xref: /freebsd/sys/fs/nfsclient/nfs_clbio.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bio.h>
38 #include <sys/buf.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/rwlock.h>
42 #include <sys/vmmeter.h>
43 #include <sys/vnode.h>
44 
45 #include <vm/vm.h>
46 #include <vm/vm_param.h>
47 #include <vm/vm_extern.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_object.h>
50 #include <vm/vm_pager.h>
51 #include <vm/vnode_pager.h>
52 
53 #include <fs/nfs/nfsport.h>
54 #include <fs/nfsclient/nfsmount.h>
55 #include <fs/nfsclient/nfs.h>
56 #include <fs/nfsclient/nfsnode.h>
57 #include <fs/nfsclient/nfs_kdtrace.h>
58 
59 extern int newnfs_directio_allow_mmap;
60 extern struct nfsstatsv1 nfsstatsv1;
61 extern struct mtx ncl_iod_mutex;
62 extern int ncl_numasync;
63 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
64 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
65 extern int newnfs_directio_enable;
66 extern int nfs_keep_dirty_on_error;
67 
68 uma_zone_t ncl_pbuf_zone;
69 
70 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
71     struct thread *td);
72 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
73     struct ucred *cred, int ioflag);
74 
75 /*
76  * Vnode op for VM getpages.
77  */
78 SYSCTL_DECL(_vfs_nfs);
79 static int use_buf_pager = 1;
80 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN,
81     &use_buf_pager, 0,
82     "Use buffer pager instead of direct readrpc call");
83 
84 static daddr_t
85 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
86 {
87 
88 	return (off / vp->v_bufobj.bo_bsize);
89 }
90 
91 static int
92 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz)
93 {
94 	struct nfsnode *np;
95 	u_quad_t nsize;
96 	int biosize, bcount;
97 
98 	np = VTONFS(vp);
99 	NFSLOCKNODE(np);
100 	nsize = np->n_size;
101 	NFSUNLOCKNODE(np);
102 
103 	biosize = vp->v_bufobj.bo_bsize;
104 	bcount = biosize;
105 	if ((off_t)lbn * biosize >= nsize)
106 		bcount = 0;
107 	else if ((off_t)(lbn + 1) * biosize > nsize)
108 		bcount = nsize - (off_t)lbn * biosize;
109 	*sz = bcount;
110 	return (0);
111 }
112 
113 int
114 ncl_getpages(struct vop_getpages_args *ap)
115 {
116 	int i, error, nextoff, size, toff, count, npages;
117 	struct uio uio;
118 	struct iovec iov;
119 	vm_offset_t kva;
120 	struct buf *bp;
121 	struct vnode *vp;
122 	struct thread *td;
123 	struct ucred *cred;
124 	struct nfsmount *nmp;
125 	vm_object_t object;
126 	vm_page_t *pages;
127 	struct nfsnode *np;
128 
129 	vp = ap->a_vp;
130 	np = VTONFS(vp);
131 	td = curthread;
132 	cred = curthread->td_ucred;
133 	nmp = VFSTONFS(vp->v_mount);
134 	pages = ap->a_m;
135 	npages = ap->a_count;
136 
137 	if ((object = vp->v_object) == NULL) {
138 		printf("ncl_getpages: called with non-merged cache vnode\n");
139 		return (VM_PAGER_ERROR);
140 	}
141 
142 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
143 		NFSLOCKNODE(np);
144 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
145 			NFSUNLOCKNODE(np);
146 			printf("ncl_getpages: called on non-cacheable vnode\n");
147 			return (VM_PAGER_ERROR);
148 		} else
149 			NFSUNLOCKNODE(np);
150 	}
151 
152 	mtx_lock(&nmp->nm_mtx);
153 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
154 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
155 		mtx_unlock(&nmp->nm_mtx);
156 		/* We'll never get here for v4, because we always have fsinfo */
157 		(void)ncl_fsinfo(nmp, vp, cred, td);
158 	} else
159 		mtx_unlock(&nmp->nm_mtx);
160 
161 	if (use_buf_pager)
162 		return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind,
163 		    ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz));
164 
165 	/*
166 	 * If the requested page is partially valid, just return it and
167 	 * allow the pager to zero-out the blanks.  Partially valid pages
168 	 * can only occur at the file EOF.
169 	 *
170 	 * XXXGL: is that true for NFS, where short read can occur???
171 	 */
172 	VM_OBJECT_WLOCK(object);
173 	if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0)
174 		goto out;
175 	VM_OBJECT_WUNLOCK(object);
176 
177 	/*
178 	 * We use only the kva address for the buffer, but this is extremely
179 	 * convenient and fast.
180 	 */
181 	bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK);
182 
183 	kva = (vm_offset_t) bp->b_data;
184 	pmap_qenter(kva, pages, npages);
185 	VM_CNT_INC(v_vnodein);
186 	VM_CNT_ADD(v_vnodepgsin, npages);
187 
188 	count = npages << PAGE_SHIFT;
189 	iov.iov_base = (caddr_t) kva;
190 	iov.iov_len = count;
191 	uio.uio_iov = &iov;
192 	uio.uio_iovcnt = 1;
193 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
194 	uio.uio_resid = count;
195 	uio.uio_segflg = UIO_SYSSPACE;
196 	uio.uio_rw = UIO_READ;
197 	uio.uio_td = td;
198 
199 	error = ncl_readrpc(vp, &uio, cred);
200 	pmap_qremove(kva, npages);
201 
202 	uma_zfree(ncl_pbuf_zone, bp);
203 
204 	if (error && (uio.uio_resid == count)) {
205 		printf("ncl_getpages: error %d\n", error);
206 		return (VM_PAGER_ERROR);
207 	}
208 
209 	/*
210 	 * Calculate the number of bytes read and validate only that number
211 	 * of bytes.  Note that due to pending writes, size may be 0.  This
212 	 * does not mean that the remaining data is invalid!
213 	 */
214 
215 	size = count - uio.uio_resid;
216 	VM_OBJECT_WLOCK(object);
217 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
218 		vm_page_t m;
219 		nextoff = toff + PAGE_SIZE;
220 		m = pages[i];
221 
222 		if (nextoff <= size) {
223 			/*
224 			 * Read operation filled an entire page
225 			 */
226 			vm_page_valid(m);
227 			KASSERT(m->dirty == 0,
228 			    ("nfs_getpages: page %p is dirty", m));
229 		} else if (size > toff) {
230 			/*
231 			 * Read operation filled a partial page.
232 			 */
233 			vm_page_invalid(m);
234 			vm_page_set_valid_range(m, 0, size - toff);
235 			KASSERT(m->dirty == 0,
236 			    ("nfs_getpages: page %p is dirty", m));
237 		} else {
238 			/*
239 			 * Read operation was short.  If no error
240 			 * occurred we may have hit a zero-fill
241 			 * section.  We leave valid set to 0, and page
242 			 * is freed by vm_page_readahead_finish() if
243 			 * its index is not equal to requested, or
244 			 * page is zeroed and set valid by
245 			 * vm_pager_get_pages() for requested page.
246 			 */
247 			;
248 		}
249 	}
250 out:
251 	VM_OBJECT_WUNLOCK(object);
252 	if (ap->a_rbehind)
253 		*ap->a_rbehind = 0;
254 	if (ap->a_rahead)
255 		*ap->a_rahead = 0;
256 	return (VM_PAGER_OK);
257 }
258 
259 /*
260  * Vnode op for VM putpages.
261  */
262 int
263 ncl_putpages(struct vop_putpages_args *ap)
264 {
265 	struct uio uio;
266 	struct iovec iov;
267 	int i, error, npages, count;
268 	off_t offset;
269 	int *rtvals;
270 	struct vnode *vp;
271 	struct thread *td;
272 	struct ucred *cred;
273 	struct nfsmount *nmp;
274 	struct nfsnode *np;
275 	vm_page_t *pages;
276 
277 	vp = ap->a_vp;
278 	np = VTONFS(vp);
279 	td = curthread;				/* XXX */
280 	/* Set the cred to n_writecred for the write rpcs. */
281 	if (np->n_writecred != NULL)
282 		cred = crhold(np->n_writecred);
283 	else
284 		cred = crhold(curthread->td_ucred);	/* XXX */
285 	nmp = VFSTONFS(vp->v_mount);
286 	pages = ap->a_m;
287 	count = ap->a_count;
288 	rtvals = ap->a_rtvals;
289 	npages = btoc(count);
290 	offset = IDX_TO_OFF(pages[0]->pindex);
291 
292 	mtx_lock(&nmp->nm_mtx);
293 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
294 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
295 		mtx_unlock(&nmp->nm_mtx);
296 		(void)ncl_fsinfo(nmp, vp, cred, td);
297 	} else
298 		mtx_unlock(&nmp->nm_mtx);
299 
300 	NFSLOCKNODE(np);
301 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
302 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
303 		NFSUNLOCKNODE(np);
304 		printf("ncl_putpages: called on noncache-able vnode\n");
305 		NFSLOCKNODE(np);
306 	}
307 	/*
308 	 * When putting pages, do not extend file past EOF.
