If we would initially exceed the maximum 1020 * outstanding write commit size, flush and restart. 1021 */ 1022 if (wouldcommit > nmp->nm_wcommitsize) 1023 needrestart = 1; 1024 } 1025 if (needrestart) 1026 goto flush_and_restart; 1027 } 1028 1029 do { 1030 NFSINCRGLOBAL(newnfsstats.biocache_writes); 1031 lbn = uio->uio_offset / biosize; 1032 on = uio->uio_offset - (lbn * biosize); 1033 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1034 again: 1035 /* 1036 * Handle direct append and file extension cases, calculate 1037 * unaligned buffer size. 1038 */ 1039 mtx_lock(&np->n_mtx); 1040 if (uio->uio_offset == np->n_size && n) { 1041 mtx_unlock(&np->n_mtx); 1042 /* 1043 * Get the buffer (in its pre-append state to maintain 1044 * B_CACHE if it was previously set). Resize the 1045 * nfsnode after we have locked the buffer to prevent 1046 * readers from reading garbage. 1047 */ 1048 bcount = on; 1049 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1050 1051 if (bp != NULL) { 1052 long save; 1053 1054 mtx_lock(&np->n_mtx); 1055 np->n_size = uio->uio_offset + n; 1056 np->n_flag |= NMODIFIED; 1057 vnode_pager_setsize(vp, np->n_size); 1058 mtx_unlock(&np->n_mtx); 1059 1060 save = bp->b_flags & B_CACHE; 1061 bcount += n; 1062 allocbuf(bp, bcount); 1063 bp->b_flags |= save; 1064 } 1065 } else { 1066 /* 1067 * Obtain the locked cache block first, and then 1068 * adjust the file's size as appropriate. 1069 */ 1070 bcount = on + n; 1071 if ((off_t)lbn * biosize + bcount < np->n_size) { 1072 if ((off_t)(lbn + 1) * biosize < np->n_size) 1073 bcount = biosize; 1074 else 1075 bcount = np->n_size - (off_t)lbn * biosize; 1076 } 1077 mtx_unlock(&np->n_mtx); 1078 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1079 mtx_lock(&np->n_mtx); 1080 if (uio->uio_offset + n > np->n_size) { 1081 np->n_size = uio->uio_offset + n; 1082 np->n_flag |= NMODIFIED; 1083 vnode_pager_setsize(vp, np->n_size); 1084 } 1085 mtx_unlock(&np->n_mtx); 1086 } 1087 1088 if (!bp) { 1089 error = newnfs_sigintr(nmp, td); 1090 if (!error) 1091 error = EINTR; 1092 break; 1093 } 1094 1095 /* 1096 * Issue a READ if B_CACHE is not set. In special-append 1097 * mode, B_CACHE is based on the buffer prior to the write 1098 * op and is typically set, avoiding the read. If a read 1099 * is required in special append mode, the server will 1100 * probably send us a short-read since we extended the file 1101 * on our end, resulting in b_resid == 0 and, thusly, 1102 * B_CACHE getting set. 1103 * 1104 * We can also avoid issuing the read if the write covers 1105 * the entire buffer. We have to make sure the buffer state 1106 * is reasonable in this case since we will not be initiating 1107 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1108 * more information. 1109 * 1110 * B_CACHE may also be set due to the buffer being cached 1111 * normally. 1112 */ 1113 1114 bp_cached = 1; 1115 if (on == 0 && n == bcount) { 1116 if ((bp->b_flags & B_CACHE) == 0) 1117 bp_cached = 0; 1118 bp->b_flags |= B_CACHE; 1119 bp->b_flags &= ~B_INVAL; 1120 bp->b_ioflags &= ~BIO_ERROR; 1121 } 1122 1123 if ((bp->b_flags & B_CACHE) == 0) { 1124 bp->b_iocmd = BIO_READ; 1125 vfs_busy_pages(bp, 0); 1126 error = ncl_doio(vp, bp, cred, td, 0); 1127 if (error) { 1128 brelse(bp); 1129 break; 1130 } 1131 } 1132 if (bp->b_wcred == NOCRED) 1133 bp->b_wcred = crhold(cred); 1134 mtx_lock(&np->n_mtx); 1135 np->n_flag |= NMODIFIED; 1136 mtx_unlock(&np->n_mtx); 1137 1138 /* 1139 * If dirtyend exceeds file size, chop it down. This should 1140 * not normally occur but there is an append race where it 1141 * might occur XXX, so we log it. 1142 * 1143 * If the chopping creates a reverse-indexed or degenerate 1144 * situation with dirtyoff/end, we 0 both of them. 1145 */ 1146 1147 if (bp->b_dirtyend > bcount) { 1148 ncl_printf("NFS append race @%lx:%d\n", 1149 (long)bp->b_blkno * DEV_BSIZE, 1150 bp->b_dirtyend - bcount); 1151 bp->b_dirtyend = bcount; 1152 } 1153 1154 if (bp->b_dirtyoff >= bp->b_dirtyend) 1155 bp->b_dirtyoff = bp->b_dirtyend = 0; 1156 1157 /* 1158 * If the new write will leave a contiguous dirty 1159 * area, just update the b_dirtyoff and b_dirtyend, 1160 * otherwise force a write rpc of the old dirty area. 1161 * 1162 * While it is possible to merge discontiguous writes due to 1163 * our having a B_CACHE buffer ( and thus valid read data 1164 * for the hole), we don't because it could lead to 1165 * significant cache coherency problems with multiple clients, 1166 * especially if locking is implemented later on. 1167 * 1168 * As an optimization we could theoretically maintain 1169 * a linked list of discontinuous areas, but we would still 1170 * have to commit them separately so there isn't much 1171 * advantage to it except perhaps a bit of asynchronization. 1172 */ 1173 1174 if (bp->b_dirtyend > 0 && 1175 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1176 if (bwrite(bp) == EINTR) { 1177 error = EINTR; 1178 break; 1179 } 1180 goto again; 1181 } 1182 1183 local_resid = uio->uio_resid; 1184 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1185 1186 if (error != 0 && !bp_cached) { 1187 /* 1188 * This block has no other content then what 1189 * possibly was written by the faulty uiomove. 1190 * Release it, forgetting the data pages, to 1191 * prevent the leak of uninitialized data to 1192 * usermode. 1193 */ 1194 bp->b_ioflags |= BIO_ERROR; 1195 brelse(bp); 1196 uio->uio_offset -= local_resid - uio->uio_resid; 1197 uio->uio_resid = local_resid; 1198 break; 1199 } 1200 1201 /* 1202 * Since this block is being modified, it must be written 1203 * again and not just committed. Since write clustering does 1204 * not work for the stage 1 data write, only the stage 2 1205 * commit rpc, we have to clear B_CLUSTEROK as well. 1206 */ 1207 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1208 1209 /* 1210 * Get the partial update on the progress made from 1211 * uiomove, if an error occured. 1212 */ 1213 if (error != 0) 1214 n = local_resid - uio->uio_resid; 1215 1216 /* 1217 * Only update dirtyoff/dirtyend if not a degenerate 1218 * condition. 1219 */ 1220 if (n > 0) { 1221 if (bp->b_dirtyend > 0) { 1222 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1223 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1224 } else { 1225 bp->b_dirtyoff = on; 1226 bp->b_dirtyend = on + n; 1227 } 1228 vfs_bio_set_valid(bp, on, n); 1229 } 1230 1231 /* 1232 * If IO_SYNC do bwrite(). 1233 * 1234 * IO_INVAL appears to be unused. The idea appears to be 1235 * to turn off caching in this case. Very odd. XXX 1236 */ 1237 if ((ioflag & IO_SYNC)) { 1238 if (ioflag & IO_INVAL) 1239 bp->b_flags |= B_NOCACHE; 1240 error1 = bwrite(bp); 1241 if (error1 != 0) { 1242 if (error == 0) 1243 error = error1; 1244 break; 1245 } 1246 } else if ((n + on) == biosize) { 1247 bp->b_flags |= B_ASYNC; 1248 (void) ncl_writebp(bp, 0, NULL); 1249 } else { 1250 bdwrite(bp); 1251 } 1252 1253 if (error != 0) 1254 break; 1255 } while (uio->uio_resid > 0 && n > 0); 1256 1257 if (error != 0) { 1258 if (ioflag & IO_UNIT) { 1259 VATTR_NULL(&vattr); 1260 vattr.va_size = orig_size; 1261 /* IO_SYNC is handled implicitely */ 1262 (void)VOP_SETATTR(vp, &vattr, cred); 1263 uio->uio_offset -= orig_resid - uio->uio_resid; 1264 uio->uio_resid = orig_resid; 1265 } 1266 } 1267 1268 return (error); 1269 } 1270 1271 /* 1272 * Get an nfs cache block. 