1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bio.h> 38 #include <sys/buf.h> 39 #include <sys/kernel.h> 40 #include <sys/mount.h> 41 #include <sys/rwlock.h> 42 #include <sys/vmmeter.h> 43 #include <sys/vnode.h> 44 45 #include <vm/vm.h> 46 #include <vm/vm_param.h> 47 #include <vm/vm_extern.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_object.h> 50 #include <vm/vm_pager.h> 51 #include <vm/vnode_pager.h> 52 53 #include <fs/nfs/nfsport.h> 54 #include <fs/nfsclient/nfsmount.h> 55 #include <fs/nfsclient/nfs.h> 56 #include <fs/nfsclient/nfsnode.h> 57 #include <fs/nfsclient/nfs_kdtrace.h> 58 59 extern int newnfs_directio_allow_mmap; 60 extern struct nfsstatsv1 nfsstatsv1; 61 extern struct mtx ncl_iod_mutex; 62 extern int ncl_numasync; 63 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 64 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 65 extern int newnfs_directio_enable; 66 extern int nfs_keep_dirty_on_error; 67 68 uma_zone_t ncl_pbuf_zone; 69 70 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 71 struct thread *td); 72 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 73 struct ucred *cred, int ioflag); 74 75 /* 76 * Vnode op for VM getpages. 77 */ 78 SYSCTL_DECL(_vfs_nfs); 79 static int use_buf_pager = 1; 80 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 81 &use_buf_pager, 0, 82 "Use buffer pager instead of direct readrpc call"); 83 84 static daddr_t 85 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 86 { 87 88 return (off / vp->v_bufobj.bo_bsize); 89 } 90 91 static int 92 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 93 { 94 struct nfsnode *np; 95 u_quad_t nsize; 96 int biosize, bcount; 97 98 np = VTONFS(vp); 99 NFSLOCKNODE(np); 100 nsize = np->n_size; 101 NFSUNLOCKNODE(np); 102 103 biosize = vp->v_bufobj.bo_bsize; 104 bcount = biosize; 105 if ((off_t)lbn * biosize >= nsize) 106 bcount = 0; 107 else if ((off_t)(lbn + 1) * biosize > nsize) 108 bcount = nsize - (off_t)lbn * biosize; 109 *sz = bcount; 110 return (0); 111 } 112 113 int 114 ncl_getpages(struct vop_getpages_args *ap) 115 { 116 int i, error, nextoff, size, toff, count, npages; 117 struct uio uio; 118 struct iovec iov; 119 vm_offset_t kva; 120 struct buf *bp; 121 struct vnode *vp; 122 struct thread *td; 123 struct ucred *cred; 124 struct nfsmount *nmp; 125 vm_object_t object; 126 vm_page_t *pages; 127 struct nfsnode *np; 128 129 vp = ap->a_vp; 130 np = VTONFS(vp); 131 td = curthread; 132 cred = curthread->td_ucred; 133 nmp = VFSTONFS(vp->v_mount); 134 pages = ap->a_m; 135 npages = ap->a_count; 136 137 if ((object = vp->v_object) == NULL) { 138 printf("ncl_getpages: called with non-merged cache vnode\n"); 139 return (VM_PAGER_ERROR); 140 } 141 142 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 143 NFSLOCKNODE(np); 144 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 145 NFSUNLOCKNODE(np); 146 printf("ncl_getpages: called on non-cacheable vnode\n"); 147 return (VM_PAGER_ERROR); 148 } else 149 NFSUNLOCKNODE(np); 150 } 151 152 mtx_lock(&nmp->nm_mtx); 153 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 154 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 155 mtx_unlock(&nmp->nm_mtx); 156 /* We'll never get here for v4, because we always have fsinfo */ 157 (void)ncl_fsinfo(nmp, vp, cred, td); 158 } else 159 mtx_unlock(&nmp->nm_mtx); 160 161 if (use_buf_pager) 162 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 163 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 164 165 /* 166 * If the requested page is partially valid, just return it and 167 * allow the pager to zero-out the blanks. Partially valid pages 168 * can only occur at the file EOF. 169 * 170 * XXXGL: is that true for NFS, where short read can occur??? 171 */ 172 VM_OBJECT_WLOCK(object); 173 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 174 goto out; 175 VM_OBJECT_WUNLOCK(object); 176 177 /* 178 * We use only the kva address for the buffer, but this is extremely 179 * convenient and fast. 180 */ 181 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 182 183 kva = (vm_offset_t) bp->b_data; 184 pmap_qenter(kva, pages, npages); 185 VM_CNT_INC(v_vnodein); 186 VM_CNT_ADD(v_vnodepgsin, npages); 187 188 count = npages << PAGE_SHIFT; 189 iov.iov_base = (caddr_t) kva; 190 iov.iov_len = count; 191 uio.uio_iov = &iov; 192 uio.uio_iovcnt = 1; 193 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 194 uio.uio_resid = count; 195 uio.uio_segflg = UIO_SYSSPACE; 196 uio.uio_rw = UIO_READ; 197 uio.uio_td = td; 198 199 error = ncl_readrpc(vp, &uio, cred); 200 pmap_qremove(kva, npages); 201 202 uma_zfree(ncl_pbuf_zone, bp); 203 204 if (error && (uio.uio_resid == count)) { 205 printf("ncl_getpages: error %d\n", error); 206 return (VM_PAGER_ERROR); 207 } 208 209 /* 210 * Calculate the number of bytes read and validate only that number 211 * of bytes. Note that due to pending writes, size may be 0. This 212 * does not mean that the remaining data is invalid! 213 */ 214 215 size = count - uio.uio_resid; 216 VM_OBJECT_WLOCK(object); 217 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 218 vm_page_t m; 219 nextoff = toff + PAGE_SIZE; 220 m = pages[i]; 221 222 if (nextoff <= size) { 223 /* 224 * Read operation filled an entire page 225 */ 226 vm_page_valid(m); 227 KASSERT(m->dirty == 0, 228 ("nfs_getpages: page %p is dirty", m)); 229 } else if (size > toff) { 230 /* 231 * Read operation filled a partial page. 232 */ 233 vm_page_invalid(m); 234 vm_page_set_valid_range(m, 0, size - toff); 235 KASSERT(m->dirty == 0, 236 ("nfs_getpages: page %p is dirty", m)); 237 } else { 238 /* 239 * Read operation was short. If no error 240 * occurred we may have hit a zero-fill 241 * section. We leave valid set to 0, and page 242 * is freed by vm_page_readahead_finish() if 243 * its index is not equal to requested, or 244 * page is zeroed and set valid by 245 * vm_pager_get_pages() for requested page. 246 */ 247 ; 248 } 249 } 250 out: 251 VM_OBJECT_WUNLOCK(object); 252 if (ap->a_rbehind) 253 *ap->a_rbehind = 0; 254 if (ap->a_rahead) 255 *ap->a_rahead = 0; 256 return (VM_PAGER_OK); 257 } 258 259 /* 260 * Vnode op for VM putpages. 