309 	 */
310 	if (offset + count > np->n_size) {
311 		count = np->n_size - offset;
312 		if (count < 0)
313 			count = 0;
314 	}
315 	NFSUNLOCKNODE(np);
316 
317 	for (i = 0; i < npages; i++)
318 		rtvals[i] = VM_PAGER_ERROR;
319 
320 	VM_CNT_INC(v_vnodeout);
321 	VM_CNT_ADD(v_vnodepgsout, count);
322 
323 	iov.iov_base = unmapped_buf;
324 	iov.iov_len = count;
325 	uio.uio_iov = &iov;
326 	uio.uio_iovcnt = 1;
327 	uio.uio_offset = offset;
328 	uio.uio_resid = count;
329 	uio.uio_segflg = UIO_NOCOPY;
330 	uio.uio_rw = UIO_WRITE;
331 	uio.uio_td = td;
332 
333 	error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync),
334 	    cred);
335 	crfree(cred);
336 
337 	if (error == 0 || !nfs_keep_dirty_on_error) {
338 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid,
339 		    np->n_size - offset, npages * PAGE_SIZE);
340 	}
341 	return (rtvals[0]);
342 }
343 
344 /*
345  * For nfs, cache consistency can only be maintained approximately.
346  * Although RFC1094 does not specify the criteria, the following is
347  * believed to be compatible with the reference port.
348  * For nfs:
349  * If the file's modify time on the server has changed since the
350  * last read rpc or you have written to the file,
351  * you may have lost data cache consistency with the
352  * server, so flush all of the file's data out of the cache.
353  * Then force a getattr rpc to ensure that you have up to date
354  * attributes.
355  * NB: This implies that cache data can be read when up to
356  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
357  * attributes this could be forced by setting n_attrstamp to 0 before
358  * the VOP_GETATTR() call.
359  */
360 static inline int
361 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
362 {
363 	int error = 0;
364 	struct vattr vattr;
365 	struct nfsnode *np = VTONFS(vp);
366 	bool old_lock;
367 
368 	/*
369 	 * Ensure the exclusove access to the node before checking
370 	 * whether the cache is consistent.
371 	 */
372 	old_lock = ncl_excl_start(vp);
373 	NFSLOCKNODE(np);
374 	if (np->n_flag & NMODIFIED) {
375 		NFSUNLOCKNODE(np);
376 		if (vp->v_type != VREG) {
377 			if (vp->v_type != VDIR)
378 				panic("nfs: bioread, not dir");
379 			ncl_invaldir(vp);
380 			error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
381 			if (error != 0)
382 				goto out;
383 		}
384 		np->n_attrstamp = 0;
385 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
386 		error = VOP_GETATTR(vp, &vattr, cred);
387 		if (error)
388 			goto out;
389 		NFSLOCKNODE(np);
390 		np->n_mtime = vattr.va_mtime;
391 		NFSUNLOCKNODE(np);
392 	} else {
393 		NFSUNLOCKNODE(np);
394 		error = VOP_GETATTR(vp, &vattr, cred);
395 		if (error)
396 			goto out;
397 		NFSLOCKNODE(np);
398 		if ((np->n_flag & NSIZECHANGED)
399 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
400 			NFSUNLOCKNODE(np);
401 			if (vp->v_type == VDIR)
402 				ncl_invaldir(vp);
403 			error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
404 			if (error != 0)
405 				goto out;
406 			NFSLOCKNODE(np);
407 			np->n_mtime = vattr.va_mtime;
408 			np->n_flag &= ~NSIZECHANGED;
409 		}
410 		NFSUNLOCKNODE(np);
411 	}
412 out:
413 	ncl_excl_finish(vp, old_lock);
414 	return (error);
415 }
416 
417 /*
418  * Vnode op for read using bio
419  */
420 int
421 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
422 {
423 	struct nfsnode *np = VTONFS(vp);
424 	struct buf *bp, *rabp;
425 	struct thread *td;
426 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
427 	daddr_t lbn, rabn;
428 	int biosize, bcount, error, i, n, nra, on, save2, seqcount;
429 	off_t tmp_off;
430 
431 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
432 	if (uio->uio_resid == 0)
433 		return (0);
434 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
435 		return (EINVAL);
436 	td = uio->uio_td;
437 
438 	mtx_lock(&nmp->nm_mtx);
439 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
440 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
441 		mtx_unlock(&nmp->nm_mtx);
442 		(void)ncl_fsinfo(nmp, vp, cred, td);
443 		mtx_lock(&nmp->nm_mtx);
444 	}
445 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
446 		(void) newnfs_iosize(nmp);
447 
448 	tmp_off = uio->uio_offset + uio->uio_resid;
449 	if (vp->v_type != VDIR &&
450 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
451 		mtx_unlock(&nmp->nm_mtx);
452 		return (EFBIG);
453 	}
454 	mtx_unlock(&nmp->nm_mtx);
455 
456 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
457 		/* No caching/ no readaheads. Just read data into the user buffer */
458 		return ncl_readrpc(vp, uio, cred);
459 
460 	n = 0;
461 	on = 0;
462 	biosize = vp->v_bufobj.bo_bsize;
463 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
464 
465 	error = nfs_bioread_check_cons(vp, td, cred);
466 	if (error)
467 		return error;
468 
469 	save2 = curthread_pflags2_set(TDP2_SBPAGES);
470 	do {
471 	    u_quad_t nsize;
472 
473 	    NFSLOCKNODE(np);
474 	    nsize = np->n_size;
475 	    NFSUNLOCKNODE(np);
476 
477 	    switch (vp->v_type) {
478 	    case VREG:
479 		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
480 		lbn = uio->uio_offset / biosize;
481 		on = uio->uio_offset - (lbn * biosize);
482 
483 		/*
484 		 * Start the read ahead(s), as required.  Do not do
485 		 * read-ahead if there are writeable mappings, since
486 		 * unlocked read by nfsiod could obliterate changes
487 		 * done by userspace.
488 		 */
489 		if (nmp->nm_readahead > 0 &&
490 		    !vm_object_mightbedirty(vp->v_object) &&
491 		    vp->v_object->un_pager.vnp.writemappings == 0) {
492 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
493 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
494 			rabn = lbn + 1 + nra;
495 			if (incore(&vp->v_bufobj, rabn) == NULL) {
496 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
497 			    if (!rabp) {
498 				error = newnfs_sigintr(nmp, td);
499 				if (error == 0)
500 					error = EINTR;
501 				goto out;
502 			    }
503 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
504 				rabp->b_flags |= B_ASYNC;
505 				rabp->b_iocmd = BIO_READ;
506 				vfs_busy_pages(rabp, 0);
507 				if (ncl_asyncio(nmp, rabp, cred, td)) {
508 				    rabp->b_flags |= B_INVAL;
509 				    rabp->b_ioflags |= BIO_ERROR;
510 				    vfs_unbusy_pages(rabp);
511 				    brelse(rabp);
512 				    break;
513 				}
514 			    } else {
515 				brelse(rabp);
516 			    }
517 			}
518 		    }
519 		}
520 
521 		/* Note that bcount is *not* DEV_BSIZE aligned. */
522 		bcount = biosize;
523 		if ((off_t)lbn * biosize >= nsize) {
524 			bcount = 0;
525 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
526 			bcount = nsize - (off_t)lbn * biosize;
527 		}
528 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
529 
530 		if (!bp) {
531 			error = newnfs_sigintr(nmp, td);
532 			if (error == 0)
533 				error = EINTR;
534 			goto out;
535 		}
536 
537 		/*
538 		 * If B_CACHE is not set, we must issue the read.  If this
539 		 * fails, we return an error.