1273 * 1274 * Allocate a new one if the block isn't currently in the cache 1275 * and return the block marked busy. If the calling process is 1276 * interrupted by a signal for an interruptible mount point, return 1277 * NULL. 1278 * 1279 * The caller must carefully deal with the possible B_INVAL state of 1280 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1281 * indirectly), so synchronous reads can be issued without worrying about 1282 * the B_INVAL state. We have to be a little more careful when dealing 1283 * with writes (see comments in nfs_write()) when extending a file past 1284 * its EOF. 1285 */ 1286 static struct buf * 1287 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1288 { 1289 struct buf *bp; 1290 struct mount *mp; 1291 struct nfsmount *nmp; 1292 1293 mp = vp->v_mount; 1294 nmp = VFSTONFS(mp); 1295 1296 if (nmp->nm_flag & NFSMNT_INT) { 1297 sigset_t oldset; 1298 1299 newnfs_set_sigmask(td, &oldset); 1300 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1301 newnfs_restore_sigmask(td, &oldset); 1302 while (bp == NULL) { 1303 if (newnfs_sigintr(nmp, td)) 1304 return (NULL); 1305 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1306 } 1307 } else { 1308 bp = getblk(vp, bn, size, 0, 0, 0); 1309 } 1310 1311 if (vp->v_type == VREG) 1312 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1313 return (bp); 1314 } 1315 1316 /* 1317 * Flush and invalidate all dirty buffers. If another process is already 1318 * doing the flush, just wait for completion. 1319 */ 1320 int 1321 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1322 { 1323 struct nfsnode *np = VTONFS(vp); 1324 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1325 int error = 0, slpflag, slptimeo; 1326 int old_lock = 0; 1327 1328 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1329 1330 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1331 intrflg = 0; 1332 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) 1333 intrflg = 1; 1334 if (intrflg) { 1335 slpflag = PCATCH; 1336 slptimeo = 2 * hz; 1337 } else { 1338 slpflag = 0; 1339 slptimeo = 0; 1340 } 1341 1342 old_lock = ncl_upgrade_vnlock(vp); 1343 if (vp->v_iflag & VI_DOOMED) { 1344 /* 1345 * Since vgonel() uses the generic vinvalbuf() to flush 1346 * dirty buffers and it does not call this function, it 1347 * is safe to just return OK when VI_DOOMED is set. 1348 */ 1349 ncl_downgrade_vnlock(vp, old_lock); 1350 return (0); 1351 } 1352 1353 /* 1354 * Now, flush as required. 1355 */ 1356 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { 1357 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1358 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1359 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1360 /* 1361 * If the page clean was interrupted, fail the invalidation. 1362 * Not doing so, we run the risk of losing dirty pages in the 1363 * vinvalbuf() call below. 1364 */ 1365 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1366 goto out; 1367 } 1368 1369 error = vinvalbuf(vp, flags, slpflag, 0); 1370 while (error) { 1371 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1372 goto out; 1373 error = vinvalbuf(vp, flags, 0, slptimeo); 1374 } 1375 if (NFSHASPNFS(nmp)) { 1376 nfscl_layoutcommit(vp, td); 1377 /* 1378 * Invalidate the attribute cache, since writes to a DS 1379 * won't update the size attribute. 1380 */ 1381 mtx_lock(&np->n_mtx); 1382 np->n_attrstamp = 0; 1383 } else 1384 mtx_lock(&np->n_mtx); 1385 if (np->n_directio_asyncwr == 0) 1386 np->n_flag &= ~NMODIFIED; 1387 mtx_unlock(&np->n_mtx); 1388 out: 1389 ncl_downgrade_vnlock(vp, old_lock); 1390 return error; 1391 } 1392 1393 /* 1394 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1395 * This is mainly to avoid queueing async I/O requests when the nfsiods 1396 * are all hung on a dead server. 