1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bio.h> 38 #include <sys/buf.h> 39 #include <sys/kernel.h> 40 #include <sys/mount.h> 41 #include <sys/rwlock.h> 42 #include <sys/vmmeter.h> 43 #include <sys/vnode.h> 44 45 #include <vm/vm.h> 46 #include <vm/vm_param.h> 47 #include <vm/vm_extern.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_object.h> 50 #include <vm/vm_pager.h> 51 #include <vm/vnode_pager.h> 52 53 #include <fs/nfs/nfsport.h> 54 #include <fs/nfsclient/nfsmount.h> 55 #include <fs/nfsclient/nfs.h> 56 #include <fs/nfsclient/nfsnode.h> 57 #include <fs/nfsclient/nfs_kdtrace.h> 58 59 extern int newnfs_directio_allow_mmap; 60 extern struct nfsstatsv1 nfsstatsv1; 61 extern struct mtx ncl_iod_mutex; 62 extern int ncl_numasync; 63 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 64 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 65 extern int newnfs_directio_enable; 66 extern int nfs_keep_dirty_on_error; 67 68 uma_zone_t ncl_pbuf_zone; 69 70 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 71 struct thread *td); 72 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 73 struct ucred *cred, int ioflag); 74 75 /* 76 * Vnode op for VM getpages. 77 */ 78 SYSCTL_DECL(_vfs_nfs); 79 static int use_buf_pager = 1; 80 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 81 &use_buf_pager, 0, 82 "Use buffer pager instead of direct readrpc call"); 83 84 static daddr_t 85 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 86 { 87 88 return (off / vp->v_bufobj.bo_bsize); 89 } 90 91 static int 92 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 93 { 94 struct nfsnode *np; 95 u_quad_t nsize; 96 int biosize, bcount; 97 98 np = VTONFS(vp); 99 NFSLOCKNODE(np); 100 nsize = np->n_size; 101 NFSUNLOCKNODE(np); 102 103 biosize = vp->v_bufobj.bo_bsize; 104 bcount = biosize; 105 if ((off_t)lbn * biosize >= nsize) 106 bcount = 0; 107 else if ((off_t)(lbn + 1) * biosize > nsize) 108 bcount = nsize - (off_t)lbn * biosize; 109 *sz = bcount; 110 return (0); 111 } 112 113 int 114 ncl_getpages(struct vop_getpages_args *ap) 115 { 116 int i, error, nextoff, size, toff, count, npages; 117 struct uio uio; 118 struct iovec iov; 119 vm_offset_t kva; 120 struct buf *bp; 121 struct vnode *vp; 122 struct thread *td; 123 struct ucred *cred; 124 struct nfsmount *nmp; 125 vm_object_t object; 126 vm_page_t *pages; 127 struct nfsnode *np; 128 129 vp = ap->a_vp; 130 np = VTONFS(vp); 131 td = curthread; 132 cred = curthread->td_ucred; 133 nmp = VFSTONFS(vp->v_mount); 134 pages = ap->a_m; 135 npages = ap->a_count; 136 137 if ((object = vp->v_object) == NULL) { 138 printf("ncl_getpages: called with non-merged cache vnode\n"); 139 return (VM_PAGER_ERROR); 140 } 141 142 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 143 NFSLOCKNODE(np); 144 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 145 NFSUNLOCKNODE(np); 146 printf("ncl_getpages: called on non-cacheable vnode\n"); 147 return (VM_PAGER_ERROR); 148 } else 149 NFSUNLOCKNODE(np); 150 } 151 152 mtx_lock(&nmp->nm_mtx); 153 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 154 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 155 mtx_unlock(&nmp->nm_mtx); 156 /* We'll never get here for v4, because we always have fsinfo */ 157 (void)ncl_fsinfo(nmp, vp, cred, td); 158 } else 159 mtx_unlock(&nmp->nm_mtx); 160 161 if (use_buf_pager) 162 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 163 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 164 165 /* 166 * If the requested page is partially valid, just return it and 167 * allow the pager to zero-out the blanks. Partially valid pages 168 * can only occur at the file EOF. 169 * 170 * XXXGL: is that true for NFS, where short read can occur??? 171 */ 172 VM_OBJECT_WLOCK(object); 173 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 174 goto out; 175 VM_OBJECT_WUNLOCK(object); 176 177 /* 178 * We use only the kva address for the buffer, but this is extremely 179 * convenient and fast. 180 */ 181 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 182 183 kva = (vm_offset_t) bp->b_data; 184 pmap_qenter(kva, pages, npages); 185 VM_CNT_INC(v_vnodein); 186 VM_CNT_ADD(v_vnodepgsin, npages); 187 188 count = npages << PAGE_SHIFT; 189 iov.iov_base = (caddr_t) kva; 190 iov.iov_len = count; 191 uio.uio_iov = &iov; 192 uio.uio_iovcnt = 1; 193 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 194 uio.uio_resid = count; 195 uio.uio_segflg = UIO_SYSSPACE; 196 uio.uio_rw = UIO_READ; 197 uio.uio_td = td; 198 199 error = ncl_readrpc(vp, &uio, cred); 200 pmap_qremove(kva, npages); 201 202 uma_zfree(ncl_pbuf_zone, bp); 203 204 if (error && (uio.uio_resid == count)) { 205 printf("ncl_getpages: error %d\n", error); 206 return (VM_PAGER_ERROR); 207 } 208 209 /* 210 * Calculate the number of bytes read and validate only that number 211 * of bytes. Note that due to pending writes, size may be 0. This 212 * does not mean that the remaining data is invalid! 213 */ 214 215 size = count - uio.uio_resid; 216 VM_OBJECT_WLOCK(object); 217 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 218 vm_page_t m; 219 nextoff = toff + PAGE_SIZE; 220 m = pages[i]; 221 222 if (nextoff <= size) { 223 /* 224 * Read operation filled an entire page 225 */ 226 vm_page_valid(m); 227 KASSERT(m->dirty == 0, 228 ("nfs_getpages: page %p is dirty", m)); 229 } else if (size > toff) { 230 /* 231 * Read operation filled a partial page. 232 */ 233 vm_page_invalid(m); 234 vm_page_set_valid_range(m, 0, size - toff); 235 KASSERT(m->dirty == 0, 236 ("nfs_getpages: page %p is dirty", m)); 237 } else { 238 /* 239 * Read operation was short. If no error 240 * occurred we may have hit a zero-fill 241 * section. We leave valid set to 0, and page 242 * is freed by vm_page_readahead_finish() if 243 * its index is not equal to requested, or 244 * page is zeroed and set valid by 245 * vm_pager_get_pages() for requested page. 246 */ 247 ; 248 } 249 } 250 out: 251 VM_OBJECT_WUNLOCK(object); 252 if (ap->a_rbehind) 253 *ap->a_rbehind = 0; 254 if (ap->a_rahead) 255 *ap->a_rahead = 0; 256 return (VM_PAGER_OK); 257 } 258 259 /* 260 * Vnode op for VM putpages. 261 */ 262 int 263 ncl_putpages(struct vop_putpages_args *ap) 264 { 265 struct uio uio; 266 struct iovec iov; 267 int i, error, npages, count; 268 off_t offset; 269 int *rtvals; 270 struct vnode *vp; 271 struct thread *td; 272 struct ucred *cred; 273 struct nfsmount *nmp; 274 struct nfsnode *np; 275 vm_page_t *pages; 276 277 vp = ap->a_vp; 278 np = VTONFS(vp); 279 td = curthread; /* XXX */ 280 /* Set the cred to n_writecred for the write rpcs. */ 281 if (np->n_writecred != NULL) 282 cred = crhold(np->n_writecred); 283 else 284 cred = crhold(curthread->td_ucred); /* XXX */ 285 nmp = VFSTONFS(vp->v_mount); 286 pages = ap->a_m; 287 count = ap->a_count; 288 rtvals = ap->a_rtvals; 289 npages = btoc(count); 290 offset = IDX_TO_OFF(pages[0]->pindex); 291 292 mtx_lock(&nmp->nm_mtx); 293 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 294 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 295 mtx_unlock(&nmp->nm_mtx); 296 (void)ncl_fsinfo(nmp, vp, cred, td); 297 } else 298 mtx_unlock(&nmp->nm_mtx); 299 300 NFSLOCKNODE(np); 301 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 302 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 303 NFSUNLOCKNODE(np); 304 printf("ncl_putpages: called on noncache-able vnode\n"); 305 NFSLOCKNODE(np); 306 } 307 /* 308 * When putting pages, do not extend file past EOF. 309 */ 310 if (offset + count > np->n_size) { 311 count = np->n_size - offset; 312 if (count < 0) 313 count = 0; 314 } 315 NFSUNLOCKNODE(np); 316 317 for (i = 0; i < npages; i++) 318 rtvals[i] = VM_PAGER_ERROR; 319 320 VM_CNT_INC(v_vnodeout); 321 VM_CNT_ADD(v_vnodepgsout, count); 322 323 iov.iov_base = unmapped_buf; 324 iov.iov_len = count; 325 uio.uio_iov = &iov; 326 uio.uio_iovcnt = 1; 327 uio.uio_offset = offset; 328 uio.uio_resid = count; 329 uio.uio_segflg = UIO_NOCOPY; 330 uio.uio_rw = UIO_WRITE; 331 uio.uio_td = td; 332 333 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 334 cred); 335 crfree(cred); 336 337 if (error == 0 || !nfs_keep_dirty_on_error) { 338 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 339 np->n_size - offset, npages * PAGE_SIZE); 340 } 341 return (rtvals[0]); 342 } 343 344 /* 345 * For nfs, cache consistency can only be maintained approximately. 