261 */ 262 int 263 ncl_putpages(struct vop_putpages_args *ap) 264 { 265 struct uio uio; 266 struct iovec iov; 267 int i, error, npages, count; 268 off_t offset; 269 int *rtvals; 270 struct vnode *vp; 271 struct thread *td; 272 struct ucred *cred; 273 struct nfsmount *nmp; 274 struct nfsnode *np; 275 vm_page_t *pages; 276 277 vp = ap->a_vp; 278 np = VTONFS(vp); 279 td = curthread; /* XXX */ 280 /* Set the cred to n_writecred for the write rpcs. */ 281 if (np->n_writecred != NULL) 282 cred = crhold(np->n_writecred); 283 else 284 cred = crhold(curthread->td_ucred); /* XXX */ 285 nmp = VFSTONFS(vp->v_mount); 286 pages = ap->a_m; 287 count = ap->a_count; 288 rtvals = ap->a_rtvals; 289 npages = btoc(count); 290 offset = IDX_TO_OFF(pages[0]->pindex); 291 292 mtx_lock(&nmp->nm_mtx); 293 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 294 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 295 mtx_unlock(&nmp->nm_mtx); 296 (void)ncl_fsinfo(nmp, vp, cred, td); 297 } else 298 mtx_unlock(&nmp->nm_mtx); 299 300 NFSLOCKNODE(np); 301 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 302 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 303 NFSUNLOCKNODE(np); 304 printf("ncl_putpages: called on noncache-able vnode\n"); 305 NFSLOCKNODE(np); 306 } 307 /* 308 * When putting pages, do not extend file past EOF. 309 */ 310 if (offset + count > np->n_size) { 311 count = np->n_size - offset; 312 if (count < 0) 313 count = 0; 314 } 315 NFSUNLOCKNODE(np); 316 317 for (i = 0; i < npages; i++) 318 rtvals[i] = VM_PAGER_ERROR; 319 320 VM_CNT_INC(v_vnodeout); 321 VM_CNT_ADD(v_vnodepgsout, count); 322 323 iov.iov_base = unmapped_buf; 324 iov.iov_len = count; 325 uio.uio_iov = &iov; 326 uio.uio_iovcnt = 1; 327 uio.uio_offset = offset; 328 uio.uio_resid = count; 329 uio.uio_segflg = UIO_NOCOPY; 330 uio.uio_rw = UIO_WRITE; 331 uio.uio_td = td; 332 333 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 334 cred); 335 crfree(cred); 336 337 if (error == 0 || !nfs_keep_dirty_on_error) { 338 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 339 np->n_size - offset, npages * PAGE_SIZE); 340 } 341 return (rtvals[0]); 342 } 343 344 /* 345 * For nfs, cache consistency can only be maintained approximately. 346 * Although RFC1094 does not specify the criteria, the following is 347 * believed to be compatible with the reference port. 348 * For nfs: 349 * If the file's modify time on the server has changed since the 350 * last read rpc or you have written to the file, 351 * you may have lost data cache consistency with the 352 * server, so flush all of the file's data out of the cache. 353 * Then force a getattr rpc to ensure that you have up to date 354 * attributes. 355 * NB: This implies that cache data can be read when up to 356 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 357 * attributes this could be forced by setting n_attrstamp to 0 before 358 * the VOP_GETATTR() call. 359 */ 360 static inline int 361 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 362 { 363 int error = 0; 364 struct vattr vattr; 365 struct nfsnode *np = VTONFS(vp); 366 bool old_lock; 367 368 /* 369 * Ensure the exclusive access to the node before checking 370 * whether the cache is consistent. 371 */ 372 old_lock = ncl_excl_start(vp); 373 NFSLOCKNODE(np); 374 if (np->n_flag & NMODIFIED) { 375 NFSUNLOCKNODE(np); 376 if (vp->v_type != VREG) { 377 if (vp->v_type != VDIR) 378 panic("nfs: bioread, not dir"); 379 ncl_invaldir(vp); 380 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 381 if (error != 0) 382 goto out; 383 } 384 np->n_attrstamp = 0; 385 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 386 error = VOP_GETATTR(vp, &vattr, cred); 387 if (error) 388 goto out; 389 NFSLOCKNODE(np); 390 np->n_mtime = vattr.va_mtime; 391 NFSUNLOCKNODE(np); 392 } else { 393 NFSUNLOCKNODE(np); 394 error = VOP_GETATTR(vp, &vattr, cred); 395 if (error) 396 goto out; 397 NFSLOCKNODE(np); 398 if ((np->n_flag & NSIZECHANGED) 399 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 400 NFSUNLOCKNODE(np); 401 if (vp->v_type == VDIR) 402 ncl_invaldir(vp); 403 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 404 if (error != 0) 405 goto out; 406 NFSLOCKNODE(np); 407 np->n_mtime = vattr.va_mtime; 408 np->n_flag &= ~NSIZECHANGED; 409 } 410 NFSUNLOCKNODE(np); 411 } 412 out: 413 ncl_excl_finish(vp, old_lock); 414 return (error); 415 } 416 417 static bool 418 ncl_bioread_dora(struct vnode *vp) 419 { 420 vm_object_t obj; 421 422 obj = vp->v_object; 423 if (obj == NULL) 424 return (true); 425 return (!vm_object_mightbedirty(vp->v_object) && 426 vp->v_object->un_pager.vnp.writemappings == 0); 427 } 428 429 /* 430 * Vnode op for read using bio 431 */ 432 int 433 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 434 { 435 struct nfsnode *np = VTONFS(vp); 436 struct buf *bp, *rabp; 437 struct thread *td; 438 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 439 daddr_t lbn, rabn; 440 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 441 off_t tmp_off; 442 443 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 444 if (uio->uio_resid == 0) 445 return (0); 446 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 447 return (EINVAL); 448 td = uio->uio_td; 449 450 mtx_lock(&nmp->nm_mtx); 451 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 452 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 453 mtx_unlock(&nmp->nm_mtx); 454 (void)ncl_fsinfo(nmp, vp, cred, td); 455 mtx_lock(&nmp->nm_mtx); 456 } 457 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 458 (void) newnfs_iosize(nmp); 459 460 tmp_off = uio->uio_offset + uio->uio_resid; 461 if (vp->v_type != VDIR && 462 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 463 mtx_unlock(&nmp->nm_mtx); 464 return (EFBIG); 465 } 466 mtx_unlock(&nmp->nm_mtx); 467 468 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 469 /* No caching/ no readaheads. Just read data into the user buffer */ 470 return ncl_readrpc(vp, uio, cred); 471 472 n = 0; 473 on = 0; 474 biosize = vp->v_bufobj.bo_bsize; 475 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 476 477 error = nfs_bioread_check_cons(vp, td, cred); 478 if (error) 479 return error; 480 481 save2 = curthread_pflags2_set(TDP2_SBPAGES); 482 do { 483 u_quad_t nsize; 484 485 NFSLOCKNODE(np); 486 nsize = np->n_size; 487 NFSUNLOCKNODE(np); 488 489 switch (vp->v_type) { 490 case VREG: 491 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 492 lbn = uio->uio_offset / biosize; 493 on = uio->uio_offset - (lbn * biosize); 494 495 /* 496 * Start the read ahead(s), as required. Do not do 497 * read-ahead if there are writeable mappings, since 498 * unlocked read by nfsiod could obliterate changes 499 * done by userspace. 