1397 * 1398 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1399 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1400 */ 1401 int 1402 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1403 { 1404 int iod; 1405 int gotiod; 1406 int slpflag = 0; 1407 int slptimeo = 0; 1408 int error, error2; 1409 1410 /* 1411 * Commits are usually short and sweet so lets save some cpu and 1412 * leave the async daemons for more important rpc's (such as reads 1413 * and writes). 1414 * 1415 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1416 * in the directory in order to update attributes. This can deadlock 1417 * with another thread that is waiting for async I/O to be done by 1418 * an nfsiod thread while holding a lock on one of these vnodes. 1419 * To avoid this deadlock, don't allow the async nfsiod threads to 1420 * perform Readdirplus RPCs. 1421 */ 1422 mtx_lock(&ncl_iod_mutex); 1423 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1424 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1425 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1426 mtx_unlock(&ncl_iod_mutex); 1427 return(EIO); 1428 } 1429 again: 1430 if (nmp->nm_flag & NFSMNT_INT) 1431 slpflag = PCATCH; 1432 gotiod = FALSE; 1433 1434 /* 1435 * Find a free iod to process this request. 1436 */ 1437 for (iod = 0; iod < ncl_numasync; iod++) 1438 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1439 gotiod = TRUE; 1440 break; 1441 } 1442 1443 /* 1444 * Try to create one if none are free. 1445 */ 1446 if (!gotiod) 1447 ncl_nfsiodnew(); 1448 else { 1449 /* 1450 * Found one, so wake it up and tell it which 1451 * mount to process. 1452 */ 1453 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1454 iod, nmp)); 1455 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1456 ncl_iodmount[iod] = nmp; 1457 nmp->nm_bufqiods++; 1458 wakeup(&ncl_iodwant[iod]); 1459 } 1460 1461 /* 1462 * If none are free, we may already have an iod working on this mount 1463 * point. If so, it will process our request. 1464 */ 1465 if (!gotiod) { 1466 if (nmp->nm_bufqiods > 0) { 1467 NFS_DPF(ASYNCIO, 1468 ("ncl_asyncio: %d iods are already processing mount %p\n", 1469 nmp->nm_bufqiods, nmp)); 1470 gotiod = TRUE; 1471 } 1472 } 1473 1474 /* 1475 * If we have an iod which can process the request, then queue 1476 * the buffer. 1477 */ 1478 if (gotiod) { 1479 /* 1480 * Ensure that the queue never grows too large. We still want 1481 * to asynchronize so we block rather then return EIO. 1482 */ 1483 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1484 NFS_DPF(ASYNCIO, 1485 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1486 nmp->nm_bufqwant = TRUE; 1487 error = newnfs_msleep(td, &nmp->nm_bufq, 1488 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1489 slptimeo); 1490 if (error) { 1491 error2 = newnfs_sigintr(nmp, td); 1492 if (error2) { 1493 mtx_unlock(&ncl_iod_mutex); 1494 return (error2); 1495 } 1496 if (slpflag == PCATCH) { 1497 slpflag = 0; 1498 slptimeo = 2 * hz; 1499 } 1500 } 1501 /* 1502 * We might have lost our iod while sleeping, 1503 * so check and loop if nescessary. 1504 */ 1505 goto again; 1506 } 1507 1508 /* We might have lost our nfsiod */ 1509 if (nmp->nm_bufqiods == 0) { 1510 NFS_DPF(ASYNCIO, 1511 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1512 goto again; 1513 } 1514 1515 if (bp->b_iocmd == BIO_READ) { 1516 if (bp->b_rcred == NOCRED && cred != NOCRED) 1517 bp->b_rcred = crhold(cred); 1518 } else { 1519 if (bp->b_wcred == NOCRED && cred != NOCRED) 1520 bp->b_wcred = crhold(cred); 1521 } 1522 1523 if (bp->b_flags & B_REMFREE) 1524 bremfreef(bp); 1525 BUF_KERNPROC(bp); 1526 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1527 nmp->nm_bufqlen++; 1528 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1529 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); 1530 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1531 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1532 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); 1533 } 1534 mtx_unlock(&ncl_iod_mutex); 1535 return (0); 1536 } 1537 1538 mtx_unlock(&ncl_iod_mutex); 1539 1540 /* 1541 * All the iods are busy on other mounts, so return EIO to 1542 * force the caller to process the i/o synchronously. 