540 		 */
541 
542 		if ((bp->b_flags & B_CACHE) == 0) {
543 		    bp->b_iocmd = BIO_READ;
544 		    vfs_busy_pages(bp, 0);
545 		    error = ncl_doio(vp, bp, cred, td, 0);
546 		    if (error) {
547 			brelse(bp);
548 			goto out;
549 		    }
550 		}
551 
552 		/*
553 		 * on is the offset into the current bp.  Figure out how many
554 		 * bytes we can copy out of the bp.  Note that bcount is
555 		 * NOT DEV_BSIZE aligned.
556 		 *
557 		 * Then figure out how many bytes we can copy into the uio.
558 		 */
559 
560 		n = 0;
561 		if (on < bcount)
562 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
563 		break;
564 	    case VLNK:
565 		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
566 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
567 		if (!bp) {
568 			error = newnfs_sigintr(nmp, td);
569 			if (error == 0)
570 				error = EINTR;
571 			goto out;
572 		}
573 		if ((bp->b_flags & B_CACHE) == 0) {
574 		    bp->b_iocmd = BIO_READ;
575 		    vfs_busy_pages(bp, 0);
576 		    error = ncl_doio(vp, bp, cred, td, 0);
577 		    if (error) {
578 			bp->b_ioflags |= BIO_ERROR;
579 			brelse(bp);
580 			goto out;
581 		    }
582 		}
583 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
584 		on = 0;
585 		break;
586 	    case VDIR:
587 		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
588 		NFSLOCKNODE(np);
589 		if (np->n_direofoffset
590 		    && uio->uio_offset >= np->n_direofoffset) {
591 			NFSUNLOCKNODE(np);
592 			error = 0;
593 			goto out;
594 		}
595 		NFSUNLOCKNODE(np);
596 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
597 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
598 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
599 		if (!bp) {
600 			error = newnfs_sigintr(nmp, td);
601 			if (error == 0)
602 				error = EINTR;
603 			goto out;
604 		}
605 		if ((bp->b_flags & B_CACHE) == 0) {
606 		    bp->b_iocmd = BIO_READ;
607 		    vfs_busy_pages(bp, 0);
608 		    error = ncl_doio(vp, bp, cred, td, 0);
609 		    if (error) {
610 			    brelse(bp);
611 		    }
612 		    while (error == NFSERR_BAD_COOKIE) {
613 			ncl_invaldir(vp);
614 			error = ncl_vinvalbuf(vp, 0, td, 1);
615 
616 			/*
617 			 * Yuck! The directory has been modified on the
618 			 * server. The only way to get the block is by
619 			 * reading from the beginning to get all the
620 			 * offset cookies.
621 			 *
622 			 * Leave the last bp intact unless there is an error.
623 			 * Loop back up to the while if the error is another
624 			 * NFSERR_BAD_COOKIE (double yuch!).
625 			 */
626 			for (i = 0; i <= lbn && !error; i++) {
627 			    NFSLOCKNODE(np);
628 			    if (np->n_direofoffset
629 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) {
630 				    NFSUNLOCKNODE(np);
631 				    error = 0;
632 				    goto out;
633 			    }
634 			    NFSUNLOCKNODE(np);
635 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
636 			    if (!bp) {
637 				error = newnfs_sigintr(nmp, td);
638 				if (error == 0)
639 					error = EINTR;
640 				goto out;
641 			    }
642 			    if ((bp->b_flags & B_CACHE) == 0) {
643 				    bp->b_iocmd = BIO_READ;
644 				    vfs_busy_pages(bp, 0);
645 				    error = ncl_doio(vp, bp, cred, td, 0);
646 				    /*
647 				     * no error + B_INVAL == directory EOF,
648 				     * use the block.
649 				     */
650 				    if (error == 0 && (bp->b_flags & B_INVAL))
651 					    break;
652 			    }
653 			    /*
654 			     * An error will throw away the block and the
655 			     * for loop will break out.  If no error and this
656 			     * is not the block we want, we throw away the
657 			     * block and go for the next one via the for loop.
658 			     */
659 			    if (error || i < lbn)
660 				    brelse(bp);
661 			}
662 		    }
663 		    /*
664 		     * The above while is repeated if we hit another cookie
665 		     * error.  If we hit an error and it wasn't a cookie error,
666 		     * we give up.
667 		     */
668 		    if (error)
669 			    goto out;
670 		}
671 
672 		/*
673 		 * If not eof and read aheads are enabled, start one.
674 		 * (You need the current block first, so that you have the
675 		 *  directory offset cookie of the next block.)
676 		 */
677 		NFSLOCKNODE(np);
678 		if (nmp->nm_readahead > 0 &&
679 		    !vm_object_mightbedirty(vp->v_object) &&
680 		    vp->v_object->un_pager.vnp.writemappings == 0 &&
681 		    (bp->b_flags & B_INVAL) == 0 &&
682 		    (np->n_direofoffset == 0 ||
683 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
684 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
685 			NFSUNLOCKNODE(np);
686 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
687 			if (rabp) {
688 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
689 				rabp->b_flags |= B_ASYNC;
690 				rabp->b_iocmd = BIO_READ;
691 				vfs_busy_pages(rabp, 0);
692 				if (ncl_asyncio(nmp, rabp, cred, td)) {
693 				    rabp->b_flags |= B_INVAL;
694 				    rabp->b_ioflags |= BIO_ERROR;
695 				    vfs_unbusy_pages(rabp);
696 				    brelse(rabp);
697 				}
698 			    } else {
699 				brelse(rabp);
700 			    }
701 			}
702 			NFSLOCKNODE(np);
703 		}
704 		/*
705 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
706 		 * chopped for the EOF condition, we cannot tell how large
707 		 * NFS directories are going to be until we hit EOF.  So
708 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
709 		 * it just so happens that b_resid will effectively chop it
710 		 * to EOF.  *BUT* this information is lost if the buffer goes
711 		 * away and is reconstituted into a B_CACHE state ( due to
712 		 * being VMIO ) later.  So we keep track of the directory eof
713 		 * in np->n_direofoffset and chop it off as an extra step
714 		 * right here.
715 		 */
716 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
717 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
718 			n = np->n_direofoffset - uio->uio_offset;
719 		NFSUNLOCKNODE(np);
720 		break;
721 	    default:
722 		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
723 		bp = NULL;
724 		break;
725 	    }
726 
727 	    if (n > 0) {
728 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
729 	    }
730 	    if (vp->v_type == VLNK)
731 		n = 0;
732 	    if (bp != NULL)
733 		brelse(bp);
734 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
735 out:
736 	curthread_pflags2_restore(save2);
737 	if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) {
738 		NFSLOCKNODE(np);
739 		ncl_pager_setsize(vp, NULL);
740 	}
741 	return (error);
742 }
743 
744 /*
745  * The NFS write path cannot handle iovecs with len > 1. So we need to
746  * break up iovecs accordingly (restricting them to wsize).
747  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
748  * For the ASYNC case, 2 copies are needed. The first a copy from the
749  * user buffer to a staging buffer and then a second copy from the staging
750  * buffer to mbufs. This can be optimized by copying from the user buffer
751  * directly into mbufs and passing the chain down, but that requires a
752  * fair amount of re-working of the relevant codepaths (and can be done
753  * later).
754  */
755 static int
756 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred,
757     int ioflag)
758 {
759 	int error;
760 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
761 	struct thread *td = uiop->uio_td;
762 	int size;
763 	int wsize;
764 
765 	mtx_lock(&nmp->nm_mtx);
766 	wsize = nmp->nm_wsize;
767 	mtx_unlock(&nmp->nm_mtx);
768 	if (ioflag & IO_SYNC) {
769 		int iomode, must_commit;
770 		struct uio uio;
771 		struct iovec iov;
772 do_sync:
773 		while (uiop->uio_resid > 0) {
774 			size = MIN(uiop->uio_resid, wsize);
775 			size = MIN(uiop->uio_iov->iov_len, size);
776 			iov.iov_base = uiop->uio_iov->iov_base;
777 			iov.iov_len = size;
778 			uio.uio_iov = &iov;
779 			uio.uio_iovcnt = 1;
780 			uio.uio_offset = uiop->uio_offset;
781 			uio.uio_resid = size;
782 			uio.uio_segflg = uiop->uio_segflg;
783 			uio.uio_rw = UIO_WRITE;
784 			uio.uio_td = td;
785 			iomode = NFSWRITE_FILESYNC;
786 			/*
787 			 * When doing direct I/O we do not care if the
788 			 * server's write verifier has changed, but we
789 			 * do not want to update the verifier if it has
790 			 * changed, since that hides the change from
791 			 * writes being done through the buffer cache.