500 */ 501 if (nmp->nm_readahead > 0 && ncl_bioread_dora(vp)) { 502 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 503 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 504 rabn = lbn + 1 + nra; 505 if (incore(&vp->v_bufobj, rabn) == NULL) { 506 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 507 if (!rabp) { 508 error = newnfs_sigintr(nmp, td); 509 if (error == 0) 510 error = EINTR; 511 goto out; 512 } 513 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 514 rabp->b_flags |= B_ASYNC; 515 rabp->b_iocmd = BIO_READ; 516 vfs_busy_pages(rabp, 0); 517 if (ncl_asyncio(nmp, rabp, cred, td)) { 518 rabp->b_flags |= B_INVAL; 519 rabp->b_ioflags |= BIO_ERROR; 520 vfs_unbusy_pages(rabp); 521 brelse(rabp); 522 break; 523 } 524 } else { 525 brelse(rabp); 526 } 527 } 528 } 529 } 530 531 /* Note that bcount is *not* DEV_BSIZE aligned. */ 532 bcount = biosize; 533 if ((off_t)lbn * biosize >= nsize) { 534 bcount = 0; 535 } else if ((off_t)(lbn + 1) * biosize > nsize) { 536 bcount = nsize - (off_t)lbn * biosize; 537 } 538 bp = nfs_getcacheblk(vp, lbn, bcount, td); 539 540 if (!bp) { 541 error = newnfs_sigintr(nmp, td); 542 if (error == 0) 543 error = EINTR; 544 goto out; 545 } 546 547 /* 548 * If B_CACHE is not set, we must issue the read. If this 549 * fails, we return an error. 550 */ 551 552 if ((bp->b_flags & B_CACHE) == 0) { 553 bp->b_iocmd = BIO_READ; 554 vfs_busy_pages(bp, 0); 555 error = ncl_doio(vp, bp, cred, td, 0); 556 if (error) { 557 brelse(bp); 558 goto out; 559 } 560 } 561 562 /* 563 * on is the offset into the current bp. Figure out how many 564 * bytes we can copy out of the bp. Note that bcount is 565 * NOT DEV_BSIZE aligned. 566 * 567 * Then figure out how many bytes we can copy into the uio. 568 */ 569 570 n = 0; 571 if (on < bcount) 572 n = MIN((unsigned)(bcount - on), uio->uio_resid); 573 break; 574 case VLNK: 575 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 576 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 577 if (!bp) { 578 error = newnfs_sigintr(nmp, td); 579 if (error == 0) 580 error = EINTR; 581 goto out; 582 } 583 if ((bp->b_flags & B_CACHE) == 0) { 584 bp->b_iocmd = BIO_READ; 585 vfs_busy_pages(bp, 0); 586 error = ncl_doio(vp, bp, cred, td, 0); 587 if (error) { 588 bp->b_ioflags |= BIO_ERROR; 589 brelse(bp); 590 goto out; 591 } 592 } 593 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 594 on = 0; 595 break; 596 case VDIR: 597 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 598 NFSLOCKNODE(np); 599 if (np->n_direofoffset 600 && uio->uio_offset >= np->n_direofoffset) { 601 NFSUNLOCKNODE(np); 602 error = 0; 603 goto out; 604 } 605 NFSUNLOCKNODE(np); 606 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 607 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 608 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 609 if (!bp) { 610 error = newnfs_sigintr(nmp, td); 611 if (error == 0) 612 error = EINTR; 613 goto out; 614 } 615 if ((bp->b_flags & B_CACHE) == 0) { 616 bp->b_iocmd = BIO_READ; 617 vfs_busy_pages(bp, 0); 618 error = ncl_doio(vp, bp, cred, td, 0); 619 if (error) { 620 brelse(bp); 621 } 622 while (error == NFSERR_BAD_COOKIE) { 623 ncl_invaldir(vp); 624 error = ncl_vinvalbuf(vp, 0, td, 1); 625 626 /* 627 * Yuck! The directory has been modified on the 628 * server. The only way to get the block is by 629 * reading from the beginning to get all the 630 * offset cookies. 631 * 632 * Leave the last bp intact unless there is an error. 633 * Loop back up to the while if the error is another 634 * NFSERR_BAD_COOKIE (double yuch!). 635 */ 636 for (i = 0; i <= lbn && !error; i++) { 637 NFSLOCKNODE(np); 638 if (np->n_direofoffset 639 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 640 NFSUNLOCKNODE(np); 641 error = 0; 642 goto out; 643 } 644 NFSUNLOCKNODE(np); 645 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 646 if (!bp) { 647 error = newnfs_sigintr(nmp, td); 648 if (error == 0) 649 error = EINTR; 650 goto out; 651 } 652 if ((bp->b_flags & B_CACHE) == 0) { 653 bp->b_iocmd = BIO_READ; 654 vfs_busy_pages(bp, 0); 655 error = ncl_doio(vp, bp, cred, td, 0); 656 /* 657 * no error + B_INVAL == directory EOF, 658 * use the block. 659 */ 660 if (error == 0 && (bp->b_flags & B_INVAL)) 661 break; 662 } 663 /* 664 * An error will throw away the block and the 665 * for loop will break out. If no error and this 666 * is not the block we want, we throw away the 667 * block and go for the next one via the for loop. 668 */ 669 if (error || i < lbn) 670 brelse(bp); 671 } 672 } 673 /* 674 * The above while is repeated if we hit another cookie 675 * error. If we hit an error and it wasn't a cookie error, 676 * we give up. 677 */ 678 if (error) 679 goto out; 680 } 681 682 /* 683 * If not eof and read aheads are enabled, start one. 684 * (You need the current block first, so that you have the 685 * directory offset cookie of the next block.) 686 */ 687 NFSLOCKNODE(np); 688 if (nmp->nm_readahead > 0 && ncl_bioread_dora(vp) && 689 (bp->b_flags & B_INVAL) == 0 && 690 (np->n_direofoffset == 0 || 691 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 692 incore(&vp->v_bufobj, lbn + 1) == NULL) { 693 NFSUNLOCKNODE(np); 694 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 695 if (rabp) { 696 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 697 rabp->b_flags |= B_ASYNC; 698 rabp->b_iocmd = BIO_READ; 699 vfs_busy_pages(rabp, 0); 700 if (ncl_asyncio(nmp, rabp, cred, td)) { 701 rabp->b_flags |= B_INVAL; 702 rabp->b_ioflags |= BIO_ERROR; 703 vfs_unbusy_pages(rabp); 704 brelse(rabp); 705 } 706 } else { 707 brelse(rabp); 708 } 709 } 710 NFSLOCKNODE(np); 711 } 712 /* 713 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 714 * chopped for the EOF condition, we cannot tell how large 715 * NFS directories are going to be until we hit EOF. So 716 * an NFS directory buffer is *not* chopped to its EOF. Now, 717 * it just so happens that b_resid will effectively chop it 718 * to EOF. *BUT* this information is lost if the buffer goes 719 * away and is reconstituted into a B_CACHE state ( due to 720 * being VMIO ) later. So we keep track of the directory eof 721 * in np->n_direofoffset and chop it off as an extra step 722 * right here. 723 */ 724 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 725 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 726 n = np->n_direofoffset - uio->uio_offset; 727 NFSUNLOCKNODE(np); 728 break; 729 default: 730 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 731 bp = NULL; 732 break; 733 } 734 735 if (n > 0) { 736 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 737 } 738 if (vp->v_type == VLNK) 739 n = 0; 740 if (bp != NULL) 741 brelse(bp); 742 } while (error == 0 && uio->uio_resid > 0 && n > 0); 743 out: 744 curthread_pflags2_restore(save2); 745 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 746 NFSLOCKNODE(np); 747 ncl_pager_setsize(vp, NULL); 748 } 749 return (error); 750 } 751 752 /* 753 * The NFS write path cannot handle iovecs with len > 1. So we need to 754 * break up iovecs accordingly (restricting them to wsize). 