1543 */ 1544 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1545 return (EIO); 1546 } 1547 1548 void 1549 ncl_doio_directwrite(struct buf *bp) 1550 { 1551 int iomode, must_commit; 1552 struct uio *uiop = (struct uio *)bp->b_caller1; 1553 char *iov_base = uiop->uio_iov->iov_base; 1554 1555 iomode = NFSWRITE_FILESYNC; 1556 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1557 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0); 1558 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); 1559 free(iov_base, M_NFSDIRECTIO); 1560 free(uiop->uio_iov, M_NFSDIRECTIO); 1561 free(uiop, M_NFSDIRECTIO); 1562 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1563 struct nfsnode *np = VTONFS(bp->b_vp); 1564 mtx_lock(&np->n_mtx); 1565 if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) { 1566 /* 1567 * Invalidate the attribute cache, since writes to a DS 1568 * won't update the size attribute. 1569 */ 1570 np->n_attrstamp = 0; 1571 } 1572 np->n_directio_asyncwr--; 1573 if (np->n_directio_asyncwr == 0) { 1574 np->n_flag &= ~NMODIFIED; 1575 if ((np->n_flag & NFSYNCWAIT)) { 1576 np->n_flag &= ~NFSYNCWAIT; 1577 wakeup((caddr_t)&np->n_directio_asyncwr); 1578 } 1579 } 1580 mtx_unlock(&np->n_mtx); 1581 } 1582 bp->b_vp = NULL; 1583 relpbuf(bp, &ncl_pbuf_freecnt); 1584 } 1585 1586 /* 1587 * Do an I/O operation to/from a cache block. This may be called 1588 * synchronously or from an nfsiod. 1589 */ 1590 int 1591 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1592 int called_from_strategy) 1593 { 1594 struct uio *uiop; 1595 struct nfsnode *np; 1596 struct nfsmount *nmp; 1597 int error = 0, iomode, must_commit = 0; 1598 struct uio uio; 1599 struct iovec io; 1600 struct proc *p = td ? td->td_proc : NULL; 1601 uint8_t iocmd; 1602 1603 np = VTONFS(vp); 1604 nmp = VFSTONFS(vp->v_mount); 1605 uiop = &uio; 1606 uiop->uio_iov = &io; 1607 uiop->uio_iovcnt = 1; 1608 uiop->uio_segflg = UIO_SYSSPACE; 1609 uiop->uio_td = td; 1610 1611 /* 1612 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1613 * do this here so we do not have to do it in all the code that 1614 * calls us. 1615 */ 1616 bp->b_flags &= ~B_INVAL; 1617 bp->b_ioflags &= ~BIO_ERROR; 1618 1619 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1620 iocmd = bp->b_iocmd; 1621 if (iocmd == BIO_READ) { 1622 io.iov_len = uiop->uio_resid = bp->b_bcount; 1623 io.iov_base = bp->b_data; 1624 uiop->uio_rw = UIO_READ; 1625 1626 switch (vp->v_type) { 1627 case VREG: 1628 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1629 NFSINCRGLOBAL(newnfsstats.read_bios); 1630 error = ncl_readrpc(vp, uiop, cr); 1631 1632 if (!error) { 1633 if (uiop->uio_resid) { 1634 /* 1635 * If we had a short read with no error, we must have 1636 * hit a file hole. We should zero-fill the remainder. 1637 * This can also occur if the server hits the file EOF. 1638 * 1639 * Holes used to be able to occur due to pending 1640 * writes, but that is not possible any longer. 