792 			 * By passing must_commit in set to two, the code
793 			 * in nfsrpc_writerpc() will not update the
794 			 * verifier on the mount point.
795 			 */
796 			must_commit = 2;
797 			error = ncl_writerpc(vp, &uio, cred, &iomode,
798 			    &must_commit, 0, ioflag);
799 			KASSERT((must_commit == 2),
800 			    ("ncl_directio_write: Updated write verifier"));
801 			if (error)
802 				return (error);
803 			if (iomode != NFSWRITE_FILESYNC)
804 				printf("nfs_directio_write: Broken server "
805 				    "did not reply FILE_SYNC\n");
806 			uiop->uio_offset += size;
807 			uiop->uio_resid -= size;
808 			if (uiop->uio_iov->iov_len <= size) {
809 				uiop->uio_iovcnt--;
810 				uiop->uio_iov++;
811 			} else {
812 				uiop->uio_iov->iov_base =
813 					(char *)uiop->uio_iov->iov_base + size;
814 				uiop->uio_iov->iov_len -= size;
815 			}
816 		}
817 	} else {
818 		struct uio *t_uio;
819 		struct iovec *t_iov;
820 		struct buf *bp;
821 
822 		/*
823 		 * Break up the write into blocksize chunks and hand these
824 		 * over to nfsiod's for write back.
825 		 * Unfortunately, this incurs a copy of the data. Since
826 		 * the user could modify the buffer before the write is
827 		 * initiated.
828 		 *
829 		 * The obvious optimization here is that one of the 2 copies
830 		 * in the async write path can be eliminated by copying the
831 		 * data here directly into mbufs and passing the mbuf chain
832 		 * down. But that will require a fair amount of re-working
833 		 * of the code and can be done if there's enough interest
834 		 * in NFS directio access.
835 		 */
836 		while (uiop->uio_resid > 0) {
837 			size = MIN(uiop->uio_resid, wsize);
838 			size = MIN(uiop->uio_iov->iov_len, size);
839 			bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK);
840 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
841 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
842 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
843 			t_iov->iov_len = size;
844 			t_uio->uio_iov = t_iov;
845 			t_uio->uio_iovcnt = 1;
846 			t_uio->uio_offset = uiop->uio_offset;
847 			t_uio->uio_resid = size;
848 			t_uio->uio_segflg = UIO_SYSSPACE;
849 			t_uio->uio_rw = UIO_WRITE;
850 			t_uio->uio_td = td;
851 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
852 			    uiop->uio_segflg == UIO_SYSSPACE,
853 			    ("nfs_directio_write: Bad uio_segflg"));
854 			if (uiop->uio_segflg == UIO_USERSPACE) {
855 				error = copyin(uiop->uio_iov->iov_base,
856 				    t_iov->iov_base, size);
857 				if (error != 0)
858 					goto err_free;
859 			} else
860 				/*
861 				 * UIO_SYSSPACE may never happen, but handle
862 				 * it just in case it does.
863 				 */
864 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
865 				    size);
866 			bp->b_flags |= B_DIRECT;
867 			bp->b_iocmd = BIO_WRITE;
868 			if (cred != NOCRED) {
869 				crhold(cred);
870 				bp->b_wcred = cred;
871 			} else
872 				bp->b_wcred = NOCRED;
873 			bp->b_caller1 = (void *)t_uio;
874 			bp->b_vp = vp;
875 			error = ncl_asyncio(nmp, bp, NOCRED, td);
876 err_free:
877 			if (error) {
878 				free(t_iov->iov_base, M_NFSDIRECTIO);
879 				free(t_iov, M_NFSDIRECTIO);
880 				free(t_uio, M_NFSDIRECTIO);
881 				bp->b_vp = NULL;
882 				uma_zfree(ncl_pbuf_zone, bp);
883 				if (error == EINTR)
884 					return (error);
885 				goto do_sync;
886 			}
887 			uiop->uio_offset += size;
888 			uiop->uio_resid -= size;
889 			if (uiop->uio_iov->iov_len <= size) {
890 				uiop->uio_iovcnt--;
891 				uiop->uio_iov++;
892 			} else {
893 				uiop->uio_iov->iov_base =
894 					(char *)uiop->uio_iov->iov_base + size;
895 				uiop->uio_iov->iov_len -= size;
896 			}
897 		}
898 	}
899 	return (0);
900 }
901 
902 /*
903  * Vnode op for write using bio
904  */
905 int
906 ncl_write(struct vop_write_args *ap)
907 {
908 	int biosize;
909 	struct uio *uio = ap->a_uio;
910 	struct thread *td = uio->uio_td;
911 	struct vnode *vp = ap->a_vp;
912 	struct nfsnode *np = VTONFS(vp);
913 	struct ucred *cred = ap->a_cred;
914 	int ioflag = ap->a_ioflag;
915 	struct buf *bp;
916 	struct vattr vattr;
917 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
918 	daddr_t lbn;
919 	int bcount, noncontig_write, obcount;
920 	int bp_cached, n, on, error = 0, error1, save2, wouldcommit;
921 	size_t orig_resid, local_resid;
922 	off_t orig_size, tmp_off;
923 	struct timespec ts;
924 
925 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
926 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
927 	    ("ncl_write proc"));
928 	if (vp->v_type != VREG)
929 		return (EIO);
930 	NFSLOCKNODE(np);
931 	if (np->n_flag & NWRITEERR) {
932 		np->n_flag &= ~NWRITEERR;
933 		NFSUNLOCKNODE(np);
934 		return (np->n_error);
935 	} else
936 		NFSUNLOCKNODE(np);
937 	mtx_lock(&nmp->nm_mtx);
938 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
939 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
940 		mtx_unlock(&nmp->nm_mtx);
941 		(void)ncl_fsinfo(nmp, vp, cred, td);
942 		mtx_lock(&nmp->nm_mtx);
943 	}
944 	if (nmp->nm_wsize == 0)
945 		(void) newnfs_iosize(nmp);
946 	mtx_unlock(&nmp->nm_mtx);
947 
948 	/*
949 	 * Synchronously flush pending buffers if we are in synchronous
950 	 * mode or if we are appending.
951 	 */
952 	if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag &
953 	    NMODIFIED))) {
954 		/*
955 		 * For the case where IO_APPEND is being done using a
956 		 * direct output (to the NFS server) RPC and
957 		 * newnfs_directio_enable is 0, all buffer cache buffers,
958 		 * including ones not modified, must be invalidated.
959 		 * This ensures that stale data is not read out of the
960 		 * buffer cache.  The call also invalidates all mapped
961 		 * pages and, since the exclusive lock is held on the vnode,
962 		 * new pages cannot be faulted in.
963 		 *
964 		 * For the case where newnfs_directio_enable is set
965 		 * (which is not the default), it is not obvious that
966 		 * stale data should be left in the buffer cache, but
967 		 * the code has been this way for over a decade without
968 		 * complaints.  Note that, unlike doing IO_APPEND via
969 		 * a direct write RPC when newnfs_directio_enable is not set,
970 		 * when newnfs_directio_enable is set, reading is done via
971 		 * direct to NFS server RPCs as well.
972 		 */
973 		np->n_attrstamp = 0;
974 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
975 		error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
976 		    IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
977 		if (error != 0)
978 			return (error);
979 	}
980 
981 	orig_resid = uio->uio_resid;
982 	NFSLOCKNODE(np);
983 	orig_size = np->n_size;
984 	NFSUNLOCKNODE(np);
985 
986 	/*
987 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
988 	 * get the append lock.
989 	 */
990 	if (ioflag & IO_APPEND) {
991 		/*
992 		 * For NFSv4, the AppendWrite will Verify the size against
993 		 * the file's size on the server.  If not the same, the
994 		 * write will then be retried, using the file size returned
995 		 * by the AppendWrite.  However, for NFSv2 and NFSv3, the
996 		 * size must be acquired here via a Getattr RPC.
997 		 * The AppendWrite is not done for a pNFS mount.