346 * Although RFC1094 does not specify the criteria, the following is 347 * believed to be compatible with the reference port. 348 * For nfs: 349 * If the file's modify time on the server has changed since the 350 * last read rpc or you have written to the file, 351 * you may have lost data cache consistency with the 352 * server, so flush all of the file's data out of the cache. 353 * Then force a getattr rpc to ensure that you have up to date 354 * attributes. 355 * NB: This implies that cache data can be read when up to 356 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 357 * attributes this could be forced by setting n_attrstamp to 0 before 358 * the VOP_GETATTR() call. 359 */ 360 static inline int 361 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 362 { 363 int error = 0; 364 struct vattr vattr; 365 struct nfsnode *np = VTONFS(vp); 366 bool old_lock; 367 368 /* 369 * Ensure the exclusove access to the node before checking 370 * whether the cache is consistent. 371 */ 372 old_lock = ncl_excl_start(vp); 373 NFSLOCKNODE(np); 374 if (np->n_flag & NMODIFIED) { 375 NFSUNLOCKNODE(np); 376 if (vp->v_type != VREG) { 377 if (vp->v_type != VDIR) 378 panic("nfs: bioread, not dir"); 379 ncl_invaldir(vp); 380 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 381 if (error != 0) 382 goto out; 383 } 384 np->n_attrstamp = 0; 385 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 386 error = VOP_GETATTR(vp, &vattr, cred); 387 if (error) 388 goto out; 389 NFSLOCKNODE(np); 390 np->n_mtime = vattr.va_mtime; 391 NFSUNLOCKNODE(np); 392 } else { 393 NFSUNLOCKNODE(np); 394 error = VOP_GETATTR(vp, &vattr, cred); 395 if (error) 396 goto out; 397 NFSLOCKNODE(np); 398 if ((np->n_flag & NSIZECHANGED) 399 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 400 NFSUNLOCKNODE(np); 401 if (vp->v_type == VDIR) 402 ncl_invaldir(vp); 403 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 404 if (error != 0) 405 goto out; 406 NFSLOCKNODE(np); 407 np->n_mtime = vattr.va_mtime; 408 np->n_flag &= ~NSIZECHANGED; 409 } 410 NFSUNLOCKNODE(np); 411 } 412 out: 413 ncl_excl_finish(vp, old_lock); 414 return (error); 415 } 416 417 static bool 418 ncl_bioread_dora(struct vnode *vp) 419 { 420 vm_object_t obj; 421 422 obj = vp->v_object; 423 if (obj == NULL) 424 return (true); 425 return (!vm_object_mightbedirty(vp->v_object) && 426 vp->v_object->un_pager.vnp.writemappings == 0); 427 } 428 429 /* 430 * Vnode op for read using bio 431 */ 432 int 433 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 434 { 435 struct nfsnode *np = VTONFS(vp); 436 struct buf *bp, *rabp; 437 struct thread *td; 438 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 439 daddr_t lbn, rabn; 440 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 441 off_t tmp_off; 442 443 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 444 if (uio->uio_resid == 0) 445 return (0); 446 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 447 return (EINVAL); 448 td = uio->uio_td; 449 450 mtx_lock(&nmp->nm_mtx); 451 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 452 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 453 mtx_unlock(&nmp->nm_mtx); 454 (void)ncl_fsinfo(nmp, vp, cred, td); 455 mtx_lock(&nmp->nm_mtx); 456 } 457 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 458 (void) newnfs_iosize(nmp); 459 460 tmp_off = uio->uio_offset + uio->uio_resid; 461 if (vp->v_type != VDIR && 462 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 463 mtx_unlock(&nmp->nm_mtx); 464 return (EFBIG); 465 } 466 mtx_unlock(&nmp->nm_mtx); 467 468 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 469 /* No caching/ no readaheads. Just read data into the user buffer */ 470 return ncl_readrpc(vp, uio, cred); 471 472 n = 0; 473 on = 0; 474 biosize = vp->v_bufobj.bo_bsize; 475 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 476 477 error = nfs_bioread_check_cons(vp, td, cred); 478 if (error) 479 return error; 480 481 save2 = curthread_pflags2_set(TDP2_SBPAGES); 482 do { 483 u_quad_t nsize; 484 485 NFSLOCKNODE(np); 486 nsize = np->n_size; 487 NFSUNLOCKNODE(np); 488 489 switch (vp->v_type) { 490 case VREG: 491 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 492 lbn = uio->uio_offset / biosize; 493 on = uio->uio_offset - (lbn * biosize); 494 495 /* 496 * Start the read ahead(s), as required. Do not do 497 * read-ahead if there are writeable mappings, since 498 * unlocked read by nfsiod could obliterate changes 499 * done by userspace. 500 */ 501 if (nmp->nm_readahead > 0 && ncl_bioread_dora(vp)) { 502 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 503 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 504 rabn = lbn + 1 + nra; 505 if (incore(&vp->v_bufobj, rabn) == NULL) { 506 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 507 if (!rabp) { 508 error = newnfs_sigintr(nmp, td); 509 if (error == 0) 510 error = EINTR; 511 goto out; 512 } 513 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 514 rabp->b_flags |= B_ASYNC; 515 rabp->b_iocmd = BIO_READ; 516 vfs_busy_pages(rabp, 0); 517 if (ncl_asyncio(nmp, rabp, cred, td)) { 518 rabp->b_flags |= B_INVAL; 519 rabp->b_ioflags |= BIO_ERROR; 520 vfs_unbusy_pages(rabp); 521 brelse(rabp); 522 break; 523 } 524 } else { 525 brelse(rabp); 526 } 527 } 528 } 529 } 530 531 /* Note that bcount is *not* DEV_BSIZE aligned. */ 532 bcount = biosize; 533 if ((off_t)lbn * biosize >= nsize) { 534 bcount = 0; 535 } else if ((off_t)(lbn + 1) * biosize > nsize) { 536 bcount = nsize - (off_t)lbn * biosize; 537 } 538 bp = nfs_getcacheblk(vp, lbn, bcount, td); 539 540 if (!bp) { 541 error = newnfs_sigintr(nmp, td); 542 if (error == 0) 543 error = EINTR; 544 goto out; 545 } 546 547 /* 548 * If B_CACHE is not set, we must issue the read. If this 549 * fails, we return an error. 550 */ 551 552 if ((bp->b_flags & B_CACHE) == 0) { 553 bp->b_iocmd = BIO_READ; 554 vfs_busy_pages(bp, 0); 555 error = ncl_doio(vp, bp, cred, td, 0); 556 if (error) { 557 brelse(bp); 558 goto out; 559 } 560 } 561 562 /* 563 * on is the offset into the current bp. Figure out how many 564 * bytes we can copy out of the bp. Note that bcount is 565 * NOT DEV_BSIZE aligned. 