1641 */ 1642 int nread = bp->b_bcount - uiop->uio_resid; 1643 ssize_t left = uiop->uio_resid; 1644 1645 if (left > 0) 1646 bzero((char *)bp->b_data + nread, left); 1647 uiop->uio_resid = 0; 1648 } 1649 } 1650 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1651 if (p && (vp->v_vflag & VV_TEXT)) { 1652 mtx_lock(&np->n_mtx); 1653 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1654 mtx_unlock(&np->n_mtx); 1655 PROC_LOCK(p); 1656 killproc(p, "text file modification"); 1657 PROC_UNLOCK(p); 1658 } else 1659 mtx_unlock(&np->n_mtx); 1660 } 1661 break; 1662 case VLNK: 1663 uiop->uio_offset = (off_t)0; 1664 NFSINCRGLOBAL(newnfsstats.readlink_bios); 1665 error = ncl_readlinkrpc(vp, uiop, cr); 1666 break; 1667 case VDIR: 1668 NFSINCRGLOBAL(newnfsstats.readdir_bios); 1669 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1670 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1671 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1672 if (error == NFSERR_NOTSUPP) 1673 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1674 } 1675 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1676 error = ncl_readdirrpc(vp, uiop, cr, td); 1677 /* 1678 * end-of-directory sets B_INVAL but does not generate an 1679 * error. 1680 */ 1681 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1682 bp->b_flags |= B_INVAL; 1683 break; 1684 default: 1685 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); 1686 break; 1687 }; 1688 if (error) { 1689 bp->b_ioflags |= BIO_ERROR; 1690 bp->b_error = error; 1691 } 1692 } else { 1693 /* 1694 * If we only need to commit, try to commit 1695 */ 1696 if (bp->b_flags & B_NEEDCOMMIT) { 1697 int retv; 1698 off_t off; 1699 1700 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1701 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1702 bp->b_wcred, td); 1703 if (retv == 0) { 1704 bp->b_dirtyoff = bp->b_dirtyend = 0; 1705 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1706 bp->b_resid = 0; 1707 bufdone(bp); 1708 return (0); 1709 } 1710 if (retv == NFSERR_STALEWRITEVERF) { 1711 ncl_clearcommit(vp->v_mount); 1712 } 1713 } 1714 1715 /* 1716 * Setup for actual write 1717 */ 1718 mtx_lock(&np->n_mtx); 1719 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1720 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1721 mtx_unlock(&np->n_mtx); 1722 1723 if (bp->b_dirtyend > bp->b_dirtyoff) { 1724 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1725 - bp->b_dirtyoff; 1726 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1727 + bp->b_dirtyoff; 1728 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1729 uiop->uio_rw = UIO_WRITE; 1730 NFSINCRGLOBAL(newnfsstats.write_bios); 1731 1732 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1733 iomode = NFSWRITE_UNSTABLE; 1734 else 1735 iomode = NFSWRITE_FILESYNC; 1736 1737 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1738 called_from_strategy); 1739 1740 /* 1741 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1742 * to cluster the buffers needing commit. This will allow 1743 * the system to submit a single commit rpc for the whole 1744 * cluster. We can do this even if the buffer is not 100% 1745 * dirty (relative to the NFS blocksize), so we optimize the 1746 * append-to-file-case. 1747 * 1748 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1749 * cleared because write clustering only works for commit 1750 * rpc's, not for the data portion of the write). 1751 */ 1752 1753 if (!error && iomode == NFSWRITE_UNSTABLE) { 1754 bp->b_flags |= B_NEEDCOMMIT; 1755 if (bp->b_dirtyoff == 0 1756 && bp->b_dirtyend == bp->b_bcount) 1757 bp->b_flags |= B_CLUSTEROK; 1758 } else { 1759 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1760 } 1761 1762 /* 1763 * For an interrupted write, the buffer is still valid 1764 * and the write hasn't been pushed to the server yet, 1765 * so we can't set BIO_ERROR and report the interruption 1766 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1767 * is not relevant, so the rpc attempt is essentially 1768 * a noop. For the case of a V3 write rpc not being 1769 * committed to stable storage, the block is still 1770 * dirty and requires either a commit rpc or another 1771 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1772 * the block is reused. This is indicated by setting 1773 * the B_DELWRI and B_NEEDCOMMIT flags. 