998 		 */
999 		if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) {
1000 			np->n_attrstamp = 0;
1001 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1002 			error = VOP_GETATTR(vp, &vattr, cred);
1003 			if (error)
1004 				return (error);
1005 		}
1006 		NFSLOCKNODE(np);
1007 		uio->uio_offset = np->n_size;
1008 		NFSUNLOCKNODE(np);
1009 	}
1010 
1011 	if (uio->uio_offset < 0)
1012 		return (EINVAL);
1013 	tmp_off = uio->uio_offset + uio->uio_resid;
1014 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
1015 		return (EFBIG);
1016 	if (uio->uio_resid == 0)
1017 		return (0);
1018 
1019 	/*
1020 	 * Do IO_APPEND writing via a synchronous direct write.
1021 	 * This can result in a significant performance improvement.
1022 	 */
1023 	if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) ||
1024 	    (ioflag & IO_APPEND)) {
1025 		/*
1026 		 * Direct writes to the server must be done NFSWRITE_FILESYNC,
1027 		 * because the write data is not cached and, therefore, the
1028 		 * write cannot be redone after a server reboot.
1029 		 * Set IO_SYNC to make this happen.
1030 		 */
1031 		ioflag |= IO_SYNC;
1032 		return (nfs_directio_write(vp, uio, cred, ioflag));
1033 	}
1034 
1035 	/*
1036 	 * Maybe this should be above the vnode op call, but so long as
1037 	 * file servers have no limits, i don't think it matters
1038 	 */
1039 	error = vn_rlimit_fsize(vp, uio, td);
1040 	if (error != 0)
1041 		return (error);
1042 
1043 	save2 = curthread_pflags2_set(TDP2_SBPAGES);
1044 	biosize = vp->v_bufobj.bo_bsize;
1045 	/*
1046 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
1047 	 * would exceed the local maximum per-file write commit size when
1048 	 * combined with those, we must decide whether to flush,
1049 	 * go synchronous, or return error.  We don't bother checking
1050 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
1051 	 * no point optimizing for something that really won't ever happen.
1052 	 */
1053 	wouldcommit = 0;
1054 	if (!(ioflag & IO_SYNC)) {
1055 		int nflag;
1056 
1057 		NFSLOCKNODE(np);
1058 		nflag = np->n_flag;
1059 		NFSUNLOCKNODE(np);
1060 		if (nflag & NMODIFIED) {
1061 			BO_LOCK(&vp->v_bufobj);
1062 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1063 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1064 				    b_bobufs) {
1065 					if (bp->b_flags & B_NEEDCOMMIT)
1066 						wouldcommit += bp->b_bcount;
1067 				}
1068 			}
1069 			BO_UNLOCK(&vp->v_bufobj);
1070 		}
1071 	}
1072 
1073 	do {
1074 		if (!(ioflag & IO_SYNC)) {
1075 			wouldcommit += biosize;
1076 			if (wouldcommit > nmp->nm_wcommitsize) {
1077 				np->n_attrstamp = 0;
1078 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1079 				error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
1080 				    IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
1081 				if (error != 0)
1082 					goto out;
1083 				wouldcommit = biosize;
1084 			}
1085 		}
1086 
1087 		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
1088 		lbn = uio->uio_offset / biosize;
1089 		on = uio->uio_offset - (lbn * biosize);
1090 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1091 again:
1092 		/*
1093 		 * Handle direct append and file extension cases, calculate
1094 		 * unaligned buffer size.
1095 		 */
1096 		NFSLOCKNODE(np);
1097 		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1098 		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1099 			noncontig_write = 1;
1100 		else
1101 			noncontig_write = 0;
1102 		if ((uio->uio_offset == np->n_size ||
1103 		    (noncontig_write != 0 &&
1104 		    lbn == (np->n_size / biosize) &&
1105 		    uio->uio_offset + n > np->n_size)) && n) {
1106 			NFSUNLOCKNODE(np);
1107 			/*
1108 			 * Get the buffer (in its pre-append state to maintain
1109 			 * B_CACHE if it was previously set).  Resize the
1110 			 * nfsnode after we have locked the buffer to prevent
1111 			 * readers from reading garbage.
1112 			 */
1113 			obcount = np->n_size - (lbn * biosize);
1114 			bp = nfs_getcacheblk(vp, lbn, obcount, td);
1115 
1116 			if (bp != NULL) {
1117 				long save;
1118 
1119 				NFSLOCKNODE(np);
1120 				np->n_size = uio->uio_offset + n;
1121 				np->n_flag |= NMODIFIED;
1122 				np->n_flag &= ~NVNSETSZSKIP;
1123 				vnode_pager_setsize(vp, np->n_size);
1124 				NFSUNLOCKNODE(np);
1125 
1126 				save = bp->b_flags & B_CACHE;
1127 				bcount = on + n;
1128 				allocbuf(bp, bcount);
1129 				bp->b_flags |= save;
1130 				if (noncontig_write != 0 && on > obcount)
1131 					vfs_bio_bzero_buf(bp, obcount, on -
1132 					    obcount);
1133 			}
1134 		} else {
1135 			/*
1136 			 * Obtain the locked cache block first, and then
1137 			 * adjust the file's size as appropriate.
1138 			 */
1139 			bcount = on + n;
1140 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1141 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1142 					bcount = biosize;
1143 				else
1144 					bcount = np->n_size - (off_t)lbn * biosize;
1145 			}
1146 			NFSUNLOCKNODE(np);
1147 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1148 			NFSLOCKNODE(np);
1149 			if (uio->uio_offset + n > np->n_size) {
1150 				np->n_size = uio->uio_offset + n;
1151 				np->n_flag |= NMODIFIED;
1152 				np->n_flag &= ~NVNSETSZSKIP;
1153 				vnode_pager_setsize(vp, np->n_size);
1154 			}
1155 			NFSUNLOCKNODE(np);
1156 		}
1157 
1158 		if (!bp) {
1159 			error = newnfs_sigintr(nmp, td);
1160 			if (!error)
1161 				error = EINTR;
1162 			break;
1163 		}
1164 
1165 		/*
1166 		 * Issue a READ if B_CACHE is not set.  In special-append
1167 		 * mode, B_CACHE is based on the buffer prior to the write
1168 		 * op and is typically set, avoiding the read.  If a read
1169 		 * is required in special append mode, the server will
1170 		 * probably send us a short-read since we extended the file
1171 		 * on our end, resulting in b_resid == 0 and, thusly,
1172 		 * B_CACHE getting set.
1173 		 *
1174 		 * We can also avoid issuing the read if the write covers
1175 		 * the entire buffer.  We have to make sure the buffer state
1176 		 * is reasonable in this case since we will not be initiating
1177 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1178 		 * more information.
1179 		 *
1180 		 * B_CACHE may also be set due to the buffer being cached
1181 		 * normally.
1182 		 */
1183 
1184 		bp_cached = 1;
1185 		if (on == 0 && n == bcount) {
1186 			if ((bp->b_flags & B_CACHE) == 0)
1187 				bp_cached = 0;
1188 			bp->b_flags |= B_CACHE;
1189 			bp->b_flags &= ~B_INVAL;
1190 			bp->b_ioflags &= ~BIO_ERROR;
1191 		}
1192 
1193 		if ((bp->b_flags & B_CACHE) == 0) {
1194 			bp->b_iocmd = BIO_READ;
1195 			vfs_busy_pages(bp, 0);
1196 			error = ncl_doio(vp, bp, cred, td, 0);
1197 			if (error) {
1198 				brelse(bp);
1199 				break;
1200 			}
1201 		}
1202 		if (bp->b_wcred == NOCRED)
1203 			bp->b_wcred = crhold(cred);
1204 		NFSLOCKNODE(np);
1205 		np->n_flag |= NMODIFIED;
1206 		NFSUNLOCKNODE(np);
1207 
1208 		/*
1209 		 * If dirtyend exceeds file size, chop it down.  This should
1210 		 * not normally occur but there is an append race where it
1211 		 * might occur XXX, so we log it.
1212 		 *
1213 		 * If the chopping creates a reverse-indexed or degenerate
1214 		 * situation with dirtyoff/end, we 0 both of them.
1215 		 */
1216 
1217 		if (bp->b_dirtyend > bcount) {
1218 			printf("NFS append race @%lx:%d\n",
1219 			    (long)bp->b_blkno * DEV_BSIZE,
1220 			    bp->b_dirtyend - bcount);
1221 			bp->b_dirtyend = bcount;
1222 		}
1223 
1224 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1225 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1226 
1227 		/*
1228 		 * If the new write will leave a contiguous dirty
1229 		 * area, just update the b_dirtyoff and b_dirtyend,
1230 		 * otherwise force a write rpc of the old dirty area.