755 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 756 * For the ASYNC case, 2 copies are needed. The first a copy from the 757 * user buffer to a staging buffer and then a second copy from the staging 758 * buffer to mbufs. This can be optimized by copying from the user buffer 759 * directly into mbufs and passing the chain down, but that requires a 760 * fair amount of re-working of the relevant codepaths (and can be done 761 * later). 762 */ 763 static int 764 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred, 765 int ioflag) 766 { 767 struct uio uio; 768 struct iovec iov; 769 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 770 struct thread *td = uiop->uio_td; 771 int error, iomode, must_commit, size, wsize; 772 773 KASSERT((ioflag & IO_SYNC) != 0, ("nfs_directio_write: not sync")); 774 mtx_lock(&nmp->nm_mtx); 775 wsize = nmp->nm_wsize; 776 mtx_unlock(&nmp->nm_mtx); 777 while (uiop->uio_resid > 0) { 778 size = MIN(uiop->uio_resid, wsize); 779 size = MIN(uiop->uio_iov->iov_len, size); 780 iov.iov_base = uiop->uio_iov->iov_base; 781 iov.iov_len = size; 782 uio.uio_iov = &iov; 783 uio.uio_iovcnt = 1; 784 uio.uio_offset = uiop->uio_offset; 785 uio.uio_resid = size; 786 uio.uio_segflg = uiop->uio_segflg; 787 uio.uio_rw = UIO_WRITE; 788 uio.uio_td = td; 789 iomode = NFSWRITE_FILESYNC; 790 /* 791 * When doing direct I/O we do not care if the 792 * server's write verifier has changed, but we 793 * do not want to update the verifier if it has 794 * changed, since that hides the change from 795 * writes being done through the buffer cache. 796 * By passing must_commit in set to two, the code 797 * in nfsrpc_writerpc() will not update the 798 * verifier on the mount point. 799 */ 800 must_commit = 2; 801 error = ncl_writerpc(vp, &uio, cred, &iomode, 802 &must_commit, 0, ioflag); 803 KASSERT(must_commit == 2, 804 ("ncl_directio_write: Updated write verifier")); 805 if (error != 0) 806 return (error); 807 if (iomode != NFSWRITE_FILESYNC) 808 printf("nfs_directio_write: Broken server " 809 "did not reply FILE_SYNC\n"); 810 uiop->uio_offset += size; 811 uiop->uio_resid -= size; 812 if (uiop->uio_iov->iov_len <= size) { 813 uiop->uio_iovcnt--; 814 uiop->uio_iov++; 815 } else { 816 uiop->uio_iov->iov_base = 817 (char *)uiop->uio_iov->iov_base + size; 818 uiop->uio_iov->iov_len -= size; 819 } 820 } 821 return (0); 822 } 823 824 /* 825 * Vnode op for write using bio 826 */ 827 int 828 ncl_write(struct vop_write_args *ap) 829 { 830 int biosize; 831 struct uio *uio = ap->a_uio; 832 struct thread *td = uio->uio_td; 833 struct vnode *vp = ap->a_vp; 834 struct nfsnode *np = VTONFS(vp); 835 struct ucred *cred = ap->a_cred; 836 int ioflag = ap->a_ioflag; 837 struct buf *bp; 838 struct vattr vattr; 839 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 840 daddr_t lbn; 841 int bcount, noncontig_write, obcount; 842 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 843 size_t orig_resid, local_resid; 844 off_t orig_size, tmp_off; 845 struct timespec ts; 846 847 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 848 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 849 ("ncl_write proc")); 850 if (vp->v_type != VREG) 851 return (EIO); 852 NFSLOCKNODE(np); 853 if (np->n_flag & NWRITEERR) { 854 np->n_flag &= ~NWRITEERR; 855 NFSUNLOCKNODE(np); 856 return (np->n_error); 857 } else 858 NFSUNLOCKNODE(np); 859 mtx_lock(&nmp->nm_mtx); 860 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 861 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 862 mtx_unlock(&nmp->nm_mtx); 863 (void)ncl_fsinfo(nmp, vp, cred, td); 864 mtx_lock(&nmp->nm_mtx); 865 } 866 if (nmp->nm_wsize == 0) 867 (void) newnfs_iosize(nmp); 868 mtx_unlock(&nmp->nm_mtx); 869 870 /* 871 * Synchronously flush pending buffers if we are in synchronous 872 * mode or if we are appending. 873 */ 874 if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag & 875 NMODIFIED))) { 876 /* 877 * For the case where IO_APPEND is being done using a 878 * direct output (to the NFS server) RPC and 879 * newnfs_directio_enable is 0, all buffer cache buffers, 880 * including ones not modified, must be invalidated. 881 * This ensures that stale data is not read out of the 882 * buffer cache. The call also invalidates all mapped 883 * pages and, since the exclusive lock is held on the vnode, 884 * new pages cannot be faulted in. 885 * 886 * For the case where newnfs_directio_enable is set 887 * (which is not the default), it is not obvious that 888 * stale data should be left in the buffer cache, but 889 * the code has been this way for over a decade without 890 * complaints. Note that, unlike doing IO_APPEND via 891 * a direct write RPC when newnfs_directio_enable is not set, 892 * when newnfs_directio_enable is set, reading is done via 893 * direct to NFS server RPCs as well. 894 */ 895 np->n_attrstamp = 0; 896 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 897 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 898 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 899 if (error != 0) 900 return (error); 901 } 902 903 orig_resid = uio->uio_resid; 904 NFSLOCKNODE(np); 905 orig_size = np->n_size; 906 NFSUNLOCKNODE(np); 907 908 /* 909 * If IO_APPEND then load uio_offset. We restart here if we cannot 910 * get the append lock. 911 */ 912 if (ioflag & IO_APPEND) { 913 /* 914 * For NFSv4, the AppendWrite will Verify the size against 915 * the file's size on the server. If not the same, the 916 * write will then be retried, using the file size returned 917 * by the AppendWrite. However, for NFSv2 and NFSv3, the 918 * size must be acquired here via a Getattr RPC. 919 * The AppendWrite is not done for a pNFS mount. 920 */ 921 if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) { 922 np->n_attrstamp = 0; 923 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 924 error = VOP_GETATTR(vp, &vattr, cred); 925 if (error) 926 return (error); 927 } 928 NFSLOCKNODE(np); 929 uio->uio_offset = np->n_size; 930 NFSUNLOCKNODE(np); 931 } 932 933 if (uio->uio_offset < 0) 934 return (EINVAL); 935 tmp_off = uio->uio_offset + uio->uio_resid; 936 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 937 return (EFBIG); 938 if (uio->uio_resid == 0) 939 return (0); 940 941 /* 942 * Do IO_APPEND writing via a synchronous direct write. 943 * This can result in a significant performance improvement. 944 */ 945 if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) || 946 (ioflag & IO_APPEND)) { 947 /* 948 * Direct writes to the server must be done NFSWRITE_FILESYNC, 949 * because the write data is not cached and, therefore, the 950 * write cannot be redone after a server reboot. 951 * Set IO_SYNC to make this happen. 