1774 * 1775 * EIO is returned by ncl_writerpc() to indicate a recoverable 1776 * write error and is handled as above, except that 1777 * B_EINTR isn't set. One cause of this is a stale stateid 1778 * error for the RPC that indicates recovery is required, 1779 * when called with called_from_strategy != 0. 1780 * 1781 * If the buffer is marked B_PAGING, it does not reside on 1782 * the vp's paging queues so we cannot call bdirty(). The 1783 * bp in this case is not an NFS cache block so we should 1784 * be safe. XXX 1785 * 1786 * The logic below breaks up errors into recoverable and 1787 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1788 * and keep the buffer around for potential write retries. 1789 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1790 * and save the error in the nfsnode. This is less than ideal 1791 * but necessary. Keeping such buffers around could potentially 1792 * cause buffer exhaustion eventually (they can never be written 1793 * out, so will get constantly be re-dirtied). It also causes 1794 * all sorts of vfs panics. For non-recoverable write errors, 1795 * also invalidate the attrcache, so we'll be forced to go over 1796 * the wire for this object, returning an error to user on next 1797 * call (most of the time). 1798 */ 1799 if (error == EINTR || error == EIO || error == ETIMEDOUT 1800 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1801 int s; 1802 1803 s = splbio(); 1804 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1805 if ((bp->b_flags & B_PAGING) == 0) { 1806 bdirty(bp); 1807 bp->b_flags &= ~B_DONE; 1808 } 1809 if ((error == EINTR || error == ETIMEDOUT) && 1810 (bp->b_flags & B_ASYNC) == 0) 1811 bp->b_flags |= B_EINTR; 1812 splx(s); 1813 } else { 1814 if (error) { 1815 bp->b_ioflags |= BIO_ERROR; 1816 bp->b_flags |= B_INVAL; 1817 bp->b_error = np->n_error = error; 1818 mtx_lock(&np->n_mtx); 1819 np->n_flag |= NWRITEERR; 1820 np->n_attrstamp = 0; 1821 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1822 mtx_unlock(&np->n_mtx); 1823 } 1824 bp->b_dirtyoff = bp->b_dirtyend = 0; 1825 } 1826 } else { 1827 bp->b_resid = 0; 1828 bufdone(bp); 1829 return (0); 1830 } 1831 } 1832 bp->b_resid = uiop->uio_resid; 1833 if (must_commit) 1834 ncl_clearcommit(vp->v_mount); 1835 bufdone(bp); 1836 return (error); 1837 } 1838 1839 /* 1840 * Used to aid in handling ftruncate() operations on the NFS client side. 1841 * Truncation creates a number of special problems for NFS. We have to 1842 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1843 * we have to properly handle VM pages or (potentially dirty) buffers 1844 * that straddle the truncation point. 1845 */ 1846 1847 int 1848 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) 1849 { 1850 struct nfsnode *np = VTONFS(vp); 1851 u_quad_t tsize; 1852 int biosize = vp->v_bufobj.bo_bsize; 1853 int error = 0; 1854 1855 mtx_lock(&np->n_mtx); 1856 tsize = np->n_size; 1857 np->n_size = nsize; 1858 mtx_unlock(&np->n_mtx); 1859 1860 if (nsize < tsize) { 1861 struct buf *bp; 1862 daddr_t lbn; 1863 int bufsize; 1864 1865 /* 1866 * vtruncbuf() doesn't get the buffer overlapping the 1867 * truncation point. We may have a B_DELWRI and/or B_CACHE 1868 * buffer that now needs to be truncated. 1869 */ 1870 error = vtruncbuf(vp, cred, nsize, biosize); 1871 lbn = nsize / biosize; 1872 bufsize = nsize - (lbn * biosize); 1873 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1874 if (!bp) 1875 return EINTR; 1876 if (bp->b_dirtyoff > bp->b_bcount) 1877 bp->b_dirtyoff = bp->b_bcount; 1878 if (bp->b_dirtyend > bp->b_bcount) 1879 bp->b_dirtyend = bp->b_bcount; 1880 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1881 brelse(bp); 1882 } else { 1883 vnode_pager_setsize(vp, nsize); 1884 } 1885 return(error); 1886 } 1887 1888