1231 		 *
1232 		 * If there has been a file lock applied to this file
1233 		 * or vfs.nfs.old_noncontig_writing is set, do the following:
1234 		 * While it is possible to merge discontiguous writes due to
1235 		 * our having a B_CACHE buffer ( and thus valid read data
1236 		 * for the hole), we don't because it could lead to
1237 		 * significant cache coherency problems with multiple clients,
1238 		 * especially if locking is implemented later on.
1239 		 *
1240 		 * If vfs.nfs.old_noncontig_writing is not set and there has
1241 		 * not been file locking done on this file:
1242 		 * Relax coherency a bit for the sake of performance and
1243 		 * expand the current dirty region to contain the new
1244 		 * write even if it means we mark some non-dirty data as
1245 		 * dirty.
1246 		 */
1247 
1248 		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1249 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1250 			if (bwrite(bp) == EINTR) {
1251 				error = EINTR;
1252 				break;
1253 			}
1254 			goto again;
1255 		}
1256 
1257 		local_resid = uio->uio_resid;
1258 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1259 
1260 		if (error != 0 && !bp_cached) {
1261 			/*
1262 			 * This block has no other content then what
1263 			 * possibly was written by the faulty uiomove.
1264 			 * Release it, forgetting the data pages, to
1265 			 * prevent the leak of uninitialized data to
1266 			 * usermode.
1267 			 */
1268 			bp->b_ioflags |= BIO_ERROR;
1269 			brelse(bp);
1270 			uio->uio_offset -= local_resid - uio->uio_resid;
1271 			uio->uio_resid = local_resid;
1272 			break;
1273 		}
1274 
1275 		/*
1276 		 * Since this block is being modified, it must be written
1277 		 * again and not just committed.  Since write clustering does
1278 		 * not work for the stage 1 data write, only the stage 2
1279 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1280 		 */
1281 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1282 
1283 		/*
1284 		 * Get the partial update on the progress made from
1285 		 * uiomove, if an error occurred.
1286 		 */
1287 		if (error != 0)
1288 			n = local_resid - uio->uio_resid;
1289 
1290 		/*
1291 		 * Only update dirtyoff/dirtyend if not a degenerate
1292 		 * condition.
1293 		 */
1294 		if (n > 0) {
1295 			if (bp->b_dirtyend > 0) {
1296 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1297 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1298 			} else {
1299 				bp->b_dirtyoff = on;
1300 				bp->b_dirtyend = on + n;
1301 			}
1302 			vfs_bio_set_valid(bp, on, n);
1303 		}
1304 
1305 		/*
1306 		 * If IO_SYNC do bwrite().
1307 		 *
1308 		 * IO_INVAL appears to be unused.  The idea appears to be
1309 		 * to turn off caching in this case.  Very odd.  XXX
1310 		 */
1311 		if ((ioflag & IO_SYNC)) {
1312 			if (ioflag & IO_INVAL)
1313 				bp->b_flags |= B_NOCACHE;
1314 			error1 = bwrite(bp);
1315 			if (error1 != 0) {
1316 				if (error == 0)
1317 					error = error1;
1318 				break;
1319 			}
1320 		} else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) {
1321 			bp->b_flags |= B_ASYNC;
1322 			(void) bwrite(bp);
1323 		} else {
1324 			bdwrite(bp);
1325 		}
1326 
1327 		if (error != 0)
1328 			break;
1329 	} while (uio->uio_resid > 0 && n > 0);
1330 
1331 	if (error == 0) {
1332 		nanouptime(&ts);
1333 		NFSLOCKNODE(np);
1334 		np->n_localmodtime = ts;
1335 		NFSUNLOCKNODE(np);
1336 	} else {
1337 		if (ioflag & IO_UNIT) {
1338 			VATTR_NULL(&vattr);
1339 			vattr.va_size = orig_size;
1340 			/* IO_SYNC is handled implicitely */
1341 			(void)VOP_SETATTR(vp, &vattr, cred);
1342 			uio->uio_offset -= orig_resid - uio->uio_resid;
1343 			uio->uio_resid = orig_resid;
1344 		}
1345 	}
1346 
1347 out:
1348 	curthread_pflags2_restore(save2);
1349 	return (error);
1350 }
1351 
1352 /*
1353  * Get an nfs cache block.
1354  *
1355  * Allocate a new one if the block isn't currently in the cache
1356  * and return the block marked busy. If the calling process is
1357  * interrupted by a signal for an interruptible mount point, return
1358  * NULL.
1359  *
1360  * The caller must carefully deal with the possible B_INVAL state of
1361  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1362  * indirectly), so synchronous reads can be issued without worrying about
1363  * the B_INVAL state.  We have to be a little more careful when dealing
1364  * with writes (see comments in nfs_write()) when extending a file past
1365  * its EOF.
1366  */
1367 static struct buf *
1368 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1369 {
1370 	struct buf *bp;
1371 	struct mount *mp;
1372 	struct nfsmount *nmp;
1373 
1374 	mp = vp->v_mount;
1375 	nmp = VFSTONFS(mp);
1376 
1377 	if (nmp->nm_flag & NFSMNT_INT) {
1378 		sigset_t oldset;
1379 
1380 		newnfs_set_sigmask(td, &oldset);
1381 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1382 		newnfs_restore_sigmask(td, &oldset);
1383 		while (bp == NULL) {
1384 			if (newnfs_sigintr(nmp, td))
1385 				return (NULL);
1386 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1387 		}
1388 	} else {
1389 		bp = getblk(vp, bn, size, 0, 0, 0);
1390 	}
1391 
1392 	if (vp->v_type == VREG)
1393 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1394 	return (bp);
1395 }
1396 
1397 /*
1398  * Flush and invalidate all dirty buffers. If another process is already
1399  * doing the flush, just wait for completion.
1400  */
1401 int
1402 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1403 {
1404 	struct nfsnode *np = VTONFS(vp);
1405 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1406 	int error = 0, slpflag, slptimeo;
1407 	bool old_lock;
1408 	struct timespec ts;
1409 
1410 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1411 
1412 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1413 		intrflg = 0;
1414 	if (NFSCL_FORCEDISM(nmp->nm_mountp))
1415 		intrflg = 1;
1416 	if (intrflg) {
1417 		slpflag = PCATCH;
1418 		slptimeo = 2 * hz;
1419 	} else {
1420 		slpflag = 0;
1421 		slptimeo = 0;
1422 	}
1423 
1424 	old_lock = ncl_excl_start(vp);
1425 	if (old_lock)
1426 		flags |= V_ALLOWCLEAN;
1427 
1428 	/*
1429 	 * Now, flush as required.
1430 	 */
1431 	if ((flags & (V_SAVE | V_VMIO)) == V_SAVE &&
1432 	     vp->v_bufobj.bo_object != NULL) {
1433 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1434 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1435 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1436 		/*
1437 		 * If the page clean was interrupted, fail the invalidation.
1438 		 * Not doing so, we run the risk of losing dirty pages in the
1439 		 * vinvalbuf() call below.
1440 		 */
1441 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1442 			goto out;
1443 	}
1444 
1445 	error = vinvalbuf(vp, flags, slpflag, 0);
1446 	while (error) {
1447 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1448 			goto out;
1449 		error = vinvalbuf(vp, flags, 0, slptimeo);
1450 	}
1451 	if (NFSHASPNFS(nmp)) {
1452 		nfscl_layoutcommit(vp, td);
1453 		nanouptime(&ts);
1454 		/*
1455 		 * Invalidate the attribute cache, since writes to a DS
1456 		 * won't update the size attribute.
1457 		 */
1458 		NFSLOCKNODE(np);
1459 		np->n_attrstamp = 0;
1460 	} else {
1461 		nanouptime(&ts);
1462 		NFSLOCKNODE(np);
1463 	}
1464 	if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) {
1465 		np->n_localmodtime = ts;
1466 		np->n_flag &= ~NMODIFIED;
1467 	}
1468 	NFSUNLOCKNODE(np);
1469 out:
1470 	ncl_excl_finish(vp, old_lock);
1471 	return error;
1472 }
1473 
1474 /*
1475  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1476  * This is mainly to avoid queueing async I/O requests when the nfsiods
1477  * are all hung on a dead server.
1478  *
1479  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1480  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1481  */
1482 int
1483 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1484 {
1485 	int iod;
1486 	int gotiod;
1487 	int slpflag = 0;
1488 	int slptimeo = 0;
1489 	int error, error2;
1490 
1491 	/*
1492 	 * Commits are usually short and sweet so lets save some cpu and
1493 	 * leave the async daemons for more important rpc's (such as reads
1494 	 * and writes).