952 */ 953 ioflag |= IO_SYNC; 954 return (nfs_directio_write(vp, uio, cred, ioflag)); 955 } 956 957 /* 958 * Maybe this should be above the vnode op call, but so long as 959 * file servers have no limits, i don't think it matters 960 */ 961 error = vn_rlimit_fsize(vp, uio, td); 962 if (error != 0) 963 return (error); 964 965 save2 = curthread_pflags2_set(TDP2_SBPAGES); 966 biosize = vp->v_bufobj.bo_bsize; 967 /* 968 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 969 * would exceed the local maximum per-file write commit size when 970 * combined with those, we must decide whether to flush, 971 * go synchronous, or return error. We don't bother checking 972 * IO_UNIT -- we just make all writes atomic anyway, as there's 973 * no point optimizing for something that really won't ever happen. 974 */ 975 wouldcommit = 0; 976 if (!(ioflag & IO_SYNC)) { 977 int nflag; 978 979 NFSLOCKNODE(np); 980 nflag = np->n_flag; 981 NFSUNLOCKNODE(np); 982 if (nflag & NMODIFIED) { 983 BO_LOCK(&vp->v_bufobj); 984 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 985 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 986 b_bobufs) { 987 if (bp->b_flags & B_NEEDCOMMIT) 988 wouldcommit += bp->b_bcount; 989 } 990 } 991 BO_UNLOCK(&vp->v_bufobj); 992 } 993 } 994 995 do { 996 if (!(ioflag & IO_SYNC)) { 997 wouldcommit += biosize; 998 if (wouldcommit > nmp->nm_wcommitsize) { 999 np->n_attrstamp = 0; 1000 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1001 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1002 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1003 if (error != 0) 1004 goto out; 1005 wouldcommit = biosize; 1006 } 1007 } 1008 1009 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1010 lbn = uio->uio_offset / biosize; 1011 on = uio->uio_offset - (lbn * biosize); 1012 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1013 again: 1014 /* 1015 * Handle direct append and file extension cases, calculate 1016 * unaligned buffer size. 1017 */ 1018 NFSLOCKNODE(np); 1019 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1020 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1021 noncontig_write = 1; 1022 else 1023 noncontig_write = 0; 1024 if ((uio->uio_offset == np->n_size || 1025 (noncontig_write != 0 && 1026 lbn == (np->n_size / biosize) && 1027 uio->uio_offset + n > np->n_size)) && n) { 1028 NFSUNLOCKNODE(np); 1029 /* 1030 * Get the buffer (in its pre-append state to maintain 1031 * B_CACHE if it was previously set). Resize the 1032 * nfsnode after we have locked the buffer to prevent 1033 * readers from reading garbage. 1034 */ 1035 obcount = np->n_size - (lbn * biosize); 1036 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1037 1038 if (bp != NULL) { 1039 long save; 1040 1041 NFSLOCKNODE(np); 1042 np->n_size = uio->uio_offset + n; 1043 np->n_flag |= NMODIFIED; 1044 np->n_flag &= ~NVNSETSZSKIP; 1045 vnode_pager_setsize(vp, np->n_size); 1046 NFSUNLOCKNODE(np); 1047 1048 save = bp->b_flags & B_CACHE; 1049 bcount = on + n; 1050 allocbuf(bp, bcount); 1051 bp->b_flags |= save; 1052 if (noncontig_write != 0 && on > obcount) 1053 vfs_bio_bzero_buf(bp, obcount, on - 1054 obcount); 1055 } 1056 } else { 1057 /* 1058 * Obtain the locked cache block first, and then 1059 * adjust the file's size as appropriate. 1060 */ 1061 bcount = on + n; 1062 if ((off_t)lbn * biosize + bcount < np->n_size) { 1063 if ((off_t)(lbn + 1) * biosize < np->n_size) 1064 bcount = biosize; 1065 else 1066 bcount = np->n_size - (off_t)lbn * biosize; 1067 } 1068 NFSUNLOCKNODE(np); 1069 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1070 NFSLOCKNODE(np); 1071 if (uio->uio_offset + n > np->n_size) { 1072 np->n_size = uio->uio_offset + n; 1073 np->n_flag |= NMODIFIED; 1074 np->n_flag &= ~NVNSETSZSKIP; 1075 vnode_pager_setsize(vp, np->n_size); 1076 } 1077 NFSUNLOCKNODE(np); 1078 } 1079 1080 if (!bp) { 1081 error = newnfs_sigintr(nmp, td); 1082 if (!error) 1083 error = EINTR; 1084 break; 1085 } 1086 1087 /* 1088 * Issue a READ if B_CACHE is not set. In special-append 1089 * mode, B_CACHE is based on the buffer prior to the write 1090 * op and is typically set, avoiding the read. If a read 1091 * is required in special append mode, the server will 1092 * probably send us a short-read since we extended the file 1093 * on our end, resulting in b_resid == 0 and, thusly, 1094 * B_CACHE getting set. 1095 * 1096 * We can also avoid issuing the read if the write covers 1097 * the entire buffer. We have to make sure the buffer state 1098 * is reasonable in this case since we will not be initiating 1099 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1100 * more information. 1101 * 1102 * B_CACHE may also be set due to the buffer being cached 1103 * normally. 1104 */ 1105 1106 bp_cached = 1; 1107 if (on == 0 && n == bcount) { 1108 if ((bp->b_flags & B_CACHE) == 0) 1109 bp_cached = 0; 1110 bp->b_flags |= B_CACHE; 1111 bp->b_flags &= ~B_INVAL; 1112 bp->b_ioflags &= ~BIO_ERROR; 1113 } 1114 1115 if ((bp->b_flags & B_CACHE) == 0) { 1116 bp->b_iocmd = BIO_READ; 1117 vfs_busy_pages(bp, 0); 1118 error = ncl_doio(vp, bp, cred, td, 0); 1119 if (error) { 1120 brelse(bp); 1121 break; 1122 } 1123 } 1124 if (bp->b_wcred == NOCRED) 1125 bp->b_wcred = crhold(cred); 1126 NFSLOCKNODE(np); 1127 np->n_flag |= NMODIFIED; 1128 NFSUNLOCKNODE(np); 1129 1130 /* 1131 * If dirtyend exceeds file size, chop it down. This should 1132 * not normally occur but there is an append race where it 1133 * might occur XXX, so we log it. 1134 * 1135 * If the chopping creates a reverse-indexed or degenerate 1136 * situation with dirtyoff/end, we 0 both of them. 1137 */ 1138 1139 if (bp->b_dirtyend > bcount) { 1140 printf("NFS append race @%lx:%d\n", 1141 (long)bp->b_blkno * DEV_BSIZE, 1142 bp->b_dirtyend - bcount); 1143 bp->b_dirtyend = bcount; 1144 } 1145 1146 if (bp->b_dirtyoff >= bp->b_dirtyend) 1147 bp->b_dirtyoff = bp->b_dirtyend = 0; 1148 1149 /* 1150 * If the new write will leave a contiguous dirty 1151 * area, just update the b_dirtyoff and b_dirtyend, 1152 * otherwise force a write rpc of the old dirty area. 1153 * 1154 * If there has been a file lock applied to this file 1155 * or vfs.nfs.old_noncontig_writing is set, do the following: 1156 * While it is possible to merge discontiguous writes due to 1157 * our having a B_CACHE buffer ( and thus valid read data 1158 * for the hole), we don't because it could lead to 1159 * significant cache coherency problems with multiple clients, 1160 * especially if locking is implemented later on. 1161 * 1162 * If vfs.nfs.old_noncontig_writing is not set and there has 1163 * not been file locking done on this file: 1164 * Relax coherency a bit for the sake of performance and 1165 * expand the current dirty region to contain the new 1166 * write even if it means we mark some non-dirty data as 1167 * dirty. 