566 * 567 * Then figure out how many bytes we can copy into the uio. 568 */ 569 570 n = 0; 571 if (on < bcount) 572 n = MIN((unsigned)(bcount - on), uio->uio_resid); 573 break; 574 case VLNK: 575 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 576 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 577 if (!bp) { 578 error = newnfs_sigintr(nmp, td); 579 if (error == 0) 580 error = EINTR; 581 goto out; 582 } 583 if ((bp->b_flags & B_CACHE) == 0) { 584 bp->b_iocmd = BIO_READ; 585 vfs_busy_pages(bp, 0); 586 error = ncl_doio(vp, bp, cred, td, 0); 587 if (error) { 588 bp->b_ioflags |= BIO_ERROR; 589 brelse(bp); 590 goto out; 591 } 592 } 593 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 594 on = 0; 595 break; 596 case VDIR: 597 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 598 NFSLOCKNODE(np); 599 if (np->n_direofoffset 600 && uio->uio_offset >= np->n_direofoffset) { 601 NFSUNLOCKNODE(np); 602 error = 0; 603 goto out; 604 } 605 NFSUNLOCKNODE(np); 606 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 607 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 608 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 609 if (!bp) { 610 error = newnfs_sigintr(nmp, td); 611 if (error == 0) 612 error = EINTR; 613 goto out; 614 } 615 if ((bp->b_flags & B_CACHE) == 0) { 616 bp->b_iocmd = BIO_READ; 617 vfs_busy_pages(bp, 0); 618 error = ncl_doio(vp, bp, cred, td, 0); 619 if (error) { 620 brelse(bp); 621 } 622 while (error == NFSERR_BAD_COOKIE) { 623 ncl_invaldir(vp); 624 error = ncl_vinvalbuf(vp, 0, td, 1); 625 626 /* 627 * Yuck! The directory has been modified on the 628 * server. The only way to get the block is by 629 * reading from the beginning to get all the 630 * offset cookies. 631 * 632 * Leave the last bp intact unless there is an error. 633 * Loop back up to the while if the error is another 634 * NFSERR_BAD_COOKIE (double yuch!). 635 */ 636 for (i = 0; i <= lbn && !error; i++) { 637 NFSLOCKNODE(np); 638 if (np->n_direofoffset 639 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 640 NFSUNLOCKNODE(np); 641 error = 0; 642 goto out; 643 } 644 NFSUNLOCKNODE(np); 645 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 646 if (!bp) { 647 error = newnfs_sigintr(nmp, td); 648 if (error == 0) 649 error = EINTR; 650 goto out; 651 } 652 if ((bp->b_flags & B_CACHE) == 0) { 653 bp->b_iocmd = BIO_READ; 654 vfs_busy_pages(bp, 0); 655 error = ncl_doio(vp, bp, cred, td, 0); 656 /* 657 * no error + B_INVAL == directory EOF, 658 * use the block. 659 */ 660 if (error == 0 && (bp->b_flags & B_INVAL)) 661 break; 662 } 663 /* 664 * An error will throw away the block and the 665 * for loop will break out. If no error and this 666 * is not the block we want, we throw away the 667 * block and go for the next one via the for loop. 668 */ 669 if (error || i < lbn) 670 brelse(bp); 671 } 672 } 673 /* 674 * The above while is repeated if we hit another cookie 675 * error. If we hit an error and it wasn't a cookie error, 676 * we give up. 677 */ 678 if (error) 679 goto out; 680 } 681 682 /* 683 * If not eof and read aheads are enabled, start one. 684 * (You need the current block first, so that you have the 685 * directory offset cookie of the next block.) 686 */ 687 NFSLOCKNODE(np); 688 if (nmp->nm_readahead > 0 && ncl_bioread_dora(vp) && 689 (bp->b_flags & B_INVAL) == 0 && 690 (np->n_direofoffset == 0 || 691 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 692 incore(&vp->v_bufobj, lbn + 1) == NULL) { 693 NFSUNLOCKNODE(np); 694 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 695 if (rabp) { 696 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 697 rabp->b_flags |= B_ASYNC; 698 rabp->b_iocmd = BIO_READ; 699 vfs_busy_pages(rabp, 0); 700 if (ncl_asyncio(nmp, rabp, cred, td)) { 701 rabp->b_flags |= B_INVAL; 702 rabp->b_ioflags |= BIO_ERROR; 703 vfs_unbusy_pages(rabp); 704 brelse(rabp); 705 } 706 } else { 707 brelse(rabp); 708 } 709 } 710 NFSLOCKNODE(np); 711 } 712 /* 713 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 714 * chopped for the EOF condition, we cannot tell how large 715 * NFS directories are going to be until we hit EOF. So 716 * an NFS directory buffer is *not* chopped to its EOF. Now, 717 * it just so happens that b_resid will effectively chop it 718 * to EOF. *BUT* this information is lost if the buffer goes 719 * away and is reconstituted into a B_CACHE state ( due to 720 * being VMIO ) later. So we keep track of the directory eof 721 * in np->n_direofoffset and chop it off as an extra step 722 * right here. 723 */ 724 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 725 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 726 n = np->n_direofoffset - uio->uio_offset; 727 NFSUNLOCKNODE(np); 728 break; 729 default: 730 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 731 bp = NULL; 732 break; 733 } 734 735 if (n > 0) { 736 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 737 } 738 if (vp->v_type == VLNK) 739 n = 0; 740 if (bp != NULL) 741 brelse(bp); 742 } while (error == 0 && uio->uio_resid > 0 && n > 0); 743 out: 744 curthread_pflags2_restore(save2); 745 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 746 NFSLOCKNODE(np); 747 ncl_pager_setsize(vp, NULL); 748 } 749 return (error); 750 } 751 752 /* 753 * The NFS write path cannot handle iovecs with len > 1. So we need to 754 * break up iovecs accordingly (restricting them to wsize). 755 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 756 * For the ASYNC case, 2 copies are needed. The first a copy from the 757 * user buffer to a staging buffer and then a second copy from the staging 758 * buffer to mbufs. This can be optimized by copying from the user buffer 759 * directly into mbufs and passing the chain down, but that requires a 760 * fair amount of re-working of the relevant codepaths (and can be done 761 * later). 762 */ 763 static int 764 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred, 765 int ioflag) 766 { 767 int error; 768 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 769 struct thread *td = uiop->uio_td; 770 int size; 771 int wsize; 772 773 mtx_lock(&nmp->nm_mtx); 774 wsize = nmp->nm_wsize; 775 mtx_unlock(&nmp->nm_mtx); 776 if (ioflag & IO_SYNC) { 777 int iomode, must_commit; 778 struct uio uio; 779 struct iovec iov; 780 do_sync: 781 while (uiop->uio_resid > 0) { 782 size = MIN(uiop->uio_resid, wsize); 783 size = MIN(uiop->uio_iov->iov_len, size); 784 iov.iov_base = uiop->uio_iov->iov_base; 785 iov.iov_len = size; 786 uio.uio_iov = &iov; 787 uio.uio_iovcnt = 1; 788 uio.uio_offset = uiop->uio_offset; 789 uio.uio_resid = size; 790 uio.uio_segflg = uiop->uio_segflg; 791 uio.uio_rw = UIO_WRITE; 792 uio.uio_td = td; 793 iomode = NFSWRITE_FILESYNC; 794 /* 795 * When doing direct I/O we do not care if the 796 * server's write verifier has changed, but we 797 * do not want to update the verifier if it has 798 * changed, since that hides the change from 799 * writes being done through the buffer cache. 800 * By passing must_commit in set to two, the code 801 * in nfsrpc_writerpc() will not update the 802 * verifier on the mount point. 