1495 	 *
1496 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1497 	 * in the directory in order to update attributes. This can deadlock
1498 	 * with another thread that is waiting for async I/O to be done by
1499 	 * an nfsiod thread while holding a lock on one of these vnodes.
1500 	 * To avoid this deadlock, don't allow the async nfsiod threads to
1501 	 * perform Readdirplus RPCs.
1502 	 */
1503 	NFSLOCKIOD();
1504 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1505 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1506 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1507 		NFSUNLOCKIOD();
1508 		return(EIO);
1509 	}
1510 again:
1511 	if (nmp->nm_flag & NFSMNT_INT)
1512 		slpflag = PCATCH;
1513 	gotiod = FALSE;
1514 
1515 	/*
1516 	 * Find a free iod to process this request.
1517 	 */
1518 	for (iod = 0; iod < ncl_numasync; iod++)
1519 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1520 			gotiod = TRUE;
1521 			break;
1522 		}
1523 
1524 	/*
1525 	 * Try to create one if none are free.
1526 	 */
1527 	if (!gotiod)
1528 		ncl_nfsiodnew();
1529 	else {
1530 		/*
1531 		 * Found one, so wake it up and tell it which
1532 		 * mount to process.
1533 		 */
1534 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1535 		    iod, nmp));
1536 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1537 		ncl_iodmount[iod] = nmp;
1538 		nmp->nm_bufqiods++;
1539 		wakeup(&ncl_iodwant[iod]);
1540 	}
1541 
1542 	/*
1543 	 * If none are free, we may already have an iod working on this mount
1544 	 * point.  If so, it will process our request.
1545 	 */
1546 	if (!gotiod) {
1547 		if (nmp->nm_bufqiods > 0) {
1548 			NFS_DPF(ASYNCIO,
1549 				("ncl_asyncio: %d iods are already processing mount %p\n",
1550 				 nmp->nm_bufqiods, nmp));
1551 			gotiod = TRUE;
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * If we have an iod which can process the request, then queue
1557 	 * the buffer.
1558 	 */
1559 	if (gotiod) {
1560 		/*
1561 		 * Ensure that the queue never grows too large.  We still want
1562 		 * to asynchronize so we block rather then return EIO.
1563 		 */
1564 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1565 			NFS_DPF(ASYNCIO,
1566 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1567 			nmp->nm_bufqwant = TRUE;
1568 			error = newnfs_msleep(td, &nmp->nm_bufq,
1569 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1570 			   slptimeo);
1571 			if (error) {
1572 				error2 = newnfs_sigintr(nmp, td);
1573 				if (error2) {
1574 					NFSUNLOCKIOD();
1575 					return (error2);
1576 				}
1577 				if (slpflag == PCATCH) {
1578 					slpflag = 0;
1579 					slptimeo = 2 * hz;
1580 				}
1581 			}
1582 			/*
1583 			 * We might have lost our iod while sleeping,
1584 			 * so check and loop if necessary.
1585 			 */
1586 			goto again;
1587 		}
1588 
1589 		/* We might have lost our nfsiod */
1590 		if (nmp->nm_bufqiods == 0) {
1591 			NFS_DPF(ASYNCIO,
1592 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1593 			goto again;
1594 		}
1595 
1596 		if (bp->b_iocmd == BIO_READ) {
1597 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1598 				bp->b_rcred = crhold(cred);
1599 		} else {
1600 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1601 				bp->b_wcred = crhold(cred);
1602 		}
1603 
1604 		if (bp->b_flags & B_REMFREE)
1605 			bremfreef(bp);
1606 		BUF_KERNPROC(bp);
1607 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1608 		nmp->nm_bufqlen++;
1609 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1610 			NFSLOCKNODE(VTONFS(bp->b_vp));
1611 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1612 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1613 			NFSUNLOCKNODE(VTONFS(bp->b_vp));
1614 		}
1615 		NFSUNLOCKIOD();
1616 		return (0);
1617 	}
1618 
1619 	NFSUNLOCKIOD();
1620 
1621 	/*
1622 	 * All the iods are busy on other mounts, so return EIO to
1623 	 * force the caller to process the i/o synchronously.
1624 	 */
1625 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1626 	return (EIO);
1627 }
1628 
1629 void
1630 ncl_doio_directwrite(struct buf *bp)
1631 {
1632 	int iomode, must_commit;
1633 	struct uio *uiop = (struct uio *)bp->b_caller1;
1634 	char *iov_base = uiop->uio_iov->iov_base;
1635 
1636 	iomode = NFSWRITE_FILESYNC;
1637 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1638 	/*
1639 	 * When doing direct I/O we do not care if the
1640 	 * server's write verifier has changed, but we
1641 	 * do not want to update the verifier if it has
1642 	 * changed, since that hides the change from
1643 	 * writes being done through the buffer cache.
1644 	 * By passing must_commit in set to two, the code
1645 	 * in nfsrpc_writerpc() will not update the
1646 	 * verifier on the mount point.
1647 	 */
1648 	must_commit = 2;
1649 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0, 0);
1650 	KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write"
1651 	    " verifier"));
1652 	if (iomode != NFSWRITE_FILESYNC)
1653 		printf("ncl_doio_directwrite: Broken server "
1654 		    "did not reply FILE_SYNC\n");
1655 	free(iov_base, M_NFSDIRECTIO);
1656 	free(uiop->uio_iov, M_NFSDIRECTIO);
1657 	free(uiop, M_NFSDIRECTIO);
1658 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1659 		struct nfsnode *np = VTONFS(bp->b_vp);
1660 		NFSLOCKNODE(np);
1661 		if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) {
1662 			/*
1663 			 * Invalidate the attribute cache, since writes to a DS
1664 			 * won't update the size attribute.
1665 			 */
1666 			np->n_attrstamp = 0;
1667 		}
1668 		np->n_directio_asyncwr--;
1669 		if (np->n_directio_asyncwr == 0) {
1670 			np->n_flag &= ~NMODIFIED;
1671 			if ((np->n_flag & NFSYNCWAIT)) {
1672 				np->n_flag &= ~NFSYNCWAIT;
1673 				wakeup((caddr_t)&np->n_directio_asyncwr);
1674 			}
1675 		}
1676 		NFSUNLOCKNODE(np);
1677 	}
1678 	bp->b_vp = NULL;
1679 	uma_zfree(ncl_pbuf_zone, bp);
1680 }
1681 
1682 /*
1683  * Do an I/O operation to/from a cache block. This may be called
1684  * synchronously or from an nfsiod.
1685  */
1686 int
1687 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1688     int called_from_strategy)
1689 {
1690 	struct uio *uiop;
1691 	struct nfsnode *np;
1692 	struct nfsmount *nmp;
1693 	int error = 0, iomode, must_commit = 0;
1694 	struct uio uio;
1695 	struct iovec io;
1696 	struct proc *p = td ? td->td_proc : NULL;
1697 	uint8_t	iocmd;
1698 
1699 	np = VTONFS(vp);
1700 	nmp = VFSTONFS(vp->v_mount);
1701 	uiop = &uio;
1702 	uiop->uio_iov = &io;
1703 	uiop->uio_iovcnt = 1;
1704 	uiop->uio_segflg = UIO_SYSSPACE;
1705 	uiop->uio_td = td;
1706 
1707 	/*
1708 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1709 	 * do this here so we do not have to do it in all the code that
1710 	 * calls us.
1711 	 */
1712 	bp->b_flags &= ~B_INVAL;
1713 	bp->b_ioflags &= ~BIO_ERROR;
1714 
1715 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1716 	iocmd = bp->b_iocmd;
1717 	if (iocmd == BIO_READ) {
1718 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1719 	    io.iov_base = bp->b_data;
1720 	    uiop->uio_rw = UIO_READ;
1721 
1722 	    switch (vp->v_type) {
1723 	    case VREG:
1724 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1725 		NFSINCRGLOBAL(nfsstatsv1.read_bios);
1726 		error = ncl_readrpc(vp, uiop, cr);
1727 
1728 		if (!error) {
1729 		    if (uiop->uio_resid) {
1730 			/*
1731 			 * If we had a short read with no error, we must have
1732 			 * hit a file hole.  We should zero-fill the remainder.
1733 			 * This can also occur if the server hits the file EOF.