1168 */ 1169 1170 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1171 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1172 if (bwrite(bp) == EINTR) { 1173 error = EINTR; 1174 break; 1175 } 1176 goto again; 1177 } 1178 1179 local_resid = uio->uio_resid; 1180 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1181 1182 if (error != 0 && !bp_cached) { 1183 /* 1184 * This block has no other content then what 1185 * possibly was written by the faulty uiomove. 1186 * Release it, forgetting the data pages, to 1187 * prevent the leak of uninitialized data to 1188 * usermode. 1189 */ 1190 bp->b_ioflags |= BIO_ERROR; 1191 brelse(bp); 1192 uio->uio_offset -= local_resid - uio->uio_resid; 1193 uio->uio_resid = local_resid; 1194 break; 1195 } 1196 1197 /* 1198 * Since this block is being modified, it must be written 1199 * again and not just committed. Since write clustering does 1200 * not work for the stage 1 data write, only the stage 2 1201 * commit rpc, we have to clear B_CLUSTEROK as well. 1202 */ 1203 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1204 1205 /* 1206 * Get the partial update on the progress made from 1207 * uiomove, if an error occurred. 1208 */ 1209 if (error != 0) 1210 n = local_resid - uio->uio_resid; 1211 1212 /* 1213 * Only update dirtyoff/dirtyend if not a degenerate 1214 * condition. 1215 */ 1216 if (n > 0) { 1217 if (bp->b_dirtyend > 0) { 1218 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1219 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1220 } else { 1221 bp->b_dirtyoff = on; 1222 bp->b_dirtyend = on + n; 1223 } 1224 vfs_bio_set_valid(bp, on, n); 1225 } 1226 1227 /* 1228 * If IO_SYNC do bwrite(). 1229 * 1230 * IO_INVAL appears to be unused. The idea appears to be 1231 * to turn off caching in this case. Very odd. XXX 1232 */ 1233 if ((ioflag & IO_SYNC)) { 1234 if (ioflag & IO_INVAL) 1235 bp->b_flags |= B_NOCACHE; 1236 error1 = bwrite(bp); 1237 if (error1 != 0) { 1238 if (error == 0) 1239 error = error1; 1240 break; 1241 } 1242 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1243 bp->b_flags |= B_ASYNC; 1244 (void) bwrite(bp); 1245 } else { 1246 bdwrite(bp); 1247 } 1248 1249 if (error != 0) 1250 break; 1251 } while (uio->uio_resid > 0 && n > 0); 1252 1253 if (error == 0) { 1254 nanouptime(&ts); 1255 NFSLOCKNODE(np); 1256 np->n_localmodtime = ts; 1257 NFSUNLOCKNODE(np); 1258 } else { 1259 if (ioflag & IO_UNIT) { 1260 VATTR_NULL(&vattr); 1261 vattr.va_size = orig_size; 1262 /* IO_SYNC is handled implicitely */ 1263 (void)VOP_SETATTR(vp, &vattr, cred); 1264 uio->uio_offset -= orig_resid - uio->uio_resid; 1265 uio->uio_resid = orig_resid; 1266 } 1267 } 1268 1269 out: 1270 curthread_pflags2_restore(save2); 1271 return (error); 1272 } 1273 1274 /* 1275 * Get an nfs cache block. 1276 * 1277 * Allocate a new one if the block isn't currently in the cache 1278 * and return the block marked busy. If the calling process is 1279 * interrupted by a signal for an interruptible mount point, return 1280 * NULL. 1281 * 1282 * The caller must carefully deal with the possible B_INVAL state of 1283 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1284 * indirectly), so synchronous reads can be issued without worrying about 1285 * the B_INVAL state. We have to be a little more careful when dealing 1286 * with writes (see comments in nfs_write()) when extending a file past 1287 * its EOF. 1288 */ 1289 static struct buf * 1290 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1291 { 1292 struct buf *bp; 1293 struct mount *mp; 1294 struct nfsmount *nmp; 1295 1296 mp = vp->v_mount; 1297 nmp = VFSTONFS(mp); 1298 1299 if (nmp->nm_flag & NFSMNT_INT) { 1300 sigset_t oldset; 1301 1302 newnfs_set_sigmask(td, &oldset); 1303 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1304 newnfs_restore_sigmask(td, &oldset); 1305 while (bp == NULL) { 1306 if (newnfs_sigintr(nmp, td)) 1307 return (NULL); 1308 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1309 } 1310 } else { 1311 bp = getblk(vp, bn, size, 0, 0, 0); 1312 } 1313 1314 if (vp->v_type == VREG) 1315 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1316 return (bp); 1317 } 1318 1319 /* 1320 * Flush and invalidate all dirty buffers. If another process is already 1321 * doing the flush, just wait for completion. 1322 */ 1323 int 1324 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1325 { 1326 struct nfsnode *np = VTONFS(vp); 1327 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1328 int error = 0, slpflag, slptimeo; 1329 bool old_lock; 1330 struct timespec ts; 1331 1332 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1333 1334 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1335 intrflg = 0; 1336 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1337 intrflg = 1; 1338 if (intrflg) { 1339 slpflag = PCATCH; 1340 slptimeo = 2 * hz; 1341 } else { 1342 slpflag = 0; 1343 slptimeo = 0; 1344 } 1345 1346 old_lock = ncl_excl_start(vp); 1347 if (old_lock) 1348 flags |= V_ALLOWCLEAN; 1349 1350 /* 1351 * Now, flush as required. 1352 */ 1353 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE) { 1354 vnode_pager_clean_sync(vp); 1355 1356 /* 1357 * If the page clean was interrupted, fail the invalidation. 1358 * Not doing so, we run the risk of losing dirty pages in the 1359 * vinvalbuf() call below. 1360 */ 1361 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1362 goto out; 1363 } 1364 1365 error = vinvalbuf(vp, flags, slpflag, 0); 1366 while (error) { 1367 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1368 goto out; 1369 error = vinvalbuf(vp, flags, 0, slptimeo); 1370 } 1371 if (NFSHASPNFS(nmp)) { 1372 nfscl_layoutcommit(vp, td); 1373 nanouptime(&ts); 1374 /* 1375 * Invalidate the attribute cache, since writes to a DS 1376 * won't update the size attribute. 1377 */ 1378 NFSLOCKNODE(np); 1379 np->n_attrstamp = 0; 1380 } else { 1381 nanouptime(&ts); 1382 NFSLOCKNODE(np); 1383 } 1384 if ((np->n_flag & NMODIFIED) != 0) { 1385 np->n_localmodtime = ts; 1386 np->n_flag &= ~NMODIFIED; 1387 } 1388 NFSUNLOCKNODE(np); 1389 out: 1390 ncl_excl_finish(vp, old_lock); 1391 return error; 1392 } 1393 1394 /* 1395 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1396 * This is mainly to avoid queueing async I/O requests when the nfsiods 1397 * are all hung on a dead server. 1398 * 1399 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1400 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1401 */ 1402 int 1403 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1404 { 1405 int iod; 1406 int gotiod; 1407 int slpflag = 0; 1408 int slptimeo = 0; 1409 int error, error2; 1410 1411 /* 1412 * Commits are usually short and sweet so lets save some cpu and 1413 * leave the async daemons for more important rpc's (such as reads 1414 * and writes). 