803 */ 804 must_commit = 2; 805 error = ncl_writerpc(vp, &uio, cred, &iomode, 806 &must_commit, 0, ioflag); 807 KASSERT((must_commit == 2), 808 ("ncl_directio_write: Updated write verifier")); 809 if (error) 810 return (error); 811 if (iomode != NFSWRITE_FILESYNC) 812 printf("nfs_directio_write: Broken server " 813 "did not reply FILE_SYNC\n"); 814 uiop->uio_offset += size; 815 uiop->uio_resid -= size; 816 if (uiop->uio_iov->iov_len <= size) { 817 uiop->uio_iovcnt--; 818 uiop->uio_iov++; 819 } else { 820 uiop->uio_iov->iov_base = 821 (char *)uiop->uio_iov->iov_base + size; 822 uiop->uio_iov->iov_len -= size; 823 } 824 } 825 } else { 826 struct uio *t_uio; 827 struct iovec *t_iov; 828 struct buf *bp; 829 830 /* 831 * Break up the write into blocksize chunks and hand these 832 * over to nfsiod's for write back. 833 * Unfortunately, this incurs a copy of the data. Since 834 * the user could modify the buffer before the write is 835 * initiated. 836 * 837 * The obvious optimization here is that one of the 2 copies 838 * in the async write path can be eliminated by copying the 839 * data here directly into mbufs and passing the mbuf chain 840 * down. But that will require a fair amount of re-working 841 * of the code and can be done if there's enough interest 842 * in NFS directio access. 843 */ 844 while (uiop->uio_resid > 0) { 845 size = MIN(uiop->uio_resid, wsize); 846 size = MIN(uiop->uio_iov->iov_len, size); 847 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 848 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 849 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 850 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 851 t_iov->iov_len = size; 852 t_uio->uio_iov = t_iov; 853 t_uio->uio_iovcnt = 1; 854 t_uio->uio_offset = uiop->uio_offset; 855 t_uio->uio_resid = size; 856 t_uio->uio_segflg = UIO_SYSSPACE; 857 t_uio->uio_rw = UIO_WRITE; 858 t_uio->uio_td = td; 859 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 860 uiop->uio_segflg == UIO_SYSSPACE, 861 ("nfs_directio_write: Bad uio_segflg")); 862 if (uiop->uio_segflg == UIO_USERSPACE) { 863 error = copyin(uiop->uio_iov->iov_base, 864 t_iov->iov_base, size); 865 if (error != 0) 866 goto err_free; 867 } else 868 /* 869 * UIO_SYSSPACE may never happen, but handle 870 * it just in case it does. 871 */ 872 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 873 size); 874 bp->b_flags |= B_DIRECT; 875 bp->b_iocmd = BIO_WRITE; 876 if (cred != NOCRED) { 877 crhold(cred); 878 bp->b_wcred = cred; 879 } else 880 bp->b_wcred = NOCRED; 881 bp->b_caller1 = (void *)t_uio; 882 bp->b_vp = vp; 883 error = ncl_asyncio(nmp, bp, NOCRED, td); 884 err_free: 885 if (error) { 886 free(t_iov->iov_base, M_NFSDIRECTIO); 887 free(t_iov, M_NFSDIRECTIO); 888 free(t_uio, M_NFSDIRECTIO); 889 bp->b_vp = NULL; 890 uma_zfree(ncl_pbuf_zone, bp); 891 if (error == EINTR) 892 return (error); 893 goto do_sync; 894 } 895 uiop->uio_offset += size; 896 uiop->uio_resid -= size; 897 if (uiop->uio_iov->iov_len <= size) { 898 uiop->uio_iovcnt--; 899 uiop->uio_iov++; 900 } else { 901 uiop->uio_iov->iov_base = 902 (char *)uiop->uio_iov->iov_base + size; 903 uiop->uio_iov->iov_len -= size; 904 } 905 } 906 } 907 return (0); 908 } 909 910 /* 911 * Vnode op for write using bio 912 */ 913 int 914 ncl_write(struct vop_write_args *ap) 915 { 916 int biosize; 917 struct uio *uio = ap->a_uio; 918 struct thread *td = uio->uio_td; 919 struct vnode *vp = ap->a_vp; 920 struct nfsnode *np = VTONFS(vp); 921 struct ucred *cred = ap->a_cred; 922 int ioflag = ap->a_ioflag; 923 struct buf *bp; 924 struct vattr vattr; 925 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 926 daddr_t lbn; 927 int bcount, noncontig_write, obcount; 928 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 929 size_t orig_resid, local_resid; 930 off_t orig_size, tmp_off; 931 struct timespec ts; 932 933 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 934 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 935 ("ncl_write proc")); 936 if (vp->v_type != VREG) 937 return (EIO); 938 NFSLOCKNODE(np); 939 if (np->n_flag & NWRITEERR) { 940 np->n_flag &= ~NWRITEERR; 941 NFSUNLOCKNODE(np); 942 return (np->n_error); 943 } else 944 NFSUNLOCKNODE(np); 945 mtx_lock(&nmp->nm_mtx); 946 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 947 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 948 mtx_unlock(&nmp->nm_mtx); 949 (void)ncl_fsinfo(nmp, vp, cred, td); 950 mtx_lock(&nmp->nm_mtx); 951 } 952 if (nmp->nm_wsize == 0) 953 (void) newnfs_iosize(nmp); 954 mtx_unlock(&nmp->nm_mtx); 955 956 /* 957 * Synchronously flush pending buffers if we are in synchronous 958 * mode or if we are appending. 959 */ 960 if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag & 961 NMODIFIED))) { 962 /* 963 * For the case where IO_APPEND is being done using a 964 * direct output (to the NFS server) RPC and 965 * newnfs_directio_enable is 0, all buffer cache buffers, 966 * including ones not modified, must be invalidated. 967 * This ensures that stale data is not read out of the 968 * buffer cache. The call also invalidates all mapped 969 * pages and, since the exclusive lock is held on the vnode, 970 * new pages cannot be faulted in. 971 * 972 * For the case where newnfs_directio_enable is set 973 * (which is not the default), it is not obvious that 974 * stale data should be left in the buffer cache, but 975 * the code has been this way for over a decade without 976 * complaints. Note that, unlike doing IO_APPEND via 977 * a direct write RPC when newnfs_directio_enable is not set, 978 * when newnfs_directio_enable is set, reading is done via 979 * direct to NFS server RPCs as well. 980 */ 981 np->n_attrstamp = 0; 982 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 983 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 984 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 985 if (error != 0) 986 return (error); 987 } 988 989 orig_resid = uio->uio_resid; 990 NFSLOCKNODE(np); 991 orig_size = np->n_size; 992 NFSUNLOCKNODE(np); 993 994 /* 995 * If IO_APPEND then load uio_offset. We restart here if we cannot 996 * get the append lock. 997 */ 998 if (ioflag & IO_APPEND) { 999 /* 1000 * For NFSv4, the AppendWrite will Verify the size against 1001 * the file's size on the server. If not the same, the 1002 * write will then be retried, using the file size returned 1003 * by the AppendWrite. However, for NFSv2 and NFSv3, the 1004 * size must be acquired here via a Getattr RPC. 1005 * The AppendWrite is not done for a pNFS mount. 1006 */ 1007 if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) { 1008 np->n_attrstamp = 0; 1009 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1010 error = VOP_GETATTR(vp, &vattr, cred); 1011 if (error) 1012 return (error); 1013 } 1014 NFSLOCKNODE(np); 1015 uio->uio_offset = np->n_size; 1016 NFSUNLOCKNODE(np); 1017 } 1018 1019 if (uio->uio_offset < 0) 1020 return (EINVAL); 1021 tmp_off = uio->uio_offset + uio->uio_resid; 1022 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 1023 return (EFBIG); 1024 if (uio->uio_resid == 0) 1025 return (0); 1026 1027 /* 1028 * Do IO_APPEND writing via a synchronous direct write. 1029 * This can result in a significant performance improvement. 1030 */ 1031 if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) || 1032 (ioflag & IO_APPEND)) { 1033 /* 1034 * Direct writes to the server must be done NFSWRITE_FILESYNC, 1035 * because the write data is not cached and, therefore, the 1036 * write cannot be redone after a server reboot. 