1734 			 *
1735 			 * Holes used to be able to occur due to pending
1736 			 * writes, but that is not possible any longer.
1737 			 */
1738 			int nread = bp->b_bcount - uiop->uio_resid;
1739 			ssize_t left = uiop->uio_resid;
1740 
1741 			if (left > 0)
1742 				bzero((char *)bp->b_data + nread, left);
1743 			uiop->uio_resid = 0;
1744 		    }
1745 		}
1746 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1747 		if (p && vp->v_writecount <= -1) {
1748 			NFSLOCKNODE(np);
1749 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1750 				NFSUNLOCKNODE(np);
1751 				PROC_LOCK(p);
1752 				killproc(p, "text file modification");
1753 				PROC_UNLOCK(p);
1754 			} else
1755 				NFSUNLOCKNODE(np);
1756 		}
1757 		break;
1758 	    case VLNK:
1759 		uiop->uio_offset = (off_t)0;
1760 		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
1761 		error = ncl_readlinkrpc(vp, uiop, cr);
1762 		break;
1763 	    case VDIR:
1764 		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
1765 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1766 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1767 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1768 			if (error == NFSERR_NOTSUPP)
1769 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1770 		}
1771 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1772 			error = ncl_readdirrpc(vp, uiop, cr, td);
1773 		/*
1774 		 * end-of-directory sets B_INVAL but does not generate an
1775 		 * error.
1776 		 */
1777 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1778 			bp->b_flags |= B_INVAL;
1779 		break;
1780 	    default:
1781 		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1782 		break;
1783 	    }
1784 	    if (error) {
1785 		bp->b_ioflags |= BIO_ERROR;
1786 		bp->b_error = error;
1787 	    }
1788 	} else {
1789 	    /*
1790 	     * If we only need to commit, try to commit
1791 	     */
1792 	    if (bp->b_flags & B_NEEDCOMMIT) {
1793 		    int retv;
1794 		    off_t off;
1795 
1796 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1797 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1798 			bp->b_wcred, td);
1799 		    if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) {
1800 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1801 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1802 			    bp->b_resid = 0;
1803 			    bufdone(bp);
1804 			    return (0);
1805 		    }
1806 		    if (retv == NFSERR_STALEWRITEVERF) {
1807 			    ncl_clearcommit(vp->v_mount);
1808 		    }
1809 	    }
1810 
1811 	    /*
1812 	     * Setup for actual write
1813 	     */
1814 	    NFSLOCKNODE(np);
1815 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1816 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1817 	    NFSUNLOCKNODE(np);
1818 
1819 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1820 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1821 		    - bp->b_dirtyoff;
1822 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1823 		    + bp->b_dirtyoff;
1824 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1825 		uiop->uio_rw = UIO_WRITE;
1826 		NFSINCRGLOBAL(nfsstatsv1.write_bios);
1827 
1828 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1829 		    iomode = NFSWRITE_UNSTABLE;
1830 		else
1831 		    iomode = NFSWRITE_FILESYNC;
1832 
1833 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1834 		    called_from_strategy, 0);
1835 
1836 		/*
1837 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1838 		 * to cluster the buffers needing commit.  This will allow
1839 		 * the system to submit a single commit rpc for the whole
1840 		 * cluster.  We can do this even if the buffer is not 100%
1841 		 * dirty (relative to the NFS blocksize), so we optimize the
1842 		 * append-to-file-case.
1843 		 *
1844 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1845 		 * cleared because write clustering only works for commit
1846 		 * rpc's, not for the data portion of the write).
1847 		 */
1848 
1849 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1850 		    bp->b_flags |= B_NEEDCOMMIT;
1851 		    if (bp->b_dirtyoff == 0
1852 			&& bp->b_dirtyend == bp->b_bcount)
1853 			bp->b_flags |= B_CLUSTEROK;
1854 		} else {
1855 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1856 		}
1857 
1858 		/*
1859 		 * For an interrupted write, the buffer is still valid
1860 		 * and the write hasn't been pushed to the server yet,
1861 		 * so we can't set BIO_ERROR and report the interruption
1862 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1863 		 * is not relevant, so the rpc attempt is essentially
1864 		 * a noop.  For the case of a V3 write rpc not being
1865 		 * committed to stable storage, the block is still
1866 		 * dirty and requires either a commit rpc or another
1867 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1868 		 * the block is reused. This is indicated by setting
1869 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1870 		 *
1871 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1872 		 * write error and is handled as above, except that
1873 		 * B_EINTR isn't set. One cause of this is a stale stateid
1874 		 * error for the RPC that indicates recovery is required,
1875 		 * when called with called_from_strategy != 0.
1876 		 *
1877 		 * If the buffer is marked B_PAGING, it does not reside on
1878 		 * the vp's paging queues so we cannot call bdirty().  The
1879 		 * bp in this case is not an NFS cache block so we should
1880 		 * be safe. XXX
1881 		 *
1882 		 * The logic below breaks up errors into recoverable and
1883 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1884 		 * and keep the buffer around for potential write retries.
1885 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1886 		 * and save the error in the nfsnode. This is less than ideal
1887 		 * but necessary. Keeping such buffers around could potentially
1888 		 * cause buffer exhaustion eventually (they can never be written
1889 		 * out, so will get constantly be re-dirtied). It also causes
1890 		 * all sorts of vfs panics. For non-recoverable write errors,
1891 		 * also invalidate the attrcache, so we'll be forced to go over
1892 		 * the wire for this object, returning an error to user on next
1893 		 * call (most of the time).
1894 		 */
1895 		if (error == EINTR || error == EIO || error == ETIMEDOUT
1896 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1897 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1898 			if ((bp->b_flags & B_PAGING) == 0) {
1899 			    bdirty(bp);
1900 			    bp->b_flags &= ~B_DONE;
1901 			}
1902 			if ((error == EINTR || error == ETIMEDOUT) &&
1903 			    (bp->b_flags & B_ASYNC) == 0)
1904 			    bp->b_flags |= B_EINTR;
1905 		} else {
1906 		    if (error) {
1907 			bp->b_ioflags |= BIO_ERROR;
1908 			bp->b_flags |= B_INVAL;
1909 			bp->b_error = np->n_error = error;
1910 			NFSLOCKNODE(np);
1911 			np->n_flag |= NWRITEERR;
1912 			np->n_attrstamp = 0;
1913 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1914 			NFSUNLOCKNODE(np);
1915 		    }
1916 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1917 		}
1918 	    } else {
1919 		bp->b_resid = 0;
1920 		bufdone(bp);
1921 		return (0);
1922 	    }
1923 	}
1924 	bp->b_resid = uiop->uio_resid;
1925 	if (must_commit == 1)
1926 	    ncl_clearcommit(vp->v_mount);
1927 	bufdone(bp);
1928 	return (error);
1929 }
1930 
1931 /*
1932  * Used to aid in handling ftruncate() operations on the NFS client side.
1933  * Truncation creates a number of special problems for NFS.  We have to
1934  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1935  * we have to properly handle VM pages or (potentially dirty) buffers
1936  * that straddle the truncation point.
1937  */
1938 
1939 int
1940 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1941 {
1942 	struct nfsnode *np = VTONFS(vp);
1943 	u_quad_t tsize;
1944 	int biosize = vp->v_bufobj.bo_bsize;
1945 	int error = 0;
1946 
1947 	NFSLOCKNODE(np);
1948 	tsize = np->n_size;
1949 	np->n_size = nsize;
1950 	NFSUNLOCKNODE(np);
1951 
1952 	if (nsize < tsize) {
1953 		struct buf *bp;
1954 		daddr_t lbn;
1955 		int bufsize;
1956 
1957 		/*
1958 		 * vtruncbuf() doesn't get the buffer overlapping the
1959 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1960 		 * buffer that now needs to be truncated.
1961 		 */
1962 		error = vtruncbuf(vp, nsize, biosize);
1963 		lbn = nsize / biosize;
1964 		bufsize = nsize - (lbn * biosize);
1965 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1966 		if (!bp)
1967 			return EINTR;
1968 		if (bp->b_dirtyoff > bp->b_bcount)
1969 			bp->b_dirtyoff = bp->b_bcount;
1970 		if (bp->b_dirtyend > bp->b_bcount)
1971 			bp->b_dirtyend = bp->b_bcount;
1972 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1973 		brelse(bp);
1974 	} else {
1975 		vnode_pager_setsize(vp, nsize);
1976 	}
1977 	return(error);
1978 }
1979