1415 * 1416 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1417 * in the directory in order to update attributes. This can deadlock 1418 * with another thread that is waiting for async I/O to be done by 1419 * an nfsiod thread while holding a lock on one of these vnodes. 1420 * To avoid this deadlock, don't allow the async nfsiod threads to 1421 * perform Readdirplus RPCs. 1422 */ 1423 NFSLOCKIOD(); 1424 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1425 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1426 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1427 NFSUNLOCKIOD(); 1428 return(EIO); 1429 } 1430 again: 1431 if (nmp->nm_flag & NFSMNT_INT) 1432 slpflag = PCATCH; 1433 gotiod = FALSE; 1434 1435 /* 1436 * Find a free iod to process this request. 1437 */ 1438 for (iod = 0; iod < ncl_numasync; iod++) 1439 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1440 gotiod = TRUE; 1441 break; 1442 } 1443 1444 /* 1445 * Try to create one if none are free. 1446 */ 1447 if (!gotiod) 1448 ncl_nfsiodnew(); 1449 else { 1450 /* 1451 * Found one, so wake it up and tell it which 1452 * mount to process. 1453 */ 1454 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1455 iod, nmp)); 1456 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1457 ncl_iodmount[iod] = nmp; 1458 nmp->nm_bufqiods++; 1459 wakeup(&ncl_iodwant[iod]); 1460 } 1461 1462 /* 1463 * If none are free, we may already have an iod working on this mount 1464 * point. If so, it will process our request. 1465 */ 1466 if (!gotiod) { 1467 if (nmp->nm_bufqiods > 0) { 1468 NFS_DPF(ASYNCIO, 1469 ("ncl_asyncio: %d iods are already processing mount %p\n", 1470 nmp->nm_bufqiods, nmp)); 1471 gotiod = TRUE; 1472 } 1473 } 1474 1475 /* 1476 * If we have an iod which can process the request, then queue 1477 * the buffer. 1478 */ 1479 if (gotiod) { 1480 /* 1481 * Ensure that the queue never grows too large. We still want 1482 * to asynchronize so we block rather then return EIO. 1483 */ 1484 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1485 NFS_DPF(ASYNCIO, 1486 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1487 nmp->nm_bufqwant = TRUE; 1488 error = newnfs_msleep(td, &nmp->nm_bufq, 1489 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1490 slptimeo); 1491 if (error) { 1492 error2 = newnfs_sigintr(nmp, td); 1493 if (error2) { 1494 NFSUNLOCKIOD(); 1495 return (error2); 1496 } 1497 if (slpflag == PCATCH) { 1498 slpflag = 0; 1499 slptimeo = 2 * hz; 1500 } 1501 } 1502 /* 1503 * We might have lost our iod while sleeping, 1504 * so check and loop if necessary. 1505 */ 1506 goto again; 1507 } 1508 1509 /* We might have lost our nfsiod */ 1510 if (nmp->nm_bufqiods == 0) { 1511 NFS_DPF(ASYNCIO, 1512 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1513 goto again; 1514 } 1515 1516 if (bp->b_iocmd == BIO_READ) { 1517 if (bp->b_rcred == NOCRED && cred != NOCRED) 1518 bp->b_rcred = crhold(cred); 1519 } else { 1520 if (bp->b_wcred == NOCRED && cred != NOCRED) 1521 bp->b_wcred = crhold(cred); 1522 } 1523 1524 if (bp->b_flags & B_REMFREE) 1525 bremfreef(bp); 1526 BUF_KERNPROC(bp); 1527 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1528 nmp->nm_bufqlen++; 1529 KASSERT((bp->b_flags & B_DIRECT) == 0, 1530 ("ncl_asyncio: B_DIRECT set")); 1531 NFSUNLOCKIOD(); 1532 return (0); 1533 } 1534 1535 NFSUNLOCKIOD(); 1536 1537 /* 1538 * All the iods are busy on other mounts, so return EIO to 1539 * force the caller to process the i/o synchronously. 1540 */ 1541 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1542 return (EIO); 1543 } 1544 1545 /* 1546 * Do an I/O operation to/from a cache block. This may be called 1547 * synchronously or from an nfsiod. 1548 */ 1549 int 1550 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1551 int called_from_strategy) 1552 { 1553 struct uio *uiop; 1554 struct nfsnode *np; 1555 struct nfsmount *nmp; 1556 int error = 0, iomode, must_commit = 0; 1557 struct uio uio; 1558 struct iovec io; 1559 struct proc *p = td ? td->td_proc : NULL; 1560 uint8_t iocmd; 1561 1562 np = VTONFS(vp); 1563 nmp = VFSTONFS(vp->v_mount); 1564 uiop = &uio; 1565 uiop->uio_iov = &io; 1566 uiop->uio_iovcnt = 1; 1567 uiop->uio_segflg = UIO_SYSSPACE; 1568 uiop->uio_td = td; 1569 1570 /* 1571 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1572 * do this here so we do not have to do it in all the code that 1573 * calls us. 1574 */ 1575 bp->b_flags &= ~B_INVAL; 1576 bp->b_ioflags &= ~BIO_ERROR; 1577 1578 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1579 iocmd = bp->b_iocmd; 1580 if (iocmd == BIO_READ) { 1581 io.iov_len = uiop->uio_resid = bp->b_bcount; 1582 io.iov_base = bp->b_data; 1583 uiop->uio_rw = UIO_READ; 1584 1585 switch (vp->v_type) { 1586 case VREG: 1587 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1588 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1589 error = ncl_readrpc(vp, uiop, cr); 1590 1591 if (!error) { 1592 if (uiop->uio_resid) { 1593 /* 1594 * If we had a short read with no error, we must have 1595 * hit a file hole. We should zero-fill the remainder. 1596 * This can also occur if the server hits the file EOF. 1597 * 1598 * Holes used to be able to occur due to pending 1599 * writes, but that is not possible any longer. 1600 */ 1601 int nread = bp->b_bcount - uiop->uio_resid; 1602 ssize_t left = uiop->uio_resid; 1603 1604 if (left > 0) 1605 bzero((char *)bp->b_data + nread, left); 1606 uiop->uio_resid = 0; 1607 } 1608 } 1609 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1610 if (p && vp->v_writecount <= -1) { 1611 NFSLOCKNODE(np); 1612 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1613 NFSUNLOCKNODE(np); 1614 PROC_LOCK(p); 1615 killproc(p, "text file modification"); 1616 PROC_UNLOCK(p); 1617 } else 1618 NFSUNLOCKNODE(np); 1619 } 1620 break; 1621 case VLNK: 1622 uiop->uio_offset = (off_t)0; 1623 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1624 error = ncl_readlinkrpc(vp, uiop, cr); 1625 break; 1626 case VDIR: 1627 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1628 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1629 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1630 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1631 if (error == NFSERR_NOTSUPP) 1632 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1633 } 1634 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1635 error = ncl_readdirrpc(vp, uiop, cr, td); 1636 /* 1637 * end-of-directory sets B_INVAL but does not generate an 1638 * error. 