1037 * Set IO_SYNC to make this happen. 1038 */ 1039 ioflag |= IO_SYNC; 1040 return (nfs_directio_write(vp, uio, cred, ioflag)); 1041 } 1042 1043 /* 1044 * Maybe this should be above the vnode op call, but so long as 1045 * file servers have no limits, i don't think it matters 1046 */ 1047 error = vn_rlimit_fsize(vp, uio, td); 1048 if (error != 0) 1049 return (error); 1050 1051 save2 = curthread_pflags2_set(TDP2_SBPAGES); 1052 biosize = vp->v_bufobj.bo_bsize; 1053 /* 1054 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1055 * would exceed the local maximum per-file write commit size when 1056 * combined with those, we must decide whether to flush, 1057 * go synchronous, or return error. We don't bother checking 1058 * IO_UNIT -- we just make all writes atomic anyway, as there's 1059 * no point optimizing for something that really won't ever happen. 1060 */ 1061 wouldcommit = 0; 1062 if (!(ioflag & IO_SYNC)) { 1063 int nflag; 1064 1065 NFSLOCKNODE(np); 1066 nflag = np->n_flag; 1067 NFSUNLOCKNODE(np); 1068 if (nflag & NMODIFIED) { 1069 BO_LOCK(&vp->v_bufobj); 1070 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1071 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1072 b_bobufs) { 1073 if (bp->b_flags & B_NEEDCOMMIT) 1074 wouldcommit += bp->b_bcount; 1075 } 1076 } 1077 BO_UNLOCK(&vp->v_bufobj); 1078 } 1079 } 1080 1081 do { 1082 if (!(ioflag & IO_SYNC)) { 1083 wouldcommit += biosize; 1084 if (wouldcommit > nmp->nm_wcommitsize) { 1085 np->n_attrstamp = 0; 1086 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1087 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1088 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1089 if (error != 0) 1090 goto out; 1091 wouldcommit = biosize; 1092 } 1093 } 1094 1095 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1096 lbn = uio->uio_offset / biosize; 1097 on = uio->uio_offset - (lbn * biosize); 1098 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1099 again: 1100 /* 1101 * Handle direct append and file extension cases, calculate 1102 * unaligned buffer size. 1103 */ 1104 NFSLOCKNODE(np); 1105 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1106 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1107 noncontig_write = 1; 1108 else 1109 noncontig_write = 0; 1110 if ((uio->uio_offset == np->n_size || 1111 (noncontig_write != 0 && 1112 lbn == (np->n_size / biosize) && 1113 uio->uio_offset + n > np->n_size)) && n) { 1114 NFSUNLOCKNODE(np); 1115 /* 1116 * Get the buffer (in its pre-append state to maintain 1117 * B_CACHE if it was previously set). Resize the 1118 * nfsnode after we have locked the buffer to prevent 1119 * readers from reading garbage. 1120 */ 1121 obcount = np->n_size - (lbn * biosize); 1122 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1123 1124 if (bp != NULL) { 1125 long save; 1126 1127 NFSLOCKNODE(np); 1128 np->n_size = uio->uio_offset + n; 1129 np->n_flag |= NMODIFIED; 1130 np->n_flag &= ~NVNSETSZSKIP; 1131 vnode_pager_setsize(vp, np->n_size); 1132 NFSUNLOCKNODE(np); 1133 1134 save = bp->b_flags & B_CACHE; 1135 bcount = on + n; 1136 allocbuf(bp, bcount); 1137 bp->b_flags |= save; 1138 if (noncontig_write != 0 && on > obcount) 1139 vfs_bio_bzero_buf(bp, obcount, on - 1140 obcount); 1141 } 1142 } else { 1143 /* 1144 * Obtain the locked cache block first, and then 1145 * adjust the file's size as appropriate. 1146 */ 1147 bcount = on + n; 1148 if ((off_t)lbn * biosize + bcount < np->n_size) { 1149 if ((off_t)(lbn + 1) * biosize < np->n_size) 1150 bcount = biosize; 1151 else 1152 bcount = np->n_size - (off_t)lbn * biosize; 1153 } 1154 NFSUNLOCKNODE(np); 1155 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1156 NFSLOCKNODE(np); 1157 if (uio->uio_offset + n > np->n_size) { 1158 np->n_size = uio->uio_offset + n; 1159 np->n_flag |= NMODIFIED; 1160 np->n_flag &= ~NVNSETSZSKIP; 1161 vnode_pager_setsize(vp, np->n_size); 1162 } 1163 NFSUNLOCKNODE(np); 1164 } 1165 1166 if (!bp) { 1167 error = newnfs_sigintr(nmp, td); 1168 if (!error) 1169 error = EINTR; 1170 break; 1171 } 1172 1173 /* 1174 * Issue a READ if B_CACHE is not set. In special-append 1175 * mode, B_CACHE is based on the buffer prior to the write 1176 * op and is typically set, avoiding the read. If a read 1177 * is required in special append mode, the server will 1178 * probably send us a short-read since we extended the file 1179 * on our end, resulting in b_resid == 0 and, thusly, 1180 * B_CACHE getting set. 1181 * 1182 * We can also avoid issuing the read if the write covers 1183 * the entire buffer. We have to make sure the buffer state 1184 * is reasonable in this case since we will not be initiating 1185 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1186 * more information. 1187 * 1188 * B_CACHE may also be set due to the buffer being cached 1189 * normally. 1190 */ 1191 1192 bp_cached = 1; 1193 if (on == 0 && n == bcount) { 1194 if ((bp->b_flags & B_CACHE) == 0) 1195 bp_cached = 0; 1196 bp->b_flags |= B_CACHE; 1197 bp->b_flags &= ~B_INVAL; 1198 bp->b_ioflags &= ~BIO_ERROR; 1199 } 1200 1201 if ((bp->b_flags & B_CACHE) == 0) { 1202 bp->b_iocmd = BIO_READ; 1203 vfs_busy_pages(bp, 0); 1204 error = ncl_doio(vp, bp, cred, td, 0); 1205 if (error) { 1206 brelse(bp); 1207 break; 1208 } 1209 } 1210 if (bp->b_wcred == NOCRED) 1211 bp->b_wcred = crhold(cred); 1212 NFSLOCKNODE(np); 1213 np->n_flag |= NMODIFIED; 1214 NFSUNLOCKNODE(np); 1215 1216 /* 1217 * If dirtyend exceeds file size, chop it down. This should 1218 * not normally occur but there is an append race where it 1219 * might occur XXX, so we log it. 1220 * 1221 * If the chopping creates a reverse-indexed or degenerate 1222 * situation with dirtyoff/end, we 0 both of them. 1223 */ 1224 1225 if (bp->b_dirtyend > bcount) { 1226 printf("NFS append race @%lx:%d\n", 1227 (long)bp->b_blkno * DEV_BSIZE, 1228 bp->b_dirtyend - bcount); 1229 bp->b_dirtyend = bcount; 1230 } 1231 1232 if (bp->b_dirtyoff >= bp->b_dirtyend) 1233 bp->b_dirtyoff = bp->b_dirtyend = 0; 1234 1235 /* 1236 * If the new write will leave a contiguous dirty 1237 * area, just update the b_dirtyoff and b_dirtyend, 1238 * otherwise force a write rpc of the old dirty area. 1239 * 1240 * If there has been a file lock applied to this file 1241 * or vfs.nfs.old_noncontig_writing is set, do the following: 1242 * While it is possible to merge discontiguous writes due to 1243 * our having a B_CACHE buffer ( and thus valid read data 1244 * for the hole), we don't because it could lead to 1245 * significant cache coherency problems with multiple clients, 1246 * especially if locking is implemented later on. 1247 * 1248 * If vfs.nfs.old_noncontig_writing is not set and there has 1249 * not been file locking done on this file: 1250 * Relax coherency a bit for the sake of performance and 1251 * expand the current dirty region to contain the new 1252 * write even if it means we mark some non-dirty data as 1253 * dirty. 1254 */ 1255 1256 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1257 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1258 if (bwrite(bp) == EINTR) { 1259 error = EINTR; 1260 break; 1261 } 1262 goto again; 1263 } 1264 1265 local_resid = uio->uio_resid; 1266 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1267 1268 if (error != 0 && !bp_cached) { 1269 /* 1270 * This block has no other content then what 1271 * possibly was written by the faulty uiomove. 