1639 */ 1640 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1641 bp->b_flags |= B_INVAL; 1642 break; 1643 default: 1644 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1645 break; 1646 } 1647 if (error) { 1648 bp->b_ioflags |= BIO_ERROR; 1649 bp->b_error = error; 1650 } 1651 } else { 1652 /* 1653 * If we only need to commit, try to commit 1654 */ 1655 if (bp->b_flags & B_NEEDCOMMIT) { 1656 int retv; 1657 off_t off; 1658 1659 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1660 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1661 bp->b_wcred, td); 1662 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) { 1663 bp->b_dirtyoff = bp->b_dirtyend = 0; 1664 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1665 bp->b_resid = 0; 1666 bufdone(bp); 1667 return (0); 1668 } 1669 if (retv == NFSERR_STALEWRITEVERF) { 1670 ncl_clearcommit(vp->v_mount); 1671 } 1672 } 1673 1674 /* 1675 * Setup for actual write 1676 */ 1677 NFSLOCKNODE(np); 1678 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1679 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1680 NFSUNLOCKNODE(np); 1681 1682 if (bp->b_dirtyend > bp->b_dirtyoff) { 1683 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1684 - bp->b_dirtyoff; 1685 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1686 + bp->b_dirtyoff; 1687 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1688 uiop->uio_rw = UIO_WRITE; 1689 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1690 1691 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1692 iomode = NFSWRITE_UNSTABLE; 1693 else 1694 iomode = NFSWRITE_FILESYNC; 1695 1696 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1697 called_from_strategy, 0); 1698 1699 /* 1700 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1701 * to cluster the buffers needing commit. This will allow 1702 * the system to submit a single commit rpc for the whole 1703 * cluster. We can do this even if the buffer is not 100% 1704 * dirty (relative to the NFS blocksize), so we optimize the 1705 * append-to-file-case. 1706 * 1707 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1708 * cleared because write clustering only works for commit 1709 * rpc's, not for the data portion of the write). 1710 */ 1711 1712 if (!error && iomode == NFSWRITE_UNSTABLE) { 1713 bp->b_flags |= B_NEEDCOMMIT; 1714 if (bp->b_dirtyoff == 0 1715 && bp->b_dirtyend == bp->b_bcount) 1716 bp->b_flags |= B_CLUSTEROK; 1717 } else { 1718 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1719 } 1720 1721 /* 1722 * For an interrupted write, the buffer is still valid 1723 * and the write hasn't been pushed to the server yet, 1724 * so we can't set BIO_ERROR and report the interruption 1725 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1726 * is not relevant, so the rpc attempt is essentially 1727 * a noop. For the case of a V3 write rpc not being 1728 * committed to stable storage, the block is still 1729 * dirty and requires either a commit rpc or another 1730 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1731 * the block is reused. This is indicated by setting 1732 * the B_DELWRI and B_NEEDCOMMIT flags. 1733 * 1734 * EIO is returned by ncl_writerpc() to indicate a recoverable 1735 * write error and is handled as above, except that 1736 * B_EINTR isn't set. One cause of this is a stale stateid 1737 * error for the RPC that indicates recovery is required, 1738 * when called with called_from_strategy != 0. 1739 * 1740 * If the buffer is marked B_PAGING, it does not reside on 1741 * the vp's paging queues so we cannot call bdirty(). The 1742 * bp in this case is not an NFS cache block so we should 1743 * be safe. XXX 1744 * 1745 * The logic below breaks up errors into recoverable and 1746 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1747 * and keep the buffer around for potential write retries. 1748 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1749 * and save the error in the nfsnode. This is less than ideal 1750 * but necessary. Keeping such buffers around could potentially 1751 * cause buffer exhaustion eventually (they can never be written 1752 * out, so will get constantly be re-dirtied). It also causes 1753 * all sorts of vfs panics. For non-recoverable write errors, 1754 * also invalidate the attrcache, so we'll be forced to go over 1755 * the wire for this object, returning an error to user on next 1756 * call (most of the time). 1757 */ 1758 if (error == EINTR || error == EIO || error == ETIMEDOUT 1759 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1760 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1761 if ((bp->b_flags & B_PAGING) == 0) { 1762 bdirty(bp); 1763 bp->b_flags &= ~B_DONE; 1764 } 1765 if ((error == EINTR || error == ETIMEDOUT) && 1766 (bp->b_flags & B_ASYNC) == 0) 1767 bp->b_flags |= B_EINTR; 1768 } else { 1769 if (error) { 1770 bp->b_ioflags |= BIO_ERROR; 1771 bp->b_flags |= B_INVAL; 1772 bp->b_error = np->n_error = error; 1773 NFSLOCKNODE(np); 1774 np->n_flag |= NWRITEERR; 1775 np->n_attrstamp = 0; 1776 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1777 NFSUNLOCKNODE(np); 1778 } 1779 bp->b_dirtyoff = bp->b_dirtyend = 0; 1780 } 1781 } else { 1782 bp->b_resid = 0; 1783 bufdone(bp); 1784 return (0); 1785 } 1786 } 1787 bp->b_resid = uiop->uio_resid; 1788 if (must_commit == 1) 1789 ncl_clearcommit(vp->v_mount); 1790 bufdone(bp); 1791 return (error); 1792 } 1793 1794 /* 1795 * Used to aid in handling ftruncate() operations on the NFS client side. 1796 * Truncation creates a number of special problems for NFS. We have to 1797 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1798 * we have to properly handle VM pages or (potentially dirty) buffers 1799 * that straddle the truncation point. 1800 */ 1801 1802 int 1803 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1804 { 1805 struct nfsnode *np = VTONFS(vp); 1806 u_quad_t tsize; 1807 int biosize = vp->v_bufobj.bo_bsize; 1808 int error = 0; 1809 1810 NFSLOCKNODE(np); 1811 tsize = np->n_size; 1812 np->n_size = nsize; 1813 NFSUNLOCKNODE(np); 1814 1815 if (nsize < tsize) { 1816 struct buf *bp; 1817 daddr_t lbn; 1818 int bufsize; 1819 1820 /* 1821 * vtruncbuf() doesn't get the buffer overlapping the 1822 * truncation point. We may have a B_DELWRI and/or B_CACHE 1823 * buffer that now needs to be truncated. 1824 */ 1825 error = vtruncbuf(vp, nsize, biosize); 1826 lbn = nsize / biosize; 1827 bufsize = nsize - (lbn * biosize); 1828 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1829 if (!bp) 1830 return EINTR; 1831 if (bp->b_dirtyoff > bp->b_bcount) 1832 bp->b_dirtyoff = bp->b_bcount; 1833 if (bp->b_dirtyend > bp->b_bcount) 1834 bp->b_dirtyend = bp->b_bcount; 1835 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1836 brelse(bp); 1837 } else { 1838 vnode_pager_setsize(vp, nsize); 1839 } 1840 return(error); 1841 } 1842