1272 * Release it, forgetting the data pages, to 1273 * prevent the leak of uninitialized data to 1274 * usermode. 1275 */ 1276 bp->b_ioflags |= BIO_ERROR; 1277 brelse(bp); 1278 uio->uio_offset -= local_resid - uio->uio_resid; 1279 uio->uio_resid = local_resid; 1280 break; 1281 } 1282 1283 /* 1284 * Since this block is being modified, it must be written 1285 * again and not just committed. Since write clustering does 1286 * not work for the stage 1 data write, only the stage 2 1287 * commit rpc, we have to clear B_CLUSTEROK as well. 1288 */ 1289 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1290 1291 /* 1292 * Get the partial update on the progress made from 1293 * uiomove, if an error occurred. 1294 */ 1295 if (error != 0) 1296 n = local_resid - uio->uio_resid; 1297 1298 /* 1299 * Only update dirtyoff/dirtyend if not a degenerate 1300 * condition. 1301 */ 1302 if (n > 0) { 1303 if (bp->b_dirtyend > 0) { 1304 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1305 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1306 } else { 1307 bp->b_dirtyoff = on; 1308 bp->b_dirtyend = on + n; 1309 } 1310 vfs_bio_set_valid(bp, on, n); 1311 } 1312 1313 /* 1314 * If IO_SYNC do bwrite(). 1315 * 1316 * IO_INVAL appears to be unused. The idea appears to be 1317 * to turn off caching in this case. Very odd. XXX 1318 */ 1319 if ((ioflag & IO_SYNC)) { 1320 if (ioflag & IO_INVAL) 1321 bp->b_flags |= B_NOCACHE; 1322 error1 = bwrite(bp); 1323 if (error1 != 0) { 1324 if (error == 0) 1325 error = error1; 1326 break; 1327 } 1328 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1329 bp->b_flags |= B_ASYNC; 1330 (void) bwrite(bp); 1331 } else { 1332 bdwrite(bp); 1333 } 1334 1335 if (error != 0) 1336 break; 1337 } while (uio->uio_resid > 0 && n > 0); 1338 1339 if (error == 0) { 1340 nanouptime(&ts); 1341 NFSLOCKNODE(np); 1342 np->n_localmodtime = ts; 1343 NFSUNLOCKNODE(np); 1344 } else { 1345 if (ioflag & IO_UNIT) { 1346 VATTR_NULL(&vattr); 1347 vattr.va_size = orig_size; 1348 /* IO_SYNC is handled implicitely */ 1349 (void)VOP_SETATTR(vp, &vattr, cred); 1350 uio->uio_offset -= orig_resid - uio->uio_resid; 1351 uio->uio_resid = orig_resid; 1352 } 1353 } 1354 1355 out: 1356 curthread_pflags2_restore(save2); 1357 return (error); 1358 } 1359 1360 /* 1361 * Get an nfs cache block. 1362 * 1363 * Allocate a new one if the block isn't currently in the cache 1364 * and return the block marked busy. If the calling process is 1365 * interrupted by a signal for an interruptible mount point, return 1366 * NULL. 1367 * 1368 * The caller must carefully deal with the possible B_INVAL state of 1369 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1370 * indirectly), so synchronous reads can be issued without worrying about 1371 * the B_INVAL state. We have to be a little more careful when dealing 1372 * with writes (see comments in nfs_write()) when extending a file past 1373 * its EOF. 1374 */ 1375 static struct buf * 1376 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1377 { 1378 struct buf *bp; 1379 struct mount *mp; 1380 struct nfsmount *nmp; 1381 1382 mp = vp->v_mount; 1383 nmp = VFSTONFS(mp); 1384 1385 if (nmp->nm_flag & NFSMNT_INT) { 1386 sigset_t oldset; 1387 1388 newnfs_set_sigmask(td, &oldset); 1389 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1390 newnfs_restore_sigmask(td, &oldset); 1391 while (bp == NULL) { 1392 if (newnfs_sigintr(nmp, td)) 1393 return (NULL); 1394 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1395 } 1396 } else { 1397 bp = getblk(vp, bn, size, 0, 0, 0); 1398 } 1399 1400 if (vp->v_type == VREG) 1401 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1402 return (bp); 1403 } 1404 1405 /* 1406 * Flush and invalidate all dirty buffers. If another process is already 1407 * doing the flush, just wait for completion. 1408 */ 1409 int 1410 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1411 { 1412 struct nfsnode *np = VTONFS(vp); 1413 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1414 int error = 0, slpflag, slptimeo; 1415 bool old_lock; 1416 struct timespec ts; 1417 1418 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1419 1420 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1421 intrflg = 0; 1422 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1423 intrflg = 1; 1424 if (intrflg) { 1425 slpflag = PCATCH; 1426 slptimeo = 2 * hz; 1427 } else { 1428 slpflag = 0; 1429 slptimeo = 0; 1430 } 1431 1432 old_lock = ncl_excl_start(vp); 1433 if (old_lock) 1434 flags |= V_ALLOWCLEAN; 1435 1436 /* 1437 * Now, flush as required. 1438 */ 1439 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE) { 1440 vnode_pager_clean_sync(vp); 1441 1442 /* 1443 * If the page clean was interrupted, fail the invalidation. 1444 * Not doing so, we run the risk of losing dirty pages in the 1445 * vinvalbuf() call below. 1446 */ 1447 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1448 goto out; 1449 } 1450 1451 error = vinvalbuf(vp, flags, slpflag, 0); 1452 while (error) { 1453 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1454 goto out; 1455 error = vinvalbuf(vp, flags, 0, slptimeo); 1456 } 1457 if (NFSHASPNFS(nmp)) { 1458 nfscl_layoutcommit(vp, td); 1459 nanouptime(&ts); 1460 /* 1461 * Invalidate the attribute cache, since writes to a DS 1462 * won't update the size attribute. 1463 */ 1464 NFSLOCKNODE(np); 1465 np->n_attrstamp = 0; 1466 } else { 1467 nanouptime(&ts); 1468 NFSLOCKNODE(np); 1469 } 1470 if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) { 1471 np->n_localmodtime = ts; 1472 np->n_flag &= ~NMODIFIED; 1473 } 1474 NFSUNLOCKNODE(np); 1475 out: 1476 ncl_excl_finish(vp, old_lock); 1477 return error; 1478 } 1479 1480 /* 1481 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1482 * This is mainly to avoid queueing async I/O requests when the nfsiods 1483 * are all hung on a dead server. 1484 * 1485 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1486 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1487 */ 1488 int 1489 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1490 { 1491 int iod; 1492 int gotiod; 1493 int slpflag = 0; 1494 int slptimeo = 0; 1495 int error, error2; 1496 1497 /* 1498 * Commits are usually short and sweet so lets save some cpu and 1499 * leave the async daemons for more important rpc's (such as reads 1500 * and writes). 1501 * 1502 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1503 * in the directory in order to update attributes. This can deadlock 1504 * with another thread that is waiting for async I/O to be done by 1505 * an nfsiod thread while holding a lock on one of these vnodes. 1506 * To avoid this deadlock, don't allow the async nfsiod threads to 1507 * perform Readdirplus RPCs. 1508 */ 1509 NFSLOCKIOD(); 1510 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1511 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1512 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1513 NFSUNLOCKIOD(); 1514 return(EIO); 1515 } 1516 again: 1517 if (nmp->nm_flag & NFSMNT_INT) 1518 slpflag = PCATCH; 1519 gotiod = FALSE; 1520 1521 /* 1522 * Find a free iod to process this request. 1523 */ 1524 for (iod = 0; iod < ncl_numasync; iod++) 1525 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1526 gotiod = TRUE; 1527 break; 1528 } 1529 1530 /* 1531 * Try to create one if none are free. 1532 */ 1533 if (!gotiod) 1534 ncl_nfsiodnew(); 1535 else { 1536 /* 1537 * Found one, so wake it up and tell it which 1538 * mount to process. 1539 */ 1540 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1541 iod, nmp)); 1542 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1543 ncl_iodmount[iod] = nmp; 1544 nmp->nm_bufqiods++; 1545 wakeup(&ncl_iodwant[iod]); 1546 } 1547 1548 /* 1549 * If none are free, we may already have an iod working on this mount 1550 * point. If so, it will process our request. 1551 */ 1552 if (!gotiod) { 1553 if (nmp->nm_bufqiods > 0) { 1554 NFS_DPF(ASYNCIO, 1555 ("ncl_asyncio: %d iods are already processing mount %p\n", 1556 nmp->nm_bufqiods, nmp)); 1557 gotiod = TRUE; 1558 } 1559 } 1560 1561 /* 1562 * If we have an iod which can process the request, then queue 1563 * the buffer. 1564 */ 1565 if (gotiod) { 1566 /* 1567 * Ensure that the queue never grows too large. We still want 1568 * to asynchronize so we block rather then return EIO. 1569 */ 1570 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1571 NFS_DPF(ASYNCIO, 1572 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1573 nmp->nm_bufqwant = TRUE; 1574 error = newnfs_msleep(td, &nmp->nm_bufq, 1575 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1576 slptimeo); 1577 if (error) { 1578 error2 = newnfs_sigintr(nmp, td); 1579 if (error2) { 1580 NFSUNLOCKIOD(); 1581 return (error2); 1582 } 1583 if (slpflag == PCATCH) { 1584 slpflag = 0; 1585 slptimeo = 2 * hz; 1586 } 1587 } 1588 /* 1589 * We might have lost our iod while sleeping, 1590 * so check and loop if necessary. 1591 */ 1592 goto again; 1593 } 1594 1595 /* We might have lost our nfsiod */ 1596 if (nmp->nm_bufqiods == 0) { 1597 NFS_DPF(ASYNCIO, 1598 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1599 goto again; 1600 } 1601 1602 if (bp->b_iocmd == BIO_READ) { 1603 if (bp->b_rcred == NOCRED && cred != NOCRED) 1604 bp->b_rcred = crhold(cred); 1605 } else { 1606 if (bp->b_wcred == NOCRED && cred != NOCRED) 1607 bp->b_wcred = crhold(cred); 1608 } 1609 1610 if (bp->b_flags & B_REMFREE) 1611 bremfreef(bp); 1612 BUF_KERNPROC(bp); 1613 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1614 nmp->nm_bufqlen++; 1615 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1616 NFSLOCKNODE(VTONFS(bp->b_vp)); 1617 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1618 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1619 NFSUNLOCKNODE(VTONFS(bp->b_vp)); 1620 } 1621 NFSUNLOCKIOD(); 1622 return (0); 1623 } 1624 1625 NFSUNLOCKIOD(); 1626 1627 /* 1628 * All the iods are busy on other mounts, so return EIO to 1629 * force the caller to process the i/o synchronously. 1630 */ 1631 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1632 return (EIO); 1633 } 1634 1635 void 1636 ncl_doio_directwrite(struct buf *bp) 1637 { 1638 int iomode, must_commit; 1639 struct uio *uiop = (struct uio *)bp->b_caller1; 1640 char *iov_base = uiop->uio_iov->iov_base; 1641 1642 iomode = NFSWRITE_FILESYNC; 1643 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1644 /* 1645 * When doing direct I/O we do not care if the 1646 * server's write verifier has changed, but we 1647 * do not want to update the verifier if it has 1648 * changed, since that hides the change from 1649 * writes being done through the buffer cache. 1650 * By passing must_commit in set to two, the code 1651 * in nfsrpc_writerpc() will not update the 1652 * verifier on the mount point. 1653 */ 1654 must_commit = 2; 1655 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0, 0); 1656 KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write" 1657 " verifier")); 1658 if (iomode != NFSWRITE_FILESYNC) 1659 printf("ncl_doio_directwrite: Broken server " 1660 "did not reply FILE_SYNC\n"); 1661 free(iov_base, M_NFSDIRECTIO); 1662 free(uiop->uio_iov, M_NFSDIRECTIO); 1663 free(uiop, M_NFSDIRECTIO); 1664 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1665 struct nfsnode *np = VTONFS(bp->b_vp); 1666 NFSLOCKNODE(np); 1667 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) { 1668 /* 1669 * Invalidate the attribute cache, since writes to a DS 1670 * won't update the size attribute. 1671 */ 1672 np->n_attrstamp = 0; 1673 } 1674 np->n_directio_asyncwr--; 1675 if (np->n_directio_asyncwr == 0) { 1676 np->n_flag &= ~NMODIFIED; 1677 if ((np->n_flag & NFSYNCWAIT)) { 1678 np->n_flag &= ~NFSYNCWAIT; 1679 wakeup((caddr_t)&np->n_directio_asyncwr); 1680 } 1681 } 1682 NFSUNLOCKNODE(np); 1683 } 1684 bp->b_vp = NULL; 1685 uma_zfree(ncl_pbuf_zone, bp); 1686 } 1687 1688 /* 1689 * Do an I/O operation to/from a cache block. This may be called 1690 * synchronously or from an nfsiod. 1691 */ 1692 int 1693 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1694 int called_from_strategy) 1695 { 1696 struct uio *uiop; 1697 struct nfsnode *np; 1698 struct nfsmount *nmp; 1699 int error = 0, iomode, must_commit = 0; 1700 struct uio uio; 1701 struct iovec io; 1702 struct proc *p = td ? td->td_proc : NULL; 1703 uint8_t iocmd; 1704 1705 np = VTONFS(vp); 1706 nmp = VFSTONFS(vp->v_mount); 1707 uiop = &uio; 1708 uiop->uio_iov = &io; 1709 uiop->uio_iovcnt = 1; 1710 uiop->uio_segflg = UIO_SYSSPACE; 1711 uiop->uio_td = td; 1712 1713 /* 1714 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1715 * do this here so we do not have to do it in all the code that 1716 * calls us. 1717 */ 1718 bp->b_flags &= ~B_INVAL; 1719 bp->b_ioflags &= ~BIO_ERROR; 1720 1721 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1722 iocmd = bp->b_iocmd; 1723 if (iocmd == BIO_READ) { 1724 io.iov_len = uiop->uio_resid = bp->b_bcount; 1725 io.iov_base = bp->b_data; 1726 uiop->uio_rw = UIO_READ; 1727 1728 switch (vp->v_type) { 1729 case VREG: 1730 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1731 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1732 error = ncl_readrpc(vp, uiop, cr); 1733 1734 if (!error) { 1735 if (uiop->uio_resid) { 1736 /* 1737 * If we had a short read with no error, we must have 1738 * hit a file hole. We should zero-fill the remainder. 1739 * This can also occur if the server hits the file EOF. 1740 * 1741 * Holes used to be able to occur due to pending 1742 * writes, but that is not possible any longer. 1743 */ 1744 int nread = bp->b_bcount - uiop->uio_resid; 1745 ssize_t left = uiop->uio_resid; 1746 1747 if (left > 0) 1748 bzero((char *)bp->b_data + nread, left); 1749 uiop->uio_resid = 0; 1750 } 1751 } 1752 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1753 if (p && vp->v_writecount <= -1) { 1754 NFSLOCKNODE(np); 1755 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1756 NFSUNLOCKNODE(np); 1757 PROC_LOCK(p); 1758 killproc(p, "text file modification"); 1759 PROC_UNLOCK(p); 1760 } else 1761 NFSUNLOCKNODE(np); 1762 } 1763 break; 1764 case VLNK: 1765 uiop->uio_offset = (off_t)0; 1766 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1767 error = ncl_readlinkrpc(vp, uiop, cr); 1768 break; 1769 case VDIR: 1770 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1771 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1772 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1773 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1774 if (error == NFSERR_NOTSUPP) 1775 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1776 } 1777 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1778 error = ncl_readdirrpc(vp, uiop, cr, td); 1779 /* 1780 * end-of-directory sets B_INVAL but does not generate an 1781 * error. 1782 */ 1783 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1784 bp->b_flags |= B_INVAL; 1785 break; 1786 default: 1787 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1788 break; 1789 } 1790 if (error) { 1791 bp->b_ioflags |= BIO_ERROR; 1792 bp->b_error = error; 1793 } 1794 } else { 1795 /* 1796 * If we only need to commit, try to commit 1797 */ 1798 if (bp->b_flags & B_NEEDCOMMIT) { 1799 int retv; 1800 off_t off; 1801 1802 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1803 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1804 bp->b_wcred, td); 1805 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) { 1806 bp->b_dirtyoff = bp->b_dirtyend = 0; 1807 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1808 bp->b_resid = 0; 1809 bufdone(bp); 1810 return (0); 1811 } 1812 if (retv == NFSERR_STALEWRITEVERF) { 1813 ncl_clearcommit(vp->v_mount); 1814 } 1815 } 1816 1817 /* 1818 * Setup for actual write 1819 */ 1820 NFSLOCKNODE(np); 1821 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1822 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1823 NFSUNLOCKNODE(np); 1824 1825 if (bp->b_dirtyend > bp->b_dirtyoff) { 1826 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1827 - bp->b_dirtyoff; 1828 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1829 + bp->b_dirtyoff; 1830 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1831 uiop->uio_rw = UIO_WRITE; 1832 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1833 1834 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1835 iomode = NFSWRITE_UNSTABLE; 1836 else 1837 iomode = NFSWRITE_FILESYNC; 1838 1839 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1840 called_from_strategy, 0); 1841 1842 /* 1843 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1844 * to cluster the buffers needing commit. This will allow 1845 * the system to submit a single commit rpc for the whole 1846 * cluster. We can do this even if the buffer is not 100% 1847 * dirty (relative to the NFS blocksize), so we optimize the 1848 * append-to-file-case. 1849 * 1850 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1851 * cleared because write clustering only works for commit 1852 * rpc's, not for the data portion of the write). 1853 */ 1854 1855 if (!error && iomode == NFSWRITE_UNSTABLE) { 1856 bp->b_flags |= B_NEEDCOMMIT; 1857 if (bp->b_dirtyoff == 0 1858 && bp->b_dirtyend == bp->b_bcount) 1859 bp->b_flags |= B_CLUSTEROK; 1860 } else { 1861 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1862 } 1863 1864 /* 1865 * For an interrupted write, the buffer is still valid 1866 * and the write hasn't been pushed to the server yet, 1867 * so we can't set BIO_ERROR and report the interruption 1868 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1869 * is not relevant, so the rpc attempt is essentially 1870 * a noop. For the case of a V3 write rpc not being 1871 * committed to stable storage, the block is still 1872 * dirty and requires either a commit rpc or another 1873 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1874 * the block is reused. This is indicated by setting 1875 * the B_DELWRI and B_NEEDCOMMIT flags. 1876 * 1877 * EIO is returned by ncl_writerpc() to indicate a recoverable 1878 * write error and is handled as above, except that 1879 * B_EINTR isn't set. One cause of this is a stale stateid 1880 * error for the RPC that indicates recovery is required, 1881 * when called with called_from_strategy != 0. 1882 * 1883 * If the buffer is marked B_PAGING, it does not reside on 1884 * the vp's paging queues so we cannot call bdirty(). The 1885 * bp in this case is not an NFS cache block so we should 1886 * be safe. XXX 1887 * 1888 * The logic below breaks up errors into recoverable and 1889 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1890 * and keep the buffer around for potential write retries. 1891 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1892 * and save the error in the nfsnode. This is less than ideal 1893 * but necessary. Keeping such buffers around could potentially 1894 * cause buffer exhaustion eventually (they can never be written 1895 * out, so will get constantly be re-dirtied). It also causes 1896 * all sorts of vfs panics. For non-recoverable write errors, 1897 * also invalidate the attrcache, so we'll be forced to go over 1898 * the wire for this object, returning an error to user on next 1899 * call (most of the time). 1900 */ 1901 if (error == EINTR || error == EIO || error == ETIMEDOUT 1902 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1903 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1904 if ((bp->b_flags & B_PAGING) == 0) { 1905 bdirty(bp); 1906 bp->b_flags &= ~B_DONE; 1907 } 1908 if ((error == EINTR || error == ETIMEDOUT) && 1909 (bp->b_flags & B_ASYNC) == 0) 1910 bp->b_flags |= B_EINTR; 1911 } else { 1912 if (error) { 1913 bp->b_ioflags |= BIO_ERROR; 1914 bp->b_flags |= B_INVAL; 1915 bp->b_error = np->n_error = error; 1916 NFSLOCKNODE(np); 1917 np->n_flag |= NWRITEERR; 1918 np->n_attrstamp = 0; 1919 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1920 NFSUNLOCKNODE(np); 1921 } 1922 bp->b_dirtyoff = bp->b_dirtyend = 0; 1923 } 1924 } else { 1925 bp->b_resid = 0; 1926 bufdone(bp); 1927 return (0); 1928 } 1929 } 1930 bp->b_resid = uiop->uio_resid; 1931 if (must_commit == 1) 1932 ncl_clearcommit(vp->v_mount); 1933 bufdone(bp); 1934 return (error); 1935 } 1936 1937 /* 1938 * Used to aid in handling ftruncate() operations on the NFS client side. 1939 * Truncation creates a number of special problems for NFS. We have to 1940 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1941 * we have to properly handle VM pages or (potentially dirty) buffers 1942 * that straddle the truncation point. 1943 */ 1944 1945 int 1946 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1947 { 1948 struct nfsnode *np = VTONFS(vp); 1949 u_quad_t tsize; 1950 int biosize = vp->v_bufobj.bo_bsize; 1951 int error = 0; 1952 1953 NFSLOCKNODE(np); 1954 tsize = np->n_size; 1955 np->n_size = nsize; 1956 NFSUNLOCKNODE(np); 1957 1958 if (nsize < tsize) { 1959 struct buf *bp; 1960 daddr_t lbn; 1961 int bufsize; 1962 1963 /* 1964 * vtruncbuf() doesn't get the buffer overlapping the 1965 * truncation point. We may have a B_DELWRI and/or B_CACHE 1966 * buffer that now needs to be truncated. 1967 */ 1968 error = vtruncbuf(vp, nsize, biosize); 1969 lbn = nsize / biosize; 1970 bufsize = nsize - (lbn * biosize); 1971 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1972 if (!bp) 1973 return EINTR; 1974 if (bp->b_dirtyoff > bp->b_bcount) 1975 bp->b_dirtyoff = bp->b_bcount; 1976 if (bp->b_dirtyend > bp->b_bcount) 1977 bp->b_dirtyend = bp->b_bcount; 1978 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1979 brelse(bp); 1980 } else { 1981 vnode_pager_setsize(vp, nsize); 1982 } 1983 return(error); 1984 } 1985